WO2016183788A1 - 一种混合式动压气体止推轴承 - Google Patents

一种混合式动压气体止推轴承 Download PDF

Info

Publication number
WO2016183788A1
WO2016183788A1 PCT/CN2015/079234 CN2015079234W WO2016183788A1 WO 2016183788 A1 WO2016183788 A1 WO 2016183788A1 CN 2015079234 W CN2015079234 W CN 2015079234W WO 2016183788 A1 WO2016183788 A1 WO 2016183788A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
dynamic pressure
pressure gas
thrust bearing
gas thrust
Prior art date
Application number
PCT/CN2015/079234
Other languages
English (en)
French (fr)
Inventor
罗立峰
Original Assignee
罗立峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗立峰 filed Critical 罗立峰
Priority to EP15892167.6A priority Critical patent/EP3299644B1/en
Priority to PT158921676T priority patent/PT3299644T/pt
Priority to JP2018512460A priority patent/JP6762359B2/ja
Priority to PCT/CN2015/079234 priority patent/WO2016183788A1/zh
Priority to ES15892167T priority patent/ES2762273T3/es
Priority to KR1020177036491A priority patent/KR102030176B1/ko
Priority to US15/575,604 priority patent/US10274007B2/en
Priority to SG11201709525UA priority patent/SG11201709525UA/en
Priority to DK15892167.6T priority patent/DK3299644T3/da
Priority to HUE15892167A priority patent/HUE048462T2/hu
Priority to EA201792556A priority patent/EA035187B1/ru
Priority to CN201510292862.0A priority patent/CN104895917A/zh
Priority to CN201510595511.7A priority patent/CN105202027B/zh
Priority to CN201520723621.2U priority patent/CN205371310U/zh
Priority to CN201610334013.1A priority patent/CN105889314B/zh
Priority to CN201610329210.4A priority patent/CN106026492B/zh
Priority to CN201610329290.3A priority patent/CN105889325B/zh
Priority to CN201610327779.7A priority patent/CN106026517B/zh
Priority to CN201620452807.3U priority patent/CN205864142U/zh
Priority to CN201610329207.2A priority patent/CN105889099B/zh
Priority to CN201610329342.7A priority patent/CN105888847B/zh
Priority to CN201620452845.9U priority patent/CN205864143U/zh
Priority to CN201610327807.5A priority patent/CN105889097B/zh
Priority to CN201620452803.5U priority patent/CN205858959U/zh
Priority to CN201620450029.4U priority patent/CN205864174U/zh
Priority to CN201620449971.9U priority patent/CN205858958U/zh
Priority to CN201610329279.7A priority patent/CN105888819B/zh
Priority to CN201610327762.1A priority patent/CN105888818B/zh
Priority to CN201610327792.2A priority patent/CN106026491B/zh
Priority to CN201610329288.6A priority patent/CN105889313B/zh
Priority to CN201620452770.4U priority patent/CN205858479U/zh
Priority to CN201610329302.2A priority patent/CN106014641B/zh
Priority to CN201620454708.9U priority patent/CN205858494U/zh
Priority to CN201610329245.8A priority patent/CN105889324B/zh
Priority to CN201620453233.1U priority patent/CN205858493U/zh
Priority to CN201620450047.2U priority patent/CN205858730U/zh
Priority to CN201620452766.8U priority patent/CN205858478U/zh
Priority to CN201620452740.3U priority patent/CN205858947U/zh
Priority to CN201620457921.5U priority patent/CN205858960U/zh
Priority to CN201620457923.4U priority patent/CN205858948U/zh
Priority to CN201620452859.0U priority patent/CN205858731U/zh
Priority to CN201610334011.2A priority patent/CN105889326B/zh
Priority to TW105115468A priority patent/TWI704297B/zh
Priority to PCT/CN2016/082705 priority patent/WO2016184408A1/zh
Priority to PCT/CN2016/082706 priority patent/WO2016184409A1/zh
Priority to TW105115472A priority patent/TWI694210B/zh
Priority to PCT/CN2016/082710 priority patent/WO2016184413A1/zh
Priority to PCT/CN2016/082709 priority patent/WO2016184412A1/zh
Priority to PCT/CN2016/082708 priority patent/WO2016184411A1/zh
Priority to TW105115474A priority patent/TWI699077B/zh
Priority to PCT/CN2016/082703 priority patent/WO2016184407A1/zh
Priority to PCT/CN2016/082713 priority patent/WO2016184416A1/zh
Priority to PCT/CN2016/082699 priority patent/WO2016184405A1/zh
Priority to PCT/CN2016/082707 priority patent/WO2016184410A1/zh
Priority to PCT/CN2016/082711 priority patent/WO2016184414A1/zh
Priority to PCT/CN2016/082702 priority patent/WO2016184406A1/zh
Priority to TW105115476A priority patent/TWI676734B/zh
Priority to TW105115475A priority patent/TWI676735B/zh
Priority to PCT/CN2016/082676 priority patent/WO2016184404A1/zh
Priority to PCT/CN2016/082714 priority patent/WO2016184417A1/zh
Priority to TW105115473A priority patent/TWI704751B/zh
Priority to PCT/CN2016/082712 priority patent/WO2016184415A1/zh
Publication of WO2016183788A1 publication Critical patent/WO2016183788A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement
    • F16C2300/22High-speed rotation

Definitions

  • This invention relates to a dynamic pressure gas thrust bearing, and more particularly to a high-limit speed rigid characteristic of a slot type dynamic pressure gas thrust bearing and a high foil-type dynamic pressure gas thrust bearing.
  • Hybrid dynamic pressure gas thrust bearing with flexible characteristics of impact resistance and load capacity belongs to the technical field of gas bearings.
  • Gas bearings have the advantages of high speed, high precision, high temperature resistance, low friction loss and long life. After rapid development in recent decades, gas bearings have been widely used in high-speed bearings and high-precision bearings. At present, gas bearings have been developed in various types, mainly divided into dynamic pressure type and static pressure type.
  • the dynamic pressure gas bearing uses gas as a lubricant to form a gas film between the shaft and the bearing. It is a bearing form that does not directly contact the moving surface and the stationary surface. It has no pollution, low friction loss, wide temperature range, and stable operation. Long use time, high working speed and many other advantages. Due to the low friction loss and the absence of liquid lubricants, it is widely used in high-speed rotary applications, especially in ultra-high-speed applications where it is difficult to support with rolling bearings and where liquid lubricants are not easily used.
  • the dynamic pressure gas thrust bearing is formed by the two moving working surfaces forming a wedge-shaped space. When they move relative to each other, the gas is driven by its own viscous action and is compressed into the wedge-shaped gap, thereby generating dynamic pressure and supporting the load.
  • Gas dynamic pressure thrust bearings of different structural forms have slightly different working processes due to structural differences. At present, the more common types of dynamic pressure gas thrust bearings are: tiltable tile, trough and foil.
  • the tiltable tile type dynamic pressure gas thrust bearing is an excellent dynamic pressure gas bearing with self-adjusting performance, can work safely in a smaller gas film gap, and is insensitive to thermal deformation and elastic deformation, and The machining accuracy is easy to guarantee, and it also has the outstanding advantages of “automatic tracking” for load changes.
  • it is mainly applied to large-scale high-speed rotating machinery and turbomachinery at home and abroad; however, its bearing structure is more complicated, the installation process is complicated, and it is more general. Bearing requirements are high, which limits its application.
  • the foil type dynamic pressure gas thrust bearing has elastic support, the bearing can obtain a certain bearing capacity and the ability to mitigate the impact vibration, but since the foil bearing is generally made of a metal foil, not only the material manufacturing technology and the processing technology There are still some technical problems, and the damping value of the bearing can not be greatly improved, resulting in insufficient rigidity of the bearing, the critical speed of the bearing is low, and it is easy to be unstable or even stuck during high-speed operation.
  • the trough type dynamic pressure gas thrust bearing has good stability, and has certain stability even under no load. Moreover, At high speeds, its static load carrying capacity is larger than that of other types of bearings, and it is currently used in small high-speed rotating machinery, such as bearings in precision machinery such as gyroscopes and drums. However, since the trough type dynamic pressure gas thrust bearing has high rigidity, its impact resistance is not good enough and the load capacity is not large enough to achieve high speed operation under a large load.
  • the technical problem to be solved by the present invention is to provide a rigid characteristic of a high limit rotational speed of a trough type dynamic pressure gas thrust bearing, and a foil type dynamic pressure gas thrust
  • the hybrid dynamic pressure gas thrust bearing with high impact resistance and load capacity of the bearing enables the application of dynamic pressure gas thrust bearing in the ultra-high speed field under large load.
  • a hybrid dynamic pressure gas thrust bearing comprises: two outer discs, an inner disc is interposed between two outer discs, and a foil-type elastic member is disposed between each outer disc and the inner disc; A groove pattern with a regular shape is provided, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face.
  • the outer circumferential surface of the inner disk is also provided with a groove pattern, and the shape of the groove pattern of the outer circumferential surface is the same as the shape of the groove pattern on both end faces, and the groove pattern of the outer circumferential surface
  • the axial contour line forms a one-to-one correspondence with the radial contour lines of the groove patterns on both end faces and intersects each other.
  • the axial high line in the groove pattern of the outer circumferential surface corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the outer circumferential surface The axial median line in the trough pattern corresponds to the radial median line in the groove pattern on both end faces, and crosses each other before the end face is chamfered;
  • the axial low position in the groove pattern of the outer circumferential surface The line corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the above-described groove pattern is an impeller shape.
  • the gap between the foil-type elastic member and the inner disc is 0.003 to 0.008 mm.
  • At least one end of the foil-type elastic member is fixed on an inner end surface of the corresponding outer disk.
  • the foil-shaped elastic members on each outer disk are plural and evenly distributed along the inner end surface of the outer disk.
  • the foil-type elastic member fixed to one outer disk and the foil type fixed to the other outer disk form a mirror symmetry.
  • a card slot for fixing the foil-type elastic member is provided on the inner end surface of the outer disk.
  • the foil-type elastic member is subjected to surface heat treatment.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the curved convex top end of the wave foil is adhered to the flat foil, and the transition edge between the wave arches of the wave foil and the corresponding The inner end faces of the outer disc are fitted together.
  • the present invention has the following significant advancements:
  • a groove pattern of a regular shape is arranged on both end faces of the inner disk, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face, thereby obtaining Hybrid hydrodynamic thrust bearing with flexible characteristics of high limit speed of slot type dynamic pressure gas thrust bearing and high impact resistance and load capacity of foil type dynamic pressure gas thrust bearing Compared with the existing simple trough dynamic pressure gas thrust bearing, it has an impact resistance and load capacity which is multiplied at the same rotation speed; and compared with the existing simple foil type dynamic pressure gas thrust bearing, The limit speed is multiplied under the same load; the hybrid dynamic pressure gas thrust bearing provided by the present invention can be tested to achieve a limit speed of 200,000 rpm to 450,000 rpm under a load of 1 to 3 kg, and the existing motion The pressure gas thrust bearing can only achieve a load of 0.5 to 1.5 kg, and the maximum speed can only reach 100,000 rpm to 200,000 rpm. It can be
  • FIG. 1 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas thrust bearing according to Embodiment 1 of the present invention
  • Figure 2a is a left side view of the inner disk of Embodiment 1;
  • Figure 2b is a right side view of the inner disk of Embodiment 1;
  • Figure 3a is a right side view of the left outer disk to which the foil-type elastic member is fixed as described in Embodiment 1;
  • Figure 3b is a left side view of the right outer disk to which the foil-type elastic member is fixed as described in Embodiment 1;
  • FIG. 4 is a schematic cross-sectional structural view of the foil-type elastic member described in Embodiment 1;
  • Figure 5 is a perspective view showing the structure of the foil-type elastic member described in Embodiment 1;
  • FIG. 6a is a left side perspective structural view of a hybrid dynamic pressure gas thrust bearing according to Embodiment 2 of the present invention.
  • Figure 6b is a right perspective view of the hybrid dynamic pressure gas thrust bearing provided in Embodiment 2;
  • Embodiment 7 is a partially divided perspective structural view of the hybrid dynamic pressure gas thrust bearing provided in Embodiment 2;
  • Figure 8 is a left perspective view showing the inner disk of the embodiment 2;
  • Figure 9 is a partial enlarged view of A in Figure 8.
  • Figure 10 is a right perspective view showing the inner disk of the embodiment 2;
  • Figure 11 is a partial enlarged view of B in Figure 10 .
  • foil-type elastic member; 3a foil-type elastic member fixed on the left outer disc; 3b, foil type fixed on the right outer disc Elastic member; 31, wave foil; 311, curved protrusion; 312, transition bottom edge between the waves; 32, flat foil; 33, fixed end.
  • a hybrid dynamic pressure gas thrust bearing provided by the embodiment includes: two outer disks 1 , and an inner disk 2 is sandwiched between two outer disks 1 , and each outer disk 1 and inner disk 2 A foil-shaped elastic member 3 is disposed between the left end faces of the inner disk 2, and a groove-shaped pattern 22 having a regular shape is provided on the right end surface.
  • the groove pattern 21 of the left end surface of the inner disk 2 and the groove pattern 22 of the right end surface form a mirror symmetry, and the radial contour line and the right end surface of the groove pattern 21 of the left end surface are
  • the radial contours of the troughs 22 form a one-to-one correspondence.
  • the trough patterns 21 and 22 have the same shape, and are in the shape of an impeller in this embodiment.
  • the foil-type elastic member 3 is fixed on the inner end surface of the corresponding outer disk 1 (for example, the left outer disk 11 to which the foil-type elastic member 3a is fixed as shown in Fig. 3a and the fixing shown in Fig. 3b).
  • the right outer disk 12) having the foil-type elastic member 3b, and the foil-type elastic member 3a fixed to the left outer disk 11 is mirror-symmetrical with the foil-shaped elastic member 3b fixed to the right outer disk 12.
  • the foil-shaped elastic member 3 may be composed of a wave foil 31 and a flat foil 32, and the top end of the curved protrusion 311 of the wave foil 31 is attached to the flat foil 32.
  • the inter-wave transition bottom edge 312 of the wave foil 31 is in contact with the inner end surface of the corresponding outer disc 1; each foil-type elastic member 3 has at least one end fixed to the inner end surface of the corresponding outer disc (shown in this embodiment) It is fixed at one end, as shown by 33 in the figure, and the other end is a free end).
  • a groove pattern 23 is also provided on the outer circumferential surface of the inner disk 2, and the shape of the groove pattern 23 of the outer circumferential surface is the same as that of the groove patterns (21 and 22) of the left and right end faces (in this embodiment)
  • the shape of the impeller is as follows, and the axial contour of the groove pattern 23 of the outer circumferential surface and the radial contour lines of the groove patterns (21 and 22) of the left and right end faces are in one-to-one correspondence and mutually overlap;
  • the axially high bit line 231 in the groove pattern 23 of the outer circumferential surface corresponds to the radial high line 211 in the groove pattern 21 of the left end surface, and is mutually overlapped before the end face is chamfered; the groove of the outer circumferential surface
  • the axial center line 232 in the pattern 23 corresponds to the radial center line 212 in the groove pattern 21 of the left end surface, and is mutually overlapped before the end surface is chamfered; in the groove pattern 23 of the outer circumference surface
  • the axially lower bit line 233 corresponds to the radially lower bit line 213 in the groove pattern 21 of the left end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 9);
  • the axially high bit line 231 in the groove pattern 23 of the outer circumferential surface corresponds to the radial high line 221 in the groove pattern 22 of the right end face, and is mutually overlapped before the end face is chamfered; the groove of the outer circumferential surface
  • the axial center line 232 in the pattern 23 corresponds to the radial center line 222 in the groove pattern 22 of the right end surface, and is mutually overlapped before the end surface is chamfered; in the groove pattern 23 of the outer circumference surface
  • the axially lower bit line 233 corresponds to the radially lower bit line 223 in the groove pattern 22 of the right end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 11).
  • a card slot 13 (as shown in Fig. 7) for fixing the foil-type elastic member 3 is provided on the inner end surface of the outer tray 1.
  • the present invention by providing a foil-type elastic member 3 between the outer disk 1 and the inner disk 2, regular groove patterns (21 and 22) are provided on the left and right end faces of the inner disk 2, and the groove pattern 21 and the right end of the left end face are provided.
  • the groove pattern 22 of the surface forms mirror symmetry, thereby obtaining a high limit speed rigid characteristic of the groove type dynamic pressure gas thrust bearing, and high impact resistance and load capacity of the foil type dynamic pressure gas thrust bearing.
  • the flexible dynamic pressure gas thrust bearing of the flexible feature because the foil-shaped elastic member 3 and the inner disk 2 form a wedge-shaped space, when the inner disk 2 rotates, the gas is driven by its own viscous action and is compressed into the wedge-shaped space.
  • the axial dynamic pressure can be significantly enhanced, and the conventional simple foil-type dynamic pressure gas thrust bearing can have a limit rotation speed which is multiplied under the same load; meanwhile, the foil-type elastic member is added. 3. Under the action of its elasticity, the load capacity, impact resistance and the ability to suppress the eddy of the bearing can be significantly improved. Compared with the existing simple trough dynamic pressure gas thrust bearing, it can have the same rotation.
  • the trough patterns (21 and 22) have the same shape, and the axial contour lines of the groove pattern 23 of the outer circumferential surface and the radial contour lines of the groove patterns (21 and 22) of the left and right end faces form a one-to-one correspondence.
  • the pressurized gas generated by the groove patterns (21 and 22) on both end faces of the inner disk can be transported from the axial center of the shaft to the groove passage formed by the groove pattern 23 of the outer circumferential surface, so that Form a stronger support for high speed running shaft
  • the gas film is required, and the gas film is used as a lubricant for the dynamic pressure gas thrust bearing, thereby ensuring the high-speed stable operation of the hybrid dynamic pressure gas thrust bearing in the air-floating state, in order to achieve high limit The speed provides further assurance.
  • the foil-type elastic members 3 described in the present invention are preferably subjected to surface heat treatment to better meet the performance requirements of high-speed operation; the fitting gap of the foil-type elastic member 3 and the inner disk 2 is preferably 0.003 to 0.008 mm. To further ensure the reliability and stability of the bearing at high speed.
  • composition of the foil-type elastic member 3 of the present invention is not limited to that described in the above embodiments, as long as the cooperation relationship between the inner and outer disks is satisfied to meet the substantive requirements of the present invention. .
  • the hybrid dynamic pressure gas thrust bearing provided by the invention can achieve a limit speed of 200,000 rpm to 450,000 rpm under a load of 1 to 3 kg, and the existing dynamic pressure gas thrust bearing can only achieve 0.5 to 1.5.
  • the load of kg can reach a maximum speed of 100,000 rpm to 200,000 rpm.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

一种混合式动压气体止推轴承,其包括两个外盘(1),在两个外盘(1)之间夹设有内盘(2),在每个外盘(1)与内盘(2)之间设有箔型弹性件(3);所述内盘(2)的两端面均设有规则形状的槽式花纹(22),且一端面的槽式花纹(22)与另一端面的槽式花纹(22)形成镜像对称。所述混合式动压气体止推轴承既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征,可满足动压气体止推轴承在较大载荷下的超高速领域的应用。

Description

一种混合式动压气体止推轴承 技术领域
本发明涉及一种动压气体止推轴承,具体说,是涉及一种既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承,属于气体轴承技术领域。
背景技术
气体轴承具有速度高、精密度高、耐高温、摩擦损耗小、寿命长等优点,经过最近几十年的迅速发展,气体轴承已经在高速支承、高精密支承等领域取得了广泛应用。目前气体轴承已经发展出多种类型,主要分为动压型和静压型。
动压气体轴承是以气体作为润滑剂,在轴与轴承之间构成气膜,是移动面与静止面不直接接触的轴承形式,具有无污染、摩擦损失低、适应温度范围广、运转平稳、使用时间长、工作转速高等诸多优点。由于摩擦损失少,也不需要使用液体润滑油,因此在高速回转应用领域上被广泛使用,尤其是通常被使用在很难用滚动轴承支持的超高速应用领域以及不易使用液体润滑油处。
动压气体止推轴承是由相对移动的两个工作面形成楔形空间,当它们相对移动,气体因其自身的粘性作用被带动,并被压缩到楔形间隙内,由此产生动压力而支承载荷。不同结构形式的气体动压止推轴承由于结构上的差异,其工作过程略有不同。目前较为常见的几种动压气体止推轴承的结构形式有:可倾瓦式、槽式和箔片式。
可倾瓦式动压气体止推轴承是一种性能优良的动压气体轴承,具有自调性能,能在更小的气膜间隙范围内安全工作,对热变形、弹性变形等不敏感,且加工精度易得到保证,还对载荷的变化具有“自动跟踪”的突出优点,目前国内外主要应用于大型高速旋转机械和透平机械;但其轴瓦结构比较复杂,安装工艺复杂,较一般止推轴承要求高,从而限制了其应用。
虽然箔片式动压气体止推轴承具有弹性支承,可使轴承相应获得一定的承载能力和缓和冲击振动的能力,但由于箔片轴承一般采用的是金属箔片,不仅材料制造技术和加工工艺技术上还存在一些难题,而且轴承的阻尼值不能很大提高,导致轴承的刚性不够,轴承的临界转速较低,在高速运转时容易失稳甚至卡死。
而槽式动压气体止推轴承具有较好的稳定性,即使在空载下也有一定的稳定性,况且, 在高速下,其静态承载能力较其它形式的轴承大,目前多用于小型高速旋转机械上,如在陀螺仪和磁鼓之类的精密机械中作为轴承。但由于槽式动压气体止推轴承具有高刚性,因此其抗冲击能力不够好及载荷能力不够大,不能实现较大载荷下的高速运转。
如何实现既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承,不仅是本领域研究人员一直渴望实现的目标,而且对实现动压气体止推轴承在较大载荷下的超高速领域的应用具有重要价值和深远意义。
发明内容
针对现有技术存在的上述问题和需求,本发明所要解决的技术问题就是提供一种既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承,实现动压气体止推轴承在较大载荷下的超高速领域的应用。
为解决上述技术问题,本发明采用的技术方案如下:
一种混合式动压气体止推轴承,包括:两个外盘,在两个外盘之间夹设有内盘,在每个外盘与内盘之间设有箔型弹性件;所述内盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
作为一种实施方案,在所述内盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为一种优选方案,外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为一种实施方案,上述的槽式花纹为叶轮形状。
作为一种优选方案,所述箔型弹性件与内盘的配合间隙均为0.003~0.008mm。
作为一种优选方案,所述箔型弹性件的至少一端固定在对应外盘的内端面上。
作为一种优选方案,每个外盘上的箔型弹性件为多个,且沿外盘的内端面均匀分布。
作为进一步优选方案,固定在一个外盘上的箔型弹性件与固定在另一个外盘上的箔型 弹性件形成镜像对称。
作为进一步优选方案,在外盘的内端面设有用于固定箔型弹性件的卡槽。
作为一种优选方案,所述的箔型弹性件经过表面热处理。
作为一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合,所述波箔的波拱间过渡底边与对应外盘的内端面相贴合。
与现有技术相比,本发明具有如下显著性进步:
本发明通过在外盘与内盘之间设置箔型弹性件,在内盘的两端面设置规则形状的槽式花纹,且使一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;相对于现有的单纯槽式动压气体止推轴承,具有在相同转速下成倍增加的抗冲击能力和载荷能力;而相对于现有的单纯箔片式动压气体止推轴承,具有在相同载荷下成倍增加的极限转速;经测试,本发明提供的混合式动压气体止推轴承可实现在1~3kg载荷下的极限转速可达200,000rpm~450,000rpm,而现有的动压气体止推轴承只能实现0.5~1.5kg的载荷,极限转速最高只能达到100,000rpm~200,000rpm;可见,本发明可实现动压气体止推轴承在较大载荷下的超高速领域的应用,相对于现有技术取得了显著性进步,使得动压气体止推轴承技术的研究跨上了新台阶。
附图说明
图1是本发明实施例1提供的一种混合式动压气体止推轴承的剖面结构示意图;
图2a是实施例1中所述内盘的左视图;
图2b是实施例1中所述内盘的右视图;
图3a是实施例1中所述的固定有箔型弹性件的左外盘的右视图;
图3b是实施例1中所述的固定有箔型弹性件的右外盘的左视图;
图4是实施例1中所述的箔型弹性件的截面结构示意图;
图5是实施例1中所述的箔型弹性件的立体结构示意图;
图6a是本发明实施例2提供的一种混合式动压气体止推轴承的左视立体结构示意图;
图6b是实施例2提供的混合式动压气体止推轴承的右视立体结构示意图;
图7是实施例2提供的混合式动压气体止推轴承的局部分割立体结构示意图;
图8是实施例2中所述内盘的左视立体结构示意图;
图9是图8中的A局部放大图;
图10是实施例2中所述内盘的右视立体结构示意图;
图11是图10中的B局部放大图。
图中:1、外盘;11、左外盘;12、右外盘;13、卡槽;2、内盘;21、左端面的槽式花纹;211、径向高位线;212、径向中位线;213、径向低位线;22、右端面的槽式花纹;221、径向高位线;222、径向中位线;223、径向低位线;23、外圆周面的槽式花纹;231、轴向高位线;232、轴向中位线;233、轴向低位线;3、箔型弹性件;3a、固定在左外盘上的箔型弹性件;3b、固定在右外盘上的箔型弹性件;31、波箔;311、弧形凸起;312、波拱间过渡底边;32、平箔;33、固定端。
具体实施方式
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
如图1所示:本实施例提供的一种混合式动压气体止推轴承,包括:两个外盘1,在两个外盘1之间夹设有内盘2,在每个外盘1与内盘2之间设有箔型弹性件3;所述内盘2的左端面设有规则形状的槽式花纹21,右端面设有规则形状的槽式花纹22。
结合图2a和图2b可见:所述内盘2的左端面的槽式花纹21与右端面的槽式花纹22之间形成镜像对称,左端面的槽式花纹21的径向轮廓线与右端面的槽式花纹22的径向轮廓线形成一一对应。所述的槽式花纹21与22的形状相同,本实施例中均为叶轮形状。
进一步结合图3a和图3b可见:所述箔型弹性件3固定在对应外盘1的内端面上(例如图3a所示的固定有箔型弹性件3a的左外盘11和图3b所示的固定有箔型弹性件3b的右外盘12),且固定在左外盘11上的箔型弹性件3a与固定在右外盘12上的箔型弹性件3b形成镜像对称。在每个外盘上的箔型弹性件可为多个(图中示出的是4个),且沿外盘的内端面均匀分布。
结合图1和图4、图5所示:所述的箔型弹性件3可由波箔31和平箔32组成,所述波箔31的弧形凸起311的顶端与平箔32相贴合,所述波箔31的波拱间过渡底边312与对应外盘1的内端面相贴合;每个箔型弹性件3至少有一端固定在对应外盘的内端面上(本实施例中示出的是一端固定,如图中的33所示,另一端为自由端)。
实施例2
结合图6a、6b、7、8和10所示可见,本实施例提供的一种混合式动压气体止推轴承 与实施例1的区别仅在于:
在所述内盘2的外圆周面也设有槽式花纹23,且外圆周面的槽式花纹23的形状与左、右端面的槽式花纹(21和22)的形状相同(本实施例中均为叶轮形状),以及外圆周面的槽式花纹23的轴向轮廓线与左、右端面的槽式花纹(21和22)的径向轮廓线均形成一一对应并相互交接;即:
外圆周面的槽式花纹23中的轴向高位线231与左端面的槽式花纹21中的径向高位线211均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹23中的轴向中位线232与左端面的槽式花纹21中的径向中位线212均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹23中的轴向低位线233与左端面的槽式花纹21中的径向低位线213均相对应、并在端面圆周倒角前相互交接(如图9所示);
外圆周面的槽式花纹23中的轴向高位线231与右端面的槽式花纹22中的径向高位线221均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹23中的轴向中位线232与右端面的槽式花纹22中的径向中位线222均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹23中的轴向低位线233与右端面的槽式花纹22中的径向低位线223均相对应、并在端面圆周倒角前相互交接(如图11所示)。
在外盘1的内端面上设有用于固定箔型弹性件3的卡槽13(如图7所示)。
本发明通过在外盘1与内盘2之间设置箔型弹性件3,在内盘2的左、右端面设置规则形状的槽式花纹(21和22),且使左端面的槽式花纹21与右端面的槽式花纹22形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;因为箔型弹性件3与内盘2间形成了楔形空间,当内盘2转动时,气体因其自身的粘性作用被带动并被压缩到楔形空间内,从而可使轴向动压力得到显著增强,相对于现有的单纯箔片式动压气体止推轴承,可具有在相同载荷下成倍增加的极限转速;同时,由于增加了箔型弹性件3,在其弹性作用下,还可使轴承的载荷能力、抗冲击能力和抑制轴涡动的能力显著提高,相对于现有的单纯槽式动压气体止推轴承,可具有在相同转速下成倍增加的抗冲击能力和载荷能力;尤其是,当在所述内盘2的外圆周面也设有槽式花纹,且使外圆周面的槽式花纹23的形状与左、右端面的槽式花纹(21和22)的形状相同,以及外圆周面的槽式花纹23的轴向轮廓线与左、右端面的槽式花纹(21和22)的径向轮廓线均形成一一对应并相互交接时,可使内盘两端面的槽式花纹(21和22)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹23形成的凹槽通道里输送,以致形成更强支撑高速运转轴 承所需的气膜,而气膜即作为动压气体止推轴承的润滑剂,因此可确保所述的混合式动压气体止推轴承在气浮状态下的高速稳定运转,为实现高极限转速提供了进一步保证。
另外,本发明中所述的箔型弹性件3优选均经过表面热处理,以更好地满足高速运转的性能要求;所述的箔型弹性件3与内盘2的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
另外需要说明的是:本发明所述的箔型弹性件3的组成结构不仅限于上述实施例中所述,只要保证其与内外盘之间的配合关系满足本发明所述的实质性要求即可。
经测试,本发明提供的混合式动压气体止推轴承可实现在1~3kg载荷下的极限转速可达200,000rpm~450,000rpm,而现有的动压气体止推轴承只能实现0.5~1.5kg的载荷,极限转速最高只能达到100,000rpm~200,000rpm;可见,本发明可实现动压气体止推轴承在较大载荷下的超高速领域的应用,相对于现有技术取得了显著性进步,使得动压气体止推轴承技术的研究跨上了新台阶。
最后有必要在此指出的是:以上内容只用于对本发明所述技术方案做进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (11)

  1. 一种混合式动压气体止推轴承,包括:两个外盘,在两个外盘之间夹设有内盘,其特征在于:在每个外盘与内盘之间设有箔型弹性件;所述内盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
  2. 根据权利要求1所述的混合式动压气体止推轴承,其特征在于:在所述内盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  3. 根据权利要求2所述的混合式动压气体止推轴承,其特征在于:外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  4. 根据权利要求1至3中任一项所述的混合式动压气体止推轴承,其特征在于:所述的槽式花纹为叶轮形状。
  5. 根据权利要求1所述的混合式动压气体止推轴承,其特征在于:所述箔型弹性件与内盘的配合间隙均为0.003~0.008mm。
  6. 根据权利要求1所述的混合式动压气体止推轴承,其特征在于:所述箔型弹性件的至少一端固定在对应外盘的内端面上。
  7. 根据权利要求6所述的混合式动压气体止推轴承,其特征在于:每个外盘上的箔型弹性件为多个,且沿外盘的内端面均匀分布。
  8. 根据权利要求6或7所述的混合式动压气体止推轴承,其特征在于:固定在一个外盘上的箔型弹性件与固定在另一个外盘上的箔型弹性件形成镜像对称。
  9. 根据权利要求6或7所述的混合式动压气体止推轴承,其特征在于:在外盘的内端面设有用于固定箔型弹性件的卡槽。
  10. 根据权利要求1所述的混合式动压气体止推轴承,其特征在于:所述的箔型弹性件经过表面热处理。
  11. 根据权利要求1或5或6或7或10所述的混合式动压气体止推轴承,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合,所述波箔的波拱间过渡底边与对应外盘的内端面相贴合。
PCT/CN2015/079234 2015-05-19 2015-05-19 一种混合式动压气体止推轴承 WO2016183788A1 (zh)

Priority Applications (62)

Application Number Priority Date Filing Date Title
EP15892167.6A EP3299644B1 (en) 2015-05-19 2015-05-19 Mixed-type dynamic pressure gas thrust bearing
PT158921676T PT3299644T (pt) 2015-05-19 2015-05-19 Rolamento axial de gás de pressão dinâmica de tipo misto
JP2018512460A JP6762359B2 (ja) 2015-05-19 2015-05-19 ハイブリッド動圧スラスト気体軸受
PCT/CN2015/079234 WO2016183788A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体止推轴承
ES15892167T ES2762273T3 (es) 2015-05-19 2015-05-19 Cojinete de empuje de gas a presión dinámica de tipo mixto
KR1020177036491A KR102030176B1 (ko) 2015-05-19 2015-05-19 혼합식 동압력 기체 스러스트 베어링
US15/575,604 US10274007B2 (en) 2015-05-19 2015-05-19 Hybrid dynamic pressure gas thrust bearing
SG11201709525UA SG11201709525UA (en) 2015-05-19 2015-05-19 Hybrid dynamic pressure gas thrust bearing
DK15892167.6T DK3299644T3 (en) 2015-05-19 2015-05-19 Mixed-type dynamic pressure gas thrust bearing
HUE15892167A HUE048462T2 (hu) 2015-05-19 2015-05-19 Kevert-típusú dinamikus nyomású gáz nyomócsapágy
EA201792556A EA035187B1 (ru) 2015-05-19 2015-05-19 Гибридный газодинамический осевой подшипник
CN201510292862.0A CN104895917A (zh) 2015-05-19 2015-06-01 一种混合式动压气体止推轴承
CN201510595511.7A CN105202027B (zh) 2015-05-19 2015-09-18 一种混合式动压气体止推轴承
CN201520723621.2U CN205371310U (zh) 2015-05-19 2015-09-18 一种混合式动压气体止推轴承
CN201610334013.1A CN105889314B (zh) 2015-05-19 2016-05-18 一种超高速涡轮增压器
CN201610329210.4A CN106026492B (zh) 2015-05-19 2016-05-18 一种超高速电机
CN201610329290.3A CN105889325B (zh) 2015-05-19 2016-05-18 一种小微型燃气轮发电机
CN201610327779.7A CN106026517B (zh) 2015-05-19 2016-05-18 一种超高速涡轮发电机
CN201620452807.3U CN205864142U (zh) 2015-05-19 2016-05-18 一种小微型电机
CN201610329207.2A CN105889099B (zh) 2015-05-19 2016-05-18 一种小微型鼓风机
CN201610329342.7A CN105888847B (zh) 2015-05-19 2016-05-18 一种小微型涡喷发动机
CN201620452845.9U CN205864143U (zh) 2015-05-19 2016-05-18 一种超高速电机
CN201610327807.5A CN105889097B (zh) 2015-05-19 2016-05-18 一种超高速鼓风机
CN201620452803.5U CN205858959U (zh) 2015-05-19 2016-05-18 一种小微型涡轮发电机
CN201620450029.4U CN205864174U (zh) 2015-05-19 2016-05-18 一种超高速涡轮发电机
CN201620449971.9U CN205858958U (zh) 2015-05-19 2016-05-18 一种小微型燃气轮发电机
CN201610329279.7A CN105888819B (zh) 2015-05-19 2016-05-18 一种小微型电动发电涡轮增压装置
CN201610327762.1A CN105888818B (zh) 2015-05-19 2016-05-18 一种超高速电动发电涡轮增压装置
CN201610327792.2A CN106026491B (zh) 2015-05-19 2016-05-18 一种小微型电机
CN201610329288.6A CN105889313B (zh) 2015-05-19 2016-05-18 一种超高速燃气轮发电机
CN201620452770.4U CN205858479U (zh) 2015-05-19 2016-05-18 一种超高速电动发电涡轮增压装置
CN201610329302.2A CN106014641B (zh) 2015-05-19 2016-05-18 一种超高速涡喷发动机
CN201620454708.9U CN205858494U (zh) 2015-05-19 2016-05-18 一种超高速涡喷发动机
CN201610329245.8A CN105889324B (zh) 2015-05-19 2016-05-18 一种小微型涡轮发电机
CN201620453233.1U CN205858493U (zh) 2015-05-19 2016-05-18 一种小微型涡喷发动机
CN201620450047.2U CN205858730U (zh) 2015-05-19 2016-05-18 一种超高速鼓风机
CN201620452766.8U CN205858478U (zh) 2015-05-19 2016-05-18 一种小微型电动发电涡轮增压装置
CN201620452740.3U CN205858947U (zh) 2015-05-19 2016-05-18 一种超高速燃气轮发电机
CN201620457921.5U CN205858960U (zh) 2015-05-19 2016-05-18 一种小微型涡轮增压器
CN201620457923.4U CN205858948U (zh) 2015-05-19 2016-05-18 一种超高速涡轮增压器
CN201620452859.0U CN205858731U (zh) 2015-05-19 2016-05-18 一种小微型鼓风机
CN201610334011.2A CN105889326B (zh) 2015-05-19 2016-05-18 一种小微型涡轮增压器
TW105115468A TWI704297B (zh) 2015-05-19 2016-05-19 混合式動壓氣體止推軸承
PCT/CN2016/082705 WO2016184408A1 (zh) 2015-05-19 2016-05-19 一种超高速涡轮发电机
PCT/CN2016/082706 WO2016184409A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮发电机
TW105115472A TWI694210B (zh) 2015-05-19 2016-05-19 超高速鼓風機
PCT/CN2016/082710 WO2016184413A1 (zh) 2015-05-19 2016-05-19 一种小微型燃气轮发电机
PCT/CN2016/082709 WO2016184412A1 (zh) 2015-05-19 2016-05-19 一种超高速燃气轮发电机
PCT/CN2016/082708 WO2016184411A1 (zh) 2015-05-19 2016-05-19 一种小微型电动发电涡轮增压装置
TW105115474A TWI699077B (zh) 2015-05-19 2016-05-19 小微型電機
PCT/CN2016/082703 WO2016184407A1 (zh) 2015-05-19 2016-05-19 一种小微型电机
PCT/CN2016/082713 WO2016184416A1 (zh) 2015-05-19 2016-05-19 一种超高速涡轮增压器
PCT/CN2016/082699 WO2016184405A1 (zh) 2015-05-19 2016-05-19 一种小微型鼓风机
PCT/CN2016/082707 WO2016184410A1 (zh) 2015-05-19 2016-05-19 一种超高速电动发电涡轮增压装置
PCT/CN2016/082711 WO2016184414A1 (zh) 2015-05-19 2016-05-19 一种超高速涡喷发动机
PCT/CN2016/082702 WO2016184406A1 (zh) 2015-05-19 2016-05-19 一种超高速电机
TW105115476A TWI676734B (zh) 2015-05-19 2016-05-19 小微型電動發電渦輪增壓裝置
TW105115475A TWI676735B (zh) 2015-05-19 2016-05-19 小微型燃氣輪發電機
PCT/CN2016/082676 WO2016184404A1 (zh) 2015-05-19 2016-05-19 一种超高速鼓风机
PCT/CN2016/082714 WO2016184417A1 (zh) 2015-05-19 2016-05-19 一种小微型涡轮增压器
TW105115473A TWI704751B (zh) 2015-05-19 2016-05-19 超高速電機
PCT/CN2016/082712 WO2016184415A1 (zh) 2015-05-19 2016-05-19 一种小微型涡喷发动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079234 WO2016183788A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体止推轴承

Publications (1)

Publication Number Publication Date
WO2016183788A1 true WO2016183788A1 (zh) 2016-11-24

Family

ID=56261180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079234 WO2016183788A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体止推轴承

Country Status (13)

Country Link
US (1) US10274007B2 (zh)
EP (1) EP3299644B1 (zh)
JP (1) JP6762359B2 (zh)
KR (1) KR102030176B1 (zh)
CN (1) CN205371310U (zh)
DK (1) DK3299644T3 (zh)
EA (1) EA035187B1 (zh)
ES (1) ES2762273T3 (zh)
HU (1) HUE048462T2 (zh)
PT (1) PT3299644T (zh)
SG (1) SG11201709525UA (zh)
TW (1) TWI704297B (zh)
WO (1) WO2016183788A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594288A (zh) * 2019-09-29 2019-12-20 中国矿业大学 一种基于纳米磁性液体的磁控柔性瓦块推力滑动轴承
CN110925303A (zh) * 2019-12-23 2020-03-27 至玥腾风科技集团有限公司 一种组合轴承
CN112178044A (zh) * 2020-08-31 2021-01-05 珠海格力电器股份有限公司 推力轴承、压缩气体的装置以及推力轴承的调节方法
CN113550978A (zh) * 2021-06-25 2021-10-26 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴
CN115126778A (zh) * 2022-06-15 2022-09-30 北京航空航天大学 一种动静压混合式箔片气体轴承

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202027B (zh) * 2015-05-19 2017-10-20 罗立峰 一种混合式动压气体止推轴承
WO2020137513A1 (ja) * 2018-12-25 2020-07-02 株式会社Ihi スラストフォイル軸受、スラストフォイル軸受のベースプレートの製造方法
RU2710091C1 (ru) * 2018-12-26 2019-12-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Упорный лепестковый газодинамический подшипник
DE102019202573A1 (de) * 2019-02-26 2020-08-27 Robert Bosch Gmbh Axial-Folienlager
US11226000B2 (en) * 2019-04-18 2022-01-18 Hanwha Powersystems Co., Ltd Thrust supporting apparatus
CN110486372A (zh) * 2019-08-13 2019-11-22 珠海格力电器股份有限公司 一种混合式气体动压轴承
CN111623043B (zh) * 2020-06-05 2021-12-24 重庆江增船舶重工有限公司 一种用于废气涡轮增压器转子的滑动轴承组合装配方法
WO2022160680A1 (zh) * 2021-01-29 2022-08-04 青岛海尔智能技术研发有限公司 动压止推轴承
CN114992232A (zh) * 2022-04-12 2022-09-02 中船重工(重庆)西南装备研究院有限公司 一种推力箔片气体轴承及其装配方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116503A (en) * 1977-06-13 1978-09-26 United Technologies Corporation Resilient foil thrust bearings
US4277113A (en) * 1979-10-01 1981-07-07 Mechanical Technology Incorporated Composite material compliant bearing element
US4597677A (en) * 1984-10-13 1986-07-01 Taiho Kogyo Co. Leaf-type foil thrust bearing
CN101463868A (zh) * 2009-01-14 2009-06-24 西安交通大学 一种具有轴向支撑的动压气体止推轴承
CN202091349U (zh) * 2011-06-15 2011-12-28 罗立峰 动压气体止推陶瓷轴承
CN102753849A (zh) * 2009-10-07 2012-10-24 扭力士有限公司 箔片空气止推轴承

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199329A (en) * 1978-11-20 1980-04-22 Northrop Corporation Process and apparatus for the removal of vaporized contaminants from closed gas system
US4277111A (en) * 1978-12-29 1981-07-07 Mechanical Technology Incorporated Support element for compliant hydrodynamic thrust bearing
US4227753A (en) * 1978-12-29 1980-10-14 Mechanical Technology Incorporated Compliant gas thrust bearing with profiled and apertured thrust runner
US4227752A (en) * 1978-12-29 1980-10-14 Mechanical Technology Incorporated Staged bearing surface compliance for hydrodynamic fluid bearing
US4225196A (en) * 1978-12-29 1980-09-30 Mechanical Technology Incorporated Hydrodynamic compliant thrust bearing
US4459047A (en) * 1979-04-27 1984-07-10 The Garrett Corporation Foil bearing surfaces and method of making same
US4277112A (en) * 1979-10-01 1981-07-07 Mechanical Technology Incorporated Stepped, split, cantilevered compliant bearing support
US5795074A (en) * 1996-10-08 1998-08-18 Seagate Technology, Inc. Grooved hydrodynamic thrust bearing
JP2002323036A (ja) * 2001-04-27 2002-11-08 Matsushita Electric Ind Co Ltd 動圧型気体軸受装置およびこれを用いたハードディスクドライブ装置
JP2003239950A (ja) * 2002-02-15 2003-08-27 Seiko Instruments Inc 動圧軸受、及びモータ
JP2003278751A (ja) * 2002-03-20 2003-10-02 Ntn Corp スピンドル装置
JP2004028113A (ja) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd 動圧気体軸受および当該軸受を用いた装置
US6900567B2 (en) * 2002-10-09 2005-05-31 Seagate Technology Llc Corner thrust-journal fluid dynamic bearing
WO2005078295A1 (ja) * 2004-02-18 2005-08-25 Seiko Instruments Inc. 流体動圧軸受、モータおよび記録媒体駆動装置
JP2005265010A (ja) * 2004-03-17 2005-09-29 Ishikawajima Harima Heavy Ind Co Ltd 動圧気体軸受
CN101341340B (zh) * 2005-12-22 2011-12-28 山本电气株式会社 扁平型无刷电动泵及使用了该电动泵的车辆用电动水泵组
JP4935702B2 (ja) * 2008-02-05 2012-05-23 株式会社島津製作所 動圧気体軸受の取付構造
US8618706B2 (en) * 2008-12-04 2013-12-31 Seagate Technology Llc Fluid pumping capillary seal for a fluid dynamic bearing
CN202140419U (zh) * 2011-05-27 2012-02-08 罗立峰 动压气体径向陶瓷轴承
JP5943291B2 (ja) * 2011-06-30 2016-07-05 日本電産株式会社 軸受装置および送風ファン
KR101981684B1 (ko) * 2011-08-24 2019-05-23 보르그워너 인코퍼레이티드 베어링 장치
EP2910802B1 (en) * 2012-10-16 2019-04-03 IHI Corporation Thrust bearing
US9157473B2 (en) * 2013-01-16 2015-10-13 Korea Institute Of Machinery & Materials Thrust bearing and combo bearing
JP6221244B2 (ja) * 2013-01-28 2017-11-01 株式会社Ihi スラスト軸受
JP6268847B2 (ja) * 2013-09-19 2018-01-31 株式会社Ihi スラスト軸受
JP6372062B2 (ja) * 2013-09-19 2018-08-15 株式会社Ihi スラスト軸受
KR101895143B1 (ko) * 2014-01-30 2018-09-04 가부시키가이샤 아이에이치아이 스러스트 베어링

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116503A (en) * 1977-06-13 1978-09-26 United Technologies Corporation Resilient foil thrust bearings
US4277113A (en) * 1979-10-01 1981-07-07 Mechanical Technology Incorporated Composite material compliant bearing element
US4597677A (en) * 1984-10-13 1986-07-01 Taiho Kogyo Co. Leaf-type foil thrust bearing
CN101463868A (zh) * 2009-01-14 2009-06-24 西安交通大学 一种具有轴向支撑的动压气体止推轴承
CN102753849A (zh) * 2009-10-07 2012-10-24 扭力士有限公司 箔片空气止推轴承
CN202091349U (zh) * 2011-06-15 2011-12-28 罗立峰 动压气体止推陶瓷轴承

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594288A (zh) * 2019-09-29 2019-12-20 中国矿业大学 一种基于纳米磁性液体的磁控柔性瓦块推力滑动轴承
CN110594288B (zh) * 2019-09-29 2024-03-08 中国矿业大学 一种基于纳米磁性液体的磁控柔性瓦块推力滑动轴承
CN110925303A (zh) * 2019-12-23 2020-03-27 至玥腾风科技集团有限公司 一种组合轴承
CN112178044A (zh) * 2020-08-31 2021-01-05 珠海格力电器股份有限公司 推力轴承、压缩气体的装置以及推力轴承的调节方法
CN113550978A (zh) * 2021-06-25 2021-10-26 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴
CN115126778A (zh) * 2022-06-15 2022-09-30 北京航空航天大学 一种动静压混合式箔片气体轴承
CN115126778B (zh) * 2022-06-15 2023-09-12 北京航空航天大学 一种动静压混合式箔片气体轴承

Also Published As

Publication number Publication date
CN205371310U (zh) 2016-07-06
KR102030176B1 (ko) 2019-10-08
SG11201709525UA (en) 2017-12-28
ES2762273T3 (es) 2020-05-22
EA035187B1 (ru) 2020-05-12
EP3299644B1 (en) 2019-11-20
US10274007B2 (en) 2019-04-30
US20180156267A1 (en) 2018-06-07
TWI704297B (zh) 2020-09-11
PT3299644T (pt) 2019-12-19
JP2018514733A (ja) 2018-06-07
KR20180018576A (ko) 2018-02-21
HUE048462T2 (hu) 2020-08-28
JP6762359B2 (ja) 2020-09-30
EP3299644A4 (en) 2018-11-21
EA201792556A1 (ru) 2018-07-31
TW201704651A (zh) 2017-02-01
EP3299644A1 (en) 2018-03-28
DK3299644T3 (en) 2020-01-27

Similar Documents

Publication Publication Date Title
WO2016183788A1 (zh) 一种混合式动压气体止推轴承
TWI694215B (zh) 混合式動壓氣體徑向軸承
TWI704295B (zh) 槽式動壓氣體徑向軸承
US7494282B2 (en) Radial foil bearing
CN104895917A (zh) 一种混合式动压气体止推轴承
CN113417934A (zh) 一种悬臂结构弹性箔片动压气浮止推轴承
CN105202027A (zh) 一种混合式动压气体止推轴承
WO2019087890A1 (ja) ティルティングパッド軸受
CN108980198A (zh) 一种悬臂型止推箔片轴承
CN209212776U (zh) 一种悬臂型止推箔片轴承
JPS63289317A (ja) 磁気軸受装置における保護用玉軸受
KR200152469Y1 (ko) 스러스트 베어링
CN110985528A (zh) 一种空气轴颈轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018512460

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201709525U

Country of ref document: SG

Ref document number: 15575604

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036491

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015892167

Country of ref document: EP

Ref document number: 201792556

Country of ref document: EA