WO2016185662A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2016185662A1
WO2016185662A1 PCT/JP2016/001994 JP2016001994W WO2016185662A1 WO 2016185662 A1 WO2016185662 A1 WO 2016185662A1 JP 2016001994 W JP2016001994 W JP 2016001994W WO 2016185662 A1 WO2016185662 A1 WO 2016185662A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
battery stack
main body
electrode tab
cooling air
Prior art date
Application number
PCT/JP2016/001994
Other languages
English (en)
French (fr)
Inventor
長谷川 隆史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016185662A1 publication Critical patent/WO2016185662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an assembled battery.
  • Patent Document 1 discloses an assembled battery in which a gap through which cooling air flows is provided at a position corresponding to an electrode tab between adjacent insulating plates. Patent Document 1 describes that the cooling air taken in from the gap on the back side of the battery stack flows along the periphery of the battery and flows out from the gap on the front side of the battery stack.
  • an assembled battery it is an important issue to efficiently cool a single cell and maintain it at an appropriate temperature.
  • an assembled battery for high-power applications in which the unit battery generates a large amount of heat is required to have high cooling performance.
  • An assembled battery includes a unit cell in which an electrode tab is drawn from one surface of a flat main body, a battery stack configured by stacking a plurality of unit cells in the same direction, A flow path of cooling air formed between the main body portions of the matching unit cells, and a channel formed on the second surface opposite to the first surface of the battery stack in which the electrode tabs of each unit cell extend. And a discharge port for discharging the cooling air from the flow path formed on the second surface of the battery stack, the flow path being the main body of the adjacent unit cell And a partition wall extending from the second surface side to the first surface side of the battery stack between the introduction port and the discharge port. The discharge port passes through the first surface side from the introduction port. The cooling air is circulated in the air.
  • the unit cell can be efficiently cooled and maintained at an appropriate temperature.
  • FIG. 1 is an exploded perspective view of an assembled battery which is an example of an embodiment.
  • FIG. 2 is a perspective view of an assembled battery as an example of the embodiment as viewed from the second surface side.
  • FIG. 3 is a perspective view of a unit cell constituting an assembled battery as an example of the embodiment.
  • FIG. 4 is a perspective view showing parallel blocks of a battery stack as an example of the embodiment.
  • 5A is a cross-sectional view taken along the line AA in FIG. 4
  • FIG. 5B is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 is an exploded perspective view of a parallel block as an example of the embodiment.
  • FIG. 7 is an enlarged view of the first surface of the parallel block as an example of the embodiment.
  • FIG. 1 is an exploded perspective view of an assembled battery which is an example of an embodiment.
  • FIG. 2 is a perspective view of an assembled battery as an example of the embodiment as viewed from the second surface side.
  • FIG. 3 is
  • FIG. 8 is a diagram illustrating a flow path structure and a flow of cooling air as an example of the embodiment.
  • FIG. 9 is a diagram illustrating a flow path structure and a flow of cooling air as an example of the embodiment.
  • FIG. 10 is a diagram illustrating an assembled battery which is another example of the embodiment.
  • FIG. 11 is a diagram showing a part of a cross section taken along the line CC in FIG.
  • FIG. 12 is a diagram illustrating a flow channel structure which is another example of the embodiment.
  • FIG. 13 is a diagram illustrating a flow channel structure which is another example of the embodiment.
  • FIG. 14 is a diagram illustrating a flow channel structure which is another example of the embodiment.
  • FIG. 15 is a diagram illustrating a flow channel structure which is another example of the embodiment.
  • front surface the first surface of the battery stack in which the electrode tabs of each unit cell extend
  • back surface the second surface opposite to the front surface
  • front and back are also used for assembled batteries, cases and the like.
  • terms indicating directions such as front and rear, top and bottom, vertical and horizontal are used, but the relationship between the direction and the usage pattern is not limited.
  • the vertical direction in the assembled battery and its constituent elements means the direction in which the electrode tab is drawn out from the main body of the unit cell, and the vertical direction means the direction in which the unit cells are stacked (stacking direction).
  • the horizontal direction is a direction orthogonal to the vertical direction and the vertical direction.
  • FIG. 1 is an exploded perspective view of the assembled battery 10
  • FIG. 2 is a perspective view of the exterior of the assembled battery 10 as viewed from the back side
  • FIG. 3 is a perspective view of the unit cell 20 constituting the assembled battery 10 (in addition, a cross section of a portion surrounded by a one-dot chain line is shown).
  • the assembled battery 10 includes a unit cell 20 in which electrode tabs (a positive electrode tab 22 and a negative electrode tab 23) are drawn from one surface of a flat main body 21, and a plurality of unit cells. And a battery stack 11 configured by stacking 20 in the same direction.
  • the positive electrode bus bar 50 is connected to the positive electrode tab 22 of the unit cell 20
  • the negative electrode side bus bar 60 is connected to the negative electrode tab 23 of the unit cell 20.
  • the battery stack 11 has, for example, a substantially rectangular parallelepiped shape, extends longer in the vertical direction than in the horizontal direction, and has a vertical length ⁇ horizontal length ⁇ vertical length.
  • the length of the battery stack 11 in the vertical direction is mainly determined by the thickness of the unit cells 20 and the number of the unit cells 20 stacked, and becomes longer as the number of layers is increased.
  • the length in the vertical direction and the length in the horizontal direction of the battery stack 11 mainly depend on the shape and dimensions of the unit cell 20.
  • the battery stack 11 is composed of a plurality of parallel blocks 13.
  • the parallel block 13 includes at least two adjacent unit cells 20 connected in parallel.
  • the parallel block 13 was formed by overlapping the positive electrode tab stacking portion 14 formed by overlapping the positive electrode tabs 22 of the single cells 20 constituting the block and the negative electrode tab 23 of the single cells 20.
  • a negative electrode tab laminate portion 15 The positive electrode side bus bar 50 is connected to the positive electrode tab laminate portion 14, and the negative electrode side bus bar 60 is connected to the negative electrode tab laminate portion 15.
  • the assembled battery 10 is configured by connecting a plurality of parallel blocks 13 in series using a positive electrode bus bar 50 and a negative electrode bus bar 60. That is, the connection form of the unit cells 20 in the assembled battery 10 is a series-parallel connection in which a series connection and a parallel connection are combined. However, the assembled battery 10 does not have the parallel connection of the single cells 20 and may have a structure not including the parallel block 13. In this case, the positive electrode side bus bar 50 is electrically connected only to the positive electrode tab 22 of one unit cell 20, and the negative electrode side bus bar 60 is electrically connected only to the negative electrode tab 23 of one unit cell 20. Connects the single cells 20 constituting the battery stack 11 in series.
  • the assembled battery 10 preferably includes a case 80 that houses the battery stack 11.
  • the case 80 has an internal space in which the battery stack 11 can be accommodated, and includes an upper case 81 and a lower case 82, for example.
  • an opening (not shown) for passing an output terminal is formed on the front surface of the case.
  • the case 80 has, for example, a substantially rectangular parallelepiped shape corresponding to the shape of the battery stack 11.
  • the assembled battery 10 includes a cooling air flow path 90 formed between the main body portions 21 of the adjacent unit cells 20, an inlet 91 for introducing the cooling air into the flow path 90, and cooling air from the flow path 90. And a discharge port 92 for discharging the water.
  • a cooling air flow path 90 formed between the main body portions 21 of the adjacent unit cells 20, an inlet 91 for introducing the cooling air into the flow path 90, and cooling air from the flow path 90.
  • a discharge port 92 for discharging the water.
  • the case 80 includes an opening 83 (first opening) for introducing cooling air into the case (internal space), and an opening 84 (second opening) for discharging the cooling air from the case.
  • the shape of the openings 83 and 84 is, for example, a square shape, but may be other shapes such as a circular shape.
  • the upper case 81 and the lower case 82 are formed with notches that become openings 83 and 84, respectively, and the notches are joined together by assembling the case 80 to form the openings 83 and 84. It is formed.
  • the openings 83 and 84 are formed in the lower part of the case back surface of the case 80 side by side in the horizontal direction.
  • the upper case 81 and the lower case 82 are coupled using, for example, screws (not shown).
  • coupling portions 85 and 86 used for screwing are provided at the four corners of the upper case 81 and the lower case 82, respectively.
  • an introduction path 87 that connects the opening 83 and the introduction port 91 and a discharge path 88 that connects the opening 84 and the discharge port 92 are formed, respectively. They are separated by a partition 89. That is, a gap through which cooling air flows is formed between the back surface of the case 80 and the back surface 12b of the battery stack 11. It is preferable that a large gap is not formed between the lateral side surface of the case 80 and the lateral side surface of the battery stack 11. As a result, most or all of the cooling air is introduced into the flow path 90 through the introduction path 87.
  • the introduction path 87, the discharge path 88, the flow path 90, and the components forming them are collectively referred to as “flow path structure CS”.
  • the flow path 90 is formed by disposing a partition wall 93 extending from the back surface 12b side to the front surface 12a side between the main body portions 21 of the adjacent unit cells 20 between the introduction port 91 and the discharge port 92. Cooling air is circulated from 91 to the discharge port 92 through the front surface 12a side.
  • the flow path 90 is formed in all between the adjacent unit cells 20. Further, a flow path 90 is also formed between the unit cell 20 disposed on the top of the battery stack 11 and the upper case 81.
  • the cell 20 constituting the assembled battery 10 includes a flat main body 21, a positive electrode tab 22 drawn from a side surface 28 that is one surface of the main body 21, and a side surface of the main body 21. 28 has a negative electrode tab 23 drawn out from 28.
  • the unit cell 20 is a laminate battery including an exterior body 26 composed of two laminate films 24 and 25.
  • the laminate film 24 side is “upper”, and the laminate film 25 side is “lower”.
  • the laminate films 24 and 25 it is preferable to use a film in which a resin layer is formed on both surfaces of a metal layer.
  • the metal layer is, for example, an aluminum layer, and has a function of preventing permeation of moisture and the like.
  • the unit cell 20 is not limited to a laminated battery, and may be a prismatic battery including a prismatic metal case, for example.
  • the unit cell 20 is a secondary battery, for example, a lithium ion secondary battery, and includes, for example, a power generation element including an electrode body and an electrolyte, and an exterior body 26 that houses the power generation element.
  • An example of the electrode body is a wound electrode body in which a positive electrode and a negative electrode are wound through a separator.
  • the positive electrode tab 22 is connected to the positive electrode, and the negative electrode tab 23 is connected to the negative electrode.
  • the exterior body 26 has a main body portion 21 and a seal portion 27, and a power generation element is accommodated in the main body portion 21.
  • a flat, substantially rectangular parallelepiped main body portion 21 is formed on the laminate film 24 constituting the exterior body 26.
  • the main body 21 is formed, for example, by drawing the laminate film 24 so as to be convex on the opposite side of the laminate film 25.
  • the seal portion 27 is formed around the main body portion 21 by joining edge portions of the laminate films 24 and 25 (for example, heat sealing).
  • the seal portion 27 formed along the vertical direction of the unit cell 20 is bent upward so as to overlap the side surface 29 which is the end surface in the horizontal direction of the main body portion 21.
  • the width of the seal portion 27 is preferably the same as or slightly shorter than the length of the side surface 29 in the vertical direction.
  • the positive electrode tab 22 and the negative electrode tab 23 are pulled out from the same surface (side surface 28) of the main body 21 as described above.
  • the side surface 28 is one longitudinal end surface of the main body 21 along the thickness direction of the unit cell 20.
  • Each tab passes through a seal portion 27 extending in the vertical direction from the lower portion of the side surface 28 (hereinafter, sometimes referred to as “seal portion 27x” to be distinguished from other seal portions 27), and the tip of the seal portion 27x (one end in the vertical direction). ) Extending vertically.
  • the seal portion 27x is formed substantially perpendicular to the side surface 28 with each tab sandwiched between the laminate films 24 and 25, for example.
  • the positive electrode tab 22 and the negative electrode tab 23 are thin plate-like conductive members, and are arranged side by side in the horizontal direction of the unit cell 20. Between the positive electrode tab 22 and the negative electrode tab 23, the space which can form the connection part 70 of a bus bar is provided.
  • each tab it is preferable that at least portions extending from the front end of the seal portion 27x to the outside of the exterior body 26 (hereinafter sometimes referred to as “exposed portions”) have the same shape and the same dimensions.
  • the lateral length of each tab is less than 50% of the lateral length of the main body 21, and preferably 20 to 40%.
  • the vertical length of the exposed portion of each tab is a length that does not hinder connection with each bus bar, and is, for example, approximately the same as the width of each bus bar.
  • the unit cell 20 (unit cell 20b) arranged below the parallel block 13 is different from the unit cell 20 (unit cell 20a) arranged above the parallel block 13 in the shape of the exposed portion of each tab. (See FIG. 6 etc.).
  • the positive electrode tab 22b and the negative electrode tab 23b of the unit cell 20b are bent upward in the vicinity of the seal portion 27b and then bent again to one side in the vertical direction (the opposite side to the main body portion 21b).
  • the cells may be appropriately cut to produce the unit cells 20a, 20b and the like. Moreover, you may cut an excess exposed part after formation of each tab lamination
  • FIGS. 4 to 7 are diagrams showing the parallel block 13 of the battery stack 11. 4 to 6, among the two unit cells 20 constituting the parallel block 13, the unit cell 20 disposed on the upper side is referred to as “unit cell 20a”, and the unit cell 20 disposed on the lower side is represented by “unit cell 20b”. And a and b are added to the components of each battery, respectively.
  • the stacked parallel blocks 13 are referred to as “parallel blocks 13 ⁇ / b> A, 13 ⁇ / b> B, 13 ⁇ / b> C” in order from the top, and A, B, and C are respectively attached to the constituent elements of each block.
  • the battery stack 11 is configured by using a plurality of unit cells 20 in which the main body 21 has the same shape and the same dimensions.
  • the number of unit cells 20 constituting the battery stack 11 is not particularly limited, but is preferably four or more.
  • the battery stack 11 illustrated in FIG. 1 includes eight unit cells 20 and includes four parallel blocks 13 configured by connecting these unit cells 20 two by two in parallel.
  • the battery stack 11 is configured by stacking a plurality of unit cells 20 in the same direction as described above. Specifically, the side surfaces 28 of the main body 21 from which the positive electrode tab 22 and the negative electrode tab 23 are drawn face in the same direction, and the vertical end portions and the horizontal end portions of the main body portion 21 are aligned with each other.
  • the unit cells 20 are stacked. Each unit cell 20 is laminated with the laminate film 24 on which the main body 21 is formed facing upward.
  • the parallel block 13 includes two unit cells 20a and 20b that are connected in parallel to each other by forming a positive electrode tab stacked portion 14 and a negative electrode tab stacked portion 15.
  • the unit cells 20a and 20b are stacked in the same direction as described above, and the positive electrode tabs 22a and 22b and the negative electrode tabs 23a and 23b arranged in the vertical direction are electrically connected to each other, and the positive electrode tab stacked unit 14 and Each of the negative electrode tab laminate portions 15 is formed.
  • the parallel block 13 includes a positive electrode side bus bar 50 connected to the positive electrode tab stacking portion 14 and a negative electrode side bus bar 60 connected to the negative electrode tab stacking portion 15.
  • it is suitable for the parallel block 13 to be equipped with the frame bodies 30 and 40 attached to the cell 20a, 20b, respectively.
  • the positive electrode tab 22a and the negative electrode tab 23a of the unit cell 20a extend from the tip of the seal portion 27a to the outside of the exterior body 26 and extend straight in the vertical direction.
  • the positive electrode tab 22b of the unit cell 20b extends in the vertical direction to the position where it is bent toward the positive electrode tab 22a side of the unit cell 20a in the vicinity of the seal portion 27b.
  • the positive electrode tab 22b is bent to the opposite side of the main body 21a at a position in contact with the lower surface of the positive electrode tab 22a, and extends substantially parallel to the positive electrode tab 22a along the vertical direction from the bent portion to the tip. And the lower surface of the positive electrode tab 22a and the upper surface of the positive electrode tab 22b are joined, and the positive electrode tab lamination
  • the negative electrode tab 23b of the unit cell 20b extends in the vertical direction to the position where the negative electrode tab 23a of the unit cell 20a is bent and contacted with the negative electrode tab 23a in the vicinity of the seal portion 27b.
  • the negative electrode tab 23b is bent to the opposite side of the main body portion 21a at a position in contact with the lower surface of the negative electrode tab 23a, and extends substantially parallel to the negative electrode tab 23a along the vertical direction from the bent portion to the distal end portion. And the lower surface of the negative electrode tab 23a and the upper surface of the negative electrode tab 23b are joined, and the negative electrode tab lamination
  • the tab laminated portions are preferably formed side by side in the horizontal direction at the substantially vertical central portion of the parallel block 13.
  • the positive electrode tab stacking portion 14 is formed, for example, by superposing and welding the positive electrode tab 22a of the unit cell 20a and the positive electrode tab 22b of the unit cell 20b.
  • the welding method is not particularly limited, and examples thereof include ultrasonic welding and laser welding.
  • the positive electrode tabs 22a and 22b and the positive electrode side bus bar 50 are superposed on each other and ultrasonically welded to form the positive electrode tab laminated portion 14 and simultaneously connect the positive electrode side bus bar 50 to the positive electrode tab laminated portion 14.
  • the negative electrode tab laminated portion 15 can also be formed by overlapping and welding the negative electrode tab 23a and the negative electrode tab 23b.
  • tabs can also be formed by fastening the tabs with a fastening member such as a bolt, for example, by a method other than welding.
  • the frame bodies 30 and 40 surround the four sides of the main body portions 21a and 21b, respectively, and protect the unit cells 20a and 20b, for example, and have a function of binding the batteries.
  • a part of the frames 30 and 40 constitutes the flow path structure CS.
  • the frame 30 has two horizontal bars 31x and 31y and two vertical bars 32, and is attached from the upper side of the unit cell 20a.
  • the horizontal rails 31x and 31y are placed on the seal portions 27a formed at both ends in the vertical direction of the unit cell 20a and arranged along the vertical end surface (side surface 28) of the main body portion 21a, and the vertical rails 32 are arranged on the main body portion 21a. It is arrange
  • the horizontal rails 31x and 31y are formed with slits (not shown) for avoiding interference with both ends of the bent seal portion 27 in the vertical direction.
  • bonding with the frame 40 is provided in the horizontal direction both ends (longitudinal direction both ends) of the crosspieces 31x and 31y.
  • the frame 40 also has two horizontal bars 41x and 41y and two vertical bars 42, and is attached from the upper side of the unit cell 20b.
  • Each frame body is couple
  • the engaging part 45 has a hook
  • the engaging part 35 has a recess into which the hook is inserted and hooked.
  • the unit cell 20a is sandwiched from above and below by the frame bodies 30 and 40 that are coupled to each other.
  • the unit cell 20b is sandwiched between the frame body 40 and the frame body 30 of another parallel block 13 disposed on the lower side.
  • the hook is provided only in the engaging portion 45, but the shape of the engaging portion is not limited to this, and for example, the engaging portion 35 is also inserted into the frame body 40 disposed on the upper side. Possible hooks or the like may be provided.
  • a support portion 33 and a holding portion 34 for holding the positive electrode side bus bar 50 are provided in the horizontal center portion (longitudinal direction center portion) of the horizontal rail 31x.
  • the support portion 33 protrudes in the vertical direction and is formed in a block shape, and a part of the positive electrode bus bar 50 extending from the other end in the horizontal direction toward the center portion is placed on the support portion 33.
  • a part (second connection part 52) of the positive electrode side bus bar 50 placed on the support part 33 is located at the upper end part of the parallel block 13.
  • the presser part 34 is a protrusion provided on the other end side in the lateral direction of the horizontal rail 31x with respect to the support part 33 with a gap in which the positive bus bar 50 can be inserted between the support part 33 and the support part 33. The movement of the positive electrode side bus bar 50 along with the portion 33 is restrained.
  • a support portion 43 formed in a block shape and a presser portion 44 that restrains the movement of the negative side bus bar 60 in the horizontal direction together with the support portion 43 are provided in the same manner as the horizontal rail 31x. It is preferred that The support part 43 is arranged side by side with the support part 33 in the vertical direction. It is preferable that a part of the negative electrode side bus bar 60 (second connection part 62) extending from the other side in the lateral direction to the center part side is disposed below the support part 43 and positioned at the lower end part of the parallel block 13. .
  • the presser part 44 is provided on one end side in the horizontal direction of the horizontal rail 41x with respect to the support part 43 with a gap in which the negative electrode side bus bar 60 can be inserted between the presser part 44 and the support part 43.
  • the vertical lengths of the horizontal rail 31x and the vertical rail 32 are longer than the thickness (vertical length) of the main body portion 21a, and the upper surface of each rail is located above the upper surface of the main body portion 21a.
  • the vertical beam 32 has a substantially L-shaped cross section, and a part of the vertical beam 32 projects on the main body 21a.
  • the horizontal beam 31x and the vertical beam 32 extending upward from the upper surface of the main body portion 21a flow between the main body portion 21a and the main body portion 21 or the case 80 of the unit cell 20 of another parallel block 13 disposed on the upper side.
  • a gap that becomes the channel 90 is formed, and a side wall 94 of the channel 90 is formed.
  • the horizontal rail 41 x and the vertical rail 42 are located above the upper surface of the main body portion 21 b and the flow path 90 between the main cell portion 21 a of the unit cell 20 a. And a side wall 94 of the flow path 90 is formed.
  • the concave portion 36 is formed on one side in the horizontal direction of the horizontal rail 31y, and the concave portion 37 is formed on the other side in the horizontal direction.
  • a convex portion 38 is formed between the concave portions.
  • the upper surface of the horizontal beam 31y in the recesses 36 and 37 is positioned at the same height as the upper surface of the main body 21a, and the upper surface of the convex portion 38 is positioned at the same height as the upper surfaces of the horizontal beam 31x and the vertical beam 32.
  • a gap is formed between the frame 40 of another parallel block 13 arranged on the unit cell 20a, and the gap is an inlet 91 for cooling air. And the discharge port 92.
  • a concave portion 46 is formed on one side in the horizontal direction
  • a concave portion 47 is formed on the other side in the horizontal direction
  • a convex portion 48 is formed between the concave portions. Due to the recesses 46 and 47, a cooling air introduction port 91 and a discharge port 92 are formed between the recesses 46 and 47 and the frame 30 attached to the unit cell 20a.
  • the convex portions 38 and 48 are formed in a block shape, for example, in the center in the horizontal direction of the horizontal rails 31y and 41y. As described above, the convex portion 38 protrudes above the concave portions 36 and 37 and contacts the frame body 40 arranged on the upper side, and separates the introduction port 91 and the discharge port 92 formed by the two concave portions. Similarly, the convex portion 48 protrudes above the concave portions 46 and 47 and contacts the frame body 30 disposed on the upper side, and separates the inlet 91 and the outlet 92 formed by the two concave portions. The convex portions 38 and 48 further protrude in the vertical direction and substantially contact the case 80. The convex portions 38 and 48 are arranged in contact with each other in the battery stack 11 in the vertical direction, and form a partition portion 89 that separates the introduction path 87 and the discharge path 88.
  • the horizontal beam 31x and the vertical beam 32 each extend upward from the upper surface of the main body 21a to form the side wall 94 of the flow path 90.
  • another member is provided on the main body 21a. It may be provided to form the side wall 94 of the flow path 90 (see FIG. 10 and the like described later).
  • the two recessed parts 36 and 37 were isolate
  • the recessed part may be one. In this case, for example, the inlet 91 and the outlet 92 can be separated by the partition wall 93.
  • the introduction path 87 and the discharge path 88 may be separated by projecting the portion between the openings 83 and 84 of the case 80 toward the back surface 12b side of the battery stack 11.
  • the positive electrode side bus bar 50 and the negative electrode side bus bar 60 are metal conductive members, and are connected to the positive electrode tab laminated portion 14 and the negative electrode tab laminated portion 15 by welding, for example.
  • the positive electrode side bus bar 50 includes a first connection part 51 (positive electrode side first connection part), a second connection part 52 (positive electrode side second connection part), and a connection part 53 (positive electrode side connection part). It is preferable that one metal plate be bent.
  • the first connection part 51 is a part connected to the positive electrode tab laminate part 14.
  • the second connection portion 52 is a portion that extends substantially parallel to the first connection portion 51 and is connected to the negative electrode bus bar 60 of another parallel block 13.
  • the positive electrode side bus bar 50 has a constant width over its entire length, and the first connection portion 51 is longer than the second connection portion 52.
  • the connection part 53 is a part which connects each connection part, Comprising: A level
  • step difference is formed between each connection part.
  • the first connecting portion 51 extends from one end of the connecting portion 53 and the second connecting portion 52 extends from the other end of the connecting portion 53 in opposite directions. It is preferable that the connecting portion 53 is formed substantially perpendicular to each connecting portion by bending a metal plate.
  • the first connection portion 51 is placed on the upper surface of the positive electrode tab laminate portion 14 and welded, and the second connection portion 52 is placed on the upper surface of the support portion 33 of the frame body 30. That is, the first connection portion 51 is located at the substantially central portion in the vertical direction of the parallel block 13, and the second connection portion 52 is located at the upper end portion of the parallel block 13.
  • the connection part 53 forms the level
  • the negative electrode side bus bar 60 includes a first connection part 61 (negative electrode side first connection part), a second connection part 62 (negative electrode side second connection part), and a connection part 63 (negative electrode side). It is preferable that a single metal plate be bent and configured.
  • the second connection part 62 is connected to the positive bus bar 50 of another parallel block 13.
  • the first connection portion 61 is welded to the lower surface of the negative electrode tab laminate portion 15, and the second connection portion 62 is disposed below the support portion 43. That is, the first connection portion 61 is located at the substantially central portion in the vertical direction of the parallel block 13, and the second connection portion 62 is located at the lower end portion of the parallel block 13.
  • the connecting part 63 forms a step between the connecting parts.
  • the positive electrode side bus bar 50 and the negative electrode side bus bar 60 may have different shapes and dimensions, but preferably have the same shape and the same dimensions.
  • the positive electrode side bus bar 50 and the negative electrode side bus bar 60 differ only in the direction in which they are attached to the battery stack 11, and the member used as the positive electrode side bus bar 50 can be used as the negative electrode side bus bar 60.
  • the assembled battery 10 can be configured using one type of bus bar, and the number of parts can be reduced.
  • the assembled battery 10 includes the battery stack 11 including the plurality of parallel blocks 13 as described above, and is configured by connecting adjacent parallel blocks 13 in series.
  • the tabs of the unit cells 20 constituting the parallel block 13 are pulled out in the same direction, and the bus bars are attached on the same surface of the battery stack 11.
  • connection work or the like can be performed on one surface, so that productivity is excellent, and the battery pack 10 can be downsized.
  • connection part 70AB is formed by overlapping and welding the second connection part 62A of the negative electrode side bus bar 60A and the second connection part 52B of the positive electrode side bus bar 50B.
  • a connecting portion 70AB is formed at the boundary between the parallel blocks 13A and 13B.
  • connection portion 70AB is provided with a conductive member 71AB sandwiched between the negative electrode side bus bar 60A and the positive electrode side bus bar 50B, and the second connection portion 52B and the second connection portion 62A connect the conductive member 71AB. Is electrically connected.
  • Adjacent parallel blocks 13B and 13C are connected in series using a positive bus bar 50C and a negative bus bar 60B. That is, the negative electrode bus bar 60B connected to the negative electrode tab laminate portion 15B of the parallel block 13B and the positive electrode bus bar 50C connected to the positive electrode tab laminate portion (not shown in FIG. 7) of the parallel block 13C are connected to each other.
  • the connection portion 70BC is welded to the boundary portion between the parallel blocks 13B and 13C by welding the second connection portion 62B of the negative electrode bus bar 60B and the second connection portion 52C of the positive electrode bus bar 50C via the conductive member 71BC. It is formed.
  • connection portions 70AB and 70BC are formed side by side in the vertical direction at the laterally central portion on the side surface 12 of the battery stack 11.
  • the tab laminated portions of the parallel blocks 13A, 13B, and 13C are provided so as to avoid the lateral central portion of the side surface 12. Therefore, the connection portions 70AB and 70BC are formed in the central portion, and the conductive portions are formed. Space for arranging the members 71AB and 71BC is secured.
  • the connecting part 70AB (second connecting part 52B, second connecting part 62A) is supported from above and below by the support parts of the frame bodies 30A, 40A of the parallel block 13A and the support parts of the frame bodies 30B, 40B of the parallel block 13B. It is preferable to be sandwiched. In the example shown in FIG. 1, these members are stacked in the vertical direction in the order of the positive electrode side bus bar 50, the conductive member 71, the negative electrode side bus bar 60, the frame body 40, and the frame body 30. With such a laminated structure, the connection portion 70 is strongly pressed from above and below, so that, for example, contact failure of the connection portion 70 is unlikely to occur, and a good connection state is maintained for a long time.
  • the conductive members 71AB and 71BC are thin plate-like members disposed between the bus bars in the connection portions 70AB and 70BC, respectively. As illustrated in FIG. 1, it is preferable that conductive members 71 are provided in all connection portions 70.
  • the positive electrode side bus bar 50 and the negative electrode side bus bar 60 are not directly connected, and a conductive member 71 is interposed therebetween. In the example shown in FIG. 1, the uppermost conductive member 71 is connected only to the positive bus bar 50, and the lowermost conductive member 71 is connected only to the negative bus bar 60. ing.
  • the conductive member 71AB has a voltage monitoring terminal portion 72AB protruding from between the positive side bus bar 50B and the negative side bus bar 60A.
  • the voltage monitoring terminal portion 72AB extends in the vertical direction from one end in the horizontal direction of the connection portion 70AB.
  • the voltage monitoring terminal unit 72AB functions as a terminal for measuring the voltage of the series block composed of the parallel blocks 13A and 13B.
  • the voltage monitoring terminal portion 72BC of the conductive member 71BC functions as a terminal for measuring the voltage of the series block composed of the parallel blocks 13B and 13C.
  • the voltage monitoring terminal portions 72 are preferably arranged side by side in the vertical direction. By arranging the voltage monitoring terminal portions 72 in a line, it is possible to suppress, for example, a complicated connection structure between each terminal and a voltage measurement unit (not shown).
  • the conductive member 71 further functions as a fuse.
  • the conductive member 71 is made of, for example, a metal material having a melting point lower than that of the metal material constituting each bus bar (low melting point alloy or the like), and melts and cuts off the current when an excessive current flows.
  • a conductive member that functions as a fuse may be used separately from the conductive member for voltage monitoring.
  • FIGS. 8 and 9 are diagrams showing the flow path structure CS and the flow of cooling air in the structure.
  • the flow path structure CS has a cooling air introduction port 91 and a discharge port 92 communicating with the openings 83 and 84 of the case 80, respectively, formed on the back surface 12 b of the battery stack 11.
  • a cooling air flow path 90 is formed between the main body portions 21 of the adjacent unit cells 20.
  • an introduction path 87 and a discharge path 88 separated by a partition portion 89 are formed between the back surface 12 b of the battery stack 11 and the case 80.
  • an introduction path 87 and a discharge path 88 separated by a partition portion 89 are formed between the back surface 12 b of the battery stack 11 and the case 80.
  • a ventilation duct is attached to the opening 83
  • an exhaust duct is attached to the opening 84 (none of which is shown).
  • the introduction port 91 is formed at one end side in the lateral direction of the back surface 12b and the discharge port 92 is formed at the other end side in the lateral direction of the back surface 12b.
  • the horizontal lengths of the inlet 91 and the outlet 92 are, for example, substantially the same.
  • each inlet 91 and each outlet 92 are arranged side by side in the vertical direction.
  • the introduction path 87 that connects the opening 83 and each introduction port 91 and the discharge path 88 that connects the opening 84 and each discharge port 92 are provided substantially parallel to each other across the partition 89 from the bottom to the top of the back surface 12b. Yes.
  • the channel 90 is formed by disposing a partition wall portion 93 between the main body portions 21 of the adjacent unit cells 20 and between the unit cell 20 disposed on the top of the battery stack 11 and the upper case 81.
  • the partition wall 93 serves to discharge the cooling air introduced from the back surface 12b of the battery stack 11 into the flow path 90 through the front surface 12a of the battery stack 11 from the back surface 12b.
  • the front surface 12 a side from which the electrode tab is drawn that is, the region H closer to the side surface 28 than the longitudinal center portion ⁇ of the main body portion 21 is particularly likely to generate heat.
  • the partition wall 93 prevents the cooling air flowing in from the introduction port 91 from flowing out from the discharge port 92 without passing over the region H (cooling air shortcut).
  • the flow path 90 is also formed between the unit cell 20 disposed on the top of the battery stack 11 and the upper case 81, but is further disposed on the bottom of the battery stack 11.
  • a flow path 90 may be formed between the unit cell 20 and the lower case 82.
  • the flow path structure CS may be a structure in which the flow path 90 is provided only between adjacent unit cells 20.
  • the flow path 90 may be formed between the parallel blocks 13.
  • the flow path 90 is not provided between the two single cells 20 constituting the parallel block 13, but only between the adjacent parallel blocks 13 or between the adjacent parallel blocks 13 and between the parallel block 13 and the case 80.
  • a flow path 90 may be provided between them. That is, when the parallel block 13 is composed of two unit cells 20, the flow path 90 is formed at a rate of one for each of the two unit cells 20.
  • the side wall 94 of the flow channel 90 is formed by the horizontal beam 31x and the vertical beam 32 of the frame 30 as described above.
  • the horizontal beam 41x and the vertical beam 42 of the frame 40 also form the side wall 94 of the flow path 90.
  • the flow path 90 has a substantially U shape in a plan view by a frame body 30 (horizontal beam 31x and vertical beam 32) surrounding three sides of the main body 21 and a partition wall portion 93 extending in the vertical direction between the introduction port 91 and the discharge port 92. It is formed in a letter shape.
  • the flow path 90 includes a flow path from the back face 12b side to the front face 12a side at one end side in the horizontal direction of the main body 21, and a flow path from the front face 12a side to the back face 12b side at the other lateral end side. Cooling air is circulated from the port 91 through the region H to the discharge port 92.
  • the thickness of the partition wall 93 is preferably substantially the same as the interval between the main body portions 21 of the adjacent unit cells 20, that is, the vertical length of the flow path 90.
  • the partition wall 93 is preferably formed from a position between the introduction port 91 and the discharge port 92 to a position closer to the front surface 12a than to the back surface 12b of the battery stack 11.
  • the partition wall portion 93 is continuously formed from the position in contact with the partition portion 89 to the front surface 12a side of the battery stack 11 beyond the longitudinal central portion ⁇ of the main body portion 21. That is, the front end of the partition wall portion 93 is located on the front surface 12a side with respect to the longitudinal center portion ⁇ .
  • the distance between the side wall 94 (horizontal bars 31x, 41x) on the front surface 12a side and the tip of the partition wall 93 is substantially the same as the lateral length of the inlet / outlet (inlet 91, outlet 92) of the channel 90, for example.
  • the partition wall portion 93 may be formed as a part of the frame bodies 30 and 40, for example, by extending the horizontal center portion of the horizontal rails 31y and 41y toward the front surface 12a, but is preferably different from the frame bodies 30 and 40. Consists of members. It is preferable to apply an elastic member that can be elastically deformed to the partition wall 93. By using an elastic member for the partition wall portion 93, for example, a change in the vertical length of the battery stack 11 due to the expansion of the main body portion 21 can be suppressed, and damage to the main body portion 21 due to the edge of the partition wall portion 93 can be prevented. . Examples of suitable elastic members include rubber and foam. The elastic member is attached to the upper surface of the main body 21 using an adhesive, for example.
  • the partition wall 93 is formed between the inlet 91 and the partition wall 93 in a planar view band shape.
  • the width (lateral length) of the partition wall portion 93 is smaller than the lateral length of the partition portion 89 and is substantially constant over the entire length.
  • the width of the partition wall portion 93 may change in the length direction, and may be longer than the lateral length of the partition portion 89 (see FIGS. 10 to 15 described later).
  • the cooling air introduced into the case from the opening 83 of the case 80 flows into the flow paths 90 from the introduction ports 91 through the introduction paths 87.
  • the cooling air flowing into each flow path 90 flows along the partition wall portion 93 toward the front surface 12 a, passes over the region H of the main body portion 21, and flows again along the partition wall portion 93 toward the back surface side 12 b.
  • the cooling air that has cooled each unit cell 20 through the flow path 90 flows out from each discharge port 92 and is discharged from the opening 84 through the discharge path 88.
  • the single battery 20 can be cooled by flowing cooling air between the main body portions 21 of the adjacent single batteries 20.
  • the side wall 94 of the flow path 90 is formed by the vertical bars 32 and 42 of the frame bodies 30 and 40.
  • the member which comprises.
  • two side walls 101 provided along the vertical direction at both lateral ends of the upper surface of the main body 21, the horizontal rail 31 x of the frame 30, and the partition wall 93, A substantially U-shaped channel 100 is formed.
  • the vertical lengths of the vertical bars 102 and 103 are substantially the same as the thickness of the main body portion 21, and a gap serving as the flow path 100 is formed between the adjacent main body portions 21 by the two side wall portions 101 and the partition wall portions 93. .
  • an elastic member constituting the side wall of the flow path 100 is provided between the main body portions 21 of the adjacent unit cells 20.
  • the side wall 101 is provided over the entire length of the main body 21 in the vertical direction.
  • the width of the side wall 101 is, for example, substantially the same as the width of the partition wall 93 and is substantially constant over the entire length.
  • Each side wall 101 protrudes beyond the edges of the introduction port 91 and the discharge port 92 toward the partition wall 93, and the flow channel 100 is narrower than the flow channel 90. That is, each side wall 101 closes a part of the entrance / exit of the flow path 100.
  • a partition wall portion 105 having a substantially triangular shape in plan view whose width becomes narrower toward the tip may be provided.
  • the flow path 104 formed by disposing the partition wall 105 has a wider flow path width as it approaches the front surface 12a.
  • side wall portions 106 that are narrower than the side wall portions 101 and do not block the entrance / exit of the flow path 104 are provided at both lateral ends of the main body portion 21.
  • a side wall portion 108 that widens as it approaches the front surface 12 a may be provided.
  • the side wall part 108 has a curved part on the front surface 12a side, and the corners of the flow path 107 are rounded.
  • the width of the flow path 109 may be gradually narrowed by increasing the width of the partition wall part 110 and the side wall part 111 as it approaches the discharge port 92.
  • a wide side wall 101 is provided only on the inlet 91 side, and a partition wall 113 is further projected on the inlet 91 side, so that the inlet 91 side is closer than the outlet 92 side.
  • a channel 112 with a narrow channel width may be formed.
  • the flow path 109 is a flow path that is wider on the introduction port 91 side than the discharge port 92 side, and the flow path 112 is a flow path that is wider on the discharge port 92 side than the introduction port 91 side.
  • each tab stack portion is formed by stacking three tabs. That is, in the assembled battery 10, it is possible to change the number of unit cells 20 connected in parallel by changing the number of tabs constituting the tab stack portion, the bent shape of each tab, and the like.
  • the conductive member 71 is described as being disposed in all the connection portions 70. However, the conductive member 71 may be disposed only in a part of the connection portions 70, or the conductive member 71 may be Alternatively, each bus bar may be directly welded. Further, the conductive member 71 does not have the voltage monitoring terminal portion 72 and may be used exclusively as a fuse.
  • each bus bar is arranged on one surface of the battery stack 11, and it is possible to perform connection work of the bus bars in a line along the vertical direction. That is, the assembled battery 10 has a simple structure and is easy to assemble. Furthermore, the assembled battery 10 can be configured in a plurality of connection forms by using one type of bus bar, has a small number of parts, and has a high degree of freedom in the connection form of the unit cells 20. The assembled battery 10 has an excellent cooling performance with a simple structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

実施形態の一例である組電池は、複数の単電池を同じ向きに積み重ねて構成された電池積層体と、隣り合う単電池の本体部の間に形成された冷却風の流路と、電池積層体の背面に形成された導入口と、電池積層体の背面に形成された排出口とを備える。流路は、隣り合う単電池の本体部の間に、導入口と排出口との間で電池積層体の前面側に延びる隔壁部を配置して形成される。

Description

組電池
 本開示は、組電池に関する。
 特許文献1は、隣り合う絶縁プレート間の電極タブに対応する位置に、冷却風が通る隙間が設けられた組電池を開示する。特許文献1では、電池積層体の背面側の隙間から取り込まれた冷却風が電池の周囲に沿って流通し、電池積層体の前面側の隙間から流出する、と記載されている。
特開2007-172893号公報
 ところで、組電池において、単電池を効率良く冷却して適切な温度に維持することは重要な課題である。特に単電池の発熱量が大きな高出力用途の組電池では、高い冷却性能を備えることが求められる。
 本開示の一態様である組電池は、扁平形状の本体部の一の面から電極タブが引き出された単電池と、複数の単電池を同じ向きに積み重ねて構成された電池積層体と、隣り合う単電池の本体部の間に形成された冷却風の流路と、各単電池の電極タブが延出する電池積層体の第1面と反対側の第2面に形成された、流路に冷却風を導入するための導入口と、電池積層体の第2面に形成された、流路から冷却風を排出するための排出口とを備え、流路は、隣り合う単電池の本体部の間に、導入口と排出口との間で電池積層体の第2面側から第1面側に延びる隔壁部を配置して形成され、導入口から第1面側を通って排出口に冷却風を流通させることを特徴とする。
 本開示の一態様である組電池によれば、単電池を効率良く冷却して適切な温度に維持することができる。
図1は実施形態の一例である組電池の分解斜視図である。 図2は実施形態の一例である組電池を第2面側から見た斜視図である。 図3は実施形態の一例である組電池を構成する単電池の斜視図である。 図4は実施形態の一例である電池積層体の並列ブロックを示す斜視図である。 図5(a)は図4中のAA線断面図、図5(b)は図4中のBB線断面図である。 図6は実施形態の一例である並列ブロックの分解斜視図である。 図7は実施形態の一例である並列ブロックの第1面の拡大図である。 図8は実施形態の一例である流路構造と冷却風の流れ示す図である。 図9は実施形態の一例である流路構造と冷却風の流れ示す図である。 図10は実施形態の他の一例である組電池を示す図である。 図11は図10中のCC線断面の一部を示す図である。 図12は実施形態の他の一例である流路構造を示す図である。 図13は実施形態の他の一例である流路構造を示す図である。 図14は実施形態の他の一例である流路構造を示す図である。 図15は実施形態の他の一例である流路構造を示す図である。
 以下、実施形態の一例について詳細に説明する。
 実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 本明細書において、「略**」との記載は、略同一を例に挙げて説明すると、全く同一はもとより実質的に同一と認められる場合を含む意図である。
 以下では、各単電池の電極タブが延出する電池積層体の第1面を「前面」とし、前面と反対側の第2面を「背面」とする。前面及び背面の用語は、組電池、ケース等についても使用する。本明細書では、説明の便宜上、前後、上下、縦、横等の方向を示す用語を使用するが、その方向と使用形態等との関係が限定されるものではない。なお、組電池及びその構成要素における縦方向とは、単電池の本体部から電極タブが引き出される方向を意味し、上下方向とは単電池が積み重ねられる方向(積層方向)を意味する。横方向とは、縦方向及び上下方向に直交する方向である。
 図1~図9を用いて、実施形態の一例である組電池10について詳細に説明する。
 図1は組電池10の分解斜視図、図2は組電池10の外観を背面側から見た斜視図である。図3は組電池10を構成する単電池20の斜視図である(併せて、一点鎖線で囲んだ部分の断面を示す)。
 図1及び図2に示すように、組電池10は、扁平形状の本体部21の一の面から電極タブ(正極タブ22、負極タブ23)が引き出された単電池20と、複数の単電池20を同じ方向に積み重ねて構成された電池積層体11とを備える。本実施形態では、単電池20の正極タブ22に正極側バスバー50が、単電池20の負極タブ23に負極側バスバー60がそれぞれ接続されている。
 電池積層体11は、例えば略直方体形状を有し、横方向よりも縦方向に長く延び、上下方向長さ<横方向長さ<縦方向長さとなっている。電池積層体11の上下方向長さは、主に単電池20の厚みと単電池20の積層数により決定され、積層数を多くすることで長くなる。電池積層体11の縦方向長さ、横方向長さは、主に単電池20の形状、寸法に依存する。
 本実施形態では、電池積層体11が複数の並列ブロック13から構成されている。並列ブロック13は、隣り合う少なくとも2つの単電池20が並列に接続されてなる。並列ブロック13は、当該ブロックを構成する各単電池20の正極タブ22同士を重ね合わせて形成された正極タブ積層部14と、当該各単電池20の負極タブ23同士を重ね合わせて形成された負極タブ積層部15とを有する。そして、正極側バスバー50が正極タブ積層部14に、負極側バスバー60が負極タブ積層部15にそれぞれ接続されている。
 組電池10は、正極側バスバー50及び負極側バスバー60を用いて複数の並列ブロック13を直列に接続して構成される。つまり、組電池10における単電池20の接続形態は、直列接続と並列接続を組み合わせた直並列接続である。但し、組電池10は単電池20同士の並列接続を有さず、並列ブロック13を含まない構造とすることも可能である。この場合、正極側バスバー50は1つの単電池20の正極タブ22のみと電気的に接続され、また負極側バスバー60は1つの単電池20の負極タブ23のみと電気的に接続され、各バスバーは電池積層体11を構成する各単電池20を直列に接続する。
 組電池10は、電池積層体11を収容するケース80を備えることが好適である。ケース80は、電池積層体11を収容可能な内部空間を有し、例えば上ケース81及び下ケース82から構成される。ケース80には、後述の開口部83,84の他に、例えば出力端子を通すための開口部(図示省略)がケース前面に形成される。ケース80は、例えば電池積層体11の形状に対応した略直方体形状を有する。
 組電池10は、隣り合う単電池20の本体部21の間に形成された冷却風の流路90と、流路90に冷却風を導入するための導入口91と、流路90から冷却風を排出するための排出口92とを備える。隣り合う単電池20の本体部21の間に流路90を設けて冷却風を流すことにより、単電池20を効率良く冷却して適切な温度に維持することができる。導入口91及び排出口92は、いずれも各単電池20の電極タブが延出する電池積層体11の前面12aと反対側の背面12bに形成されている。ゆえに、流路90は電池積層体11の電気的接続の邪魔にならない。
 ケース80は、冷却風をケース内(内部空間)に導入するための開口部83(第1開口部)と、冷却風を前記ケース内から排出するための開口部84(第2開口部)とを有する。開口部83,84の形状は、例えば四角形状であるが、円形状等その他の形状であってもよい。図2に例示する形態では、上ケース81及び下ケース82に開口部83,84となる切欠きがそれぞれ形成されており、ケース80を組み立てることで当該切欠きが合わさって開口部83,84が形成される。開口部83,84は、横方向に並んでケース80のケース背面の下部に形成されている。上ケース81及び下ケース82は、例えばネジ(図示省略)を用いて結合される。図1に例示する形態では、ネジ止めに利用される結合部85,86が上ケース81及び下ケース82の四隅にそれぞれ設けられている。
 ケース80と電池積層体11の背面12bとの間には、開口部83と導入口91とをつなぐ導入路87、開口部84と排出口92とをつなぐ排出路88がそれぞれ形成されており、それらは仕切り部89により分離されている。即ち、ケース80の背面と電池積層体11の背面12bとの間には、冷却風が流通する隙間が形成されている。ケース80の横方向側面と電池積層体11の横方向側面との間には、大きな隙間が形成されないことが好適である。これにより、冷却風の大部分又は全てが導入路87を通って流路90に導入される。以下では、導入路87、排出路88、流路90、及びこれらを形成する構成要素を総称して「流路構造CS」という。
 流路90は、隣り合う単電池20の本体部21の間に、導入口91と排出口92との間で背面12b側から前面12a側に延びる隔壁部93を配置して形成され、導入口91から前面12a側を通って排出口92に冷却風を流通させる。本実施形態では、隣り合う単電池20の間の全てに流路90が形成されている。更に、電池積層体11の一番上に配置される単電池20と上ケース81との間にも流路90が形成されている。
 図3に示すように、組電池10を構成する単電池20は、扁平形状の本体部21、本体部21の一の面である側面28から引き出された正極タブ22、及び本体部21の側面28から引き出された負極タブ23を有する。単電池20は、2枚のラミネートフィルム24,25から構成された外装体26を備えるラミネート電池である。以下では、ラミネートフィルム24側を「上」、ラミネートフィルム25側を「下」とする。ラミネートフィルム24,25には、金属層の両面に樹脂層が形成されたフィルムを用いることが好ましい。金属層は、例えばアルミニウム層であり、水分等の透過を防ぐ機能を有する。なお、単電池20はラミネート電池に限定されず、例えば角形の金属製ケースを備えた角形電池であってもよい。
 単電池20は、二次電池、例えばリチウムイオン二次電池であり、例えば電極体及び電解質を含む発電要素と、発電要素を収容する外装体26とを有する。電極体の一例は、正極及び負極がセパレータを介して巻回された巻回型の電極体である。正極タブ22は正極に、負極タブ23は負極にそれぞれ接続されている。外装体26は、本体部21及びシール部27を有し、本体部21内に発電要素が収容されている。図3に示す例では、外装体26を構成するラミネートフィルム24に、扁平な略直方体形状の本体部21が形成されている。本体部21は、例えばラミネートフィルム25と反対側に凸となるようにラミネートフィルム24を絞り加工して形成される。シール部27は、ラミネートフィルム24,25の端縁部同士を接合(例えば、ヒートシール)して本体部21の周囲に形成される。
 本実施形態では、単電池20の縦方向に沿って形成されたシール部27が本体部21の横方向端面である側面29と重なるように上方に折り曲げられている。シール部27の幅は、側面29の上下方向長さと同じか、やや短いことが好ましい。シール部27を上方に折り曲げることで、例えば本体部21が補強されると共に、組電池10の小型化を図ることができる。
 正極タブ22及び負極タブ23は、上記のように本体部21の同じ面(側面28)から引き出される。側面28は、単電池20の厚み方向に沿った本体部21の縦方向一端面である。各タブは、側面28の下部から縦方向に延びるシール部27(以下、他のシール部27と区別して「シール部27x」という場合がある)を通り、シール部27xの先端(縦方向一端部)から縦方向に延出する。シール部27xは、例えばラミネートフィルム24,25の間に各タブを挟んだ状態で、側面28に対して略垂直に形成される。
 正極タブ22及び負極タブ23は、薄板状の導電性部材であり、単電池20の横方向に並んで配置されている。正極タブ22と負極タブ23の間には、バスバーの接続部70を形成可能なスペースが設けられている。各タブは、少なくともシール部27xの先端から外装体26の外部に延出した部分(以下、「露出部」という場合がある)が、互いに同一形状、同一寸法であることが好ましい。各タブの横方向長さは、本体部21の横方向長さの50%未満であり、好ましくは20~40%である。各タブの露出部の縦方向長さは、各バスバーとの接続に支障がない長さとされ、例えば各バスバーの幅と同程度である。
 並列ブロック13の下側に配置される単電池20(単電池20b)は、各タブの露出部の形状が、並列ブロック13の上側に配置される単電池20(単電池20a)の場合と異なる(図6等参照)。詳しくは後述するように、単電池20bの正極タブ22b及び負極タブ23bは、シール部27bの近傍で上方に折り曲げられ、再び縦方向一方側(本体部21bと反対側)に折り曲げられた形状を有する。単電池20の並列接続数等により必要な各タブの長さが異なるので、各タブの露出部の長さが同じである単電池20を複数準備しておき、並列接続数等に応じて露出部を適宜カットして、単電池20a,20b等を作製してもよい。また、各タブ積層部の形成後に、余分な露出部をカットしてもよい。
 以下、図4~図7を適宜参照しながら、組電池10について更に詳説する。
 図4~図7は、電池積層体11の並列ブロック13を示す図である。図4~図6では、並列ブロック13を構成する2つの単電池20のうち、上側に配置される単電池20を「単電池20a」、下側に配置される単電池20を「単電池20b」とし、各電池の構成要素にa,bをそれぞれ付する。図7では、積み重ねられた並列ブロック13を上から順に「並列ブロック13A,13B,13C」とし、各ブロックの構成要素にA,B,Cをそれぞれ付する。
 電池積層体11は、本体部21が同一形状、同一寸法を有する複数の単電池20を用いて構成される。電池積層体11を構成する単電池20の個数は特に限定されないが、好ましくは4つ以上である。図1に例示する電池積層体11は、8つの単電池20を含み、これら単電池20を2つずつ並列接続して構成された4つの並列ブロック13を含む。電池積層体11は、上記のように複数の単電池20を同じ方向に積み重ねて構成される。具体的には、正極タブ22及び負極タブ23が引き出される本体部21の側面28が同じ方向を向き、本体部21の縦方向両端部、横方向両端部の位置をそれぞれ一致させた状態で各単電池20が積層されている。各単電池20は、本体部21が形成されたラミネートフィルム24が上方を向いた状態で積層される。
 図4~図6に示すように、並列ブロック13は、正極タブ積層部14及び負極タブ積層部15を形成して互いに並列接続される2つの単電池20a,20bを備える。単電池20a,20bは、上述の通り同じ向きで積層され、上下方向に並んで配置される各々の正極タブ22a,22b、負極タブ23a,23bが電気的に接続されて正極タブ積層部14及び負極タブ積層部15がそれぞれ形成される。並列ブロック13は、正極タブ積層部14に接続される正極側バスバー50と、負極タブ積層部15に接続される負極側バスバー60とを備える。また、並列ブロック13は、単電池20a,20bにそれぞれ取り付けられる枠体30,40を備えることが好適である。
 単電池20aの正極タブ22a、負極タブ23aは、シール部27aの先端から外装体26の外部に延出して縦方向に真っすぐ延びている。一方、単電池20bの正極タブ22bは、シール部27bの近傍で、単電池20aの正極タブ22a側に折り曲げられ正極タブ22aと接触する位置まで上下方向に沿って延びる。正極タブ22bは、正極タブ22aの下面と接触する位置で本体部21aと反対側に折り曲げられ、当該折り曲げ部から先端部まで縦方向に沿って正極タブ22aと略平行に延びる。そして、正極タブ22aの下面と正極タブ22bの上面とが接合されて正極タブ積層部14が形成される。
 単電池20bの負極タブ23bは、シール部27bの近傍で、単電池20aの負極タブ23a側に折り曲げられ負極タブ23aと接触する位置まで上下方向に沿って延びる。負極タブ23bは、負極タブ23aの下面と接触する位置で本体部21aと反対側に折り曲げられ、当該折り曲げ部から先端部まで縦方向に沿って負極タブ23aと略平行に延びる。そして、負極タブ23aの下面と負極タブ23bの上面とが接合されて負極タブ積層部15が形成される。各タブ積層部は、並列ブロック13の上下方向略中央部において横方向に並んで形成されることが好適である。
 正極タブ積層部14は、例えば単電池20aの正極タブ22aと単電池20bの正極タブ22bとを重ね合せて溶接することにより形成される。溶接方法は、特に限定されず、超音波溶接、レーザー溶接等が例示できる。例えば、正極タブ22a,22bと正極側バスバー50とを重ね合せて超音波溶接することで、正極タブ積層部14を形成すると同時に、正極タブ積層部14に正極側バスバー50を接続することもできる。負極タブ積層部15も、負極タブ23aと負極タブ23bとを重ね合せて溶接することにより形成できる。なお、溶接以外の方法により、例えばボルト等の締結部材でタブ同士を締結して各タブ積層部を形成することもできる。
 枠体30,40は、本体部21a,21bの四方をそれぞれ囲み、例えば単電池20a,20bを保護し、各電池同士を結束する機能を有する。本実施形態では、枠体30,40の一部が流路構造CSを構成する。枠体30は、2本の横桟31x,31yと、2本の縦桟32を有し、単電池20aの上側から取り付けられる。横桟31x,31yは単電池20aの縦方向両端部に形成されたシール部27a上に載せられて本体部21aの縦方向端面(側面28)に沿って配置され、縦桟32は本体部21aの横方向端面(側面29)に沿って配置される。横桟31x,31yには、折り曲げられたシール部27の縦方向両端部との干渉を避けるためのスリット(図示せず)が形成されている。
 横桟31x,31yの横方向両端部(長手方向両端部)には、枠体40との結合に用いられる係合部35が設けられている。枠体40も、2本の横桟41x,41yと2本の縦桟42を有し、単電池20bの上側から取り付けられる。横桟41x,41yの横方向両端部に設けられた係合部45が、枠体30の係合部35に挿し込まれることで各枠体が結合される。例えば、係合部45はフックを有し、係合部35は当該フックが挿し込まれて引っ掛けられる凹部を有する。本実施形態では、互いに結合される枠体30,40により単電池20aが上下から挟持される。単電池20bは、枠体40と、下側に配置される別の並列ブロック13の枠体30とにより挟持される。図6に示す例では係合部45のみにフックが設けられているが、係合部の形状はこれに限定されず、例えば係合部35にも上側に配置される枠体40に挿し込み可能なフック等が設けられていてもよい。
 横桟31xの横方向中央部(長手方向中央部)には、正極側バスバー50を保持するための支持部33及び押え部34が設けられることが好ましい。支持部33は縦方向に突出してブロック状に形成され、横方向他端側から中央部側に延びる正極側バスバー50の一部が支持部33上に載せられる。支持部33上に載せられた正極側バスバー50の一部(第2接続部52)は、並列ブロック13の上端部に位置することが好適である。押え部34は、支持部33との間に正極側バスバー50を挿し込み可能な隙間をあけて支持部33よりも横桟31xの横方向他端側に設けられた突起部であって、支持部33と共に正極側バスバー50の横方向の移動を拘束する。
 横桟41xの横方向中央部には、横桟31xと同様に、ブロック状に形成された支持部43、及び支持部43と共に負極側バスバー60の横方向の移動を拘束する押え部44が設けられることが好ましい。支持部43は、支持部33と上下方向に並んで配置される。横方向他端側から中央部側に延びる負極側バスバー60の一部(第2接続部62)は、支持部43の下に配置され、並列ブロック13の下端部に位置することが好適である。押え部44は、支持部43との間に負極側バスバー60を挿し込み可能な隙間をあけて支持部43よりも横桟41xの横方向一端側に設けられている。
 横桟31x及び縦桟32の上下方向長さは、本体部21aの厚み(上下方向長さ)よりも長く、各桟の上面は本体部21aの上面よりも上方に位置している。縦桟32は、断面略L字形状を有し、縦桟32の一部が本体部21a上に張り出している。本体部21aの上面よりも上方に延びた横桟31x及び縦桟32は、本体部21aと上側に配置される別の並列ブロック13の単電池20の本体部21又はケース80との間に流路90となる隙間を形成すると共に、当該流路90の側壁94を形成する。横桟41x及び縦桟42も、枠体30の場合と同様に、各桟の上面が本体部21bの上面よりも上方に位置し、単電池20aの本体部21aとの間に流路90となる隙間を形成すると共に、当該流路90の側壁94を形成する。
 横桟31yには、2つの凹部36,37が形成されている。凹部36は横桟31yの横方向一端側に、凹部37は横方向他端側にそれぞれ形成されており、各凹部の間には凸部38が形成されている。例えば、凹部36,37における横桟31yの上面は本体部21aの上面と同じ高さに位置し、凸部38の上面は横桟31x及び縦桟32の上面と同じ高さに位置する。横桟31yに凹部36,37を形成することで、単電池20aの上に配置される別の並列ブロック13の枠体40との間に隙間が形成され、当該隙間が冷却風の導入口91及び排出口92となる。横桟41yにも、横方向一端側に凹部46が、横方向他端側に凹部47がそれぞれ形成され、各凹部の間には凸部48が形成されている。凹部46,47により、単電池20aに取り付けられる枠体30との間に冷却風の導入口91及び排出口92がそれぞれ形成される。
 凸部38,48は、例えば横桟31y,41yの横方向中央部においてブロック状に形成される。凸部38は、上記のように凹部36,37よりも上方に突出して上側に配置される枠体40と接触し、当該2つの凹部により形成される導入口91と排出口92を分離する。同様に、凸部48は凹部46,47よりも上方に突出して上側に配置される枠体30と接触し、当該2つの凹部により形成される導入口91と排出口92を分離する。凸部38,48は、更に縦方向にも突出してケース80と略接触する。凸部38,48は、電池積層体11において上下方向に並んで接触配置され、導入路87と排出路88を分離する仕切り部89を形成する。
 図6に示す例では、横桟31x及び縦桟32がそれぞれ本体部21aの上面よりも上方に延びて流路90の側壁94を形成しているが、例えば本体部21a上に別の部材を設けて流路90の側壁94を形成してもよい(後述の図10等参照)。また、凸部38により2つの凹部36,37(導入口91と排出口92)が分離された形態を例示したが、凹部は1つであってもよい。この場合、例えば隔壁部93により導入口91と排出口92を分離することができる。また、ケース80の開口部83,84の間の部分を電池積層体11の背面12b側に突出させて導入路87と排出路88を分離してもよい。
 正極側バスバー50及び負極側バスバー60は、金属製の導電性部材であって、例えば溶接により正極タブ積層部14、負極タブ積層部15にそれぞれ接続される。正極側バスバー50は、第1接続部51(正極側第1接続部)と、第2接続部52(正極側第2接続部)と、連結部53(正極側連結部)とを有し、1つの金属板を曲げ加工して構成されることが好ましい。第1接続部51は、正極タブ積層部14に接続される部分である。第2接続部52は、第1接続部51と略平行に延び、別の並列ブロック13の負極側バスバー60に接続される部分である。正極側バスバー50は、例えばその全長に亘って幅が一定であり、第1接続部51は第2接続部52よりも長さが長い。連結部53は、各接続部を連結する部分であって、各接続部の間に段差を形成する。
 第1接続部51は連結部53の一端から、第2接続部52は連結部53の他端から、互いに反対方向に延びる。連結部53は、金属板を折り曲げて各接続部に対し略垂直に形成されることが好適である。本実施形態では、第1接続部51が正極タブ積層部14の上面に載せられて溶接され、第2接続部52が枠体30の支持部33の上面に載せられる。即ち、第1接続部51は並列ブロック13の上下方向略中央部に位置し、第2接続部52は並列ブロック13の上端部に位置する。連結部53は、各接続部の間にかかる段差を形成する。
 負極側バスバー60は、正極側バスバー50と同様に、第1接続部61(負極側第1接続部)と、第2接続部62(負極側第2接続部)と、連結部63(負極側連結部)とを有し、1つの金属板を曲げ加工して構成されることが好ましい。第2接続部62は、別の並列ブロック13の正極側バスバー50に接続される。本実施形態では、第1接続部61が負極タブ積層部15の下面に溶接され、第2接続部62が支持部43の下に配置される。即ち、第1接続部61は並列ブロック13の上下方向略中央部に位置し、第2接続部62は並列ブロック13の下端部に位置する。連結部63は、各接続部の間にかかる段差を形成する。
 正極側バスバー50及び負極側バスバー60は、互いに異なる形状、寸法を有していてもよいが、好ましくは互いに同一形状、同一寸法を有する。正極側バスバー50及び負極側バスバー60は、電池積層体11に取り付けられる向きだけが異なり、正極側バスバー50として使用されている部材を、負極側バスバー60として使用することができる。この場合、1種類のバスバーを用いて組電池10を構成することができ、部品点数の削減を図ることができる。
 組電池10は、上記のように複数の並列ブロック13を含む電池積層体11を備え、隣り合う並列ブロック13を直列に接続して構成される。組電池10では、並列ブロック13を構成する各単電池20の各タブが同じ方向に引き出され、各バスバーが電池積層体11の同一面上に取り付けられる。バスバーを電池積層体11の複数の面上に取り付ける場合と比較して、例えば一の面上で接続作業等ができるため生産性に優れ、また組電池10の小型化等を図ることができる。
 図7に示すように、隣り合う並列ブロック13A,13Bは、正極側バスバー50B及び負極側バスバー60Aを用いて直列に接続される。即ち、並列ブロック13Aの負極タブ積層部15Aに接続された負極側バスバー60Aと、並列ブロック13Bの正極タブ積層部14Bに接続された正極側バスバー50Bとが互いに接続される。例えば、負極側バスバー60Aの第2接続部62Aと正極側バスバー50Bの第2接続部52Bとを重ね合せて溶接することにより接続部70ABが形成される。本実施形態では、並列ブロック13A,13Bの境界部に接続部70ABが形成されている。接続部70ABには、負極側バスバー60Aと正極側バスバー50Bとの間に挟持された導電性部材71ABが設けられており、第2接続部52Bと第2接続部62Aは、導電性部材71ABを介して電気的に接続されている。
 隣り合う並列ブロック13B,13Cは、正極側バスバー50C及び負極側バスバー60Bを用いて直列に接続される。即ち、並列ブロック13Bの負極タブ積層部15Bに接続された負極側バスバー60Bと、並列ブロック13Cの正極タブ積層部(図7では図示せず)に接続された正極側バスバー50Cとが互いに接続される。接続部70BCは、例えば導電性部材71BCを介して負極側バスバー60Bの第2接続部62Bと正極側バスバー50Cの第2接続部52Cとを溶接することにより、並列ブロック13B,13Cの境界部に形成される。
 接続部70AB,70BCは、電池積層体11の側面12上の横方向中央部において、上下方向に並んで形成されることが好適である。本実施形態では、並列ブロック13A,13B,13Cの各タブ積層部が、側面12の横方向中央部を避けて設けられているため、当該中央部に接続部70AB,70BCを形成し、導電性部材71AB,71BCを配置可能なスペースが確保されている。図1に例示するように、全ての接続部70が上下方向に並んで形成されることが好ましい。当該構成によれば、接続部70の形成を極めて限定された範囲で行うことができる。例えば、レーザー溶接を行う場合、溶接用のレーザー光を上下方向に走査することにより、或いはレーザー光の照射スポットを固定して電池積層体11を上下方向に移動させることにより、接続部70を容易に形成できる。
 接続部70AB(第2接続部52B、第2接続部62A)は、並列ブロック13Aの枠体30A,40Aの各支持部、及び並列ブロック13Bの枠体30B,40Bの各支持部により、上下から挟持されていることが好適である。図1に示す例では、正極側バスバー50、導電性部材71、負極側バスバー60、枠体40、及び枠体30の順で、これらの部材が上下方向に沿って積層配置されている。かかる積層構造により、接続部70が上下から強く押圧されるので、例えば接続部70の接触不良等が発生し難く、良好な接続状態が長期に亘って維持される。
 導電性部材71AB,71BCは、接続部70AB,70BCにおいて各バスバーの間にそれぞれ配置された薄板状の部材である。図1に例示するように、全ての接続部70に導電性部材71が設けられることが好適である。正極側バスバー50と負極側バスバー60とは直接つながっておらず、両者の間には導電性部材71が介在している。図1に示す例では、一番上に配置された導電性部材71が正極側バスバー50のみに接続されており、一番下に配置された導電性部材71が負極側バスバー60のみに接続されている。
 導電性部材71ABは、正極側バスバー50Bと負極側バスバー60Aとの間から突出した電圧監視用端子部72ABを有する。電圧監視用端子部72ABは、例えば接続部70ABの横方向一端側から縦方向に延出している。電圧監視用端子部72ABは、並列ブロック13A,13Bから構成される直列ブロックの電圧を測定するための端子として機能する。同様に、導電性部材71BCの電圧監視用端子部72BCは、並列ブロック13B,13Cから構成される直列ブロックの電圧を測定するための端子として機能する。図1に例示するように、各電圧監視用端子部72は上下方向に並んで配置されることが好適である。電圧監視用端子部72を一列に並べて配置することで、例えば各端子と電圧測定ユニット(図示せず)との接続構造が複雑化することを抑制できる。
 導電性部材71は、更にヒューズとして機能することが好適である。導電性部材71は、例えば各バスバーを構成する金属材料よりも低融点の金属材料(低融点合金等)から構成され、過大な電流が流れたときに溶断して電流を遮断する。なお、電圧監視用の導電性部材とは別に、ヒューズとして機能する導電性部材を用いてもよい。
 以下、図8及び図9を参照しながら、流路構造CSについて更に詳説する。
 図8及び図9は、流路構造CS及び当該構造における冷却風の流れを示す図である。
 図8及び図9に示すように、流路構造CSは、ケース80の開口部83,84にそれぞれ連通する冷却風の導入口91と排出口92が電池積層体11の背面12bに形成され、隣り合う単電池20の本体部21の間に冷却風の流路90が形成された構造を有する。電池積層体11の背面12bとケース80との間には、仕切り部89によって分離された導入路87と排出路88が形成されている。例えば、開口部83には送風ダクトが、開口部84には排気ダクトがそれぞれ取り付けられる(いずれも図示せず)。導入口91と排出口92を電池積層体11の背面12bに設けることで、例えばダクト構造が単純化され、電池積層体11及びその周辺装置の小型化を図ることができ、また電池積層体11の電気的接続が複雑になることを避けることができる。
 導入口91は背面12bの横方向一端側に形成され、排出口92は背面12bの横方向他端側に形成されることが好適である。導入口91と排出口92の横方向長さは、例えば略同一である。図8に例示する形態では、各導入口91及び各排出口92がそれぞれ上下方向に並んで配置されている。開口部83と各導入口91をつなぐ導入路87、及び開口部84と各排出口92をつなぐ排出路88は、背面12bの下から上まで仕切り部89を隔てて互いに略平行に設けられている。各導入口91及び各排出口92をそれぞれ上下方向に並べることで、導入路87及び排出路88の構造を単純化することができる。
 流路90は、隣り合う単電池20の本体部21の間、及び電池積層体11の一番上に配置される単電池20と上ケース81の間に、隔壁部93を配置して形成される。隔壁部93は、電池積層体11の背面12bから流路90に導入される冷却風を電池積層体11の前面12a側を通して背面12bから排出する役割を果たす。電池積層体11は、電極タブが引き出される前面12a側、即ち本体部21の縦方向中央部αよりも側面28に近い領域Hが特に発熱し易い。隔壁部93を設けることにより、流路90の入口と出口を背面12bに形成した場合においても領域Hを十分に冷却することができる。即ち、隔壁部93は導入口91から流入した冷却風が領域H上を通らずに排出口92から流出すること(冷却風のショートカット)を防止する。
 本実施形態では、電池積層体11の一番上に配置される単電池20と上ケース81の間にも流路90が形成されているが、更に電池積層体11の一番下に配置される単電池20と下ケース82の間に流路90を形成してもよい。一方、流路構造CSは隣り合う単電池20の間のみに流路90を設けた構造であってもよい。また、流路90は各並列ブロック13の間に形成されてもよい。例えば、並列ブロック13を構成する2つの単電池20の間には流路90を設けず、隣り合う並列ブロック13の間のみ、或いは隣り合う並列ブロック13の間及び並列ブロック13とケース80との間に流路90を設けてもよい。即ち、並列ブロック13が2つの単電池20で構成される場合は、2つの単電池20につき1つの割合で流路90が形成される。
 流路構造CSでは、上記のように枠体30の横桟31x及び縦桟32によって流路90の側壁94が形成される。枠体40の横桟41x及び縦桟42も流路90の側壁94を形成する。流路90は、本体部21の三方を囲む枠体30(横桟31x及び縦桟32)と、導入口91及び排出口92の間で縦方向に延びる隔壁部93とにより、平面視略U字状に形成されている。流路90は、本体部21の横方向一端側に背面12b側から前面12a側に向かう流路と、横方向他端側に前面12a側から背面12b側に向かう流路とをそれぞれ含み、導入口91から領域H上を通って排出口92に冷却風を流通させる。隔壁部93の厚みは、隣り合う単電池20の本体部21同士の間隔、即ち流路90の上下方向長さと略同一であることが好ましい。
 隔壁部93は、導入口91と排出口92の間から電池積層体11の背面12bよりも前面12aに近い位置に亘って形成されることが好適である。本実施形態では、仕切り部89と接触する位置から本体部21の縦方向中央部αを超えて電池積層体11の前面12a側まで隔壁部93が連続的に形成されている。即ち、隔壁部93の先端は縦方向中央部αよりも前面12a側に位置する。前面12a側の側壁94(横桟31x,41x)と隔壁部93の先端との間隔は、例えば流路90の出入口(導入口91、排出口92)の横方向長さと略同一である。
 隔壁部93は、枠体30,40の一部として、例えば横桟31y,41yの横方向中央部を前面12a側に延ばして形成されてもよいが、好ましくは枠体30,40と別の部材で構成される。隔壁部93には、弾性変形可能な弾性部材を適用することが好適である。隔壁部93に弾性部材を用いることで、例えば本体部21の膨張による電池積層体11の上下方向長さの変化を抑制し、また隔壁部93のエッジにより本体部21が損傷することを防止できる。好適な弾性部材としては、ゴム、発泡体が例示できる。弾性部材は、例えば本体部21の上面に接着剤を用いて取り付けられる。
 本実施形態では、隔壁部93が導入口91と隔壁部93の間において平面視帯状に形成されている。隔壁部93の幅(横方向長さ)は、仕切り部89の横方向長さよりも小さく、全長に亘って略一定である。但し、隔壁部93の幅は長さ方向に変化してもよく、仕切り部89の横方向長さより長くてもよい(後述の図10~図15参照)。
 流路構造CSでは、ケース80の開口部83からケース内に導入された冷却風が導入路87を通って各導入口91から各流路90に流入する。各流路90に流入した冷却風は、隔壁部93に沿って前面12a側に流れ、本体部21の領域H上を通り、再び隔壁部93に沿って背面側12bに流れる。流路90内を通って各単電池20を冷却した冷却風は、各排出口92から流出し排出路88を通って開口部84から排出される。流路構造CSを備えた組電池10によれば、隣り合う単電池20の本体部21の間に冷却風を流して単電池20を冷却することができる。また、流路90の出入口を電池積層体11の背面12bに設けて電池積層体11及びその周辺装置の構造の簡素化、小型化等を図りながら、発熱し易い領域H上に冷却風を流して単電池20を効率良く冷却することが可能である。
 以下、図10~図15を参照しながら、実施形態の他の一例について説明する。
 上記実施形態では、枠体30,40の縦桟32,42によって流路90の側壁94が形成されているが、図10,11に例示するように、枠体30,40とは別に側壁94を構成する部材(側壁部101)を設けてもよい。図10に示す例では、本体部21の上面の横方向両端部に縦方向に沿って設けられた2つの側壁部101と、枠体30の横桟31xと、隔壁部93とにより、平面視略U字状の流路100が形成されている。縦桟102,103の上下方向長さは本体部21の厚みと略同一であり、2つの側壁部101と隔壁部93によって隣り合う本体部21の間に流路100となる隙間が形成される。
 側壁部101には、隔壁部93と同様に弾性部材を適用することが好適である。即ち、隣り合う単電池20の本体部21の間に流路100の側壁を構成する弾性部材が設けられることが好ましい。側壁部101は、本体部21の縦方向全長に亘って設けられる。側壁部101の幅は、例えば隔壁部93の幅と略同一であり、全長に亘って略一定である。各側壁部101は、導入口91、排出口92の縁部を超えて隔壁部93側に張り出しており、流路100は流路90に比べて幅が狭くなっている。即ち、各側壁部101が流路100の出入口の一部を塞いでいる。
 図12に例示するように、先端に近づくほど幅が狭くなる平面視略三角形状の隔壁部105を設けてもよい。隔壁部105を配置して形成される流路104は、前面12aに近づくほど流路幅が拡幅する。図12に例示する形態では、側壁部101よりも幅が狭く流路104の出入口を塞がない側壁部106が本体部21の横方向両端部に設けられている。また、図13に例示するように、側壁部106に代えて前面12aに近づくほど拡幅する側壁部108を設けてもよい。側壁部108は、前面12a側に曲部を有し、流路107の角に丸みを付けている。
 図14に例示するように、排出口92に近づくほど、隔壁部110及び側壁部111の幅を広くして流路109の幅を次第に狭くしてもよい。或いは、図15に例示するように、導入口91側のみに幅広の側壁部101を設け、更に隔壁部113を導入口91側に張り出させて、排出口92側よりも導入口91側の流路幅を狭くした流路112を形成してもよい。流路109は排出口92側よりも導入口91側が幅広の流路であり、流路112は導入口91側よりも排出口92側が幅広の流路である。
 上記実施形態では、2つの単電池20a,20bを並列接続して構成される並列ブロック13を例示したが、3つの単電池20を並列接続して構成される並列ブロックとしてもよい。この場合、各タブ積層部が3つの各タブを積層して形成される。即ち、組電池10では、タブ積層部を構成する各タブの数、各タブの折り曲げ形状等を変更することで、並列接続する単電池20の数を変更することが可能である。
 上記実施形態では、全ての接続部70に導電性部材71が配置されるものとして説明したが、導電性部材71は一部の接続部70のみに配置されてもよく、或いは導電性部材71を有さず、各バスバーが直接溶接された形態とすることも可能である。また、導電性部材71は、電圧監視用端子部72を有さず、専らヒューズとして使用されてもよい。
 上記構成を備えた組電池10は、例えば電池積層体11の一の面上に各バスバーが配置され、上下方向に沿って一列で各バスバーの接続作業を行うことが可能である。つまり、組電池10は構造が単純で組み立てが容易である。更に、組電池10は、1種類のバスバーを用いて複数の接続形態を構成可能であり、部品点数が少なく、単電池20の接続形態の自由度が高い設計である。組電池10は、構造が単純でありながら優れた冷却性能を有する。
 10 組電池、11 電池積層体、12 側面、12a 前面、12b 背面、13,13A,13B,13C 並列ブロック、14,14A,14B 正極タブ積層部、15,15A,15B 負極タブ積層部、20,20a,20b 単電池、21,21a,21b 本体部、22,22a,22b,22c 正極タブ、23,23a,23b 負極タブ、24,24a,24b,25,25a,25b ラミネートフィルム、26 外装体、27,27a,27b,27x シール部、28,28a,28b,29 側面、30,30A,30B,30C,40,40A,40B 枠体、31x,31y,41x,41y 横桟、32,42,102,103 縦桟、33,33A,33B,33C,43,43A,43B 支持部、34,34B,34C,44,44A,44B 押え部、35,45 係合部、36,37,46,47 凹部、38,48 凸部、50,50A,50B,50C 正極側バスバー、51,51A,51B,61,61A,61A 第1接続部、52,52B,52C,62,62A,62B 第2接続部、53,53B,53C,63,63A,63B 連結部、60,60A,60B 負極側バスバー、70,70AB,70BC 接続部、71,71AB,71BC 導電性部材、72,72AB,72BC 電圧監視用端子部、80 ケース、81 上ケース、82 下ケース、83 第1開口部、84 第2開口部、85,86 結合部、87 導入路、88 排出路、89 仕切り部、90,100,104,107,109,112 流路、91 導入口、92 排出口、93,105,110,113 隔壁部、94 側壁、101,106,108,111 側壁部

Claims (7)

  1.  扁平形状の本体部の一の面から電極タブが引き出された単電池と、
     複数の前記単電池を同じ向きに積み重ねて構成された電池積層体と、
     隣り合う前記単電池の前記本体部の間に形成された冷却風の流路と、
     前記各単電池の前記電極タブが延出する前記電池積層体の第1面と反対側の第2面に形成された、前記流路に前記冷却風を導入するための導入口と、
     前記電池積層体の前記第2面に形成された、前記流路から前記冷却風を排出するための排出口と、
     を備え、
     前記流路は、隣り合う前記単電池の前記本体部の間に、前記導入口と前記排出口との間で前記電池積層体の前記第2面側から前記第1面側に延びる隔壁部を配置して形成され、前記導入口から前記第1面側を通って前記排出口に前記冷却風を流通させる、組電池。
  2.  前記隔壁部は、前記導入口と前記排出口との間から前記電池積層体の前記第2面よりも前記第1面に近い位置に亘って形成されている、請求項1に記載の組電池。
  3.  前記隔壁部は、弾性部材で構成されている、請求項1又は2に記載の組電池。
  4.  隣り合う前記単電池の前記本体部の間には、前記流路の側壁を構成する弾性部材が設けられている、請求項1~3のいずれか1項に記載の組電池。
  5.  前記電池積層体は、隣り合う少なくとも2つの前記単電池が並列に接続されてなる並列ブロックを複数含み、
     前記流路は、前記各並列ブロックの間に形成されている、請求項1~4のいずれか1項に記載の組電池。
  6.  前記導入口は、前記電池積層体の前記第2面の横方向一端側に形成され、
     前記排出口は、前記電池積層体の前記第2面の横方向他端側に形成され、
     前記各導入口及び前記各排出口は、それぞれ前記単電池の積層方向に並んで配置されている、請求項1~5のいずれか1項に記載の組電池。
  7.  前記電池積層体を収容するケースを備え、
     前記ケースは、前記冷却風を前記ケース内に導入するための第1開口部と、前記冷却風を前記ケース内から排出するための第2開口部とを有し、
     前記ケースと前記電池積層体の前記第2面との間には、前記第1開口部と前記導入口とをつなぐ導入路、及び前記第2開口部と前記排出口とをつなぐ排出路が、それぞれ形成されている、請求項6に記載の組電池。
PCT/JP2016/001994 2015-05-21 2016-04-13 組電池 WO2016185662A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103457A JP2018113097A (ja) 2015-05-21 2015-05-21 組電池
JP2015-103457 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016185662A1 true WO2016185662A1 (ja) 2016-11-24

Family

ID=57319733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001994 WO2016185662A1 (ja) 2015-05-21 2016-04-13 組電池

Country Status (2)

Country Link
JP (1) JP2018113097A (ja)
WO (1) WO2016185662A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832167A (zh) * 2018-06-15 2018-11-16 深圳市光大激光科技股份有限公司 一种导带机构及其打带机
CN112074967A (zh) * 2018-06-27 2020-12-11 京瓷株式会社 电化学电池
US20220166098A1 (en) * 2019-07-19 2022-05-26 Lg Energy Solution, Ltd. Battery module and battery pack including the same
CN114824668A (zh) * 2022-03-31 2022-07-29 东风汽车集团股份有限公司 一种串并联切换装置、电池包和车辆
JP7437863B2 (ja) 2022-02-16 2024-02-26 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスパック、蓄電デバイスパックの充電方法及び蓄電デバイスパックの充電装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392767B1 (ko) * 2018-12-26 2022-04-28 주식회사 엘지에너지솔루션 내측 커버를 포함하는 배터리 모듈
KR102380446B1 (ko) * 2019-06-10 2022-03-30 주식회사 엘지에너지솔루션 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess
DE202020006013U1 (de) 2019-05-30 2024-03-19 Lg Energy Solution, Ltd. Batteriepack mit einem Pfad, durch den intern zugeführtes Kühlmittel fließen kann, wenn ein thermisches Durchgehen auftritt, und Batterie-Rack und ESS mit diesem
KR102380444B1 (ko) * 2019-05-30 2022-03-30 주식회사 엘지에너지솔루션 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512983A (ja) * 2005-10-21 2009-03-26 エルジー・ケム・リミテッド バッテリーパックの冷却装置
JP2013191305A (ja) * 2012-03-12 2013-09-26 Toyota Industries Corp 電池パック
WO2014027853A1 (ko) * 2012-08-16 2014-02-20 주식회사 엘지화학 전지모듈 및 그것을 제조하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512983A (ja) * 2005-10-21 2009-03-26 エルジー・ケム・リミテッド バッテリーパックの冷却装置
JP2013191305A (ja) * 2012-03-12 2013-09-26 Toyota Industries Corp 電池パック
WO2014027853A1 (ko) * 2012-08-16 2014-02-20 주식회사 엘지화학 전지모듈 및 그것을 제조하는 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832167A (zh) * 2018-06-15 2018-11-16 深圳市光大激光科技股份有限公司 一种导带机构及其打带机
CN112074967A (zh) * 2018-06-27 2020-12-11 京瓷株式会社 电化学电池
US20220166098A1 (en) * 2019-07-19 2022-05-26 Lg Energy Solution, Ltd. Battery module and battery pack including the same
JP7437863B2 (ja) 2022-02-16 2024-02-26 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスパック、蓄電デバイスパックの充電方法及び蓄電デバイスパックの充電装置
CN114824668A (zh) * 2022-03-31 2022-07-29 东风汽车集团股份有限公司 一种串并联切换装置、电池包和车辆

Also Published As

Publication number Publication date
JP2018113097A (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2016185662A1 (ja) 組電池
EP2535962B1 (en) Battery module having enhanced welding reliability and medium or large battery pack including same
US8852789B2 (en) Battery module having battery cell holder
JP6667167B2 (ja) 組電池
JP6459207B2 (ja) 蓄電装置
KR101708366B1 (ko) 배터리 모듈
EP2020695A2 (en) Pouch type battery pack
WO2017002318A1 (ja) 組電池
WO2013098982A1 (ja) 電池モジュール、電池ブロック、及び、電池パック
JP2016157670A (ja) バッテリパック
EP2450990A2 (en) Battery module having battery cell holder
JP6494754B2 (ja) 電池モジュール
WO2013132978A1 (ja) 組電池
WO2019049760A1 (ja) 電池モジュール
JP6264449B2 (ja) 組電池、およびそれを備えた車両
WO2013080338A1 (ja) 電池ブロック及びそれを有する電池モジュール
WO2014010419A1 (ja) 組電池
JP7189227B2 (ja) 電池モジュール及び電池パック
JP2014154401A (ja) 電池モジュール、電池ユニット
JP2017016768A (ja) 組電池
JP7147252B2 (ja) 蓄電装置
CN110521054B (zh) 电池模块
JPWO2020039626A1 (ja) 電池パック
JP2015204209A (ja) 蓄電装置
JP2023502612A (ja) 電池モジュールおよびそれを含む電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP