WO2016181615A1 - 太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2016181615A1
WO2016181615A1 PCT/JP2016/002092 JP2016002092W WO2016181615A1 WO 2016181615 A1 WO2016181615 A1 WO 2016181615A1 JP 2016002092 W JP2016002092 W JP 2016002092W WO 2016181615 A1 WO2016181615 A1 WO 2016181615A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
light source
cell module
base material
Prior art date
Application number
PCT/JP2016/002092
Other languages
English (en)
French (fr)
Inventor
聡史 鈴木
三島 孝博
政勝 村木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680027588.7A priority Critical patent/CN107660314A/zh
Priority to JP2017517600A priority patent/JP6535089B2/ja
Publication of WO2016181615A1 publication Critical patent/WO2016181615A1/ja
Priority to US15/807,708 priority patent/US20180076347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10697Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer being cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10733Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing epoxy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a solar cell module manufacturing apparatus and a solar cell module manufacturing method.
  • a solar cell module generally has a structure in which a string of solar cells formed by connecting a plurality of solar cells with conductive wires is sandwiched between two protective members, and a sealing material is filled between the protective members.
  • Patent Document 1 discloses a method for manufacturing a solar cell module in which a thermally crosslinkable resin sheet is applied as a sealing material. This manufacturing method has the process of crimping
  • An apparatus for manufacturing a solar cell module that is one embodiment of the present disclosure includes a laminating apparatus that fabricates a laminate by stacking a solar cell, a sealing material, and a protective member, and heat-pressing the laminate, and irradiating the laminate with light.
  • a laminating apparatus that fabricates a laminate by stacking a solar cell, a sealing material, and a protective member, and heat-pressing the laminate, and irradiating the laminate with light.
  • a plurality of light source units are arranged on the base material, A light source that outputs light having a maximum peak wavelength of 1500 nm or less, a light collecting member that collects the light, and a light collecting member that collects the light, and a light collecting light that is emitted from the light collecting member.
  • a cooling device for flowing cooling air in a horizontal direction along the main surface of the light-transmitting plate between the base material and the light-transmitting plate.
  • the manufacturing method of the solar cell module which is 1 aspect of this indication is a manufacturing method of the solar cell module using the said manufacturing apparatus, Comprising: A solar cell, a sealing material, and a protective member are overlapped, and it heat-presses. A first step of producing a laminated body, a second step of irradiating the laminated body with light to preferentially heat the solar cell of the laminated body, and indirectly heating the sealing material by the temperature rise of the solar cell. A process.
  • the light source unit can be efficiently cooled, and high light irradiation intensity on the laminate can be ensured.
  • An apparatus for manufacturing a solar cell module according to the present disclosure includes a light source unit that preferentially heats a solar cell of a laminated body by irradiating the laminated body with light and indirectly heats a sealing material due to a temperature rise of the solar cell. .
  • a light source unit that preferentially heats a solar cell of a laminated body by irradiating the laminated body with light and indirectly heats a sealing material due to a temperature rise of the solar cell.
  • peeling may occur at the interface, which may cause problems such as poor appearance and reduced insulation.
  • a light irradiation step is provided to improve the adhesion between the battery and the sealing material.
  • heating the solar cell preferentially over the encapsulant improves the adhesive force between the solar cell and the encapsulant without generating bubbles in the encapsulant. It was.
  • the cooling device mounted on the light source unit cools the unit efficiently. For this reason, for example, the output of the light source can be increased, and the number (surface density) of the light sources arranged per unit area can be increased. That is, according to the solar cell module manufacturing apparatus of the present disclosure, it is possible to perform high-intensity light irradiation on the stacked body while preventing the light source unit from being overheated. Thereby, for example, high-intensity light irradiation can be continuously performed, and the productivity of the solar cell module is improved.
  • Drawing 1 is a sectional view of solar cell module 10 which is an example of an embodiment.
  • the solar cell module 10 includes a plurality of solar cells 11, a first protection member 12 provided on the light receiving surface side of the solar cell 11, and a second protection member 13 provided on the back surface side of the solar cell 11.
  • the plurality of solar cells 11 are sandwiched between the first protective member 12 and the second protective member 13 and sealed with a sealing material 14 filled between the protective members.
  • the solar cell module 10 includes a plurality of strings in which, for example, adjacent solar cells 11 are connected by a conductive wire 15.
  • the string is a string in which a plurality of solar cells 11 arranged in a row are connected in series by a conductive wire 15.
  • the “light-receiving surface” of the solar cell module 10 and the solar cell 11 means a surface on which sunlight is mainly incident (over 50% to 100%), and “back surface” means a surface opposite to the light-receiving surface. .
  • the terms of the light receiving surface and the back surface are also used for components other than the solar cell 11 such as a protective member.
  • the solar cell 11 includes a photoelectric conversion unit that generates carriers by receiving sunlight.
  • a light receiving surface electrode is formed on the light receiving surface
  • a back electrode is formed on the back surface (both not shown).
  • the back electrode is preferably formed in a larger area than the light receiving surface electrode.
  • the structure of the solar cell 11 is not specifically limited, For example, the structure in which the electrode was formed only on the back surface of the photoelectric conversion part may be sufficient.
  • the photoelectric conversion unit includes, for example, a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the substrate, and an amorphous semiconductor layer A transparent conductive layer formed thereon.
  • a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the substrate, and an amorphous semiconductor layer A transparent conductive layer formed thereon.
  • a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the substrate, and an amorphous semiconductor layer A transparent conductive layer formed thereon.
  • an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer are sequentially formed on
  • the electrode includes, for example, a plurality of finger portions and a plurality of bus bar portions.
  • the finger part is a thin line-like electrode formed over a wide area on the transparent conductive layer
  • the bus bar part is an electrode for collecting carriers from the finger part
  • the conducting wire 15 is attached to each bus bar part.
  • the conducting wire 15 bends in the thickness direction of the solar cell module 10 between the adjacent solar cells 11, and is attached to the light receiving surface of one solar cell 11 and the back surface of the other solar cell 11 using an adhesive or the like.
  • a light-transmitting member such as a glass plate or a resin sheet can be used, for example.
  • a glass plate from the viewpoints of fire resistance and durability.
  • the thickness of the glass plate is not particularly limited, but is preferably about 2 mm to 6 mm.
  • the same transparent member as the first protective member 12 may be used, or an opaque member may be used.
  • a resin sheet is suitably used for the second protective member 13. From the viewpoint of reducing moisture permeability, a metal layer such as aluminum and an inorganic compound layer such as silica may be formed on the resin sheet.
  • the thickness of the resin sheet is not particularly limited, but is preferably about 100 ⁇ m to 300 ⁇ m.
  • the sealing material 14 is provided between the solar cell 11 and the first protective member 12, and the sealing material 14 a (first sealing material) provided between the solar cell 11 and the first protective member 12. It is preferable that the sealing member 14b (second sealing member) is used.
  • the solar cell module 10 is manufactured through a laminating process using sheet-like sealing materials 14a and 14b (hereinafter, sometimes referred to as “sealing material sheets 14a and 14b”).
  • the thickness of the sealing materials 14a and 14b is not particularly limited, but is preferably about 100 ⁇ m to 1000 ⁇ m.
  • the constituent material of the sealing material 14 includes a resin applicable to the laminating process as a main component (exceeding 50% by weight), and preferably contains 80% by weight or more, more preferably 90% by weight or more of the resin.
  • the sealing material 14 may contain various additives such as an antioxidant, an ultraviolet absorber, and the sealing material 14b such as a pigment such as titanium oxide. It is preferable that the sealing material 14 contains a coupling agent at least.
  • a resin suitable as the main component of the sealing material 14 is an olefin resin obtained by polymerizing at least one selected from ⁇ -olefins having 2 to 20 carbon atoms (for example, polyethylene, polypropylene, ethylene and other ⁇ -olefins).
  • ester resins for example, polycondensates of polyols and polycarboxylic acids or their anhydrides / lower alkyl esters
  • urethane resins for example, polyisocyanates and active hydrogen groups
  • Containing compounds polyadducts with diols, polyol riols, dicarboxylic acids, polycarboxylic acids, polyamines, polythiols, etc.
  • epoxy resins for example, ring-opening polymers of polyepoxides, polyepoxides and active hydrogen group-containing compounds
  • Polyaddition products for example, ring-opening polymers of polyepoxides, polyepoxides and active hydrogen group-containing compounds
  • ⁇ -olefins and vinyl carboxylates Le ester, or a copolymer with other vinyl monomers
  • olefin resins particularly polymers containing ethylene
  • copolymers of ⁇ -olefin and vinyl carboxylate are particularly preferable.
  • ethylene-vinyl acetate copolymer is particularly preferable.
  • an organic peroxide such as benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane is preferably used as a crosslinking agent.
  • Sealing material 14a, 14b may be comprised from the same material, and may be comprised from a mutually different material from a viewpoint of coexistence of temperature cycle tolerance, high temperature, high humidity tolerance, etc.
  • a resin having a high crosslinking density is used for the sealing material 14a
  • a resin having a low crosslinking density or a non-crosslinking resin is used for the sealing material 14b.
  • the crosslink density of the resin can be evaluated by the gel fraction. The higher the gel fraction, the higher the crosslink density of the resin.
  • the coupling agent is contained at least in the sealing material 14a, and preferably also in the sealing material 14b.
  • a coupling agent By using a coupling agent, the adhesive force between the solar cell 11 and the sealing material 14 is improved, and interface peeling is easily suppressed.
  • the coupling agent include a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. Of these, silane coupling agents are particularly preferred.
  • Examples of the silane coupling agent include vinyltriethoxyxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • FIG. 2 is a diagram illustrating a main part of the solar cell module manufacturing apparatus 20.
  • the solar cell module manufacturing apparatus 20 includes a laminating apparatus 30 and a light source unit 40.
  • the laminating apparatus 30 is an apparatus for producing the laminated body 16 by superposing the solar cell 11, the sealing material 14, the first protective member 12, and the second protective member 13 and performing thermocompression bonding.
  • the light source unit 40 is a device that preferentially heats the solar cell 11 of the laminated body 16 by irradiating the laminated body 16 with light, and indirectly heats the sealing material 14 due to the temperature rise of the solar cell 11.
  • the solar cell module manufacturing apparatus 20 further includes a belt conveyor 21 that is a conveying unit for the stacked body 16 and a heating furnace 23 that heats the entire stacked body 16.
  • the laminated body 16 carried out from the laminating apparatus 30 is carried into the heating furnace 23, and the laminated body 16 in the heating furnace 23 is irradiated with light. That is, the light irradiation step is performed during the heat treatment step for heating the entire laminate 16.
  • the light source unit 40 is preferably provided outside the heating furnace 23, and performs light irradiation through the translucent member 25 installed in the heating furnace 23. Note that the heat treatment step and the light irradiation step may be performed separately. It is also possible to perform the heat treatment step and the light irradiation step a plurality of times.
  • the belt conveyor 21 is a conveying device in which a plurality of bars on which the laminated body 16 is placed are arranged at predetermined intervals along the longitudinal direction of the endless belt.
  • the belt conveyor 21 carries out the laminate 16 produced by the laminating apparatus 30 from the laminating apparatus 30, conveys it into the heating furnace 23, and conveys it to the light irradiation unit 22 that is the light irradiation position by the light source unit 40.
  • the conveying device that conveys the stacked body 16 is not limited to the belt conveyor 21, and may be, for example, a roller conveyor in which a plurality of conveying rollers are arranged.
  • a heat treatment process (curing process) is performed in order to promote the crosslinking reaction of the resin constituting the sealing material 14 and increase the crosslinking density.
  • the heating furnace 23 is not particularly limited as long as it can carry the laminated body 16 and can be heat-treated.
  • a resistance heating furnace, a hot air circulation heating furnace, or the like can be used.
  • the atmospheric temperature in the heating furnace 23 is preferably about 100 ° C. to 180 ° C., more preferably about 120 ° C. to 170 ° C. (for example, about 160 ° C.).
  • the laminating apparatus 30 has a heater 31 and a vacuum chamber (an upper vacuum chamber 32 and a lower vacuum chamber 33) separated into two chambers.
  • the vacuum chamber is partitioned by a rubber 34 having elasticity.
  • the laminating apparatus 30 heats and presses the strings of the solar cells 11 stacked on the heater 31, the sealing material sheets 14 a and 14 b, and the laminated body 16 is formed.
  • the structure of the laminating apparatus 30 is not limited to what is illustrated in FIG.
  • FIG. 3 is a plan view of the light source unit 40.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • the light source unit 40 emits from the base material 41, a plurality of light sources 42 arranged on the base material 41, a light collecting member 43 arranged on the optical path of light output from the light source 42, and the light collecting member 43. And a translucent plate 44 disposed on the optical path of the light.
  • the base material 41 and the translucent plate 44 are arranged to face each other, and the light source 42 and the light collecting member 43 are sandwiched between them.
  • the light source unit 40 further includes a cooling device 45 that flows cooling air in the horizontal direction along the main surface 44 a of the light transmitting plate 44 between the base material 41 and the light transmitting plate 44.
  • the cooling device 45 cools the constituent members of the light source unit 40 such as the light collecting member 43 and prevents the light collecting member 43 and the like from being overheated.
  • the base material 41 is a member on which the light source 42 is disposed. In the present embodiment, a plurality of light sources 42 are arranged on the flat main surface 41 a of the base material 41 to form an array of light sources 42.
  • the base material 41 is a plate-like member, and the main surface 41a has a substantially rectangular shape in plan view.
  • the base material 41 preferably has a cooling water (coolant) flow path and is cooled using the cooling water.
  • the base material 41 is preferably made of a metal material having high thermal conductivity, and the light source 42 placed in contact with the base material 41 is mainly cooled by cooling water introduced into the base material 41. On the base material 41, for example, lead wires, connectors and the like are also arranged, and these are also cooled by cooling water.
  • the shape of the base material 41 is not limited to a substantially rectangular shape in plan view, and may be, for example, a substantially square shape in plan view.
  • the light sources 42 may be irregularly arranged on the main surface 41a of the base material 41, but are preferably arranged along the first direction ⁇ and the second direction ⁇ of the base material 41.
  • the first direction means one direction along the main surface 41a of the substrate 41
  • the second direction means a direction along the main surface 41a orthogonal to the first direction.
  • the first direction ⁇ is “long side direction ⁇ ”
  • the second direction ⁇ is “short side direction ⁇ ”
  • the terms of the long side direction ⁇ and short side direction ⁇ are also used for components other than the base material 41. There is a case.
  • the light source 42 is arranged more on the main surface 41a of the base material 41 along the long side direction ⁇ than the short side direction ⁇ .
  • the intervals between the adjacent light sources 42 are substantially equal in both directions.
  • positioning the light source 42 at substantially equal intervals the uniform light irradiation with respect to the laminated body 16 is attained.
  • the light sources 42 are regularly and densely arranged on the entire main surface 41a except for portions where the air ducts 46 described later are provided.
  • the shape of the array of light sources 42 in plan view has a substantially rectangular shape in plan view corresponding to the shape of the main surface 41a. Since the laminate 16 is generally rectangular in plan view, efficient light irradiation can be achieved by using an array having such a shape.
  • the light source 42 outputs light having a maximum peak wavelength of 1500 nm or less (hereinafter sometimes referred to as “specific light”).
  • the maximum peak wavelength of the specific light is preferably about 400 nm to 1500 nm, more preferably about 400 nm to 1200 nm, from the viewpoint of selective heating of the solar cell 11 and prevention of deterioration of the sealing material 14 and the like. Since the light having the maximum peak wavelength in the range is easily absorbed by the solar cell 11 and easily transmitted through the sealing material 14, the temperature of the solar cell 11 can be preferentially increased.
  • the light source 42 preferably has an intensity (radiation intensity) of light having a wavelength of 1500 nm or more of the output specific light, which is 1% or less of the maximum peak (maximum radiation intensity), more preferably 0.5% or less of the maximum peak. Is used.
  • the specific light output from the light source 42 it is especially preferable that the ratio of the light with a wavelength of 1200 nm or less is 99% or more. Since light exceeding a wavelength of 1200 nm, particularly light exceeding 1500 nm, is easily absorbed by the sealing material 14 (particularly an olefin resin), the specific light irradiated to the laminate 16 often has a high proportion of light having a wavelength of 1200 nm or less. Is preferred.
  • the light source 42 may be, for example, a xenon lamp, a halogen lamp, or the like as long as it is a device that can irradiate the specific light, but is preferably an LED.
  • an LED whose emission intensity of light having a wavelength of 1500 nm or more among the output specific light is 1% or less, more preferably 0.5% or less of the maximum emission intensity is used.
  • a suitable LED an LED having a COB (Chip on Board) structure can be exemplified.
  • the light source unit 40 it is preferable that light sources 42 (LEDs) capable of continuous irradiation with high output are arranged on the base material 41 with high density.
  • LEDs light sources 42
  • LEDs arranged at high density are continuously used at high output, heat generation of the LEDs increases.
  • the LED itself is cooled by the cooling water.
  • the light collecting member 43 and the translucent plate 44 are not arranged directly on the base material 41 and are exposed to a high temperature when the amount of heat generated by the LED increases. Therefore, these need to be cooled by the cooling device 45.
  • the condensing member 43 has a function of condensing incident specific light on the stacked body 16.
  • the light collecting member 43 is preferably disposed in the vicinity of the light source 42 using a support member (not shown) installed on the base material 41. .
  • the condensing member 43 is likely to become high temperature.
  • the condensing member 43 can be a reflecting plate having a metal with high light reflectivity on the surface, and the specific light is reflected and condensed on the inner surface of the conical condensing member 43.
  • a glass or resin lens may be used for the light collecting member 43.
  • the condensing member 43 may be provided in units of several light sources 42, but is preferably provided for each light source 42. That is, the condensing member 43 is provided on the optical path of the specific light output from each light source 42, and an array of condensing members 43 corresponding to the array shape of the light sources 42 is formed. As in the case of the light source 42, the condensing members 43 are arranged in alignment along both directions with the interval between adjacent condensing members 43 being substantially equal in both the long side direction ⁇ and the short side direction ⁇ .
  • the translucent plate 44 functions as a protective member such as the light collecting member 43 and is provided so as to cover all the light collecting members 43.
  • the translucent plate 44 is a thin plate that transmits the specific light, and is disposed to face the main surface 41 a of the base material 41. In the example shown in FIG. 4, the main surface 41 a of the base material 41 and the main surface 44 a of the translucent plate 44 are substantially parallel.
  • the translucent plate 44 is preferably made of a material having a high specific light transmittance and excellent heat resistance.
  • the translucent plate 44 is, for example, a glass plate (cover glass) having a substantially rectangular shape in plan view.
  • the cooling device 45 causes the cooling air to flow in the horizontal direction along the main surface 44a of the light transmissive plate 44 (the main surface 41a of the base material 41) between the base material 41 and the light transmissive plate 44.
  • the members that are not directly arranged on the substrate 41 are air-cooled.
  • the cooling air By flowing the cooling air in the horizontal direction, turbulence is unlikely to occur because the winds do not collide with each other, so that a smooth air flow can be created and stable cooling performance can be obtained.
  • the cooling air also hits the light source 42, the light source 42 is cooled by the cooling water flowing through the base material 41. Therefore, the cooling device 45 is a condensing member 43, which is a component that is not mainly placed in contact with the base material 41.
  • the translucent plate 44 and the like are cooled to suppress these temperature increases.
  • the cooling device 45 is preferably configured to flow cooling air in the short side direction ⁇ . That is, it is preferable that the cooling device 45 causes the cooling air to flow in a direction in which the number of the light sources 42 configuring the row of the light sources 42 is small.
  • an air duct 46 for flowing cooling air in the short side direction ⁇ is provided between the base material 41 and the translucent plate 44.
  • the air duct 46 is a duct that blows cooling air to both sides in the short side direction, and is provided along the long side direction ⁇ at the center of the base 41 in the short side direction.
  • An exhaust port 48 is provided at a position facing the air duct 46 in the short side direction ⁇ .
  • the exhaust ports 48 are provided along the long side direction ⁇ at both ends of the base material 41 in the short side direction.
  • the cooling device 45 preferably has, for example, exhaust ducts (not shown) at both ends in the short side direction of the light source unit 40 along the long side direction ⁇ .
  • the exhaust duct is a duct that sucks the cooling air, and by providing the exhaust duct at the position of the exhaust port 48, the cooling air easily flows along the horizontal direction.
  • a blower port 47 that is a blower port for cooling air is formed on the side surfaces of the blower duct 46 facing both sides in the short side direction.
  • the cooling air that blows out from the air blowing port 47 and flows between the base material 41 and the translucent plate 44 flows in the short side direction ⁇ through the gap of the light collecting member 43 and the like while cooling the light collecting member 43 and the like.
  • 41 is exhausted from the exhaust port 48 at both ends in the short side direction.
  • the exhaust amount of the cooling air from both ends in the long side direction is sufficiently smaller than the exhaust amount of the cooling air from the exhaust port 48, for example, the cooling air is exhausted from both ends in the long side direction of the base material 41. Do not be.
  • the air duct 46 By arranging the air duct 46 in the central part in the short side direction, for example, compared with the case where the cooling air flows from one end part in the long side direction toward the other end part, the space between the base material 41 and the translucent plate 44 is reduced.
  • the air path length of the flowing cooling air is shortened and the cooling efficiency is improved.
  • the air path length is about 1 ⁇ 2 of the length of the base material 41 in the short side direction.
  • the air duct 46 is preferably provided from one end to the other end in the long side direction of the base material 41, that is, over substantially the entire length in the long side direction ⁇ , and along the long side direction ⁇ on the side surface of the duct.
  • the air blowing port 47 is formed.
  • the exhaust port 48 is also preferably provided from one end of the base 41 in the long side direction to the other end, that is, over substantially the entire length in the long side direction ⁇ .
  • cooling air is introduced into the duct by a fan (not shown) from one longitudinal end of the air duct 46, but the cooling air is introduced from both longitudinal ends of the air duct 46. Also good.
  • the air outlet 47 is preferably a plurality of openings formed along the longitudinal direction, and the opening area of the air duct 46 may be constant along the long side direction ⁇ , for example, at one end side in the longitudinal direction. It may be smaller as it gets closer.
  • the width of the air duct 46 is preferably narrow as long as a necessary air volume can be secured.
  • the air duct 46 is provided just across the center of the array of light sources 42.
  • FIG. 5 shows (A) the flow of cooling air and (B) the heat distribution.
  • the cooling air blown out from the air duct 46 flows between the base material 41 and the translucent plate 44 along the short side direction ⁇ , and at both ends of the base material 41 in the short side direction. It exhausts from between the base material 41 and the translucent plate 44.
  • the heat distribution shown in FIG. 5B shows the temperature between the base material 41 and the translucent plate 44 under the condition that a cooling air of 20 to 45 ° C. is flowed at a wind speed of 0.5 to 5.0 m / sec.
  • the number of dots per unit area is increased as the temperature is higher (the same applies to FIGS. 8 to 11).
  • the cooling air blown out from the air duct 46 disposed in the central portion in the short side direction flows to both ends in the short side direction while cooling the light collecting member 43 and the like, so that it is on the downstream side compared to the central portion.
  • the temperature of the cooling air rises at both ends, thereby increasing the temperature at both ends.
  • the air path length of the cooling air is short as described above, the degree of temperature rise is small at both ends of the base 41 in the short side direction.
  • the heat distribution is uniform along the long side direction ⁇ .
  • a cooling system in which cooling air is blown in a direction perpendicular to the base material 41 from between the light sources 42 is also conceivable.
  • a plurality of cooling air outlets 101 penetrating the base material 41 in the thickness direction are provided.
  • the cooling air is exhausted from between the base material 41 and the translucent plate 44 around the entire periphery of the base material 41, but the flow of the cooling air after the blowout is not uniform, and turbulent flow is generated.
  • FIG. 6 is a diagram illustrating the light irradiation unit 22 (the heating furnace 23 and the light source unit 40).
  • the light source unit 40 irradiates the laminated body 16 in the heating furnace 23 with specific light as described above.
  • transmits specific light is attached to at least one part of the wall part 24 of the heating furnace 23.
  • FIG. The light source unit 40 is provided outside the heating furnace 23 and irradiates the laminate 16 in the heating furnace 23 with specific light through the translucent member 25.
  • the translucent member 25 is provided on a part of the wall portion 24 constituting the bottom of the heating furnace 23 in a larger area than the stacked body 16.
  • the light source unit 40 is provided below the translucent member 25 with a gap between the light source unit 40 and the translucent member 25.
  • the specific light that has entered the heating furnace 23 through the translucent member 25 passes through the bars of the belt conveyor 21 and is applied to the laminate 16.
  • the translucent member 25 may be configured by using one glass plate or three or more glass plates, but preferably two glasses in consideration of heat insulation and irradiation efficiency of specific light.
  • the plates 26 and 27 are laminated.
  • the glass plates 26 and 27 are arranged to face each other with a gap 28 therebetween, and the gap 28 is filled with air or an inert gas, or the gap 28 is in a vacuum state.
  • Argon etc. can be illustrated as an inert gas. Since the heat insulation performance is improved by forming the gap 28 and filling with air or an inert gas or making it in a vacuum state, the light source unit 40 disposed close to the heating furnace 23 has a high temperature due to the heat of the heating furnace 23. Can be prevented.
  • the thickness of the glass plates 26 and 27 is, for example, 1 mm to 10 mm, and the distance between the glass plates 26 and 27 is, for example, 5 mm to 20 mm.
  • the glass plates 26 and 27 it is preferable to use glass having a high specific light transmittance, similarly to the light-transmitting plate 44.
  • the surface of the glass plates 26 and 27 on the light source unit 40 side may be coated with a Low-E film such as tin oxide or silver in order to suppress thermal radiation.
  • the light source unit 40 is provided on the bottom side of the heating furnace 23, and light irradiation is performed on the stacked body 16 from the bottom side, but the light source unit 40 is provided on the top side of the heating furnace 23. Then, light irradiation may be performed on the stacked body 16 from the top side.
  • the specific light may be irradiated on either the light receiving surface side or the back surface side of the multilayer body 16 and may be irradiated from both surfaces.
  • the light receiving surface Specific light is irradiated from the side (the first protective member 12 side).
  • FIGS. 7 to 11 show a light source unit as another example of the embodiment.
  • an exhaust duct 51 is provided instead of the air duct 46.
  • the exhaust duct 51 is a duct that sucks cooling air, and is provided along the long side direction ⁇ at the central portion in the short side direction of the base material 41, similarly to the air duct 46.
  • the exhaust duct 51 mainly sucks cooling air from the air vents 52 on both sides in the short side direction of the base material 41 and cools in the horizontal direction along the main surfaces 41 a and 44 a between the base material 41 and the translucent plate 44. Generate wind.
  • the width of the exhaust duct 51 is preferably narrow as long as a necessary air volume can be secured.
  • approximately the same number of light sources 42 are arranged on both sides of the exhaust duct 51 in the short side direction on the base material 41.
  • the cooling air introduced between the base material 41 and the translucent plate 44 from both sides in the short side direction of the base material 41 by the exhaust duct 51 is short between the base material 41 and the translucent plate 44. It flows along the side direction ⁇ and is sucked into the exhaust duct 51 at the center in the short side direction.
  • the flow of the cooling air is opposite to that in the light source unit 40, so that the temperature of the cooling air rises at the center in the short side direction that is downstream of the both ends of the base material 41. As a result, the temperature is high at the center in the short side direction.
  • the air path length of the cooling air is short as described above, the degree of temperature rise is small even in the central portion in the short side direction.
  • the heat distribution is uniform along the long side direction ⁇ .
  • the light source units 60, 61, and 62 illustrated in FIGS. 9 to 11 are configured so that the cooling air flows along the horizontal direction, but an array of the light sources 42 is formed between the base material 41 and the translucent plate 44. It differs from the light source units 40 and 50 in that the duct is not arranged so as to cross. In this case, there is an advantage that the number of light sources 42 that can be arranged on the base material 41 is increased.
  • the light source unit 60 illustrated in FIG. 9 is configured to flow cooling air from one end side to the other end side in the short side direction of the base material 41, and the light source unit 61 illustrated in FIG.
  • the cooling air is configured to flow from one end side to the other end side in the long side direction.
  • the air path length of the cooling air flowing between the base material 41 and the translucent plate 44 is longer than in the case of the light source units 40 and 50, and the temperature rise is increased on the downstream side.
  • the light source unit 62 illustrated in FIG. 11 is configured to introduce cooling air from both sides of the base 41 in the short side direction and to discharge cooling air from both sides of the long side direction.
  • the air path length is shorter than that of the light source units 60 and 61, the range in which the temperature rise is large is narrow.
  • the temperatures at both ends in the long side direction of the base material 41 are small. Becomes hot.
  • the manufacturing process of the solar cell module 10 is performed by laminating the strings of the solar cells 11, the first protective member 12, the second protective member 13, and the sheet-like sealing materials 14 a and 14 b and performing thermocompression bonding (laminate).
  • a first step of producing the body 16 is provided.
  • the first process is called a laminating process.
  • the string of the solar cell 11 can be produced by a conventionally known method.
  • the stacked body 16 produced in the first step is irradiated with specific light to preferentially heat the solar cell 11 of the stacked body 16 and sealed by the temperature increase of the solar cell 11.
  • a second step of indirectly heating the stopper 14 is provided.
  • the first step is performed using the laminating apparatus 30.
  • the first protective member 12, the sealing material sheet 14a, the solar cell 11, the sealing material sheet 14b, and the second protective member 13 are stacked on the heater 31 in this order.
  • the superposed members are heated by the heater 31 while the upper vacuum chamber 32 and the lower vacuum chamber 33 are evacuated.
  • the exhaust of the upper vacuum chamber 32 is stopped and the atmosphere is introduced, so that the rubber 34 extends toward the heater 31 and presses the laminate.
  • the resin constituting the sealing material sheets 14a and 14b is softened (melted).
  • the crosslinking reaction proceeds by heating.
  • the manufacturing process of the solar cell module 10 includes a heat treatment process for heating the entire laminate 16 manufactured in the first process.
  • the heat treatment process is performed using the heating furnace 23.
  • the second step (light irradiation step) is performed during the heat treatment step. That is, the laminate 16 produced in the first process is carried into the heating furnace 23, and the heat treatment process and the light irradiation process are simultaneously performed in the heating furnace 23.
  • the heat treatment step is a step for increasing the crosslinking density by promoting the crosslinking reaction of the resin constituting the sealing material 14 as described above.
  • the atmospheric temperature in the heating furnace 23 is 100 ° C. to 180 ° C., the processing time. Is from 5 to 60 minutes.
  • the second step is a light irradiation annealing step in which the stacked body 16 is irradiated with light to preferentially heat the solar cell 11.
  • To preferentially heat the solar cell 11 means to heat the laminated body 16 so that the temperature of the solar cell 11 preferentially rises over other members.
  • the sealing material 14 is heated indirectly by the temperature rise of the solar cell 11 by heating the solar cell 11 preferentially.
  • the heat of the heated solar cell 11 is transmitted to the sealing material 14, and for example, the sealing material 14 near the interface with the solar cell 11 is locally heated. That is, in the second step, only the solar cell 11 is selectively heated, and the temperature of the sealing material 14 is not directly increased or is not increased directly.
  • Such local heating of the sealing material 14 can improve the adhesive force between the solar cell 11 and the sealing material 14 while preventing the generation of bubbles in the sealing material 14.
  • This step is particularly suitable when the sealing material 14 contains a coupling agent.
  • the light source unit 40 irradiates the laminate 16 with specific light having a maximum peak wavelength of 1500 nm or less.
  • the laminated body 16 is entirely heated by the heating furnace 23, but the temperature of the sealing material 14 in the vicinity of the solar cell 11 and its interface is higher than the temperature of the other part of the laminated body 16 by irradiation with specific light. Increased by about 2 ° C to 70 ° C.
  • the temperature of the sealing material 14 in the vicinity of the interface with the solar cell 11 is preferably 200 ° C. or less.
  • the heating temperature of the solar cell 11 can be adjusted by changing the output of the light source 42, the light irradiation time, and the like.
  • the light irradiation time is, for example, 1 to 30 minutes.
  • the laminate 16 is continuously conveyed to the light irradiation unit 22, and the light source unit 40 can continuously irradiate the specific light while cooling at least the light collecting member 43 and the light transmitting plate 44 by the cooling air.
  • the light source 42 is not turned off every time the laminated body 16 is processed.
  • the cooling device 45 preferably supplies the cooling air continuously while the light source 42 is lit.
  • the cooling device 45 cools the condensing member 43 and the like, so that the temperature rise of the condensing member 43 and the like is suppressed, and continuous irradiation of specific light is possible.
  • the light source 42 is cooled mainly by cooling water supplied to the base material 41.
  • the continuous conveyance of the stacked body 16 may be temporarily stopped due to the convenience of other steps.
  • the solar cell module 10 is obtained through a trimming step of the laminate 16 and a frame and terminal box attachment step as necessary.
  • the cooling device 45 efficiently cools the light collecting member 43, the light transmitting plate 44, and the like, it is possible to continuously perform high-intensity light irradiation. . Therefore, the productivity of the solar cell module 10 is improved by using this apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 実施形態の一例である太陽電池モジュールの製造装置20は、積層体16を作製するラミネート装置30と、積層体16に光照射して太陽電池11を優先的に加熱し、当該太陽電池11の温度上昇により封止材14を間接的に加熱する光源ユニット40とを備える。光源ユニット40は、基材41上に複数配置された光源42と、集光部材43と、透光板44と、基材41と透光板44との間において透光板44の主面44aに沿った水平方向に冷却風を流す冷却装置45とを有する。

Description

太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法
 本開示は、太陽電池モジュールの製造装置、及び太陽電池モジュールの製造方法に関する。
 太陽電池モジュールは、一般的に、複数の太陽電池が導線で接続されてなる太陽電池のストリングを2つの保護部材で挟持し、各保護部材の間に封止材を充填した構造を有する。例えば、特許文献1には、封止材に熱架橋性樹脂シートを適用した太陽電池モジュールの製造方法が開示されている。この製造方法は、太陽電池、熱架橋性樹脂シート、及び保護部材を順次重ねた積層体に対し、特定の光を照射して加熱することにより積層体を圧着させる工程を有する。
特開2008-117926号公報
 ところで、太陽電池、封止材、及び保護部材の積層体に対して光照射を行う場合、積層体に対する光照射強度を高めて生産性を向上させることが求められるが、光照射強度を高くすると光源ユニットの発熱が大きくなるという問題がある。即ち、光源ユニットを効率良く冷却し、積層体に対する高い光照射強度を確保することは重要な課題である。
 本開示の一態様である太陽電池モジュールの製造装置は、太陽電池、封止材、及び保護部材を重ね合せて加熱圧着することにより積層体を作製するラミネート装置と、積層体に光照射して積層体の太陽電池を優先的に加熱し、当該太陽電池の温度上昇により封止材を間接的に加熱する光源ユニットとを備え、光源ユニットは、基材と、基材上に複数配置され、最大ピーク波長が1500nm以下の光を出力する光源と、光源から出力される光の光路上に配置され、当該光を集光する集光部材と、集光部材から出射する光の光路上に配置された透光板と、基材と透光板との間において透光板の主面に沿った水平方向に冷却風を流す冷却装置とを有する。
 本開示の一態様である太陽電池モジュールの製造方法は、上記製造装置を用いた太陽電池モジュールの製造方法であって、太陽電池、封止材、及び保護部材を重ね合せて加熱圧着することにより積層体を作製する第1の工程と、積層体に光を照射して積層体の太陽電池を優先的に加熱し、当該太陽電池の温度上昇により封止材を間接的に加熱する第2の工程とを備える。
 本開示の太陽電池モジュールの製造装置によれば、光源ユニットを効率良く冷却でき、積層体に対する高い光照射強度を確保することが可能である。
実施形態の一例である太陽電池モジュールの断面図である。 実施形態の一例である太陽電池モジュールの製造装置を示す図である。 実施形態の一例である光源ユニットの平面図である。 図3中のAA線断面図である。 図3の光源ユニットにおける(A)冷却風の流れと(B)熱分布を示す図である。 実施形態の一例である光照射部(加熱炉、光源ユニット)を示す図である。 実施形態の他の一例である光源ユニットの平面図である。 図7の光源ユニットにおける(A)冷却風の流れと(B)熱分布を示す図である。 実施形態の他の一例である光源ユニットにおける(A)冷却風の流れと(B)熱分布を示す図である。 実施形態の他の一例である光源ユニットにおける(A)冷却風の流れと(B)熱分布を示す図である。 実施形態の他の一例である光源ユニットにおける(A)冷却風の流れと(B)熱分布を示す図である。 参考例として示す光源ユニットの断面図である。
 本開示の太陽電池モジュールの製造装置は、積層体に光照射して積層体の太陽電池を優先的に加熱し、当該太陽電池の温度上昇により封止材を間接的に加熱する光源ユニットを備える。太陽電池と封止材との接着力が弱い場合、その界面で剥がれが発生し、外観不良や絶縁低下等の問題を引き起こす可能性があるため、本開示の太陽電池モジュールの製造工程では、太陽電池と封止材との接着力を向上させるべく光照射工程を設けている。なお、封止材の全体を加熱して封止材の温度が高くなり過ぎると、封止材中の揮発成分により気泡が発生し、外観不良、絶縁低下等が顕著に現れる場合がある。本発明者らは、封止材よりも太陽電池を優先的に加熱することにより、封止材中で気泡が発生することなく、太陽電池と封止材との接着力が向上することを見出したのである。
 本開示の太陽電池モジュールの製造装置では、光源ユニットに搭載された冷却装置が効率良くユニットを冷却する。このため、例えば光源の出力を上げることができ、また単位面積当たりに配置される光源の個数(面密度)を多くすることができる。つまり、本開示の太陽電池モジュールの製造装置によれば、光源ユニットが過熱状態になることを防止しながら、積層体に対して高強度の光照射を行うことができる。これにより、例えば高強度の光照射を連続して行うことが可能となり、太陽電池モジュールの生産性が向上する。
 本明細書において、「略**」との記載は、略同数を例に挙げて説明すると、同数はもとより実質的に同数と認められる場合を含む意図である。
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。
 実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1は、実施形態の一例である太陽電池モジュール10の断面図である。
 太陽電池モジュール10は、複数の太陽電池11と、太陽電池11の受光面側に設けられた第1保護部材12と、太陽電池11の裏面側に設けられた第2保護部材13とを備える。複数の太陽電池11は、第1保護部材12及び第2保護部材13により挟持され、各保護部材の間に充填された封止材14により封止されている。太陽電池モジュール10は、例えば隣り合う太陽電池11同士が導線15で接続されてなるストリングを複数有する。ストリングとは、列状に配置された複数の太陽電池11が導線15によって直列接続されたものである。
 太陽電池モジュール10及び太陽電池11の「受光面」とは太陽光が主に入射(50%超過~100%)する面を意味し、「裏面」とは受光面と反対側の面を意味する。受光面、裏面の用語は、保護部材等の太陽電池11以外の構成要素についても使用する。
 太陽電池11は、太陽光を受光することでキャリアを生成する光電変換部を備える。光電変換部には、受光面上に受光面電極が、裏面上に裏面電極がそれぞれ形成される(いずれも図示せず)。裏面電極は、受光面電極よりも大面積に形成されることが好適である。但し、太陽電池11の構造は特に限定されず、例えば光電変換部の裏面上のみに電極が形成された構造であってもよい。
 光電変換部は、例えば結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体基板と、基板上に形成された非晶質半導体層と、非晶質半導体層上に形成された透明導電層とを有する。具体例としては、n型単結晶シリコン基板の受光面上にi型非晶質シリコン層、p型非晶質シリコン層、及び透明導電層を順に形成し、裏面上にi型非晶質シリコン層、n型非晶質シリコン層、及び透明導電層を順に形成した構造が挙げられる。透明導電層は、酸化インジウム(In23)、酸化亜鉛(ZnO)等の金属酸化物に、錫(Sn)、アンチモン(Sb)等をドープした透明導電性酸化物から構成されることが好ましい。
 電極は、例えば複数のフィンガー部と、複数のバスバー部とからなる。フィンガー部は、透明導電層上の広範囲に形成される細線状の電極であり、バスバー部は、フィンガー部からキャリアを収集する電極であり、導線15は各バスバー部上にそれぞれ取り付けられる。導線15は、隣り合う太陽電池11の間で太陽電池モジュール10の厚み方向に曲がり、一方の太陽電池11の受光面と他方の太陽電池11の裏面とに接着剤等を用いてそれぞれ取り付けられる。
 第1保護部材12には、例えばガラス板、樹脂シート等の透光性を有する部材を用いることができる。これらのうち、耐火性、耐久性等の観点から、ガラス板を用いることが好ましい。ガラス板の厚みは特に限定されないが、好ましくは2mm~6mm程度である。第2保護部材13には、第1保護部材12と同じ透明な部材を用いてもよいし、不透明な部材を用いてもよい。第2保護部材13には、例えば樹脂シートが好適に用いられる。水分透過性を低くする等の観点から、樹脂シートにはアルミニウム等の金属層、シリカ等の無機化合物層が形成されていてもよい。樹脂シートの厚みは特に限定されないが、好ましくは100μm~300μm程度である。
 封止材14は、太陽電池11と第1保護部材12との間に設けられた封止材14a(第1封止材)、及び太陽電池11と第2保護部材13との間に設けられた封止材14b(第2封止材)から構成されることが好ましい。詳しくは後述するように、太陽電池モジュール10は、シート状の封止材14a,14b(以下、「封止材シート14a,14b」という場合がある)を用いたラミネート工程を経て製造される。封止材14a,14bの厚みは特に限定されないが、好ましくは100μm~1000μm程度である。
 封止材14の構成材料は、ラミネート工程に適用可能な樹脂を主成分(50重量%超過)とし、好ましくは当該樹脂を80重量%以上、より好ましくは90重量%以上含む。封止材14には、樹脂の他に、酸化防止剤、紫外線吸収剤、封止材14bには酸化チタン等の顔料など、各種添加剤が含まれていてもよい。封止材14は、少なくともカップリング剤を含有することが好ましい。
 封止材14の主成分として好適な樹脂は、炭素数2~20のαオレフィンから選ばれる少なくとも1種を重合して得られるオレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン、エチレンとその他のαオレフィンとのランダム又はブロック共重合体など)、エステル系樹脂(例えば、ポリオールとポリカルボン酸又はその酸無水物・低級アルキルエステルとの重縮合物など)、ウレタン系樹脂(例えば、ポリイソシアネートと活性水素基含有化合物(ジオール、ポリオールリオール、ジカルボン酸、ポリカルボン酸、ポリアミン、ポリチオール等)との重付加物など)、エポキシ系樹脂(例えば、ポリエポキシドの開環重合物、ポリエポキシドと上記活性水素基含有化合物との重付加物など)、αオレフィンとカルボン酸ビニル、アクリル酸エステル、又はその他ビニルモノマーとの共重合体などが例示できる。
 これらのうち、特に好ましくはオレフィン系樹脂(特に、エチレンを含む重合体)、及びαオレフィンとカルボン酸ビニルとの共重合体である。αオレフィンとカルボン酸ビニルとの共重合体としては、エチレン-酢酸ビニル共重合体(EVA)が特に好ましい。EVAを用いる場合には、ベンゾイルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン等の有機過酸化物を架橋剤として用いることが好ましい。
 封止材14a,14bは、同じ材料から構成されてもよく、温度サイクル耐性、高温高湿耐性の両立等の観点から、互いに異なる材料で構成されてもよい。封止材14a,14bの構成材料及びその組み合わせの一例としては、封止材14aに架橋密度の高い樹脂を用い、封止材14bに架橋密度の低い樹脂又は非架橋性の樹脂を用いることが挙げられる。樹脂の架橋密度はゲル分率により評価できる。ゲル分率が高いほど樹脂の架橋密度が高い傾向にある。
 上記カップリング剤は、少なくとも封止材14aに含有され、好ましくは封止材14bにも含有される。カップリング剤を用いることにより、太陽電池11と封止材14との接着力が向上し、界面剥離を抑制し易くなる。カップリング剤としては、シランカップリング剤、チタネート系カップリング剤、及びアルミネート系カップリング剤等が挙げられる。これらのうち、シランカップリング剤が特に好ましい。シランカップリング剤としては、ビニルトリエトキシキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等が挙げられる。
 以下、図2~図6を用いて、実施形態の一例である太陽電池モジュールの製造装置20について詳細に説明する。
 図2は、太陽電池モジュールの製造装置20の要部を示す図である。
 太陽電池モジュールの製造装置20は、ラミネート装置30と、光源ユニット40とを備える。ラミネート装置30は、太陽電池11、封止材14、第1保護部材12、及び第2保護部材13を重ね合せて加熱圧着することにより積層体16を作製する装置である。光源ユニット40は、積層体16に光照射して積層体16の太陽電池11を優先的に加熱し、当該太陽電池11の温度上昇により封止材14を間接的に加熱する装置である。太陽電池モジュールの製造装置20は、さらに積層体16の搬送手段であるベルトコンベア21と、積層体16の全体を加熱する加熱炉23とを備える。
 本実施形態では、ラミネート装置30から搬出された積層体16を加熱炉23へ搬入し、加熱炉23内の積層体16に対して光照射を行う。即ち、積層体16の全体を加熱する熱処理工程中に光照射工程を実施する。詳しくは後述するが、光源ユニット40は、加熱炉23の外部に設けられることが好適であり、加熱炉23に設置された透光性部材25を通して光照射を行う。なお、熱処理工程と光照射工程を別々に実施してもよい。熱処理工程及び光照射工程をそれぞれ複数回行うことも可能である。
 ベルトコンベア21は、積層体16が載せられるバーが無端状のベルトの長手方向に沿って所定間隔で複数配置された搬送装置である。ベルトコンベア21は、例えばラミネート装置30で作製された積層体16をラミネート装置30から搬出し、加熱炉23内に搬送し、光源ユニット40による光照射位置である光照射部22に搬送する。積層体16を搬送する搬送装置は、ベルトコンベア21に限定されず、例えば搬送ローラーが複数配置されたローラーコンベアであってもよい。
 加熱炉23では、例えば封止材14を構成する樹脂の架橋反応を促進して架橋密度を高めるために熱処理工程(キュア工程)が行われる。加熱炉23は、積層体16を搬入でき加熱処理可能なものであれば特に限定されず、例えば抵抗加熱炉、熱風循環式加熱炉等を用いることができる。加熱炉23内の雰囲気温度は、100℃~180℃程度が好ましく、120℃~170℃程度(例えば、160℃程度)がより好ましい。
 ラミネート装置30は、ヒーター31と、2室に分離された真空室(上部真空室32及び下部真空室33)とを有する。真空室は、伸縮性を有するラバー34により仕切られている。ラミネート装置30は、ヒーター31上に積層配置された太陽電池11のストリング、封止材シート14a,14b等を加熱圧着して積層体16を形成する。なお、ラミネート装置30の構造は図2に例示するものに限定されない。
 図3は、光源ユニット40の平面図である。図4は、図3中のAA線断面図である。
 光源ユニット40は、基材41と、基材41上に複数配置された光源42と、光源42から出力される光の光路上に配置された集光部材43と、集光部材43から出射する光の光路上に配置された透光板44とを有する。基材41と透光板44が対向配置され、これらの間に光源42及び集光部材43が挟まれた構造を有する。光源ユニット40は、さらに基材41と透光板44との間において透光板44の主面44aに沿った水平方向に冷却風を流す冷却装置45を有する。冷却装置45は、集光部材43等の光源ユニット40の構成部材を冷却して、集光部材43等が過熱状態になることを防止する。
 基材41は、光源42が配置される部材である。本実施形態では、基材41の平坦な主面41a上に複数の光源42が配置され、光源42のアレイが形成されている。基材41は、板状の部材であって、主面41aは平面視略長方形状を有する。基材41は、冷却水(クーラント)の流通路を有し、冷却水を用いて冷却されることが好適である。基材41は、熱伝導性の高い金属材料で構成されることが好ましく、基材41に接触配置される光源42は主に基材41内に導入される冷却水により冷却される。基材41上には、例えばリード線、コネクタ等も配置され、これらも冷却水により冷却される。なお、基材41の形状は平面視略長方形状に限定されず、例えば平面視略正方形状であってもよい。
 光源42は、基材41の主面41a上に不規則に配置されてもよいが、好ましくは基材41の第1方向α及び第2方向βに沿って整列配置される。本明細書において、第1方向とは基材41の主面41aに沿った一の方向を意味し、第2方向とは第1方向に直交する主面41aに沿った方向を意味する。以下では、第1方向αを「長辺方向α」、第2方向βを「短辺方向β」とし、基材41以外の構成要素についても長辺方向α、短辺方向βの用語を使用する場合がある。
 光源42は、基材41の主面41a上において短辺方向βよりも長辺方向αに沿って多く配置されている。図3に示す例では、隣り合う光源42同士の間隔は両方向とも略等間隔である。光源42を略等間隔に配置することで、積層体16に対する均一な光照射が可能となる。光源42は、後述する送風ダクト46が設けられる部分を除き、主面41aの全体に規則的にかつ高密度で配置されている。光源42のアレイの平面視形状は、主面41aの形状に対応して平面視略長方形状を有する。積層体16は、一般的に平面視略長方形状であるから、かかる形状のアレイを用いることで、効率の良い光照射が可能となる。
 光源42は、最大ピーク波長が1500nm以下の光(以下、「特定光」という場合がある)を出力する。特定光の最大ピーク波長は、太陽電池11の選択的な加熱と封止材14等の劣化防止の観点から、400nm~1500nm程度が好ましく、400nm~1200nm程度がより好ましい。最大ピーク波長が当該範囲にある光は、太陽電池11に吸収され易く、かつ封止材14を透過し易いため、太陽電池11の温度を優先的に上昇させることができる。
 光源42には、好ましくは出力される特定光のうち波長1500nm以上の光の強度(放射強度)が、最大ピーク(最大放射強度)の1%以下、より好ましくは最大ピークの0.5%以下である装置を用いる。光源42から出力される特定光は、さらに波長1200nm以下の光の割合が99%以上であることが特に好ましい。波長1200nmを超える光、特に1500nmを超える光は封止材14(特にオレフィン系樹脂)に吸収され易いため、積層体16に照射される特定光は、波長1200nm以下の光の割合が多いことが好適である。
 光源42は、上記特定光を照射可能な装置であれば、例えばキセノンランプ、ハロゲンランプ等であってもよいが、好ましくはLEDである。光源42には、例えば出力される特定光のうち波長1500nm以上の光の放射強度が、最大放射強度の1%以下、より好ましくは0.5%以下であるであるLEDが用いられる。好適なLEDとしては、COB(Chip on Board)構造のLEDが例示できる。
 光源ユニット40では、高出力で連続照射が可能な光源42(LED)を基材41上に高密度で配置することが好ましい。これにより、積層体16に対する高い光照射強度を確保することができる。一方、高密度で配置されたLEDを高出力で連続使用すると、LEDの発熱が大きくなる。本実施形態では、LED自体は冷却水により冷却されるが、例えば集光部材43、透光板44は基材41上に直接配置されておらずLEDの発熱量が大きくなると高温に曝されるため、これらを冷却装置45により冷却する必要がある。
 集光部材43は、入射した特定光を積層体16に集光する機能を有する。光源42から出力される特定光を集光部材43に多く入射させるため、例えば基材41上に設置される図示しない支持部材を用いて光源42の近傍に集光部材43を配置することが好ましい。但し、集光部材43を光源42に近接配置すると、集光部材43は高温になり易い。集光部材43は、表面に光反射率の高い金属を有する反射板とすることができ、円錐形状の集光部材43の内側の表面にて特定光を反射させ、集光させる。なお、集光部材43には、例えばガラス製、樹脂製のレンズを用いてもよい。
 集光部材43は、幾つかの光源42単位で設けてもよいが、好ましくは光源42毎にそれぞれ設けられる。即ち、各光源42から出力される特定光の光路上にそれぞれ集光部材43が設けられ、光源42のアレイ形状に対応する集光部材43のアレイが形成される。集光部材43は、光源42の場合と同様に、隣り合う集光部材43同士の間隔を長辺方向α、短辺方向βとも略等間隔とし、両方向に沿って整列配置される。
 透光板44は、例えば集光部材43等の保護部材として機能し、全ての集光部材43を覆って設けられる。透光板44は特定光を透過する薄板であって、基材41の主面41aと対向配置される。図4に示す例では、基材41の主面41aと透光板44の主面44aとが略平行である。透光板44は、特定光の透過率が高く、耐熱性に優れる材料から構成されることが好ましい。透光板44は、例えば平面視略長方形状のガラス板(カバーガラス)である。
 冷却装置45は、上記のように基材41と透光板44との間において透光板44の主面44a(基材41の主面41a)に沿った水平方向に冷却風を流し、主に基材41上に直接配置されていない部材を空冷する。冷却風を水平方向に流すことで、風がぶつかり合わないため乱流が発生し難く、スムーズな風の流れを作ることができ、安定した冷却性能が得られる。冷却風は光源42にも当たるが、光源42は基材41内を流通する冷却水により冷却されるため、冷却装置45は主に基材41に接触配置されない構成要素である集光部材43、透光板44等を冷却し、これらの温度上昇を抑制する。
 冷却装置45は、短辺方向βに冷却風を流すように構成されることが好適である。即ち、冷却装置45は、光源42の列を構成する光源42の数が少ない方向に冷却風を流すことが好ましい。本実施形態では、基材41と透光板44との間に、短辺方向βに冷却風を流すための送風ダクト46が設けられている。送風ダクト46は、短辺方向両側に冷却風を吹き出すダクトであって、基材41の短辺方向中央部において長辺方向αに沿って設けられている。短辺方向βにおいて送風ダクト46と対向する位置に排気口48が設けられる。排気口48は、基材41の短辺方向両端部において長辺方向αに沿って設けられている。冷却装置45は、例えば光源ユニット40の短辺方向両端部に長辺方向αに沿って排気ダクト(図示せず)を有することが好ましい。排気ダクトは、冷却風を吸引するダクトであって、排気口48の位置に排気ダクトを設けることで水平方向に沿って冷却風が流れ易くなる。
 送風ダクト46の短辺方向両側に向いた側面には、冷却風の吹き出し口である送風口47が形成されている。送風口47から吹き出し、基材41と透光板44の間を流れる冷却風は、集光部材43等を冷却しながら集光部材43等の隙間を通って短辺方向βに流れ、基材41の短辺方向両端部において排気口48から排気される。このとき、長辺方向両端部からの冷却風の排気量が排気口48からの冷却風の排気量より十分小さくすることが好ましく、例えば、冷却風が基材41の長辺方向両端部から排気されないようにする。送風ダクト46を短辺方向中央部に配置することで、例えば長辺方向一端部から他端部に向かって冷却風を流す場合と比較して、基材41と透光板44との間を流れる冷却風の風路長が短くなり冷却効率が向上する。この場合、当該風路長は基材41の短辺方向長さの約1/2となる。
 送風ダクト46は、基材41の長辺方向一端部から他端部に亘って、即ち長辺方向αの略全長に亘って設けられることが好ましく、ダクトの側面には長辺方向αに沿って送風口47が形成される。このとき、排気口48も、基材41の長辺方向一端部から他端部に亘って、即ち長辺方向αの略全長に亘って設けられることが好ましい。図3に示す例では、例えば送風ダクト46の長手方向一端側から、ファン(図示せず)により冷却風がダクト内に導入されるが、冷却風は送風ダクト46の長手方向両端から導入されてもよい。送風口47は、長手方向に沿って形成された複数の開口であることが好ましく、送風ダクト46の開口面積は、例えば長辺方向αに沿って一定であってもよく、長手方向一端側に近づくほど小さくしてもよい。送風ダクト46の幅は、必要な風量を確保できる範囲で細いことが好ましい。
 基材41上において送風ダクト46の短辺方向両側には、光源42がそれぞれ略同数ずつ配置されている。換言すると、送風ダクト46は光源42のアレイのちょうど中央を横切って設けられている。送風ダクト46の短辺方向両側に配置される光源42を略同数とし、送風ダクト46から短辺方向両側に吹き出す風量を略同じにすることで、均一で安定した冷却性能が得られる。
 図5は、(A)冷却風の流れと(B)熱分布を示す図である。
 図5(A)に示すように、送風ダクト46から吹き出した冷却風は、基材41と透光板44の間を短辺方向βに沿って流れ、基材41の短辺方向両端部において基材41と透光板44の間から排気される。図5(B)に示す熱分布は、20~45℃の冷却風を風速0.5~5.0m/秒で流したときの条件で、基材41と透光板44の間における温度をシミュレーションした結果であって、温度が高い領域ほど単位面積当たりのドット数を多くしている(図8~図11についても同様)。本実施形態では、短辺方向中央部に配置された送風ダクト46から吹き出した冷却風が集光部材43等を冷却しながら短辺方向両端部に流れるため、中央部に比べて下流側である両端部で冷却風の温度が上昇し、これにより両端部で温度が高くなっている。但し、上述のように冷却風の風路長は短いため、基材41の短辺方向両端部においても温度上昇の程度は小さい。また、熱分布は長辺方向αに沿って一様である。
 なお、図12に示すように、光源42の間から基材41に対して垂直方向に冷却風を吹き出す冷却方式も考えられる。図12に例示する光源ユニット100では、基材41を厚み方向に貫通した冷却風の吹き出し口101が複数設けられている。この場合、例えば基材41の全周囲において基材41と透光板44の間から冷却風が排気されるが、吹き出し後の冷却風の流れが一様ではなく乱流が発生し、局所的に高温になる領域が生じる場合がある。つまり、乱流の発生を抑制しスムーズな冷却風の流れを作るためには、水平方向に冷却風を流すことが好適である。
 図6は、光照射部22(加熱炉23及び光源ユニット40)を示す図である。
 光源ユニット40は、上記のように加熱炉23内の積層体16に特定光を照射する。このため、加熱炉23の壁部24の少なくとも一部には、特定光を透過する透光性部材25が取り付けられている。光源ユニット40は、加熱炉23の外部に設けられ、透光性部材25を通して加熱炉23内の積層体16に特定光を照射する。本実施形態では、加熱炉23の底部を構成する壁部24の一部に、積層体16よりも大面積に透光性部材25が設けられている。光源ユニット40は、透光性部材25との間に隙間をあけて透光性部材25の下方に設けられている。透光性部材25を介して加熱炉23内に入射した特定光は、ベルトコンベア21のバーの間を通って積層体16に照射される。
 透光性部材25は、1枚のガラス板、又は3枚以上のガラス板を用いて構成されてもよいが、断熱性及び特定光の照射効率等を考慮して、好ましくは2枚のガラス板26,27を積層して構成される。ガラス板26,27は、互いに隙間28をあけて対向配置されており、隙間28には空気若しくは不活性ガスが充填されている、又は隙間28は真空状態である。不活性ガスとしては、アルゴン等が例示できる。隙間28を形成して、空気若しくは不活性ガスを充填する又は真空状態とすることにより断熱性能が向上するため、加熱炉23に近接配置される光源ユニット40が加熱炉23の熱の影響で高温になることを防止できる。
 ガラス板26,27の厚みは、例えば1mm~10mmであり、ガラス板26,27間の距離は、例えば5mm~20mmである。ガラス板26,27には、透光板44と同様に、特定光の透過率が高いガラスが使用されることが好ましい。ガラス板26,27の光源ユニット40側の面には、熱輻射を抑制するために、酸化スズ、銀等のLow-E膜がコーティングされていてもよい。
 図6に示す例では、加熱炉23の底部側に光源ユニット40が設けられ、底部側から積層体16に対して光照射が行われるが、光源ユニット40を加熱炉23の天部側に設けて、天部側から積層体16に対して光照射を行ってもよい。特定光は、積層体16の受光面側、裏面側のいずれに照射してもよく、両面から照射してもよいが、例えば裏面側から光が入射し難い積層体16の場合は、受光面側(第1保護部材12側)から特定光を照射する。
 ここで、図7~図11に実施形態の他の一例である光源ユニットを示す。
 図7に例示する光源ユニット50では、送風ダクト46の代わりに排気ダクト51が設けられている。排気ダクト51は、冷却風を吸引するダクトであって、送風ダクト46と同様に、基材41の短辺方向中央部において長辺方向αに沿って設けられている。排気ダクト51は、主に基材41の短辺方向両側の通風口52から冷却風を吸引し、基材41と透光板44との間において主面41a,44aに沿った水平方向に冷却風を発生させる。排気ダクト51の幅は、必要な風量を確保できる範囲で細いことが好ましい。光源ユニット50では、光源ユニット40の場合と同様に、基材41上において排気ダクト51の短辺方向両側に光源42がそれぞれ略同数ずつ配置されている。
 図8に示すように、排気ダクト51により基材41の短辺方向両側から基材41と透光板44の間に導入された冷却風は、基材41と透光板44の間を短辺方向βに沿って流れ、短辺方向中央部において排気ダクト51に吸い込まれる。光源ユニット50では、冷却風の流れが光源ユニット40の場合と逆であるから、基材41の短辺方向両端部に比べて下流側である短辺方向中央部で冷却風の温度が上昇し、これにより短辺方向中央部で温度が高くなっている。但し、上述のように冷却風の風路長は短いため、短辺方向中央部においても温度上昇の程度は小さい。また、熱分布は長辺方向αに沿って一様である。
 図9~図11に例示する光源ユニット60,61,62は、水平方向に沿って冷却風が流れるように構成されているが、基材41と透光板44の間において光源42のアレイを横切るようにダクトが配置されていない点で、光源ユニット40,50と異なる。この場合、基材41上に配置可能な光源42の数が増加するという利点がある。一方、図9に例示する光源ユニット60は、基材41の短辺方向一端側から他端側に冷却風を流すように構成されており、図10に例示する光源ユニット61は、基材41の長辺方向一端側から他端側に冷却風を流すように構成されている。ゆえに、いずれの場合も、光源ユニット40,50の場合と比べて基材41と透光板44の間を流れる冷却風の風路長が長くなり、下流側において温度上昇が大きくなる。図11に例示する光源ユニット62は、基材41の短辺方向両側から冷却風を導入し、長辺方向両側から冷却風を排出するように構成されている。この場合は、光源ユニット60,61に比べると上記風路長が短くなるため、温度上昇が大きくなる範囲は狭いが、光源ユニット40,50に比べると基材41の長辺方向両端部の温度が高温になる。
 以下、太陽電池モジュールの製造装置20を用いた太陽電池モジュール10の製造方法について詳説する。
 太陽電池モジュール10の製造工程は、太陽電池11のストリング、第1保護部材12、第2保護部材13、及びシート状の封止材14a,14bを重ね合せて加熱圧着(ラミネート)することにより積層体16を作製する第1の工程を備える。第1の工程は、ラミネート工程と呼ばれる。太陽電池11のストリングは、従来公知の方法で作製できる。太陽電池モジュール10の製造工程は、第1の工程で作製された積層体16に特定光を照射して積層体16の太陽電池11を優先的に加熱し、当該太陽電池11の温度上昇により封止材14を間接的に加熱する第2の工程を備える。
 第1の工程は、ラミネート装置30を用いて行われる。第1の工程では、第1保護部材12、封止材シート14a、太陽電池11、封止材シート14b、及び第2保護部材13が、この順番でヒーター31上に積層配置される。続いて、上部真空室32及び下部真空室33を排気しながら、重ね合わせた各部材をヒーター31で加熱する。次に、上部真空室32の排気を停止して大気を導入することで、ラバー34がヒーター31側に伸びて積層物を押圧する。この状態で150℃程度に加熱することにより、封止材シート14a,14bを構成する樹脂を軟化(溶融)させる。また、当該樹脂が架橋性である場合は加熱により架橋反応が進行する。
 太陽電池モジュール10の製造工程は、第1の工程で作製された積層体16の全体を加熱する熱処理工程を備えることが好適である。熱処理工程は、加熱炉23を用いて行われる。本実施形態では、熱処理工程中に第2の工程(光照射工程)が行われる。即ち、第1の工程で作製された積層体16は加熱炉23に搬入され、加熱炉23内で熱処理工程と光照射工程が同時に行われる。熱処理工程は、上記のように封止材14を構成する樹脂の架橋反応を促進して架橋密度を高めるための工程であり、例えば加熱炉23内の雰囲気温度は100℃~180℃、処理時間は5分~60分である。
 第2の工程では、積層体16に光照射して太陽電池11を優先的に加熱する光照射アニール工程である。太陽電池11を優先的に加熱するとは、積層体16において太陽電池11の温度が他の部材よりも優先的に上昇するように加熱することを意味する。第2の工程では、太陽電池11を優先的に加熱することで、太陽電池11の温度上昇により封止材14を間接的に加熱する。第2の工程では、加熱された太陽電池11の熱が封止材14に伝わり、例えば太陽電池11との界面近傍における封止材14が局所的に加熱される。つまり、第2の工程は、太陽電池11のみを選択的に加熱し、封止材14の温度を直接上昇させない又は直接上昇させる程度が小さい。かかる局所的な封止材14の加熱により、封止材14中の気泡の発生を防止しながら、太陽電池11と封止材14との接着力を向上させることができる。本工程は、封止材14がカップリング剤を含有する場合において特に好適である。
 第2の工程では、光源ユニット40により最大ピーク波長が1500nm以下の特定光を積層体16に照射する。積層体16は、加熱炉23により全体的に加熱されるが、特定光の照射により太陽電池11及びその界面近傍における封止材14の温度は積層体16の他の部分の温度よりも、例えば2℃~70℃程度高くなる。但し、太陽電池11との界面近傍における封止材14の温度は、200℃以下であることが好ましい。太陽電池11の加熱温度は、光源42の出力、光照射時間等を変化させることにより調整できる。光照射時間は、例えば1~30分間である。
 第2の工程では、光照射部22に積層体16が連続的に搬送され、光源ユニット40は冷却風により少なくとも集光部材43及び透光板44を冷却しながら特定光を連続照射することが好適である。即ち、光源42は積層体16を処理する度に消灯されない。そして、冷却装置45は光源42が点灯している間、連続的に冷却風を供給することが好ましい。冷却装置45が集光部材43等を冷却することで、集光部材43等の温度上昇が抑制され、特定光の連続照射が可能となる。光源42は、主に基材41に供給される冷却水により冷却される。なお、第2の工程中に、他の工程の都合で積層体16の連続的な搬送が一時的に停止する場合がある。このような場合、搬送が一時的に停止する期間には光源42を消灯し、搬送が再開されたときに光源42を再び点灯することが好ましい。
 上記工程終了後、必要により、積層体16のトリミング工程や、フレーム、端子ボックスの取り付け工程を経て、太陽電池モジュール10が得られる。
 以上のように、太陽電池モジュールの製造装置20では、冷却装置45が効率良く集光部材43、透光板44等を冷却するため、高強度の光照射を連続して行うことが可能である。したがって、本装置を用いることにより太陽電池モジュール10の生産性が向上する。
 10 太陽電池モジュール、11 太陽電池、12 第1保護部材、13 第2保護部材、14 封止材、14a 第1封止材、14b 第2封止材、15 導線、16 積層体、20 太陽電池モジュールの製造装置、21 ベルトコンベア、22 光照射部、23 加熱炉、24 壁部、25 透光性部材、26,27 ガラス板、28 隙間、30 ラミネート装置、31 ヒーター、32 上部真空室、33 下部真空室、34 ラバー、40,50,60,61,62 光源ユニット、41 基材、41a,44a 主面、42 光源、43 集光部材、44 透光板、45 冷却装置、46 送風ダクト、47 送風口、48 排気口、51 排気ダクト

Claims (12)

  1.  太陽電池、封止材、及び保護部材を重ね合せて加熱圧着することにより積層体を作製するラミネート装置と、
     前記積層体に光照射して前記積層体の前記太陽電池を優先的に加熱し、当該太陽電池の温度上昇により前記封止材を間接的に加熱する光源ユニットと、
     を備え、
     前記光源ユニットは、
     基材と、
     前記基材上に複数配置され、最大ピーク波長が1500nm以下の光を出力する光源と、
     前記光源から出力される前記光の光路上に配置され、当該光を集光する集光部材と、
     前記集光部材から出射する前記光の光路上に配置された透光板と、
     前記基材と前記透光板との間において前記透光板の主面に沿った水平方向に冷却風を流す冷却装置と、
     を有する、太陽電池モジュールの製造装置。
  2.  前記光源は、前記基材の第1方向よりも当該第1方向に直交する第2方向に沿って多く配置され、
     前記冷却装置は、前記第1方向に前記冷却風を流すように構成されている、請求項1に記載の太陽電池モジュールの製造装置。
  3.  前記冷却装置は、前記第1方向に前記冷却風を流すためのダクトを有し、
     前記ダクトは、前記第2方向に沿って設けられている、請求項2に記載の太陽電池モジュールの製造装置。
  4.  前記光源は、前記基材上の前記ダクトの前記第1方向両側にそれぞれ略同数ずつ配置されている、請求項3に記載の太陽電池モジュールの製造装置。
  5.  前記ダクトは、前記第1方向両側に冷却風を吹き出す送風ダクトである、請求項4に記載の太陽電池モジュールの製造装置。
  6.  前記第1方向において前記送風ダクトと対向する位置に前記第2方向に沿って設けられた排気口を更に備え、
     前記基材の前記第2方向の端部での排気量は、前記排気口での排気量より小さい、請求項5に記載の太陽電池モジュールの製造装置。
  7.  前記光源は、前記光のうち波長1500nm以上の光の強度が、最大ピークの1%以下のLEDである、請求項1~6のいずれか1項に記載の太陽電池モジュールの製造装置。
  8.  前記基材は、冷却水の流通路を有し、冷却水を用いて冷却される、請求項1~7のいずれか1項に記載の太陽電池モジュールの製造装置。
  9.  前記積層体の全体を加熱する加熱炉を備え、
     前記加熱炉の壁部の少なくとも一部には、複数のガラス板を積層して構成された透光性部材が取り付けられており、
     前記光源ユニットは、前記加熱炉の外部に設けられ、前記透光性部材を通して前記加熱炉内の前記積層体に前記光を照射する、請求項1~8のいずれか1項に記載の太陽電池モジュールの製造装置。
  10.  前記透光性部材を構成する前記各ガラスは、互いに隙間をあけて対向配置されており、
     前記隙間には空気若しくは不活性ガスが充填されているか、又は、前記隙間は真空状態である、請求項9に記載の太陽電池モジュールの製造装置。
  11.  請求項1~10のいずれか1項に記載の製造装置を用いた太陽電池モジュールの製造方法であって、
     太陽電池、封止材、及び保護部材を重ね合せて加熱圧着することにより積層体を作製する第1の工程と、
     前記積層体に前記光を照射して前記積層体の前記太陽電池を優先的に加熱し、当該太陽電池の温度上昇により前記封止材を間接的に加熱する第2の工程と、
     を備える太陽電池モジュールの製造方法。
  12.  前記第2の工程では、前記光源ユニットによる光照射位置に前記積層体が連続的に搬送され、
     前記光源ユニットは、前記冷却風により少なくとも前記集光部材及び前記透光板を冷却しながら前記光を連続照射する、請求項11に記載の太陽電池モジュールの製造方法。
PCT/JP2016/002092 2015-05-13 2016-04-19 太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法 WO2016181615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680027588.7A CN107660314A (zh) 2015-05-13 2016-04-19 太阳能电池组件的制造装置和太阳能电池组件的制造方法
JP2017517600A JP6535089B2 (ja) 2015-05-13 2016-04-19 太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法
US15/807,708 US20180076347A1 (en) 2015-05-13 2017-11-09 Solar cell module manufacturing device and solar cell module manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015098392 2015-05-13
JP2015-098392 2015-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/807,708 Continuation US20180076347A1 (en) 2015-05-13 2017-11-09 Solar cell module manufacturing device and solar cell module manufacturing method

Publications (1)

Publication Number Publication Date
WO2016181615A1 true WO2016181615A1 (ja) 2016-11-17

Family

ID=57247905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002092 WO2016181615A1 (ja) 2015-05-13 2016-04-19 太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法

Country Status (4)

Country Link
US (1) US20180076347A1 (ja)
JP (1) JP6535089B2 (ja)
CN (1) CN107660314A (ja)
WO (1) WO2016181615A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244589A (ja) * 1997-03-06 1998-09-14 Fuji Electric Co Ltd ラミネート装置
JP2008117926A (ja) * 2006-11-02 2008-05-22 Mitsui Chemicals Inc 太陽電池モジュールの製造方法及び製造装置
WO2012082943A1 (en) * 2010-12-15 2012-06-21 E. I. Du Pont De Nemours And Company Method for fabricating a photovoltaic module using a fixture and using localized heating to heat areas of increased heating capability and module produced thereby
WO2015059875A1 (ja) * 2013-10-24 2015-04-30 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
WO2016067516A1 (ja) * 2014-10-27 2016-05-06 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法、及び太陽電池モジュールの製造装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289548A (ja) * 2001-03-28 2002-10-04 Dainippon Screen Mfg Co Ltd 熱処理装置
JP5138253B2 (ja) * 2006-09-05 2013-02-06 東京エレクトロン株式会社 アニール装置
JP2009099925A (ja) * 2007-09-27 2009-05-07 Tokyo Electron Ltd アニール装置
US8898682B2 (en) * 2007-10-19 2014-11-25 Hewlett-Packard Development Company, Lp. Cooling in high-density storage systems
CN101315954A (zh) * 2008-05-28 2008-12-03 刘小宁 聚光太阳能光伏电池面板
JP2011018863A (ja) * 2009-07-10 2011-01-27 Sharp Corp 発光素子モジュール及びその製造方法、並びに、バックライト装置
EP2315285B1 (en) * 2009-10-22 2014-06-04 Nxp B.V. Apparatus for regulating the temperature of a light emitting diode
WO2013105046A1 (en) * 2012-01-13 2013-07-18 Koninklijke Philips N.V. Led-based direct-view luminaire with uniform lit appearance
CN103841792B (zh) * 2012-11-22 2017-04-12 华为技术有限公司 散热系统
CN203659935U (zh) * 2013-11-17 2014-06-18 李燕燕 一种大功率led的液冷散热装置
CN203812867U (zh) * 2014-04-04 2014-09-03 思源清能电气电子有限公司 用于igbt模块的散热结构
CN204153905U (zh) * 2014-09-28 2015-02-11 江苏凤凰数据有限公司 基于半导体制冷的数据机房制冷装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244589A (ja) * 1997-03-06 1998-09-14 Fuji Electric Co Ltd ラミネート装置
JP2008117926A (ja) * 2006-11-02 2008-05-22 Mitsui Chemicals Inc 太陽電池モジュールの製造方法及び製造装置
WO2012082943A1 (en) * 2010-12-15 2012-06-21 E. I. Du Pont De Nemours And Company Method for fabricating a photovoltaic module using a fixture and using localized heating to heat areas of increased heating capability and module produced thereby
WO2015059875A1 (ja) * 2013-10-24 2015-04-30 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
WO2016067516A1 (ja) * 2014-10-27 2016-05-06 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法、及び太陽電池モジュールの製造装置

Also Published As

Publication number Publication date
JPWO2016181615A1 (ja) 2018-02-15
JP6535089B2 (ja) 2019-06-26
US20180076347A1 (en) 2018-03-15
CN107660314A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
JP6709996B2 (ja) 太陽電池モジュールの製造方法、及び太陽電池モジュールの製造装置
EP1737048B1 (en) Method for manufacturing solar cell
JP2010287688A (ja) 太陽電池モジュール
JP2007067203A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
TW201349529A (zh) 背接觸型太陽能電池模組
US9627567B2 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
US9960313B2 (en) Solar battery module and manufacturing method therefor
KR102408270B1 (ko) 정렬 봉지재를 갖는 태양광 모듈
US20170018672A1 (en) High power solar cell module
JP2011029273A (ja) 太陽電池モジュール
JP6535089B2 (ja) 太陽電池モジュールの製造装置及び太陽電池モジュールの製造方法
JP2011091211A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、及び太陽電池モジュールの製造装置
JP5274326B2 (ja) 太陽電池モジュールの製造方法
JP2004327630A (ja) 太陽電池モジュール
TWI624956B (zh) Solar battery module and manufacturing method thereof
US20180182909A1 (en) Solar cell module and method for manufacturing solar cell module
KR101460503B1 (ko) 태양전지 모듈 보호 필름 및 이를 포함하는 태양전지 모듈
TWI627764B (zh) Solar battery module and solar battery module manufacturing method
EP3688820A1 (en) Photovoltaic module having scattering patterns
JP2018107236A (ja) 太陽電池モジュール
KR20230138711A (ko) 태양전지 모듈 제조용 태빙 장치
WO2021095217A1 (ja) 太陽電池パネル、太陽電池モジュール、太陽電池パネルの製造方法および太陽電池モジュールの製造方法
JP2016207891A (ja) 太陽電池モジュールの製造方法
JP2022088827A (ja) 太陽電池セル、太陽電池モジュール及び太陽電池セル製造方法
JP2013077707A (ja) 光電変換装置の製造方法及びそれに用いられる塗布装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792345

Country of ref document: EP

Kind code of ref document: A1