WO2016184007A1 - 喷射成形高速钢 - Google Patents

喷射成形高速钢 Download PDF

Info

Publication number
WO2016184007A1
WO2016184007A1 PCT/CN2015/091273 CN2015091273W WO2016184007A1 WO 2016184007 A1 WO2016184007 A1 WO 2016184007A1 CN 2015091273 W CN2015091273 W CN 2015091273W WO 2016184007 A1 WO2016184007 A1 WO 2016184007A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed steel
carbide
formed high
spray
present
Prior art date
Application number
PCT/CN2015/091273
Other languages
English (en)
French (fr)
Inventor
吴立志
李小明
杨云峰
况春江
辛栋梅
邵立青
方玉诚
Original Assignee
河冶科技股份有限公司
安泰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河冶科技股份有限公司, 安泰科技股份有限公司 filed Critical 河冶科技股份有限公司
Priority to US15/326,474 priority Critical patent/US10233519B2/en
Publication of WO2016184007A1 publication Critical patent/WO2016184007A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Definitions

  • the present invention relates to a high speed steel, and more particularly to a spray formed high speed steel.
  • the high-speed steel is prepared by the traditional method. Due to the slow cooling rate in the casting process, the segregation of alloying elements is serious, and coarse grains and carbides are formed. Even after the subsequent thermal deformation process, the unevenness of the structure is difficult to completely eliminate, thereby causing high-speed steel. Performance is at a lower level.
  • Spray forming is a short-flow process with rapid cooling and forming of molten steel, which can solve the problem of segregation of alloying elements and the increase of cost caused by long powder metallurgy process in the preparation process of traditional casting and forging process.
  • the problem of preparing high-speed steel by spray forming process is mainly reflected in the fact that as the cross-sectional size of the injection-molded ingot increases, the solidification speed of the molten steel at the end of the ingot is relatively reduced during the spray deposition process, and has a high melting point temperature and a solidification temperature interval.
  • the ingots are prone to segregation of alloying elements, forming coarse structures and affecting product quality.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. Accordingly, it is an object of the present invention to provide a spray formed high speed steel having a uniform structure.
  • an embodiment of the present invention provides a spray-formed high-speed steel whose chemical composition includes, by mass percentage, C: 0.85-1.65%, Si: 0.1-1.2%, Cr: 3.5-8.0%, W: 4.0-6.5%, Mo: 4.5-7.0%, V: 1.0-4.0%, Co: 1.0-8.0%, Mn: 0.2-0.8%, Nb: 0.2-3.5%, and the balance is iron and impurities.
  • the spray-formed high-speed steel according to the embodiment of the invention has a uniform microstructure, fine carbides and uniform distribution, and has excellent mechanical properties such as hardness, impact toughness and flexural strength, and is easy to be machined and ground. .
  • the high-speed steel of the invention is prepared by a spray forming process, the segregation of alloying elements is suppressed to a small range, the preparation process is short, and the cost is low, and is suitable for manufacturing various cutting tools, such as turning tools, hobs, broaches And drill bits, etc., can be used to replace high speed steel prepared by powder metallurgy process.
  • the chemical composition of the injection-formed high-speed steel includes, by mass percentage: C: 0.95-1.50%, Si: 0.3-0.6%, Cr: 4.0-6.5%, W: 4.6-6.0%, Mo: 4.8-6.0%, V: 1.5-4.0%, Co: 1.0-6.0%, Mn: 0.2-0.6%, Nb: 0.5-2.0%, and the balance is iron and impurities.
  • the impurities comprise S, S content of no more than 0.1%. Since S is a harmful element in steel, too high S causes a decrease in high temperature toughness, so in the present embodiment, the S content does not exceed 0.1%.
  • the impurities comprise P and the P content does not exceed 0.03%.
  • the carbide of the spray formed high speed steel comprises a combination of one or more of M 6 C carbide and MC carbide.
  • At least 80% of the carbide size of the spray formed high speed steel is ⁇ 15 by volume percent Mm.
  • the segregation of the high-speed steel alloy elements in the embodiments of the present invention is suppressed to a small extent, and has a uniform microstructure, and the carbide form is mainly spherical particles. After statistics, more than 80% of the carbides have a size of not more than 15 ⁇ m. .
  • Figure 1 is a structural analysis diagram of alloy A steel
  • Figure 2 is a structural analysis diagram of alloy B steel
  • Figure 3 is a diagram showing the analysis of steel structure in Example 1.1 of the present invention.
  • Embodiments of the present invention provide a spray-formed high-speed steel whose chemical composition includes, by mass percentage, C: 0.85-1.65%, Si: 0.1-1.2%, Cr: 3.5-8.0%, W: 4.0-6.5%, Mo: 4.5-7.0%, V: 1.0-4.0%, Co: 1.0-8.0%, Mn: 0.2-0.8%, Nb: 0.2-3.5%, and the balance is iron and impurities.
  • the spray-formed high-speed steel according to the embodiment of the present invention has a suitable chemical group distribution ratio designed based on the characteristics of the spray forming process, and appropriately increases the high temperature by adjusting the contents of major alloying elements such as C, Cr, W, Mo, V, Nb, and Co.
  • major alloying elements such as C, Cr, W, Mo, V, Nb, and Co.
  • the C element is not only a constituent element of the carbide, but also solid-dissolved in the matrix to strongly strengthen the matrix; in the embodiment of the invention, the carbon content is at least greater than 0.85% to ensure that the alloying elements can be fully analyzed, and the carbon is the largest. The content does not exceed 1.65%, so as to avoid the base toughness falling to too low, within the above range, the maximum hardness and toughness can be obtained. Cooperate.
  • the Si element does not participate in the formation of carbides, and is mainly used as a deoxidizer and a matrix strengthening element. Too much Si degrades the toughness of the substrate, and the Si content in the embodiment of the present invention ranges from 0.1% to 2.0%.
  • the Cr can promote the precipitation of carbides, and at the same time has a function of improving hardenability in solid solution of the matrix, and the Cr content in the examples of the present invention is from 3.5% to 8.0%.
  • the precipitation of W and Mo alloy elements in the form of carbide M 6 C or M 2 C is the key to high hardness of high speed steel, and M 6 C and M 2 C have a hexagonal lattice structure, and the W content in the embodiment of the present invention is 4.0%- 6.5%, Mo content is 4.5% - 7.0%.
  • V is mainly involved in the formation of MC carbides, and the MC carbide is a NaCl-type face-centered cubic lattice structure, which has a significant effect on the improvement of the wear resistance. Since the MC carbide has a high hardness, coarse MC carbide formation should be avoided, in the embodiment of the present invention.
  • the V content is from 1.0% to 4.0%.
  • Nb is similar to that of V. It mainly participates in the formation of MC carbides and forms (V, Nb)C carbides. The addition of Nb can change the distribution of C elements in different carbides and affect the precipitation of different carbides from molten steel.
  • the carbide particle size is refined, and the Nb content in the embodiment of the present invention is 0.2% to 3.5%.
  • the Co element promotes carbide precipitation and improves the red hardness of high speed steel.
  • the Co content is from 1.0% to 8.0%.
  • Mn can reduce the harmful effects of S and reduce the hot brittleness.
  • Mn can increase the hardenability of high speed steel, and the Mn content in the examples of the present invention ranges from 0.2% to 0.8%.
  • the injection-formed high-speed steel is alloyed by adding an appropriate amount of Nb alloy elements to improve the stability of the MC carbide in the liquid phase region, and more C participates in the formation of MC carbides, thereby suppressing alloys such as W and Mo.
  • the element reacts with C in the liquid phase to form M 6 C carbide, and this reaction part is transferred to the solidified solid phase zone.
  • M 6 C carbide have sufficient precipitation, it is sufficient to ensure high speed steel.
  • the hardness is increased by adding an appropriate amount of Co alloying elements to promote the precipitation of the M 6 C carbide in the solid phase region, while the growth of precipitated carbides is suppressed, and the carbide particle size distribution is generally in a small range, thereby making the high speed steel of the embodiment of the present invention. It has enough toughness to meet the needs of the application.
  • the injection-formed high-speed steel has a chemical composition including, by mass percentage, C: 0.95-1.50%, Si: 0.3-0.6%, Cr: 4.0-6.5%, and W: 4.6-6.0%. Mo: 4.8-6.0%, V: 1.5-4.0%, Co: 1.0-6.0%, Mn: 0.2-0.6%, Nb: 0.5-2.0%, and the balance is iron and impurities.
  • the impurities comprise S, S content of no more than 0.1%. Since S is a harmful element in steel, too high S causes a decrease in high temperature toughness, and the S content in the embodiment of the present invention does not exceed 0.1%.
  • the impurities comprise P and the P content does not exceed 0.03%.
  • P is a harmful element in steel, and too high P causes a decrease in low-temperature toughness, and the P content in the embodiment of the present invention does not exceed 0.03%.
  • the carbide composition of the spray formed high speed steel is a combination of one or more of M 6 C carbide and MC carbide.
  • At least 80% of the carbide shaped size of the spray formed high speed steel is ⁇ 15 [mu]m by volume percent.
  • the segregation of the high-speed steel alloy elements of the present invention is suppressed to a small extent, and has a uniform microstructure, and the carbide form is mainly spherical particles. After statistics, more than 80% of the carbides have a size of not more than 15 ⁇ m.
  • the spray-formed high-speed steel obtained by the technical solution of the invention has a uniform microstructure, fine carbides, uniform distribution, and excellent mechanical properties such as hardness, impact toughness and flexural strength. Easy to machine and grind.
  • the high-speed steel of the invention is prepared by a spray forming process, the segregation of alloying elements is suppressed to a small range, the preparation process is short, and the cost is low, and is suitable for manufacturing various cutting tools, such as turning tools, hobs, broaches And drill bits, etc., can be used to replace high speed steel prepared by powder metallurgy process.
  • Embodiment 1 is a diagrammatic representation of the present invention.
  • This embodiment relates to a set of spray-formed high speed steels having chemical compositions as shown in Table 1.1:
  • Example 1.1 1.23 0.5 4.5 5.2 5.5 1.75 1.0 5.0 0.3 0.003 0.02
  • Example 1.2 1.55 1.0 7.4 6.0 6.8 3.5 3.02 7.0 0.7 0.004 0.02
  • Example 1.4 1.12 0.8 5.9 4.8 5.2 2.6 2.21 4.0 0.5 0.005 0.02
  • the examples 1.1 to 1.4 were prepared by a spray forming process, and about ⁇ 500 mm of the ingot was obtained after the spray deposition was completed, and the spray deposited ingot was directly transferred for hot deformation processing to obtain a ⁇ 100 mm bar.
  • This embodiment relates to analysis of the structure, hardness, and impact toughness of the injection-formed high-speed steel of the first embodiment.
  • the hardness was analyzed by Rockwell hardness.
  • the impact toughness was measured by Charpy's unnotched specimen method.
  • the impact toughness test sample size was 10mm*10mm*55mm.
  • Example 1.1 The comparative analysis of the structure of Example 1.1 and Alloys A and B is shown in Fig. 1, Fig. 2, and Fig. 3.
  • Figure 1 shows the structure of a typical electroslag remelted steel.
  • the carbides are coarse and have a strip-like distribution along the longitudinal deformation direction.
  • the directional distribution of carbides has an adverse effect on the mechanics, especially the transverse mechanical properties of the steel. It can be seen from the electron beam spectroscopic analysis that the carbide in Fig. 1 is mainly M 6 C, wherein M is mainly an alloying element such as W, Mo, Fe, and a small amount of vanadium-rich MC carbide.
  • the large amount of carbides in Fig. 1 is distributed in the range of 5 ⁇ m to 30 ⁇ m.
  • Figure 2 steel is prepared by spray forming process, which solves the problem that the carbides in high-speed steel are distributed in the direction of longitudinal deformation, but the size of some carbides is still coarse, which will lead to unstable service life.
  • Carbide category in Figure 2 Mainly M 6 C and MC, the carbide size is mainly distributed in the range of 3 ⁇ m-20 ⁇ m.
  • FIG. 3 is a view showing the structure of the spray-formed high-speed steel according to the present invention. It can be seen that the present invention solves the problem of uneven distribution of carbides and coarse carbides, and the No. 3 steel has the finest carbides and the most uniform distribution state.
  • the carbide species in Fig. 3 are mainly M 6 C and MC, and the carbide size is mainly distributed in the range of 0.5 ⁇ m to 8 ⁇ m, and at least 80 Vol% of the carbide size is ⁇ 15 ⁇ m.
  • the alloys A and B were subjected to austenitizing and quenching treatment at 1150 ° C, and tempered at 520 ° C, 540 ° C, 560 ° C, and 600 ° C.
  • the hardness values and impact toughness are shown in Table 2.2 and Table 2.3.
  • Example 1.1 exhibits a relatively high hardness compared to Alloy A due to the unique design of the alloy composition and the use of a spray forming process.
  • the alloy B alloy composition has a high W equivalent.
  • high Co content showing the highest tempering hardness.
  • the tempering temperature increases from 520 ° C to 600 ° C
  • the hardness of the three steel grades decreases, and the impact toughness first increases and then decreases.
  • the high-speed steel tool can stabilize long life.
  • the key is that the high-speed steel used has excellent comprehensive mechanical properties, including good hardness and toughness.
  • the microstructure of alloy A has obvious uneven carbide distribution, and the longitudinal and transverse mechanical properties of alloy A will be There are big differences that affect the service life.
  • Example 1.1 Compared with Alloy A and Alloy B, Example 1.1 has more excellent toughness and high heat treatment hardness, and is suitable for manufacturing various cutting tools such as turning tools, hobs, broaches and drills.
  • Embodiment 1.1 of the present invention is prepared by a spray forming process. Since the spray forming process has the characteristics of short flow and low process cost, the high speed steel of the present invention can be used to replace the high speed steel prepared by the powder metallurgy process applied in the above fields.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种喷射成形高速钢,其化学组分按质量百分比计包括:C:0.85-1.65%,Si:0.1-1.2%,Cr:3.5-8.0%,W:4.0-6.5%,Mo:4.5-7.0%,V:1.0-4.0%,Co:1.0-8.0%,Mn:0.2-0.8%,Nb:0.2-3.5%,余量为铁和杂质。

Description

喷射成形高速钢 技术领域
本发明涉及一种高速钢,尤其涉及一种喷射成形高速钢。
背景技术
采用传统方式制备高速钢由于浇铸过程冷却速度缓慢,合金元素偏析严重,形成粗大的晶粒及碳化物,即使经过后续热变形工艺,组织的不均匀情况也难以完全消除,由此导致高速钢的性能处于较低水平。
为了抑制合金元素在工艺过程中的偏析,以得到具有均匀组织形态的合金,开发了采用粉末冶金工艺制备高速钢及工模具钢的技术。尽管粉末冶金工艺发展较为成熟,具备能力生产高品质高速钢,但粉末冶金工艺实施工艺流程长,生产成本和能源消耗高,导致产品价格昂贵。
如何以较低的工艺成本提升产品品质是当前高速钢制备需要解决的技术问题。喷射成形工艺为解决这一问题提供了途径。喷射成形是具备将钢液快速冷却成形的一种短流程工艺,能够解决传统铸锻工艺制备过程中出现的合金元素偏析问题以及粉末冶金工艺流程长带来的成本增加问题。采用喷射成形工艺制备高速钢面临的问题主要体现在,随着喷射成形锭材横截面尺寸加大,喷射沉积过程中锭材端部钢液凝固速度相对降低,对于具有熔点温度高、凝固温度区间宽、相组成多等特点的高速钢,锭材局部容易出现合金元素偏析,形成粗大组织,从而影响产品品质。
发明内容
本发明旨在至少从一定程度上解决相关技术中的技术问题之一。为此,本发明的目的在于提供一种组织均匀的喷射成形高速钢。
为实现上述目的,本发明实施例提供一种喷射成形高速钢,其化学组分按质量百分比计包括:C:0.85-1.65%,Si:0.1-1.2%,Cr:3.5-8.0%,W:4.0-6.5%,Mo:4.5-7.0%,V:1.0-4.0%,Co:1.0-8.0%,Mn:0.2-0.8%,Nb:0.2-3.5%,余量为铁和杂质。
根据本发明实施例的喷射成形高速钢,具有均一的显微组织结构,碳化物细小,分布均匀,具备优异的硬度、冲击韧性、抗弯强度等综合力学性能,同时易于进行机械加工及磨削。本发明高速钢通过喷射成形工艺制备,合金元素的偏析被抑制在很小范围之内,制备工艺流程短,成本较低,适用于制造各种切削刀具,如车刀、滚铣刀、拉刀及钻头等,可用来替代采用粉末冶金工艺制备的高速钢。
在一些实施例中,W和Mo相互部分替换,替换比率为1%Mo=2%W。由于W、Mo合金在形成碳化物类型方面具有相似作用,可以在所给范围内相互部分替换,替换比率为1%Mo=2%W,(Mo+1/2W)总量应保持在6.0%-10.5%范围内。
在一些实施例中,V和Nb相互部分替换,替换比率为1%V=2%Nb。由于V和Nb在形成MC碳化物方面具有相似作用,在所给范围内可相互部分替换,替换比率为1%V=2%Nb,(V+1/2Nb)总量应保持在1.0%-6.0%范围内。
在一些实施例中,所述喷射成形高速钢的化学组分按质量百分比计包括:C:0.95-1.50%,Si:0.3-0.6%,Cr:4.0-6.5%,W:4.6-6.0%,Mo:4.8-6.0%,V:1.5-4.0%,Co:1.0-6.0%,Mn:0.2-0.6%,Nb:0.5-2.0%,余量为铁和杂质。
在一些实施例中,所述杂质包括S,S含量不超过0.1%。由于S为钢中有害元素,过高的S导致高温韧性降低,故在本实施例中,S含量不超过0.1%
在一些实施例中,所述杂质包括P,P含量不超过0.03%。
在一些实施例中,所述喷射成形高速钢的碳化物包括M6C碳化物和MC碳化物中一种或多种的组合。
在一些实施例中,按体积百分比计,所述喷射成形高速钢的至少80%的碳化物尺寸≤15 μm。本发明实施例的高速钢合金元素的偏析被抑制在很小范围之内,表现为具有均一的显微组织结构,碳化物形态主要为球状颗粒,经过统计,80%以上碳化物尺寸不大于15μm。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为合金A钢组织分析图;
图2为合金B钢组织分析图;
图3为本发明实施例1.1钢组织分析图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明实施例提供一种喷射成形高速钢,其化学组分按质量百分比计包括:C:0.85-1.65%,Si:0.1-1.2%,Cr:3.5-8.0%,W:4.0-6.5%,Mo:4.5-7.0%,V:1.0-4.0%,Co:1.0-8.0%,Mn:0.2-0.8%,Nb:0.2-3.5%,余量为铁和杂质。
根据本发明实施例的喷射成形高速钢,具有基于喷射成形工艺特点设计的合适的化学组分配比,通过调节C、Cr、W、Mo、V、Nb、Co等主要合金元素含量,适当增加高温稳定相的生成,减缓易粗化相生长速度,抑制喷射成形过程中合金元素偏析及组织粗化,实现喷射成形锭材组织的均一化,提高力学性能。
C元素不仅是碳化物的组成元素,而且固溶于基体,对基体起到强烈强化作用;在本发明实施例中,碳的含量至少大于0.85%,以保证合金元素能够充分析出,碳的最大含量不超过1.65%,避免导致基体韧性下降至过低,在上述范围内,能够获得最大硬度及韧性的 配合。
Si元素不参与碳化物的形成,主要是作为一种脱氧剂和基体强化元素来使用,Si过多会使基体韧性下降,本发明实施例Si含量范围是0.1%-2.0%。
Cr能够促进碳化物的析出,同时在基体的固溶具有提高淬透性的作用,本发明实施例的Cr含量为3.5%-8.0%。
W、Mo合金元素以碳化物M6C或M2C形式析出是高速钢具有高硬度的关键,M6C及M2C具有六方点阵结构,本发明实施例中W含量为4.0%-6.5%,Mo含量为4.5%-7.0%。
V主要参与MC碳化物形成,MC碳化物为NaCl型面心立方点阵结构,对耐磨性能提高具有显著作用,由于MC碳化物硬度高,应避免粗大MC碳化物形成,本发明实施例中V含量为1.0%-4.0%。
Nb的作用与V类似,主要参与MC碳化物形成,形成(V、Nb)C碳化物,Nb的添加能够改变C元素在不同碳化物中的分配,影响不同碳化物从钢液中的析出过程,使碳化物粒度细化,本发明实施例中Nb含量为0.2%-3.5%。
Co元素能够促进碳化物析出,提高高速钢的红硬性。本发明实施例中Co含量为1.0%-8.0%。
Mn的添加可以减少S有害作用,减少热脆性,另外Mn可增加高速钢的淬透性,在本发明实施例中的Mn含量范围是0.2%-0.8%。
根据本发明实施例的喷射成形高速钢,一方面通过添加适量Nb合金元素进行合金化,提高液相区MC碳化物的稳定性,更多C参与MC碳化物形成,从而抑制W、Mo等合金元素在液相区与C反应形成M6C碳化物,这一反应部分转移至完全凝固的固相区发生;另一方面为了使M6C碳化物有充分的析出量,保证高速钢有足够的硬度,通过添加适量Co合金元素,促使M6C碳化物在固相区充分析出,同时析出碳化物的生长被抑制,碳化物粒度分布总体处于细小范围,从而使本发明实施例的高速钢具有足够韧性以满足应用需求。
在一些实施例中,所述化学组分中(Mo+1/2W)按质量百分比计为6.0%-10.5%。由于W、Mo合金在形成碳化物类型方面具有相似作用,可以在所给范围内相互部分替换,替换比率为1%Mo=2%W,(Mo+1/2W)总量应保持在6.0%-10.5%范围内。
在一些实施例中,所述化学组分中(V+1/2Nb)按质量百分比计为1.0%-6.0%。由于V和Nb在形成MC碳化物方面具有相似作用,在所给范围内可相互部分替换,替换比率为1%V=2%Nb,(V+1/2Nb)总量应保持在1.0%-6.0%范围内。
在一些实施例中,所述喷射成形高速钢,其化学组分按质量百分比计包括:C:0.95-1.50%,Si:0.3-0.6%,Cr:4.0-6.5%,W:4.6-6.0%,Mo:4.8-6.0%,V:1.5-4.0%,Co:1.0-6.0%,Mn:0.2-0.6%,Nb:0.5-2.0%,余量为铁和杂质。
在一些实施例中,所述杂质包括S,S含量不超过0.1%。由于S为钢中有害元素,过高的S导致高温韧性降低,本发明实施例中S含量不超过0.1%。
在一些实施例中,所述杂质包括P,P含量不超过0.03%。P为钢中有害元素,过高P导致低温韧性降低,本发明实施例中P含量不超过0.03%。
在一些实施例中,所述喷射成形高速钢的碳化物组成为M6C碳化物和MC碳化物中一种或多种的组合。
在一些实施例中,按体积百分比计,所述喷射成形高速钢的至少80%的碳化物尺寸≤15μm。本发明高速钢合金元素的偏析被抑制在很小范围之内,表现为具有均一的显微组织结构,碳化物形态主要为球状颗粒,经过统计,80%以上碳化物尺寸不大于15μm。
综上所述,采用本发明的技术方案,获得的喷射成形高速钢具有均一的显微组织结构,碳化物细小,分布均匀,具备优异的硬度、冲击韧性、抗弯强度等综合力学性能,同时易于进行机械加工及磨削。本发明高速钢通过喷射成形工艺制备,合金元素的偏析被抑制在很小范围之内,制备工艺流程短,成本较低,适用于制造各种切削刀具,如车刀、滚铣刀、拉刀及钻头等,可用来替代采用粉末冶金工艺制备的高速钢。
为使本领域技术人员清楚地理解本发明,下面给出根据本发明方案的几个具体实施例。实施例一
本实施例涉及一组喷射成形高速钢,其化学组分如表1.1所示:
表1.1实施例一喷射成形高速钢的化学组分表
  C Si Cr W Mo V Nb Co Mn S P
实施例1.1 1.23 0.5 4.5 5.2 5.5 1.75 1.0 5.0 0.3 0.003 0.02
实施例1.2 1.55 1.0 7.4 6.0 6.8 3.5 3.02 7.0 0.7 0.004 0.02
实施例1.3 0.90 0.2 3.5 4.2 4.6 1.32 0.55 2.5 0.2 0.003 0.015
实施例1.4 1.12 0.8 5.9 4.8 5.2 2.6 2.21 4.0 0.5 0.005 0.02
采用喷射成形工艺制备实施例1.1~1.4,喷射沉积完成后得到约Φ500mm锭材,将喷射沉积锭直接转移进行热变形加工得到Φ100mm棒材。
实施例二
本实施例涉及实施例一的喷射成形高速钢的组织结构、硬度、冲击韧性的分析。
硬度采用洛氏硬度进行对比分析,冲击韧性采用夏比无缺口试样方法检测,冲击韧性检测试样尺寸为10mm*10mm*55mm。
将实施例1.1的喷射成形高速钢与商业购买的采用电渣重熔+锻造工艺制备的Φ100mm高速钢棒材(合金A)和采用喷射成形工艺制备的具有不同化学组成的Φ100mm棒材(合金B)进行对比分析,其结果如下:
表2.1实施例1.1与合金A、B的成分组成对比:
Figure PCTCN2015091273-appb-000001
对实施例1.1与合金A、B进行组织对比分析,如图1、图2、图3所示。
图1为典型的电渣重熔钢组织,碳化物比较粗大,且沿纵向变形方向呈现条带状分布,碳化物的方向性不均匀分布对力学有不利影响,尤其使钢材横向力学性能降低。通过电镜能谱分析可知图1中碳化物主要为M6C,其中M主要为W、Mo、Fe等合金元素,另外还有少量富钒的MC碳化物。图1中大量碳化物尺寸分布在5μm-30μm。
图2钢采用喷射成形工艺制备,解决了高速钢中碳化物沿纵向变形方向呈条带状分布的问题,但部分碳化物尺寸仍然粗大,将导致使用寿命的不稳定,图2中碳化物类别主要为M6C及MC,碳化物尺寸主要分布在3μm-20μm。
图3为本发明喷射成形高速钢的组织,可以看出,本发明很好解决了碳化物的不均匀分布以及碳化物粗大的问题,3号钢具有最细小碳化物及最均匀的分布状态,图3中碳化物类别主要为M6C及MC,碳化物尺寸主要分布在0.5μm-8μm,至少80Vol%碳化物尺寸≤15μm。
对实施例1.1与合金A、B进行1150℃奥氏体化后淬火处理,采用520℃、540℃、560℃、600℃温度回火,硬度值及冲击韧性如表2.2、表2.3所示。
表2.2实施例1.1与合金A、B的硬度对比:
Figure PCTCN2015091273-appb-000003
表2.3实施例1.1与合金A的冲击韧性对比:
Figure PCTCN2015091273-appb-000004
由表2.2、表2.3可看出,相比合金A,实施例1.1由于合金成分的独特设计和采用喷射成形工艺制备,实施例1.1表现出相对较高硬度,合金B合金成分具有高的W当量和高Co含量,表现出最高的回火硬度。随着回火温度从520℃升高到600℃,三个钢种硬度呈降低趋势,而冲击韧性先升高后降低。高速钢刀具能够稳定长寿命使用关键在于所使用高速钢具备优异的综合力学性能,包括良好硬度与韧性的配合,合金A的组织具有明显的碳化物分布不均匀,合金A纵向和横向力学性能将有较大的差异,影响使用寿命。实施例1.1相比合金A及合金B具有更加优异的韧性性能,同时具备高的热处理硬度,适用于制造各种切削刀具,如车刀、滚铣刀、拉刀及钻头等。本发明实施例1.1采用喷射成形工艺制备,由于喷射成形工艺具备短流程特点,工艺成本较低,本发明高速钢可用来替代应用于以上领域的采用粉末冶金工艺制备的高速钢。
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必 须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

  1. 一种喷射成形高速钢,其特征在于,所述喷射成形高速钢的化学组分按质量百分比计包括:C:0.85-1.65%,Si:0.1-1.2%,Cr:3.5-8.0%,W:4.0-6.5%,Mo:4.5-7.0%,V:1.0-4.0%,Co:1.0-8.0%,Mn:0.2-0.8%,Nb:0.2-3.5%,余量为铁和杂质。
  2. 根据权利要求1所述的喷射成形高速钢,其特征在于,W和Mo相互部分替换,替换比率为1%Mo=2%W。
  3. 根据权利要求1或2所述的喷射成形高速钢,其特征在于,V和Nb相互部分替换,替换比率为1%V=2%Nb。
  4. 根据权利要求1-3任一项所述的喷射成形高速钢,其特征在于,所述喷射成形高速钢的化学组分按质量百分比计包括:C:0.95-1.50%,Si:0.3-0.6%,Cr:4.0-6.5%,W:4.6-6.0%,Mo:4.8-6.0%,V:1.5-4.0%,Co:1.0-6.0%,Mn:0.2-0.6%,Nb:0.5-2.0%,余量为铁和杂质。
  5. 根据权利要求1-4任一项所述的喷射成形高速钢,其特征在于:所述杂质包括S,S含量不超过0.1%。
  6. 根据权利要求1-5任一项所述的喷射成形高速钢,其特征在于:所述杂质包括P,P含量不超过0.03%。
  7. 根据权利要求1-6任一项所述的喷射成形高速钢,其特征在于:所述喷射成形高速钢的碳化物包括M6C碳化物和MC碳化物中一种或多种的组合。
  8. 根据权利要求1-7任一项所述的喷射成形高速钢,其特征在于:按体积百分比计,所述喷射成形高速钢的至少80%的碳化物尺寸≤15μm。
PCT/CN2015/091273 2015-05-15 2015-09-30 喷射成形高速钢 WO2016184007A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/326,474 US10233519B2 (en) 2015-05-15 2015-09-30 Spray-formed high-speed steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510249129.0 2015-05-15
CN201510249129.0A CN104878301B (zh) 2015-05-15 2015-05-15 喷射成形高速钢

Publications (1)

Publication Number Publication Date
WO2016184007A1 true WO2016184007A1 (zh) 2016-11-24

Family

ID=53945970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091273 WO2016184007A1 (zh) 2015-05-15 2015-09-30 喷射成形高速钢

Country Status (3)

Country Link
US (1) US10233519B2 (zh)
CN (1) CN104878301B (zh)
WO (1) WO2016184007A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878301B (zh) * 2015-05-15 2017-05-03 河冶科技股份有限公司 喷射成形高速钢
CN107130176A (zh) * 2016-09-05 2017-09-05 蒂思特(苏州)模具材料技术应用有限公司 一种新型高速钢材料及其制备工艺
CN107475632B (zh) * 2017-08-21 2019-01-29 安徽工业大学 一种高钨钼含量的耐磨高速钢涂层及其制备方法
CN108411220A (zh) * 2018-04-26 2018-08-17 河冶科技股份有限公司 高碳高钒耐磨钢及其制备方法
CN109576586A (zh) * 2018-12-25 2019-04-05 金湖蒂斯特五金制品有限公司 一种降成本改性高速钢及其制备工艺
CN109763077B (zh) * 2018-12-25 2021-11-23 河冶科技股份有限公司 高硬度高耐磨性高速钢及其制备方法
JP7152119B2 (ja) * 2019-04-03 2022-10-12 株式会社不二越 摩擦撹拌接合工具
CN110273096B (zh) * 2019-06-28 2021-01-08 鞍钢股份有限公司 一种SiC/M2粉末高速钢复合材料及其制备方法
CN114318122A (zh) * 2020-09-29 2022-04-12 江苏润晨新材料科技有限公司 一种新型高速钢带锯条齿材料的制造方法
CN114381656A (zh) * 2020-10-22 2022-04-22 江苏天工工具有限公司 一种喷射成型高速钢加工工艺
CN114318132B (zh) * 2021-03-22 2023-06-27 武汉钜能科技有限责任公司 耐腐蚀耐磨损工具钢
CN114318135A (zh) * 2021-03-22 2022-04-12 武汉钜能科技有限责任公司 耐磨损高速钢
CN114318134A (zh) * 2021-03-22 2022-04-12 武汉钜能科技有限责任公司 耐磨高速钢
CN113913689A (zh) * 2021-09-18 2022-01-11 天工爱和特钢有限公司 一种无环状偏析并具二次硬化的喷射高速钢及其制造方法
CN116837271B (zh) * 2021-11-29 2024-07-12 河冶科技股份有限公司 喷射成形耐磨双强化相沉淀硬化高速钢
CN116837267A (zh) * 2021-11-29 2023-10-03 河冶科技股份有限公司 喷射成形工艺制备沉淀硬化高速钢的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200394B1 (en) * 1997-05-08 2001-03-13 Research Institute Of Industrial Science & Technology High speed tool steel
CN1704495A (zh) * 2004-05-28 2005-12-07 宝山钢铁股份有限公司 一种使高钒高钴高速钢获得超塑性性能的方法
CN101153376A (zh) * 2006-09-26 2008-04-02 宝山钢铁股份有限公司 一种高钒高钴高速钢的制造方法
CN101838774A (zh) * 2010-05-10 2010-09-22 金文平 一种高速钢及其生产工艺
CN102605263A (zh) * 2012-04-17 2012-07-25 北京科技大学 一种超高硬高韧可锻喷射成形高速钢及制备方法
CN104878301A (zh) * 2015-05-15 2015-09-02 河冶科技股份有限公司 喷射成形高速钢

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3789776T2 (de) * 1986-02-05 1994-08-18 Hitachi Ltd Hitzebeständiger Stahl und daraus hergestellte Gasturbinenteile.
US4948556A (en) * 1988-08-10 1990-08-14 Hitachi Metals, Ltd. Piston ring material and piston ring
JP2769422B2 (ja) * 1993-04-19 1998-06-25 日立金属株式会社 内燃機関の燃料噴射ノズルまたはニードル用高強度ステンレス鋼、内燃機関用燃料噴射ノズルおよびその製造方法
JP2932943B2 (ja) * 1993-11-04 1999-08-09 株式会社神戸製鋼所 高耐食性高強度ばね用鋼材
JP3315800B2 (ja) * 1994-02-22 2002-08-19 株式会社日立製作所 蒸気タービン発電プラント及び蒸気タービン
US5817192A (en) * 1995-04-12 1998-10-06 Mitsubishi Jukogyo Kabushiki Kaisha High-strength and high-toughness heat-resisting steel
JPH0959747A (ja) * 1995-08-25 1997-03-04 Hitachi Ltd 高強度耐熱鋳鋼,蒸気タービンケーシング,蒸気タービン発電プラント及び蒸気タービン
JPH09176736A (ja) * 1995-10-10 1997-07-08 Rasmussen Gmbh ばね帯金クリップの製造法
EP1314791B1 (en) * 2000-08-31 2011-07-13 JFE Steel Corporation Low carbon martensitic stainless steel and method for production thereof
US6962631B2 (en) * 2000-09-21 2005-11-08 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP4337268B2 (ja) * 2001-02-27 2009-09-30 大同特殊鋼株式会社 耐食性に優れた高硬度マルテンサイト系ステンレス鋼
TW567233B (en) * 2001-03-05 2003-12-21 Kiyohito Ishida Free-cutting tool steel
JP3439197B2 (ja) * 2001-03-06 2003-08-25 三菱重工業株式会社 低合金耐熱鋼及びその熱処理方法並びにタービンロータ
US8900382B2 (en) * 2002-06-13 2014-12-02 Uddeholm Tooling Aktiebolag Hot worked steel and tool made therewith
JP4799006B2 (ja) * 2004-03-01 2011-10-19 株式会社小松製作所 Fe系シール摺動部材およびその製造方法
EP1884575B1 (en) * 2005-03-17 2013-07-03 JFE Steel Corporation Stainless steel sheet for disc brake excellent in heat resistance and corrosion resistance
JP5072285B2 (ja) * 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 二相ステンレス鋼
JP4908137B2 (ja) * 2006-10-04 2012-04-04 株式会社東芝 タービンロータおよび蒸気タービン
ES2365284T3 (es) * 2007-01-12 2011-09-28 Rovalma Sa Acero de herramientas para trabajo en frío con soldabilidad excepcional.
SE533283C2 (sv) * 2008-03-18 2010-08-10 Uddeholm Tooling Ab Stål, process för tillverkning av ett stålämne samt process för tillverkning av en detalj av stålet
KR101767017B1 (ko) * 2008-03-26 2017-08-09 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 용접 열 영향부의 내식성과 인성이 양호한 저합금 2상 스테인리스강
MY156080A (en) * 2009-06-01 2016-01-15 Jfe Steel Corp Steel sheet for brake disc, and brake disc
US8361247B2 (en) * 2009-08-03 2013-01-29 Gregory Vartanov High strength corrosion resistant steel
US9816153B2 (en) * 2011-09-28 2017-11-14 Jfe Steel Corporation High strength steel sheet and method of manufacturing the same
KR101658744B1 (ko) * 2012-09-26 2016-09-21 신닛테츠스미킨 카부시키카이샤 복합 조직 강판 및 그 제조 방법
JP6259621B2 (ja) * 2012-09-27 2018-01-10 新日鐵住金ステンレス株式会社 冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法
CN103789640A (zh) * 2012-11-02 2014-05-14 无锡市金荡机械厂 一种无钴高速钢的喷射成型制备方法
CN105764733B (zh) * 2013-09-13 2018-09-07 新日铁住金不锈钢株式会社 低廉且具有良好的耐盐性的汽车用构件以及供油管
US9670570B2 (en) * 2014-04-17 2017-06-06 Evraz Inc. Na Canada High carbon steel rail with enhanced ductility
CN104131211A (zh) * 2014-08-20 2014-11-05 江苏飞达钻头股份有限公司 一种喷射成型多梯度高速钢的制备方法
JP6455599B2 (ja) * 2015-07-31 2019-01-23 新日鐵住金株式会社 加工誘起変態型複合組織鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200394B1 (en) * 1997-05-08 2001-03-13 Research Institute Of Industrial Science & Technology High speed tool steel
CN1704495A (zh) * 2004-05-28 2005-12-07 宝山钢铁股份有限公司 一种使高钒高钴高速钢获得超塑性性能的方法
CN101153376A (zh) * 2006-09-26 2008-04-02 宝山钢铁股份有限公司 一种高钒高钴高速钢的制造方法
CN101838774A (zh) * 2010-05-10 2010-09-22 金文平 一种高速钢及其生产工艺
CN102605263A (zh) * 2012-04-17 2012-07-25 北京科技大学 一种超高硬高韧可锻喷射成形高速钢及制备方法
CN104878301A (zh) * 2015-05-15 2015-09-02 河冶科技股份有限公司 喷射成形高速钢

Also Published As

Publication number Publication date
CN104878301B (zh) 2017-05-03
US20170204502A1 (en) 2017-07-20
US10233519B2 (en) 2019-03-19
CN104878301A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2016184007A1 (zh) 喷射成形高速钢
JP5412851B2 (ja) プラスチック成形金型用鋼およびプラスチック成形金型
US20220162731A1 (en) Hot-working die steel, heat treatment method thereof and hot-working die
CN108220815B (zh) 热锻用高热强性、高冲击韧性热作模具钢及制备方法
CN110592487B (zh) 700MPa级奥氏体铁素体双相低密度铸钢及其制备方法
JP6366326B2 (ja) 高靱性熱間工具鋼およびその製造方法
KR102042063B1 (ko) 흑연화 열처리용 강재 및 피삭성이 향상된 흑연강
WO2008032816A1 (fr) Acier à outils pour formage à chaud présentant d'excellentes qualités de rigidité et de résistance à des températures élevées, et son procédé de production
JP2017155306A (ja) 優れた高温強度および靱性を有する熱間工具鋼
JP2020070457A (ja) 熱伝導率に優れる熱間工具鋼
JPS6121299B2 (zh)
CN112760561A (zh) 一种手工工具用盘条及其制备方法
WO2018042929A1 (ja) 圧延用ロール外層材および圧延用複合ロール
JP6797465B2 (ja) 優れた靭性及び高温強度を有する高硬度マトリクスハイス
JP6710484B2 (ja) 粉末高速度工具鋼
WO2016013273A1 (ja) 熱間工具材料、熱間工具の製造方法および熱間工具
CN111118383A (zh) 一种粉末钢及其制备方法
CN107475632B (zh) 一种高钨钼含量的耐磨高速钢涂层及其制备方法
CN108411220A (zh) 高碳高钒耐磨钢及其制备方法
CN107058856B (zh) 一种液相变质剂和制备高铬铸铁的方法
CN114959506A (zh) 超薄不锈钢轧制轧辊用高速钢及其制备方法
JP6083014B2 (ja) 高強度マトリックスハイス
KR101711889B1 (ko) 내마모성이 우수한 냉간 가공용 합금 공구강
JP2003313635A (ja) 高靱性の熱間工具鋼
JP2007211291A (ja) 被削性の優れた溶製高剛性鋼及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892385

Country of ref document: EP

Kind code of ref document: A1