WO2016179770A1 - 一种用于nmt技术的pbt工程塑料组合物 - Google Patents

一种用于nmt技术的pbt工程塑料组合物 Download PDF

Info

Publication number
WO2016179770A1
WO2016179770A1 PCT/CN2015/078644 CN2015078644W WO2016179770A1 WO 2016179770 A1 WO2016179770 A1 WO 2016179770A1 CN 2015078644 W CN2015078644 W CN 2015078644W WO 2016179770 A1 WO2016179770 A1 WO 2016179770A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
group
mixture
ethylene
acid
Prior art date
Application number
PCT/CN2015/078644
Other languages
English (en)
French (fr)
Inventor
曹艳霞
赖华林
秦勇
Original Assignee
深圳华力兴新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华力兴新材料股份有限公司 filed Critical 深圳华力兴新材料股份有限公司
Priority to PCT/CN2015/078644 priority Critical patent/WO2016179770A1/zh
Publication of WO2016179770A1 publication Critical patent/WO2016179770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to a PBT engineering plastic composition for NMT technology.
  • NMT Nano Molding Technology
  • the technology can directly spray the plastic to the metal surface and achieve perfect and strong combination. It can completely replace the traditional glue, in-mold coating, metal riveting and other technologies to achieve light, thin, short and small.
  • the core process of NMT technology is the simultaneous molding of plastic and metal materials in the mold.
  • the plastic should complete its own melting and contact, wetting, wetting, spreading, penetrating and bonding processes of the contact surfaces of some of the molten body and the metal material.
  • the NMT technical features mainly have the following three points:
  • Applicable metal and resin materials are strictly limited: 1 aluminum, magnesium, copper, stainless steel, titanium, iron, galvanized sheet, brass; 2 aluminum alloy has strong adaptability, including 1000 to 7000 series; Resins include polyphenylene sulfide (PPS), polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), nylon (polyamide 6, polyamide 66, high temperature nylon PPA, etc. 4PPS has a particularly strong adhesive viscosity up to 3000N/cm 2 ;
  • NMT Reducing environmental impact: 1NMT technology simplifies and shortens the manufacturing process; 2 as a cemented magnesium alloy metal, reducing unnecessary surface treatment; 3 Because NMT is a safe and recyclable technology, it has little impact on the environment.
  • NMT technology The advantages of NMT technology are outstanding: the integral molding process of resin and metal parts significantly reduces the overall thickness and height of the product; the mechanical strength of the finished product is excellent; the material has more decorative methods to choose from; the reliability of bonding between plastic and metal Far higher than other processes.
  • Mobile communication equipment frame The mobile communication equipment frame is an application field with high thinning requirements; with this technology, it is possible to not punch holes in the metal casing, but only through metal inlay Forming can form complex resin bosses on the metal shell, improving the design freedom of the frame.
  • NMT technology has strict requirements on resin materials. Due to the high shrinkage of the resin material, Low heat resistance, low adhesion to metals, etc., make the resin within its limits not directly available for NMT technology.
  • the requirements of NMT resin materials include: 1. The resin material has excellent adhesion with the integrally injection molded metal material (above 180Kgf); 2. The shrinkage rate of the resin material should be as low as possible, generally less than 0.3%, preferably low.
  • the resin material has high heat resistance, good resistance to metal degradation
  • the temperature of the NMT molding process is as high as 260 ° C ⁇ 310 ° C, and at the same time with the metal Simultaneous molding in the same mold requires resin materials to have good heat resistance and metal degradation resistance.
  • PBT Polybutylene terephthalate
  • PBT has high crystallization speed, high speed molding, heat resistance, electrical properties, flame retardancy, chemical resistance, excellent friction and wear characteristics, low water absorption, high heat distortion temperature, high mechanical strength, fatigue resistance and dimensional stability. Ok, the creep is small.
  • the disadvantages of PBT as NMT engineering plastics include: (1) low notched impact strength; (2) low heat distortion temperature under high load, heat distortion temperature (1.82MP) is only about 60 °C; (3) high temperature rigidity Poor; (4) poor adhesion to metal materials.
  • Materials for NMT technology must address the above disadvantages, wherein solving the adhesion of the resin composition to the metal is one of the most critical and difficult.
  • an aspect of the present invention provides a PBT engineering plastic composition for NMT technology.
  • the PBT engineering plastic composition for NMT technology has excellent adhesion to metal materials, reaching 220kgf Above, meet the NMT process requirements; have good mechanical properties and heat resistance.
  • a PBT engineering plastic composition for NMT technology in parts by mass, comprising the following components:
  • the toughening agent is selected from the group consisting of unsaturated carboxylic acid esters, unsaturated carboxylic acid ester copolymers, saturated vinyl carboxylates, saturated vinyl carboxylate copolymers, unsaturated epoxy compounds, unsaturated epoxy copolymers, A mixture of at least two of an unsaturated carboxylic acid, an unsaturated carboxylic acid copolymer, an unsaturated acid anhydride or an unsaturated acid anhydride copolymer.
  • PBT polybutylene terephthalate, which is prepared by esterification and polycondensation of a glycol and an aromatic dibasic acid under the action of a catalyst
  • PET is polyethylene terephthalate, Ethylene glycol and terephthalic acid are prepared by esterification and polycondensation under the action of a catalyst.
  • the addition of PET can reduce the shrinkage of the material and improve the heat resistance.
  • the above-mentioned toughening agent is added to the PBT engineering plastic composition of the invention, which not only can increase the toughness and impact strength, but also improves the adhesion between the PBT engineering plastic composition and the metal material, and meets the NMT process requirements;
  • the component content is optimized to improve the mechanical and thermal properties of the PBT engineering plastic composition.
  • the above toughening agent can improve the polarity of the PBT engineering plastic composition and the wettability of the PBT engineering plastic composition to the metal surface, thereby increasing the adhesion to the metal material.
  • lubricant can improve the adhesion of glass fiber to matrix resin, which is good for glass fiber dispersion and prevent glass fiber from being exposed. At the same time, lubricant can effectively control the fluidity of the material, which is beneficial to filling the mold and promote the resin composition to the metal. Full wetting and penetration of the material.
  • it further contains 0.2 to 3 parts of a nucleating agent and/or 0 to 5 parts of a coloring agent.
  • the nucleating agent can change the crystallization behavior of the resin, accelerate the crystallization rate, increase the crystal density and promote the grain size miniaturization, thereby shortening the molding cycle, improving the transparency of the product, surface gloss, tensile strength, rigidity, heat distortion temperature, and resistance. Physical and mechanical properties such as impact and creep resistance.
  • the PBT engineering plastic composition for NMT technology of the present invention comprises, by mass part, the following components:
  • the invention further optimizes the content of the PBT engineering plastic composition, and further improves the mechanical properties, heat resistance and adhesion to the metal material of the PBT engineering plastic composition.
  • the unsaturated carboxylic acid ester is selected from the group consisting of alkyl acrylates and/or alkyl methacrylates;
  • the unsaturated carboxylic acid ester copolymer is selected from the group consisting of ethylene/2-ethylhexyl acrylate copolymer, ethylene/n-octyl acrylate copolymer, ethylene/2-ethylhexyl acrylate/n-octyl acrylate Copolymer, Ethylene/alkyl acrylate copolymer, ethylene/alkyl methacrylate copolymer, ethylene/alkyl acrylate/maleic anhydride copolymer, ethylene/alkyl methacrylate/maleic anhydride copolymer, ethylene/ Acryl acrylate/acrylic acid copolymer, ethylene/alkyl methacrylate/methacrylic acid copolymer, ethylene/alkyl acrylate/glycidyl methacrylate copolymer, ethylene/alkyl methacrylate/A a mixture of a glycidyl acrylate copo
  • the saturated vinyl carboxylate is selected from the group consisting of vinyl acetate and/or vinyl propionate;
  • the saturated vinyl carboxylate copolymer is selected from the group consisting of ethylene/methyl acrylate copolymer (EMA), ethylene/ethyl acrylate copolymer (EEA), ethylene/butyl acrylate copolymer (EBA). a mixture of ethylene/vinyl acetate copolymer or ethylene/2-ethylhexyl acrylate copolymer (abbreviated as AE2H) or a mixture of at least two;
  • EMA ethylene/methyl acrylate copolymer
  • ESA ethylene/ethyl acrylate copolymer
  • EBA ethylene/butyl acrylate copolymer
  • AE2H ethylene/2-ethylhexyl acrylate copolymer
  • the unsaturated epoxy compound is an aliphatic glycidyl ester and/or a glycidyl ether, preferably vinyl glycidyl ether, allyl glycidyl ether, glycidyl maleate, glycidyl acrylate A mixture of one or at least two of glycidyl methacrylate (GMA for short) or glycidyl acrylate, further preferably glycidyl acrylate and/or glycidyl methacrylate.
  • GMA glycidyl methacrylate
  • the "/" in the copolymer of the present invention means that the monomer unit before and after the difference, such as ethylene/n-octyl acrylate copolymer, is a copolymer obtained by copolymerization of ethylene and n-octyl acrylate, ethylene/alkyl acrylate.
  • the ester/maleic anhydride copolymer is a copolymer obtained by copolymerization of ethylene, an alkyl acrylate and maleic anhydride; an unsaturated carboxylic acid ester copolymer, a saturated carboxylic acid vinyl ester copolymer in the present invention... And the like, wherein the monomer unit in the copolymer includes at least an unsaturated carboxylic acid ester, a saturated carboxylic acid vinyl ester or the like.
  • the glycidyl methacrylate (GMA) molecule has two functional groups, an active vinyl group and an ionic reactive epoxy group, which can be polymerized by functional groups or polymerized by ion reaction. It can be used for the modification of ethylene type polymers and polycondensation type polymers. GMA can intervene in three ways. One is that when ethylene is polymerized, the epoxy group is located on the branch to form an "O" type polymer; the second is that the epoxy is opened and the vinyl group is on the branch to form A "V" type polymer; the third is a compound having an active hydrogen which reacts with GMA and is ring-opened into a chain on the epoxy group. The polymer is modified upon polymerization by any of the above three methods.
  • the unsaturated epoxy copolymer is selected from the group consisting of aliphatic glycidyl ester copolymers and/or glycidyl ether copolymers, preferably vinyl glycidyl ether copolymers, allyl glycidyl ether copolymers, horses a mixture of one or at least two of a glycidyl ester copolymer, a glycidyl methacrylate copolymer or a glycidyl acrylate copolymer, further preferably a glycidyl acrylate copolymer and/or a methacrylic acid shrinkage a glyceride copolymer, most preferably an ethylene-acrylate-glycidyl methacrylate terpolymer copolymer;
  • Glycidyl methacrylate (GMA) copolymer has good compatibility with PBT and PET resin, and has high reactivity, polarity and medium strong acidity, which can enhance the resin composition while toughening the material.
  • Polarity changing the acidity and alkalinity of the composition, further increasing the wettability of the composition on the metal surface at high temperatures, thereby increasing the adhesion to the metal; the high reactivity of the GMA functional group determines that it can be integrated
  • the instant of injection molding may form a stable chemical bond with the T treatment agent dried in the nanopores on the metal surface, which further enhances the adhesion of the resin composition to the interface of the metal material; glycidyl methacrylate (GMA)
  • the copolymer is a preferred toughening agent for the NMT resin composition, especially a suitable GMA-containing copolymer.
  • the trade name of the toughening agent in the present invention may be selected from AX8840, AX8900, CX8902, CX8904, 35BA40, 4700 of Arkema or PTW, 4710 of DuPont.
  • the unsaturated carboxylic acid is selected from one or a mixture of at least two of acrylic acid, methacrylic acid, maleic acid or itaconic acid, preferably acrylic acid and/or methacrylic acid;
  • the unsaturated carboxylic acid copolymer is selected from one or a mixture of at least two of an acrylic copolymer, a methacrylic copolymer, a maleic acid copolymer or a itaconic acid copolymer, preferably an acrylic copolymer. And/or methacrylic acid copolymer;
  • the unsaturated acid anhydride is selected from one or a mixture of at least two of acrylic anhydride, methacrylic anhydride, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, succinic anhydride or succinic anhydride.
  • acrylic anhydride and/or methacrylic anhydride are preferred as acrylic anhydride and/or methacrylic anhydride;
  • the unsaturated acid anhydride copolymer is selected from the group consisting of an acrylic anhydride copolymer, a methacrylic anhydride copolymer, a maleic anhydride copolymer, an itaconic anhydride copolymer, a tetrahydrophthalic anhydride copolymer, and a succinic anhydride copolymer.
  • a mixture of one or at least two of the succinic anhydride copolymers preferably an acrylic anhydride copolymer, a methacrylic anhydride copolymer or a maleic anhydride copolymer.
  • Unsaturated anhydride copolymers especially methacrylic anhydride and maleic anhydride are PBT, PET system toughening agents, and have good compatibility with thermoplastic polyesters, while having high reactivity, polarity and medium strong acidity.
  • PBT PBT
  • PET system toughening agents PBT
  • polarity and medium strong acidity Increasing the polarity of the resin composition while toughening the material, changing the acidity and alkalinity of the composition, further increasing the wettability of the composition to the metal surface at a high temperature, thereby increasing the adhesion to the metal.
  • the high reactivity of the anhydride functional group determines that it can form a stable chemical bond with the T treatment agent which is dried and retained in the nanopore on the metal surface at the moment of integral injection molding, which further enhances the adhesion of the resin composition to the contact interface of the metal material.
  • the unsaturated anhydride copolymer becomes a preferred toughening agent for the NMT resin composition, especially a suitable anhydride-containing copolymer.
  • the toughening agent contains at least a glycidyl methacrylate functional group, and further contains a carboxyl functional group or an acid anhydride functional group, and the molar ratio of the glycidyl methacrylate functional group to the sum of the carboxyl functional group and the acid anhydride functional group is 1:0.5. 4. It is preferably 1:1 to 3.
  • the PBT resin has an intrinsic viscosity of 0.70 to 1.3 g/dl, preferably 0.8 to 1.1 g/dl;
  • the PET resin has an intrinsic viscosity of 0.65 to 1.2 g/dl, preferably 0.75 to 1.0 g/dl;
  • the glass fiber is a long fiber and/or a chopped fiber, preferably a chopped fiber of 3 to 7 mm;
  • the glass fibers After extrusion granulation, the glass fibers have an average length of 20 to 500 ⁇ m, preferably 40 to 350 ⁇ m, more preferably 60 to 280 ⁇ m; and the glass fibers have an average fiber diameter of 5 to 15 ⁇ m, preferably 9 to 15 ⁇ m.
  • the average fiber diameter is a weight average fiber diameter.
  • the invention adds glass fiber, improves heat resistance and mechanical properties (such as tensile strength, bending strength, notched impact strength) and reduces shrinkage. Because the shrinkage of metal is very low, and the shrinkage rate of polymer materials (such as PBT, PET) is much higher than that of metal, if the difference in shrinkage between the two is too large, the internal stress is large when adhered together, and the present invention can be greatly Reduce the molding shrinkage of the material.
  • the glass fiber is treated with a silane coupling agent; after the glass fiber is treated by a silane coupling agent (such as PPG's 3786 and Owens Corning's 183F), the glass fiber can be more fully integrated with PBT.
  • a silane coupling agent such as PPG's 3786 and Owens Corning's 183F
  • the combination of resin and PET resin is more conducive to improving the high temperature resistance and impact strength of NMT materials.
  • the silane coupling agent has the formula Y(CH 2 ) n SiX 3 , wherein: n is 0 to 3, and Y is a vinyl group, an amino group, an epoxy group or a methacryloxy group.
  • X is a chloro group, a methoxy group, an ethoxy group or an acetoxy group.
  • Y is a group which can react or be compatible with a resin, so it is usually referred to as a coupling agent.
  • Y is an amino group and is called an aminosilane coupling agent.
  • X is a hydrolyzable group and can react with glass fibers when hydrolyzed. In glass fiber reinforced plastics, the key to enhancing the effect of Y when it reacts with the resin.
  • the silane coupling agent is Y-chloropropyltriethoxysilane (such as KH550, A1100), Y-(2,3-epoxypropoxy)propyltrimethoxysilane (such as KH560). Or a mixture of one or at least two of Y-(methacryloyloxy)propyltrimethyloxysilane (such as KH570).
  • the antioxidant is one or a mixture of at least two of a hindered phenol antioxidant, a phosphite antioxidant or a thioester antioxidant;
  • the antioxidant is a mixture of a hindered phenolic antioxidant, a phosphite antioxidant or a thioester antioxidant, a hindered phenolic antioxidant, a phosphite antioxidant and a thioester.
  • the mass ratio of the antioxidant is 3:2:3;
  • the hindered phenolic antioxidant is a multi-hindered phenolic antioxidant and/or an asymmetric hindered phenolic antioxidant;
  • the hindered phenolic antioxidant is 2,2-ethylene-bis(4,6-di-tert-butylphenol), triethylene glycol ether-bis(3-tert-butyl-4) -hydroxy-5-methylphenyl)propionate, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanuric acid, diethylene glycol double [ ⁇ -(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate], pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropanate, 1,3,5 -trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(4-tert-butyl-3-hydroxy-2, 6-Dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H
  • the phosphite antioxidant is one or a mixture of at least two of a phosphite triester, a phosphite diester or a phosphite monoester;
  • the phosphite antioxidant is phenyl phosphite, tris(nonylphenol) phosphite, phenyl tris(2,4-di-tert-butyl) phosphite, tridecyl phosphite, Trioctyl phosphite, ethyl bis(2-methyl-4,6-di(1,3-dimethylethyl)phenyl)phosphite, monobutyl diphenyl phosphite, dioctadecane Pentaerythritol bisphosphite, 4,4'-[1,1'-biphenyl]ylidene diphosphonic acid-tetrakis[2,4-di-tert-butylphenyl] ester, bis(2,4-di-tert Butyl phenyl) pentaerythritol diphosphite, bis(2,6-
  • the phosphite antioxidant has the structural formula shown in Formula I:
  • R' in the formula I is an alkyl group and/or an aryl group
  • R' is a C1-C25 alkyl group and/or a C6-C12 aryl group
  • the thioester antioxidant is dilauryl thiodipropionate, dioctadecyl thiodipropionate, di(tetradecyl) thiodipropionate or pentathiopropane of pentaerythritol.
  • the esters One or a mixture of at least two of the esters.
  • the heat stabilizer is composed of a metal compound and an ultraviolet light absorber
  • the metal compound is a sodium compound, a sodium nano compound, a calcium compound, a calcium nano compound, a bismuth compound, a bismuth nano compound, a zinc compound, a zinc nano compound, a silicon compound or silicon.
  • One or at least two mixtures of nano compounds preferably zinc oxide, active zinc oxide, nano zinc oxide, zinc phosphate, zinc metaphosphate, zinc sulfide, sodium hypophosphite, sodium phosphate, sodium hexametaphosphate, sodium sulfide, a mixture of one or at least two of sodium hydrosulfide;
  • the ultraviolet light absorber is a benzophenone ultraviolet light absorber and/or a benzotriazole ultraviolet light absorber, preferably a benzotriazole ultraviolet light absorber;
  • the ultraviolet light absorber may be 2-(2'-hydroxy-5'-teoctylphenyl)benzotriazole (329), 2-(2'-hydroxy-3', 5' double (a, a- Dimethylbenzyl)phenyl)benzotriazole, 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriene Oxazole or 2,2'-methylenebis(4-tert-octyl-6-benzotriazole phenol).
  • the lubricant is mainly composed of an inner lubricant and an outer lubricant, and the inner lubricant is preferably a silicone type and/or a stearate, and the stearate is preferably a polyol.
  • a stearate such as pentaerythritol stearate
  • a polyethylene wax and/or an amide compound preferably a polyethylene wax and/or an amide compound
  • the lubricant is mainly composed of a silicone type and a modified polyethylene wax
  • the modified polyethylene wax is preferably an oxidized polyethylene wax, an acid modified oxidized polyethylene wax, or an acid modified oxidized polyethylene copolymer.
  • the modified polyethylene wax in the present invention has a molecular weight of from 2,000 to 6,000, preferably from 3,000 to 5,000.
  • the nucleating agent is selected from one or a mixture of at least two of talc, calcium carbonate, silica, organophosphate or aromatic amine; preferably an organophosphate and/or an aromatic amine;
  • the colorant is selected from the group consisting of Clariant Polysynthren series dyes, Sandoplast series dyes, titanium dioxide, zinc sulfide, zinc antimony white or carbon black.
  • Another aspect of the present invention provides a method for preparing a PBT engineering plastic composition for NMT technology, which can modify the PBT resin to improve the toughness, polarity and wettability of the PBT engineering plastic composition. And the adhesion between the PBT engineering plastic composition and the metal material, so that the modified PBT resin composition meets the requirements of the NMT technical process.
  • a method for preparing a PBT engineering plastic composition for NMT technology includes the following steps:
  • the heating temperature of the extruder is as follows: one zone 160-220 ° C, two The area is 210-240 ° C, the three zones are 230-280 ° C, the four zones are 230-280 ° C, the five zones are 230-280 ° C, the six zones are 230-280 ° C, and the heads are 240-270 ° C.
  • the PBT engineering plastic composition of the present invention is preferred for each component, wherein the toughening agent not only increases the toughness and impact strength, but also improves the adhesion of the PBT engineering plastic composition to the metal material. It satisfies the NMT process requirements; at the same time, the content of each component is optimized to further improve the mechanical properties and heat resistance of the PBT engineering plastic composition.
  • Figure 1 is a flow chart of the NMT process
  • FIG. 2 is a process flow diagram of the present invention
  • Figure 3 is a test strip of the nano-molding material of the present invention.
  • Example 1 The PBT engineering plastic composition for NMT technology of the present embodiment comprises the following components in parts by mass:
  • the intrinsic viscosity of PBT is 1.0g/dL
  • the intrinsic viscosity of PET is 0.82g/dL
  • the glass fiber is Europe.
  • toughening agent is an ethylene/methyl acrylate copolymer and a maleic anhydride copolymer, which may be a toughening agent 35BA40 and a toughening agent 4700, both having a mass of 1:1.
  • the above PBT engineering plastic composition preparation method for NMT technology is as follows:
  • Example 2 The PBT engineering plastic composition for NMT technology of the present embodiment comprises the following components in parts by mass:
  • the PBT has an intrinsic viscosity of 1.0 g/dL
  • the intrinsic viscosity of PET is 0.82 g/dL
  • the glass fiber is Owens Corning's 183F
  • the toughening agent is ethylene/methyl acrylate copolymer and Malay.
  • the anhydride copolymer may be a toughening agent 35BA40 and a toughening agent 4700, both having a mass of 1:1.
  • the preparation method of the above PBT engineering plastic composition for NMT technology is as follows:
  • Example 3 The PBT engineering plastic composition for NMT technology of the present embodiment comprises the following components in parts by mass:
  • PBT has an intrinsic viscosity of 1.0g/dL
  • PET has an intrinsic viscosity of 0.82g/dL
  • glass fiber is Owens Corning's 183F
  • the toughening agent is glycidyl methacrylate copolymer and methacrylic acid copolymer.
  • a maleic anhydride copolymer which may be a toughening agent AX8900, a toughening agent 3990 and a toughening agent 8200, wherein the molar ratio of the glycidyl methacrylate functional group to the sum of the carboxyl functional group and the anhydride functional group in the above toughening agent is 1 : 0.6.
  • the preparation method of the PBT engineering plastic composition for NMT technology of this embodiment is the same as that of the first embodiment.
  • Example 4 PBT engineering plastic composition for NMT technology of the present embodiment, by mass Including the following components:
  • the PBT has an intrinsic viscosity of 1.0 g/dL
  • the intrinsic viscosity of PET is 0.82 g/dL
  • the glass fiber is Owens Corning's 183F
  • the toughening agent is glycidyl methacrylate copolymer and horse.
  • the anhydride copolymer may be a toughening agent AX8900 and a toughening agent 8200, and the molar ratio of the glycidyl methacrylate functional group to the anhydride functional group in the above toughening agent is 1:5.
  • the preparation method of the PBT engineering plastic composition for NMT technology of this embodiment is the same as that of the second embodiment.
  • Example 5 The PBT engineering plastic composition for NMT technology of the present embodiment comprises the following components in parts by mass:
  • the intrinsic viscosity of PBT is 1.0 g/dL
  • the intrinsic viscosity of PET is 0.82 g/dL
  • the glass fiber is Owens Corning's 183F
  • the toughening agent is glycidyl methacrylate copolymer
  • the acrylic copolymer and the maleic anhydride copolymer may be a toughening agent PTW, a toughening agent 3990 and a toughening agent 8200, and the sum of the glycidyl methacrylate functional group and the carboxyl functional group and the anhydride functional group in the above toughening agent
  • the molar ratio is 1:2.
  • the preparation method of the PBT engineering plastic composition for NMT technology of this embodiment is the same as that of the second embodiment.
  • the PBT engineering plastic composition for NMT technology of the present embodiment comprises the following components in parts by mass:
  • the intrinsic viscosity of PBT is 1.0 g/dL
  • the intrinsic viscosity of PET is 0.82 g/dL
  • the glass fiber is 183F of Owens Corning.
  • the preparation method in this example is the same as that in the first embodiment.
  • the PBT engineering plastic composition for NMT technology of the present embodiment comprises the following components in parts by mass:
  • the intrinsic viscosity of PBT is 1.0 g/dL
  • the intrinsic viscosity of PET is 0.82 g/dL
  • the glass fiber is Owens Corning's 183F
  • the toughening agent is ethylene/alkyl acrylate copolymer, which is toughened. Agent 35BA40.
  • the preparation method in this example is the same as that in the first embodiment.
  • the drawing force test (ie, the adhesion or bonding force with metal materials) is as follows:
  • the nano-molding material test splice is composed of a metal part and a resin material, and is directly injection molded by an injection molding machine, wherein the size of the metal part (unit Mm) is length * width * thickness is 44 * 18 * 1.5, resin component size (unit mm) is 40 * 10.2 * 3, metal and resin interface bonding size is 53.04mm 2 , as shown in Figure 3, using universal The tensile tester performs the pull-out test, and the resulting data can be used as a measure of the adhesion between the resin and the metal part.
  • the toughening agent 35BA40 and the toughening agent 4700 were added in the first embodiment, and the mechanical properties of the obtained PBT engineering plastic composition were remarkably improved, and the adhesion with the metal material was greatly improved. 232Kgf, meeting NMT process requirements;
  • the toughening agent 35BA40 and the toughening agent 4700 were added to the toughening agent in the first embodiment, respectively, which are an ethylene/methyl acrylate copolymer and a maleic anhydride copolymer, and the obtained PBT engineering plastics were obtained.
  • the mechanical properties of the composition are obviously improved, especially the adhesion with the metal material is greatly improved, reaching 232 Kgf, meeting the NMT process requirements;
  • Example 2 Compared with Example 1, the component content was optimized in Example 2, and the mechanical properties of the PBT engineering plastic composition prepared and the adhesion to the metal material were higher than those of the PBT engineering plastics in Example 1. The performance of the object is further improved;
  • the toughening agent in Example 3 is a glycidyl methacrylate copolymer, a methacrylic acid copolymer and a maleic anhydride copolymer, which may be a toughening agent AX8900, a toughening agent 3990 and an increase.
  • the toughener 8200 wherein the molar ratio of the glycidyl methacrylate functional group to the sum of the carboxyl functional group and the acid anhydride functional group in the toughening agent is 1:0.6, and the molar ratio thereof is in the range of 1:0.5 to 4, thereby obtaining The mechanical properties of the PBT engineering plastic composition and the adhesion to the metal material are further improved;
  • the toughener toughening agent in Example 4 is a glycidyl methacrylate copolymer and a maleic anhydride copolymer, which is a toughening agent AX8900 and a toughening agent 8200, thereby obtained.
  • PBT engineering plastic composition has improved impact strength, mechanical properties and adhesion to metal materials; toughening
  • the molar ratio of the glycidyl methacrylate functional group to the anhydride functional group in the agent is 1:5, and the molar ratio thereof is not in the range of 1:0.5 to 4, and the mechanical properties and properties of the PBT engineering plastic composition thus obtained are
  • the adhesion of metallic materials has increased, but not very significant;
  • the toughening agent toughening agent in Example 5 is a glycidyl methacrylate copolymer, a methacrylic acid copolymer and a maleic anhydride copolymer, which is a toughening agent PTW,
  • the toughening agent 3990 and the toughening agent 8200, the molar ratio of the glycidyl methacrylate functional group to the sum of the carboxyl functional group and the anhydride functional group in the toughening agent is 1:2, and the molar ratio is in the range of 1:1 to 3
  • the PBT engineering plastic composition thus obtained has better mechanical properties and adhesion to metal materials, in particular, tensile strength of 108 MPa, flexural modulus of 8100 MPa, melt flow index of 21.8 g/10 min, and drawing force. Even reached 267Kgf.
  • the NMT process requires a bonding force with metal of 180 Kgf or more.
  • the PBT engineering plastic composition for NMT technology has excellent adhesion to metal materials, and the drawing force even reaches 267 Kgf, which satisfies the NMT process requirements; Mechanical properties and heat resistance, can meet the injection molding process up to 290 ° C; due to the use of colorants can be freely color matching, such as white, black, color and fluorescent colors.
  • the present invention illustrates the detailed process equipment and process flow of the present invention by the above embodiments, but the present invention is not limited to the above detailed process equipment and process flow, that is, does not mean that the present invention must rely on the above detailed process equipment and The process can only be implemented. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种用于NMT技术的PBT工程塑料组合物及其制备方法。该PBT工程塑料组合物,按质量份计,包含以下组分:PBT树脂60份、PET树脂5~60份、玻璃纤维10~60份、增韧剂5~15份、抗氧剂0.3~3份、热稳定剂0.3~2份和润滑剂0.5~3份,其中,所述增韧剂选自不饱和羧酸酯、不饱和羧酸酯共聚物、饱和羧酸乙烯酯、饱和羧酸乙烯酯共聚物、不饱和环氧化合物、不饱和环氧共聚物、不饱和羧酸、不饱和羧酸共聚物、不饱和酸酐或不饱和酸酐共聚物中的至少两种的混合物。本发明的PBT工程塑料组合物与金属材料的粘结力优异,满足NMT工艺需求;同时,具有良好的机械性能和耐热性能。

Description

一种用于NMT技术的PBT工程塑料组合物 技术领域
本发明涉及工程塑料技术领域,尤其涉及一种用于NMT技术的PBT工程塑料组合物。
背景技术
众所周知,金属材料为强极性材料,而PBT树脂、PET树脂为极性较弱的高分子材料。根据相似相容原理,极性相差很大的两种材料之间的结合力很低,加上金属材料极低的收缩率和高分子材料较高的收缩率的差异,金属材料和树脂直接一次成型所得的材料在金属和树脂结合部位界面结合力很低,很容易发生断裂,然而NMT(Nano Molding Technology)技术能很好的解决了这个难题。
NMT(Nano Molding Technology)技术,即是金属与塑料纳米技术结合的纳米成型技术,其工艺流程如图1所示。该技术可将塑胶直接射出至金属表面并达到完美、强固结合,完全可以取代传统的胶合、模内包覆射出、金属铆接等技术,以达成轻、薄、短、小的目的。
NMT技术的核心工艺是塑料和金属材料同时在模具内一体成型。在高温高压模具注塑的瞬间,塑料要完成自身的熔融以及部分熔融体和金属材料接触面的接触、润湿、浸润、铺展、渗透、粘合过程。
NMT技术特征主要有如下3点:
(1)通过嵌件注塑连接金属与树脂:①通过T处理技术在金属表面形成纳米级的凹坑;②使用硬树脂通过注塑进入纳米级的凹坑,使树脂与金属连接在一起;③使开发的新产品的骨架、底盘等具有轻量级的外部金属部件;
(2)适用的金属与树脂材料种类有严格限制:①铝、镁、铜、不锈钢、 钛、铁、镀锌板、黄铜;②铝合金的适应性较强,包括1000到7000系列;③树脂包括聚苯硫醚(PPS)、聚对苯二甲酸丁二醇酯(PBT)与聚对苯二甲酸乙二醇酯(PET)、尼龙(聚酰胺6、聚酰胺66、高温尼龙PPA等);④PPS具有特别强的粘合粘度,高达3000N/cm2
(3)降低环境影响:①NMT技术简化并缩短了制造工艺;②作为胶连镁合金金属,减少了不必要的表面处理工艺;③由于NMT是安全和可回收的技术,对环境影响小。
NMT技术优势突出:树脂与金属件一体成型工艺显著降低产品的整体厚度和高度;所得成品机械结构力学强度优异;材料有更多的外观装饰方法可供选择;塑料和金属之间的结合可靠度远远高于其它工艺。
随着电子电器设备对产品要求的不断提高,运用纳米成型技术制造的产品具有轻量化、气密性好、防水、防潮等优点。其中的典型代表如下:(1)移动通讯器材框体:移动通讯器材框体是一个有高度薄壁化要求的应用领域;采用本技术,可实现不在金属壳体上打孔,只是通过金属嵌件成型就能在金属壳体上形成复杂的树脂凸台,提高框体的设计自由度,此外,它还可以帮助减少金属框体的机械加工工序,起到降低成本的作用;(2)电子产品:在对气密性有高要求的电子产品领域,比接插件、开关、继电器以及半导体封装等,这些部件的金属端子与树脂间的气密性要求高,利用纳米成型技术生产此类产品,可以获得具有优良的防水性、防潮性的金属嵌件成型制品;(3)异种金属粘结:将不易焊接在一起的异种金属采用树脂进行联接,采用金属嵌件成型技术减轻金属部件的重量;或者是部分使用金属以提高树脂部件的机械强度等各种各样的用途。
然而,NMT技术对树脂材料的要求非常严格。由于树脂材料的高收缩率、 低耐热性、与金属的低粘合力等原因使得其限制范围内的树脂也不能直接拿来用于NMT技术。NMT树脂材料的要求包括:1、树脂材料与一体注射成型的金属材料具有优异的结合力(180Kgf以上);2、树脂材料的收缩率要尽可能低,一般要求低于0.3%,最好低于0.25%,以降低和金属材质之间的内应力;3、树脂材料耐热性高,有较好的耐金属降解能力,NMT成型过程的温度高达260℃~310℃,同时是和金属在同一个模具内同时成型的,要求树脂材料有较好的耐热性及耐金属降解能力。
顶尖塑料企业近几年一直重点开发能适用于该技术的树脂材料,聚对苯二甲酸丁二醇酯(polybutylene terephthalate,PBT)具有满足上述要求的良好基础。其为半结晶型热塑性聚酯,分子结构如式II所示:
Figure PCTCN2015078644-appb-000001
PBT结晶速度快、可高速成型、耐热性、电性能、阻燃性能、耐化学药品性、摩擦磨损特性优异、吸水性低、热变形温度高、机械强度高、耐疲劳性和尺寸稳定性好,蠕变小。
但是,PBT作为NMT工程塑料用的缺点包括:(1)缺口冲击强度低;(2)高负荷下热变形温度低,热变形温度(1.82MP)仅为60℃左右;(3)高温下刚性差;(4)与金属材料的粘结力差。NMT技术用材料必须解决上述缺点,其中,解决树脂组合物与金属的粘结力是其中最关键也是最困难的一环。
发明内容
有鉴于此,本发明一方面提供一种用于NMT技术的PBT工程塑料组合物。该用于NMT技术的PBT工程塑料组合物与金属材料粘结力优异,达到220kgf 以上,满足NMT工艺需求;具有良好的机械性能和耐热性能。
本发明采用以下技术方案:
一种用于NMT技术的PBT工程塑料组合物,按质量份计,包含以下组分:
Figure PCTCN2015078644-appb-000002
其中,所述增韧剂选自不饱和羧酸酯、不饱和羧酸酯共聚物、饱和羧酸乙烯酯、饱和羧酸乙烯酯共聚物、不饱和环氧化合物、不饱和环氧共聚物、不饱和羧酸、不饱和羧酸共聚物、不饱和酸酐或不饱和酸酐共聚物中的至少两种的混合物。
PBT为聚对苯二甲酸丁二醇酯,是由二元醇和芳香二元酸在催化剂的作用下经过酯化、缩聚反应制备而得的;PET为聚对苯二甲酸乙二醇酯,是乙二醇和对苯二甲酸在催化剂的作用下经过酯化、缩聚反应制备而得的,加入PET可降低材料的收缩率,提高耐热性。本发明的PBT工程塑料组合物中添加有上述增韧剂,不仅可以增加韧性和抗冲击强度,而且提高了该PBT工程塑料组合物与金属材料的粘结力,满足NMT工艺需求;同时对各组分含量进行优化处理,提高了PBT工程塑料组合物的机械性能和耐热性能。
上述增韧剂可以改善PBT工程塑料组合物的极性和PBT工程塑料组合物对金属表面的润湿性,从而增加与金属材料的粘结力。
适量的润滑剂可以改善玻璃纤维与基体树脂的粘结性,利于玻璃纤维分散,防止玻璃纤维外露;同时,润滑剂能有效控制材料的流动性,有利于充模,进而促使树脂组合物对金属材质的充分浸润和渗透。
优选地,还含有成核剂0.2~3份和/或着色剂0~5份。
成核剂可以通过改变树脂的结晶行为,加快结晶速率、增加结晶密度和促使晶粒尺寸微细化,达到缩短成型周期、提高制品透明性、表面光泽、抗拉强度、刚性、热变形温度、抗冲击性、抗蠕变性等物理机械性能。
优选地,本发明的用于NMT技术的PBT工程塑料组合物,按质量份计,包含以下组分:
Figure PCTCN2015078644-appb-000003
本发明对PBT工程塑料组合物的含量进行进一步优化处理,进一步提高了PBT工程塑料组合物的机械性能、耐热性能和与金属材料的粘结力。
优选地,所述不饱和羧酸酯选自丙烯酸烷酯和/或甲基丙烯酸烷酯;
优选地,所述不饱和羧酸酯共聚物选自乙烯/丙烯酸-2-乙基己酯共聚物、乙烯/丙烯酸正辛酯共聚物、乙烯/丙烯酸2-乙基己酯/丙烯酸正辛酯共聚物、 乙烯/丙烯酸烷基酯共聚物、乙烯/甲基丙烯酸烷基酯共聚物、乙烯/丙烯酸烷基酯/马来酸酐共聚物、乙烯/甲基丙烯酸烷基酯/马来酸酐共聚物、乙烯/丙烯酸烷基酯/丙烯酸共聚物、乙烯/甲基丙烯酸烷基酯/甲基丙烯酸共聚物、乙烯/丙烯酸烷基酯/甲基丙烯酸缩水甘油酯共聚物、乙烯/甲基丙烯酸烷基酯/甲基丙烯酸缩水甘油酯共聚物、乙烯/醋酸乙烯酯/马来酸酐共聚物或乙烯/甲基醋酸乙烯酯/马来酸酐共聚物中的一种或至少两种的混合物;
优选地,所述饱和羧酸乙烯酯选自醋酸乙烯酯和/或丙酸乙烯酯;
优选地,所述饱和羧酸乙烯酯共聚物选自为乙烯/丙烯酸甲酯共聚物(简称EMA)、乙烯/丙烯酸乙酯共聚物(简称EEA)、乙烯/丙烯酸丁酯共聚物(简称EBA)、乙烯/醋酸乙烯酯共聚物或乙烯/丙烯酸2-乙基己酯共聚物(简称AE2H)中的一种或至少两种的混合物;
优选地,所述不饱和环氧化合物为脂肪族的缩水甘油酯和/或缩水甘油醚,优选为乙烯基缩水甘油醚、烯丙基缩水甘油醚、马来酸缩水甘油酯、丙烯酸缩水甘油酯、甲基丙烯酸缩水甘油酯(简称GMA)或丙烯酸缩水甘油酯中的一种或至少两种的混合物,进一步地优选为丙烯酸缩水甘油酯和/或甲基丙烯酸缩水甘油酯。
需要指出的是:本发明共聚物中的“/”表示区别前后单体单元,如乙烯/丙烯酸正辛酯共聚物为乙烯和丙烯酸正辛酯发生共聚反应制得的共聚物,乙烯/丙烯酸烷基酯/马来酸酐共聚物为乙烯、丙烯酸烷基酯和马来酸酐发生共聚反应制得的共聚物;本发明中的不饱和羧酸酯共聚物、饱和羧酸乙烯酯共聚物...等指的是该共聚物中单体单元中至少包括不饱和羧酸酯、饱和羧酸乙烯酯或...等。
甲基丙烯酸缩水甘油酯(GMA)分子中有活泼的乙烯基及有离子性反应的环氧基两个官能团,可以以官能团方式聚合,也能以离子反应方式聚合,所以 可用于乙烯型聚合物及缩聚型聚合物的改性。GMA能以三种方式介入聚合,其一是乙烯聚合时,使环氧基位于支链上,形成“O”型聚合物;其二是环氧开环,使乙烯基位于支链上,形成“V”型聚合物;其三是具活泼氢的化合物与GMA反应,在环氧基上开环成链。利用上述三种方式中的任何一种,在聚合时,使聚合物改质。
优选地,所述不饱和环氧共聚物选自脂肪族的缩水甘油酯共聚物和/或缩水甘油醚共聚物,优选为乙烯基缩水甘油醚共聚物、烯丙基缩水甘油醚共聚物、马来酸缩水甘油酯共聚物、甲基丙烯酸缩水甘油酯共聚物或丙烯酸缩水甘油酯共聚物中的一种或至少两种的混合物,进一步优选为丙烯酸缩水甘油酯共聚物和/或甲基丙烯酸缩水甘油酯共聚物,最优选为乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯三元共聚物共聚物;
甲基丙烯酸缩水甘油酯(GMA)共聚物和PBT、PET树脂具有良好的相容性,同时具有高反应活性、极性和中强酸性,可以在对材料增韧的同时,提高树脂组合物的极性,改变组合物的酸碱性,进一步可增加组合物熔体高温下对金属表面的润湿性,从而增加与金属之间的粘结力;GMA官能团的高反应活性决定它可以在一体化注塑成型的瞬间可能和金属表面纳米孔洞中干燥保留下来的T处理剂形成稳定的化学键,该过程进一步增强了树脂组合物与金属材料接触界面的粘结力;甲基丙烯酸缩水甘油酯(GMA)共聚物是NMT树脂组合物优选的增韧剂,尤其是合适的含有GMA官能团共聚物。
本发明中增韧剂的商品牌号可选自阿科玛的AX8840、AX8900、CX8902、CX8904、35BA40、4700或杜邦的PTW、4710。
优选地,所述不饱和羧酸选自丙烯酸、甲基丙烯酸、马来酸或衣康酸中的一种或至少两种的混合物,优选为丙烯酸和/或甲基丙烯酸;
优选地,所述不饱和羧酸共聚物选自丙烯酸共聚物、甲基丙烯酸共聚物、马来酸共聚物或衣康酸共聚物中的一种或至少两种的混合物,优选为丙烯酸共聚物和/或甲基丙烯酸共聚物;
优选地,所述不饱和酸酐选自丙烯酸酐、甲基丙烯酸酐、马来酸酐、衣康酸酐、四氢邻苯二甲酸酐、琥珀酸酐或丁二酸酐中的一种或至少两种的混合物,优选为丙烯酸酐和/或甲基丙烯酸酐;
优选地,所述不饱和酸酐共聚物选自丙烯酸酐共聚物、甲基丙烯酸酐共聚物、马来酸酐共聚物、衣康酸酐共聚物、四氢邻苯二甲酸酐共聚物、琥珀酸酐共聚物或丁二酸酐共聚物中的一种或至少两种的混合物,优选为丙烯酸酐共聚物、甲基丙烯酸酐共聚物或马来酸酐共聚物。
不饱和酸酐共聚物,尤其是甲基丙烯酸酸酐和马来酸酐是PBT、PET体系增韧剂,和热塑性聚酯具有良好的相容性,同时具有高反应活性、极性和中强酸性,可以在对材料增韧的同时提高树脂组合物的极性,改变组合物的酸碱性,进一步可增加组合物熔体高温下对金属表面的润湿性,从而增加与金属之间的粘结力。酸酐官能团的高反应活性决定它可以在一体化注塑成型的瞬间可能和金属表面纳米孔洞中干燥保留下来的T处理剂形成稳定的化学键,该过程进一步增强了树脂组合物与金属材料接触界面的粘结力。不饱和酸酐共聚物成为NMT树脂组合物优选的增韧剂,尤其是合适的含有酸酐官能团共聚物。
优选地,所述增韧剂中至少含有甲基丙烯酸缩水甘油酯官能团,还含有羧基官能团或酸酐官能团,甲基丙烯酸缩水甘油酯官能团与羧基官能团和酸酐官能团之和的摩尔比例为1∶0.5~4,优选为1∶1~3。
优选地,所述PBT树脂的特性粘数为0.70~1.3g/dl,优选为0.8~1.1g/dl;
优选地,所述PET树脂的特性粘数0.65~1.2g/dl,优选为0.75~1.0g/dl;
所述玻璃纤维为长纤维和/或短切纤维,优选为3~7mm的短切纤维;
挤出造粒后,所述玻璃纤维平均长度为20~500μm,优选为40~350μm,进一步优选为60~280μm;所述玻璃纤维的平均纤维直径为5~15μm,优选为9~15μm,本发明中,平均纤维直径为重均纤维直径。
本发明加入玻璃纤维,提高了耐热性和力学性能(如拉伸强度、弯曲强度、缺口冲击强度),降低了收缩率。因为金属的收缩率很低,而高分子材料(如PBT、PET)的收缩率比金属高很多,但是二者收缩率差异太大的话粘附在一起时内应力很大,本发明可大幅度降低材料的成型收缩率。
优选地,所述玻璃纤维经过硅烷类偶联剂处理;通过硅烷类偶联剂对玻璃纤维处理后(如PPG公司的3786和欧文斯科宁的183F),可以使玻璃纤维更充分的与PBT树脂和PET树脂结合,从而更有利于提高NMT材料的耐高温性能和抗冲击强度。
优选地,所述硅烷类偶联剂的通式为Y(CH2)nSiX3,式中:n为0~3,Y为乙烯基、氨基、环氧基或甲基丙烯酰氧基,X为氯基、甲氧基、乙氧基或乙酰氧基。
Y是能与树脂反应或相容的基团,所以通常以其来称呼偶联剂,如Y为氨基便称为氨基硅烷偶联剂。X是能水解的基团,水解时能与玻璃纤维作用。在玻璃纤维增强塑料中,Y能否与树脂反应时增强效果高低的关键。
优选地,所述硅烷类偶联剂为Y-氯丙基三乙氧基硅烷(如KH550、A1100)、Y-(2,3-环氧丙氧)丙基三甲氧基硅(如KH560)或Y-(甲基丙烯酰氧)丙基三甲基氧硅烷(如KH570)中的一种或至少两种的混合物。
优选地,所述抗氧剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂或硫酯类抗氧剂中的一种或至少两种的混合物;
优选地,所述抗氧剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂或硫酯类抗氧剂的混合物,受阻酚类抗氧剂、亚磷酸酯类抗氧剂和硫酯类抗氧剂的质量比为3∶2∶3;
所述受阻酚类抗氧剂为多元受阻酚类抗氧剂和/或不对称受阻酚类抗氧剂;
优选地,所述受阻酚类抗氧剂为2,2-亚乙基-二(4,6-二-叔-丁基苯酚)、三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)异氰尿酸、二缩三乙二醇双[β-(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯]、四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、1,3,5-三(4-叔丁基-3-羟基-2,6-二甲基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、3-(1,1-二甲基乙基)-β-[3-(1,1-二甲基乙基)-4-羟苯基]-4-羟基-β-甲基苯甲酸-1,2-亚乙基酯、N,N′-双-(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷或3,9-双[1,1-二甲基-2-[(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基]乙基]-2,4,8,10-四氧杂螺[5.5]十一烷中的一种或至少两种的混合物,优选为双十八烷基季戊四醇双亚磷酸酯、4,4′-[1,1′-联苯基]亚基二膦酸-四[2,4-二叔丁苯基]酯、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯、双(2,6-二叔丁基-4-甲基苯基)季戊四醇二磷酸酯或3,9-二(2,4-二枯基苯氧基)-2,4,8,10-四氧杂-3,9-二磷杂螺[5.5]十一烷中的一种或至少两种的混合物;
优选地,所述亚磷酸酯类抗氧剂为亚磷酸三酯、亚磷酸二酯或亚磷酸单酯中的一种或至少两种的混合物;
优选地,所述亚磷酸酯类抗氧剂为亚磷酸苯酯、三(壬基酚)亚磷酸酯、三(2,4-二叔丁基)亚磷酸苯酯、亚磷酸三壬酯、亚磷酸三辛酯、二(2-甲基-4,6-二(1,3-二甲基乙基)苯基)亚磷酸乙酯、亚磷酸一丁基二苯酯、双十八烷基季戊四醇双亚磷酸酯、4,4′-[1,1′-联苯基]亚基二膦酸-四[2,4-二叔丁苯基]酯、双(2,4-二叔 丁基苯基)季戊四醇二亚磷酸酯、双(2,6-二叔丁基-4-甲基苯基)季戊四醇二磷酸酯、4,4′-亚丁基双-(3-甲基-6-叔丁苯基)-四(十三烷基)二亚磷酸酯或3,9-二(2,4-二枯基苯氧基)-2,4,8,10-四氧杂-3,9-二磷杂螺[5.5]十一烷中的一种或至少两种的混合物;
优选地,所述亚磷酸酯类抗氧剂结构式如式I所示:
Figure PCTCN2015078644-appb-000004
其中,式I中R’为烷基和/或芳基;
优选地,R’为C1~C25烷基和/或C6~C12芳基;
优选地,所述硫酯类抗氧剂为硫代二丙酸二月桂酯、硫代二丙酸双十八酯、硫代二丙酸二(十四)酯或季戊四醇类十二硫代丙酯中的一种或至少两种的混合物。
优选地,所述热稳定剂由金属化合物和紫外光吸收剂组成;
优选地,所述金属化合物为钠的化合物、钠的纳米化合物、钙的化合物、钙的纳米化合物、钡的化合物、钡的纳米化合物、锌的化合物、锌的纳米化合物、硅的化合物或硅的纳米化合物中的一种或至少两种混合物,优选为氧化锌、活性氧化锌、纳米氧化锌、磷酸锌、偏磷酸锌、硫化锌、次磷酸钠、磷酸纳、六偏磷酸纳、硫化钠、硫氢化钠等中一种或至少两种的混合物;
优选地,所述紫外光吸收剂为二苯甲酮类紫外光吸收剂和/或苯并三唑类紫外光吸收剂,优选为苯并三唑类紫外光吸收剂;
紫外光吸收剂可以为2-(2′-羟基-5′-特辛基苯基)苯并三唑(329)、2-(2′-羟基-3′,5′双(a,a-二甲基苄基)苯基)苯并三唑、2-(2′-羟基-5′-叔辛基苯基)苯并三 唑或2,2′-亚甲基双(4-叔辛基-6-苯并三唑苯酚)。
优选地,所述润滑剂主要由内润滑剂和外润滑剂组成,所述内润滑剂优选为硅酮类和/或硬脂酸酯类,所述硬脂酸酯类优选为含有多元醇的硬脂酸酯类(如季戊四醇硬脂酸酯),所述外润滑剂优选为聚乙烯蜡和/或酰胺化合物类;
优选地,所述润滑剂主要由硅酮类和改性聚乙烯蜡组成,所述改性聚乙烯蜡优选为氧化聚乙烯蜡、酸性改性氧化聚乙烯蜡、酸性改性氧化聚乙烯共聚物蜡、酯蜡或微粉蜡中的一种或至少两种的混合物。本发明中的改性聚乙烯蜡的分子量为2000~6000,优选3000~5000。
优选地,所述成核剂选自滑石粉、碳酸钙、二氧化硅、有机磷酸盐或芳香胺类中的一种或至少两种的混合物;优选为有机磷酸盐和/或芳香胺类;
优选地,所述着色剂选自科莱恩Polysynthren系列染料、Sandoplast系列染料、钛白粉、硫化锌、锌钡白或炭黑。
本发明另一方面提供一种用于NMT技术的PBT工程塑料组合物的制备方法,采用该制备方法对PBT树脂进行改性,能够改善PBT工程塑料组合物的韧性、极性和润湿性,及其PBT工程塑料组合物与金属材料之间的粘结力,使得改性后的PBT树脂组合物满足NMT技术工艺的要求。
一种用于NMT技术的PBT工程塑料组合物的制备方法包括以下步骤:
(1)按质量份计,将PBT树脂50~95份、PET树脂5~50份、增韧剂5~15份、抗氧剂0.3~3份、热稳定剂0.3~2份、润滑剂0.5~3份、任选地成核剂0.2~3份以及任选地着色剂0~5份预混合均匀得到混合物;
(2)将所述混合物和玻璃纤维10~60份投入到挤出机中,进行熔融共混和挤出造粒,制得用于NMT技术的PBT工程塑料组合物。
优选地,步骤(2)中,所述挤出机的加热温度如下:一区160~220℃、二 区210~240℃、三区230~280℃、四区230~280℃、五区230~280℃、六区230~280℃和机头240~270℃。
本发明的有益效果:本发明的PBT工程塑料组合物对各组分进行优选,其中增韧剂不仅可以增加韧性和抗冲击强度,而且提高了PBT工程塑料组合物与金属材料的粘结力,满足NMT工艺需求;同时对各组分含量进行优化处理,进一步提高了PBT工程塑料组合物的机械性能和耐热性能。
附图说明
图1为NMT工艺流程图;
图2为本发明的工艺流程图;
图3为本发明的纳米成型材料测试样条。
具体实施方式
下面结合具体实施例来进一步说明本发明的技术方案。
实施例1:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份计,包括以下组分:
Figure PCTCN2015078644-appb-000005
其中,PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧 文斯科宁的183F,增韧剂为乙烯/丙烯酸甲酯共聚物和马来酸酐共聚物,可以为增韧剂35BA40和增韧剂4700,两者质量为1∶1。
上述用于NMT技术的PBT工程塑料组合物制备方法如下:
按质量份计,将PBT树脂60份、PET树脂10份、增韧剂8份、抗氧剂1份、热稳定剂1.1份、聚乙烯蜡0.5份和季戊四醇硬脂酸酯0.3份预混合均匀得到混合物;
将所述混合物和玻璃纤维15份投入到挤出机中,进行熔融共混和挤出造粒,制得用于NMT技术的PBT工程塑料组合物。
实施例2:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份计,包括以下组分:
Figure PCTCN2015078644-appb-000006
其中,本实施例中PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧文斯科宁的183F,增韧剂为乙烯/丙烯酸甲酯共聚物和马来酸酐共聚物,可以为增韧剂35BA40和增韧剂4700,两者质量为1∶1。
上述用于NMT技术的PBT工程塑料组合物的制备方法如下:
按质量份计,将PBT树脂60份、PET树脂16份、韧剂35BA404份、增韧剂47004份、抗氧剂1份、热稳定剂1.1份、聚乙烯蜡1份、季戊四醇硬脂酸酯0.3份和成核剂0.5份预混合均匀得到混合物;
将所述混合物和玻璃纤维20份投入到挤出机中,进行熔融共混和挤出造粒,制得用于NMT技术的PBT工程塑料组合物。
实施例3:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份计,包括以下组分:
Figure PCTCN2015078644-appb-000007
其中,PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧文斯科宁的183F,增韧剂为甲基丙烯酸缩水甘油酯共聚物、甲基丙烯酸共聚物和马来酸酐共聚物,可以为增韧剂AX8900、增韧剂3990和增韧剂8200,上述增韧剂中的甲基丙烯酸缩水甘油酯官能团与羧基官能团和酸酐官能团之和的摩尔比例在1∶0.6。
本实施例用于NMT技术的PBT工程塑料组合物的制备方法与实施例1相同。
实施例4:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份 计,包括以下组分:
Figure PCTCN2015078644-appb-000008
其中,本实施例中PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧文斯科宁的183F,增韧剂为甲基丙烯酸缩水甘油酯共聚物和马来酸酐共聚物,可以为增韧剂AX8900和增韧剂8200,上述增韧剂中的甲基丙烯酸缩水甘油酯官能团与酸酐官能团的摩尔比例在1∶5。
本实施例用于NMT技术的PBT工程塑料组合物的制备方法与实施例2相同。
实施例5:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份计,包括以下组分:
Figure PCTCN2015078644-appb-000009
Figure PCTCN2015078644-appb-000010
其中,本实施例中PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧文斯科宁的183F,增韧剂为甲基丙烯酸缩水甘油酯共聚物、甲基丙烯酸共聚物和马来酸酐共聚物,可以为增韧剂PTW、增韧剂3990和增韧剂8200,上述增韧剂中的甲基丙烯酸缩水甘油酯官能团与羧基官能团和酸酐官能团之和的摩尔比例在1∶2。
本实施例用于NMT技术的PBT工程塑料组合物的制备方法与实施例2相同。
对比例1:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份计,包括以下组分:
Figure PCTCN2015078644-appb-000011
本实施例中PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧文斯科宁的183F。
本实施例中的制备方法与实施例1相同。
对比例2:本实施例的用于NMT技术的PBT工程塑料组合物,按质量份计,包括以下组分:
Figure PCTCN2015078644-appb-000012
本实施例中PBT的特性粘数1.0g/dL,PET的特性粘数0.82g/dL,玻璃纤维为欧文斯科宁的183F,增韧剂为乙烯/丙烯酸烷基酯共聚物,为增韧剂35BA40。
本实施例中的制备方法与实施例1相同。
性能测试:将实施例1~5、对比例1制得的PBT工程塑料组合物进行以下性能测试,结果如下表:
Figure PCTCN2015078644-appb-000013
其中,拉拔力测试(即与金属材料的粘结力或结合力)标准如下:纳米成型材料测试样条由金属部件与树脂材料组成,直接用注塑机注射成型,其中金 属部件的尺寸(单位mm)为长*宽*厚为44*18*1.5,树脂部件的尺寸(单位mm)为40*10.2*3,金属与树脂界面粘合尺寸为53.04mm2,见图3所示,利用万能拉伸试验机进行拉拔力测试,由此得出的数据可以作为评判树脂与金属部件之间粘合力大小。
通过上表可以看出:
与对比例1相比,实施例1中添加有增韧剂35BA40和增韧剂4700,制得的PBT工程塑料组合物的机械性能明显提高,且与金属材料的粘结力得到大幅提升,达到232Kgf,满足NMT工艺要求;
与对比例2相比,实施例1中添加有增韧剂35BA40和增韧剂4700两种增韧剂,分别为乙烯/丙烯酸甲酯共聚物和马来酸酐共聚物,制得的PBT工程塑料组合物的机械性能明显提高,尤其与金属材料的粘结力得到大幅提升,达到232Kgf,满足NMT工艺要求;
与实施例1相比,实施例2中对组分含量进行优化处理,制得的PBT工程塑料组合物的机械性能和与金属材料的粘结力均高于实施例1中的PBT工程塑料组合物,其性能得到进一步提高;
与实施例1相比,实施例3中的增韧剂为甲基丙烯酸缩水甘油酯共聚物、甲基丙烯酸共聚物和马来酸酐共聚物,可以为增韧剂AX8900、增韧剂3990和增韧剂8200,上述增韧剂中的甲基丙烯酸缩水甘油酯官能团与羧基官能团和酸酐官能团之和的摩尔比例在1∶0.6,其摩尔比例在1∶0.5~4范围之内,由此制得的PBT工程塑料组合物的机械性能和与金属材料的粘结力得到进一步提高;
与实施例2相比,实施例4中的增韧剂增韧剂为甲基丙烯酸缩水甘油酯共聚物和马来酸酐共聚物,为增韧剂AX8900和增韧剂8200,由此制得的PBT工程塑料组合物的抗冲击强度、机械性能和与金属材料的粘结力有所提高;增韧 剂中的甲基丙烯酸缩水甘油酯官能团与酸酐官能团的摩尔比例在1∶5,其摩尔比例在不在1∶0.5~4范围之内,由此制得的PBT工程塑料组合物的机械性能和与金属材料的粘结力有所提高,但不是很显著;
与实施例2和实施例4相比,实施例5中的增韧剂增韧剂为甲基丙烯酸缩水甘油酯共聚物、甲基丙烯酸共聚物和马来酸酐共聚物,为增韧剂PTW、增韧剂3990和增韧剂8200,增韧剂中的甲基丙烯酸缩水甘油酯官能团与羧基官能团和酸酐官能团之和的摩尔比例在1∶2,摩尔比例在1∶1~3范围之内,由此制得的PBT工程塑料组合物的机械性能和与金属材料的粘结力更优,特别是拉伸强度达到108Mpa,弯曲模量达到8100MPa,熔融流动指数为21.8g/10min,拉拔力甚至达到267Kgf。
NMT工艺要求与金属的粘结力在180Kgf以上,本发明用于NMT技术的PBT工程塑料组合物与金属材料的粘结力优异,拉拔力甚至达到267Kgf,满足NMT工艺需求;同时具有良好的机械性能和耐热性能,可以满足高达290℃的注塑工艺;由于使用了着色剂可以自由配色,如白色、黑色、彩色和荧光色。
应该注意到并理解,在不脱离后附的权利要求所要求保护的本发明的精神和范围的情况下,能够对上述详细描述的本发明做出各种修改和改进。因此,要求保护的技术方案的范围不受所给出的任何特定示范教导的限制。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种用于NMT技术的PBT工程塑料组合物,其特征在于,按质量份计,包含以下组分:
    Figure PCTCN2015078644-appb-100001
    其中,所述增韧剂选自不饱和羧酸酯、不饱和羧酸酯共聚物、饱和羧酸乙烯酯、饱和羧酸乙烯酯共聚物、不饱和环氧化合物、不饱和环氧共聚物、不饱和羧酸、不饱和羧酸共聚物、不饱和酸酐或不饱和酸酐共聚物中的至少两种的混合物。
  2. 根据权利要求1所述的PBT工程塑料组合物,其特征在于,还含有成核剂0.2~3份和/或着色剂0~5份。
  3. 根据权利要求2所述的PBT工程塑料组合物,其特征在于,按质量份计,包含以下组分:
    Figure PCTCN2015078644-appb-100002
    Figure PCTCN2015078644-appb-100003
  4. 根据权利要求1~3之一所述的PBT工程塑料组合物,其特征在于,所述不饱和羧酸酯选自丙烯酸烷酯和/或甲基丙烯酸烷酯;
    优选地,所述不饱和羧酸酯共聚物选自乙烯/丙烯酸-2-乙基己酯共聚物、乙烯/丙烯酸正辛酯共聚物、乙烯/丙烯酸2-乙基己酯/丙烯酸正辛酯共聚物、乙烯/丙烯酸烷基酯共聚物、乙烯/甲基丙烯酸烷基酯共聚物、乙烯/丙烯酸烷基酯/马来酸酐共聚物、乙烯/甲基丙烯酸烷基酯/马来酸酐共聚物、乙烯/丙烯酸烷基酯/丙烯酸共聚物、乙烯/甲基丙烯酸烷基酯/甲基丙烯酸共聚物、乙烯/丙烯酸烷基酯/甲基丙烯酸缩水甘油酯共聚物、乙烯/甲基丙烯酸烷基酯/甲基丙烯酸缩水甘油酯共聚物、乙烯/醋酸乙烯酯/马来酸酐共聚物或乙烯/甲基醋酸乙烯酯/马来酸酐共聚物中的一种或至少两种的混合物;
    优选地,所述饱和羧酸乙烯酯选自醋酸乙烯酯和/或丙酸乙烯酯;
    优选地,饱和羧酸乙烯酯共聚物选自为乙烯/丙烯酸甲酯共聚物、乙烯/丙烯酸乙酯共聚物、乙烯/丙烯酸丁酯共聚物、乙烯/醋酸乙烯酯共聚物或乙烯/丙烯酸2-乙基己酯共聚物中的一种或至少两种的混合物;
    优选地,所述不饱和环氧化合物为脂肪族的缩水甘油酯和/或缩水甘油醚,优选为乙烯基缩水甘油醚、烯丙基缩水甘油醚、马来酸缩水甘油酯、丙烯酸缩水甘油酯、甲基丙烯酸缩水甘油酯或丙烯酸缩水甘油酯中的一种或至少两种的混合物,进一步地优选为丙烯酸缩水甘油酯和/或甲基丙烯酸缩水甘油酯;
    优选地,所述不饱和环氧共聚物选自脂肪族的缩水甘油酯共聚物和/或缩水 甘油醚共聚物,优选为乙烯基缩水甘油醚共聚物、烯丙基缩水甘油醚共聚物、马来酸缩水甘油酯共聚物、甲基丙烯酸缩水甘油酯共聚物或丙烯酸缩水甘油酯共聚物中的一种或至少两种的混合物,进一步优选为丙烯酸缩水甘油酯共聚物和/或甲基丙烯酸缩水甘油酯共聚物,最优选为乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯三元共聚物共聚物;
    优选地,所述不饱和羧酸选自丙烯酸、甲基丙烯酸、马来酸或衣康酸中的一种或至少两种的混合物,优选为丙烯酸和/或甲基丙烯酸;
    优选地,所述不饱和羧酸共聚物选自丙烯酸共聚物、甲基丙烯酸共聚物、马来酸共聚物或衣康酸共聚物中的一种或至少两种的混合物,优选为丙烯酸共聚物和/或甲基丙烯酸共聚物;
    优选地,所述不饱和酸酐选自丙烯酸酐、甲基丙烯酸酐、马来酸酐、衣康酸酐、四氢邻苯二甲酸酐、琥珀酸酐或丁二酸酐中的一种或至少两种的混合物,优选为丙烯酸酐和/或甲基丙烯酸酐;
    优选地,所述不饱和酸酐共聚物选自丙烯酸酐共聚物、甲基丙烯酸酐共聚物、马来酸酐共聚物、衣康酸酐共聚物、四氢邻苯二甲酸酐共聚物、琥珀酸酐共聚物或丁二酸酐共聚物中的一种或至少两种的混合物,优选为丙烯酸酐共聚物、甲基丙烯酸酐共聚物或马来酸酐共聚物;
    优选地,所述增韧剂中至少含有甲基丙烯酸缩水甘油酯官能团、还含有羧基官能团或酸酐官能团,甲基丙烯酸缩水甘油酯官能团与羧基官能团和酸酐官能团之和的摩尔比例为1∶0.5~4,优选为1∶1~3。
  5. 根据权利要求1~4之一所述的PBT工程塑料组合物,其特征在于,所述PBT树脂的特性粘数为0.70~1.3g/dl,优选为0.8~1.1g/dl;
    优选地,所述PET树脂的特性粘数0.65~1.2g/dl,优选为0.75~1.0g/dl;
    优选地,所述玻璃纤维为长纤维和/或短切纤维,优选为3~7mm的短切纤维;
    优选地,所述玻璃纤维经过硅烷类偶联剂处理;
    优选地,所述硅烷类偶联剂的通式为Y(CH2)nSiX3,式中:n为0~3,Y选自乙烯基、氨基、环氧基或甲基丙烯酰氧基,X为氯基、甲氧基、乙氧基或乙酰氧基;
    优选地,所述硅烷类偶联剂选自Y-氯丙基三乙氧基硅烷、Y-(2,3-环氧丙氧)丙基三甲氧基硅或Y-(甲基丙烯酰氧)丙基三甲基氧硅烷中的一种或至少两种的混合物。
  6. 根据权利要求1~5之一所述的PBT工程塑料组合物,其特征在于,所述抗氧剂选自受阻酚类抗氧剂、亚磷酸酯类抗氧剂或硫酯类抗氧剂中的一种或至少两种的混合物;
    优选地,所述抗氧剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂或硫酯类抗氧剂的混合物,受阻酚类抗氧剂、亚磷酸酯类抗氧剂和硫酯类抗氧剂的质量比为3∶2∶3;
    优选地,所述受阻酚类抗氧剂为多元受阻酚类抗氧剂和/或不对称受阻酚类抗氧剂;
    优选地,所述受阻酚类抗氧剂选自2,2-亚乙基-二(4,6-二-叔-丁基苯酚)、三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)异氰尿酸、二缩三乙二醇双[β-(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯]、四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、1,3,5-三(4-叔丁基-3-羟基-2,6-二甲基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、3-(1,1-二甲基乙基)-β-[3-(1,1-二甲基乙基)-4-羟苯基]-4-羟基- β-甲基苯甲酸-1,2-亚乙基酯、N,N′-双-(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷或3,9-双[1,1-二甲基-2-[(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基]乙基]-2,4,8,10-四氧杂螺[5.5]十一烷中的一种或至少两种的混合物;
    优选地,所述亚磷酸酯类抗氧剂选自亚磷酸三酯、亚磷酸二酯或亚磷酸单酯中的一种或至少两种的混合物;
    优选地,所述亚磷酸酯类抗氧剂选自亚磷酸苯酯、三(壬基酚)亚磷酸酯、三(2,4-二叔丁基)亚磷酸苯酯、亚磷酸三壬酯、亚磷酸三辛酯、二(2-甲基-4,6-二(1,3-二甲基乙基)苯基)亚磷酸乙酯、亚磷酸一丁基二苯酯、双十八烷基季戊四醇双亚磷酸酯、4,4′-[1,1′-联苯基]亚基二膦酸-四[2,4-二叔丁苯基]酯、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯、双(2,6-二叔丁基-4-甲基苯基)季戊四醇二磷酸酯、4,4′-亚丁基双-(3-甲基-6-叔丁苯基)-四(十三烷基)二亚磷酸酯或3,9-二(2,4-二枯基苯氧基)-2,4,8,10-四氧杂-3,9-二磷杂螺[5.5]十一烷中的一种或至少两种的混合物,优选为双十八烷基季戊四醇双亚磷酸酯、4,4′-[1,1′-联苯基]亚基二膦酸-四[2,4-二叔丁苯基]酯、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯、双(2,6-二叔丁基-4-甲基苯基)季戊四醇二磷酸酯或3,9-二(2,4-二枯基苯氧基)-2,4,8,10-四氧杂-3,9-二磷杂螺[5.5]十一烷中的一种或至少两种的混合物;
    优选地,所述亚磷酸酯类抗氧剂结构式如式I所示,式I中R’为烷基和/或芳基;
    Figure PCTCN2015078644-appb-100004
    优选地,R’为C1~C25烷基和/或C6~C12芳基;
    优选地,所述硫酯类抗氧剂选自硫代二丙酸二月桂酯、硫代二丙酸双十八酯、硫代二丙酸二(十四)酯或季戊四醇类十二硫代丙酯中的一种或至少两种的混合物。
  7. 根据权利要求1~6之一所述的PBT工程塑料组合物,其特征在于,所述热稳定剂由金属化合物和紫外光吸收剂组成;
    优选地,所述金属化合物选自钠的化合物、钠的纳米化合物、钙的化合物、钙的纳米化合物、钡的化合物、钡的纳米化合物、锌的化合物、锌的纳米化合物、硅的化合物或硅的纳米化合物中的一种或至少两种混合物,优选为氧化锌、活性氧化锌、纳米氧化锌、磷酸锌、偏磷酸锌、硫化锌、次磷酸钠、磷酸纳、六偏磷酸纳、硫化钠、硫氢化钠等中一种或至少两种的混合物;
    优选地,所述紫外光吸收剂选自二苯甲酮类紫外光吸收剂和/或苯并三唑类紫外光吸收剂,优选为苯并三唑类紫外光吸收剂;
    优选地,所述润滑剂主要由内润滑剂和外润滑剂组成,所述内润滑剂优选为硅酮类和/或硬脂酸酯类,所述硬脂酸酯类优选为含有多元醇的硬脂酸酯类,所述外润滑剂优选为聚乙烯蜡和/或酰胺化合物类;
    优选地,所述润滑剂主要由硅酮类和改性聚乙烯蜡组成,所述改性聚乙烯蜡优选为氧化聚乙烯蜡、酸性改性氧化聚乙烯蜡、酸性改性氧化聚乙烯共聚物蜡、酯蜡或微粉蜡中的一种或至少两种的混合物。
  8. 根据权利要求2~7之一所述的PBT工程塑料组合物,其特征在于,所述成核剂选自滑石粉、碳酸钙、二氧化硅、有机磷酸盐或芳香胺类中的一种或至少两种的混合物;优选为有机磷酸盐和/或芳香胺类;
    优选地,所述着色剂选自科莱恩Polysynthren系列染料、Sandoplast系列染料、钛白粉、硫化锌、锌钡白或炭黑。
  9. 一种如权利要求1~8之一所述用于NMT技术的PBT工程塑料组合物的制备方法,其特征在于,包括以下步骤:
    (1)按质量份计,将PBT树脂60份、PET树脂5~60份、增韧剂5~15份、抗氧剂0.3~3份、热稳定剂0.3~2份、润滑剂0.5~3份、任选地成核剂0.2~3份以及任选地着色剂0~5份预混合均匀得到混合物;
    (2)将所述混合物和玻璃纤维10~60份投入到挤出机中,进行熔融共混和挤出造粒,制得用于NMT技术的PBT工程塑料组合物。
  10. 根据权利要求9所述的制备方法,其特征在于,步骤(2)中,所述挤出机的加热温度如下:一区160~220℃、二区210~240℃、三区230~280℃、四区230~280℃、五区230~280℃、六区230~280℃和机头240~270℃。
PCT/CN2015/078644 2015-05-11 2015-05-11 一种用于nmt技术的pbt工程塑料组合物 WO2016179770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078644 WO2016179770A1 (zh) 2015-05-11 2015-05-11 一种用于nmt技术的pbt工程塑料组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078644 WO2016179770A1 (zh) 2015-05-11 2015-05-11 一种用于nmt技术的pbt工程塑料组合物

Publications (1)

Publication Number Publication Date
WO2016179770A1 true WO2016179770A1 (zh) 2016-11-17

Family

ID=57248374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078644 WO2016179770A1 (zh) 2015-05-11 2015-05-11 一种用于nmt技术的pbt工程塑料组合物

Country Status (1)

Country Link
WO (1) WO2016179770A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359225A (zh) * 2018-02-27 2018-08-03 深圳古威科技有限公司 一种pet塑料的制备方法
WO2019105413A1 (zh) * 2017-12-01 2019-06-06 江南大学 一种聚酯复合材料及其制备方法
CN110148490A (zh) * 2019-05-21 2019-08-20 浙江中大元通特种电缆有限公司 一种抗压防静电煤矿用电缆
CN110615916A (zh) * 2018-06-20 2019-12-27 华东理工大学 复合聚丙烯成核剂及其制备方法与应用
CN111205638A (zh) * 2020-02-25 2020-05-29 合复新材料科技(无锡)有限公司 一种能够注塑成型的类陶瓷材料及其制备方法和在移动通讯装备后盖的应用
CN111875944A (zh) * 2020-08-10 2020-11-03 青岛科技大学 一种复合材料及其制备方法和应用
CN112552658A (zh) * 2020-12-11 2021-03-26 天津金发新材料有限公司 一种用于tpe包胶的聚对苯二甲酸丁二醇酯组合物及其制备方法
CN112608584A (zh) * 2020-11-30 2021-04-06 金发科技股份有限公司 一种高断裂伸长率的pbt改性材料及其制备方法和应用
CN112724575A (zh) * 2020-12-22 2021-04-30 金发科技股份有限公司 一种低内应力耐化学acs/pbat合金材料及其制备方法和应用
CN112745624A (zh) * 2020-12-22 2021-05-04 金发科技股份有限公司 一种成型周期短的acs/pet基合金及其制备方法和应用
CN112940465A (zh) * 2021-02-05 2021-06-11 广州辰东新材料有限公司 一种用于微发泡纳米注塑的pbt树脂组合物
CN113088051A (zh) * 2021-05-25 2021-07-09 浙江普山新材料科技有限公司 一种用于nmt的夜光pbt复合材料及其制备方法
EP3760676A4 (en) * 2018-02-28 2021-11-24 Lotte Chemical Corporation THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT MADE FROM IT
CN115109412A (zh) * 2022-08-12 2022-09-27 山东产研明泉新材料研究院有限公司 一种韧性增强高绝缘聚苯硫醚复合材料及其制备方法
CN115418087A (zh) * 2022-10-18 2022-12-02 江苏松上科技有限公司 一种高力学性能pbt组合物及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423653A (zh) * 2008-12-01 2009-05-06 上海金发科技发展有限公司 具有激光打印标记功能的玻纤增强聚对苯二甲酸丁二醇酯树脂组合物及其制备方法
CN102093677A (zh) * 2009-12-11 2011-06-15 第一毛织株式会社 玻璃纤维增强的聚酯树脂组合物和使用该组合物的模制品
CN102617996A (zh) * 2012-03-19 2012-08-01 深圳市科聚新材料有限公司 一种无卤玻纤增强pbt/pet合金材料及其制备方法
US20120246873A1 (en) * 2011-04-01 2012-10-04 Rama Konduri Hollow articles comprising fiber-filled polyester compositions, methods of manufacture, and uses thereof
CN103342880A (zh) * 2013-07-29 2013-10-09 广东顺德顺炎新材料有限公司 一种高光表面环保无卤阻燃pbt复合材料及其制备方法
CN104341726A (zh) * 2013-07-30 2015-02-11 青岛欣展塑胶有限公司 无卤阻燃增强增韧pbt/pet合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423653A (zh) * 2008-12-01 2009-05-06 上海金发科技发展有限公司 具有激光打印标记功能的玻纤增强聚对苯二甲酸丁二醇酯树脂组合物及其制备方法
CN102093677A (zh) * 2009-12-11 2011-06-15 第一毛织株式会社 玻璃纤维增强的聚酯树脂组合物和使用该组合物的模制品
US20120246873A1 (en) * 2011-04-01 2012-10-04 Rama Konduri Hollow articles comprising fiber-filled polyester compositions, methods of manufacture, and uses thereof
CN102617996A (zh) * 2012-03-19 2012-08-01 深圳市科聚新材料有限公司 一种无卤玻纤增强pbt/pet合金材料及其制备方法
CN103342880A (zh) * 2013-07-29 2013-10-09 广东顺德顺炎新材料有限公司 一种高光表面环保无卤阻燃pbt复合材料及其制备方法
CN104341726A (zh) * 2013-07-30 2015-02-11 青岛欣展塑胶有限公司 无卤阻燃增强增韧pbt/pet合金及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019105413A1 (zh) * 2017-12-01 2019-06-06 江南大学 一种聚酯复合材料及其制备方法
US11591465B2 (en) 2017-12-01 2023-02-28 Jiangnan University Polyester composites and their preparation methods
CN108359225A (zh) * 2018-02-27 2018-08-03 深圳古威科技有限公司 一种pet塑料的制备方法
EP3760676A4 (en) * 2018-02-28 2021-11-24 Lotte Chemical Corporation THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT MADE FROM IT
US11608437B2 (en) 2018-02-28 2023-03-21 Lotte Chemical Corporation Thermoplastic resin composition and molded product manufactured therefrom
CN110615916A (zh) * 2018-06-20 2019-12-27 华东理工大学 复合聚丙烯成核剂及其制备方法与应用
CN110148490A (zh) * 2019-05-21 2019-08-20 浙江中大元通特种电缆有限公司 一种抗压防静电煤矿用电缆
CN111205638A (zh) * 2020-02-25 2020-05-29 合复新材料科技(无锡)有限公司 一种能够注塑成型的类陶瓷材料及其制备方法和在移动通讯装备后盖的应用
CN111205638B (zh) * 2020-02-25 2022-09-23 合复新材料科技(无锡)有限公司 一种能够注塑成型的类陶瓷材料及其制备方法和在移动通讯装备后盖的应用
CN111875944A (zh) * 2020-08-10 2020-11-03 青岛科技大学 一种复合材料及其制备方法和应用
CN112608584B (zh) * 2020-11-30 2022-07-12 金发科技股份有限公司 一种高断裂伸长率的pbt改性材料及其制备方法和应用
CN112608584A (zh) * 2020-11-30 2021-04-06 金发科技股份有限公司 一种高断裂伸长率的pbt改性材料及其制备方法和应用
CN112552658A (zh) * 2020-12-11 2021-03-26 天津金发新材料有限公司 一种用于tpe包胶的聚对苯二甲酸丁二醇酯组合物及其制备方法
CN112745624A (zh) * 2020-12-22 2021-05-04 金发科技股份有限公司 一种成型周期短的acs/pet基合金及其制备方法和应用
CN112724575B (zh) * 2020-12-22 2022-07-12 金发科技股份有限公司 一种低内应力耐化学acs/pbat合金材料及其制备方法和应用
CN112724575A (zh) * 2020-12-22 2021-04-30 金发科技股份有限公司 一种低内应力耐化学acs/pbat合金材料及其制备方法和应用
CN112940465A (zh) * 2021-02-05 2021-06-11 广州辰东新材料有限公司 一种用于微发泡纳米注塑的pbt树脂组合物
CN113088051A (zh) * 2021-05-25 2021-07-09 浙江普山新材料科技有限公司 一种用于nmt的夜光pbt复合材料及其制备方法
CN115109412A (zh) * 2022-08-12 2022-09-27 山东产研明泉新材料研究院有限公司 一种韧性增强高绝缘聚苯硫醚复合材料及其制备方法
CN115418087A (zh) * 2022-10-18 2022-12-02 江苏松上科技有限公司 一种高力学性能pbt组合物及其生产方法

Similar Documents

Publication Publication Date Title
WO2016179770A1 (zh) 一种用于nmt技术的pbt工程塑料组合物
CN104845297B (zh) 一种用于nmt技术的pbt工程塑料组合物
CN104830034B (zh) 一种超支化树脂增韧的pbt工程塑料组合物
WO2016179769A1 (zh) 一种超支化树脂增韧的pbt工程塑料组合物
US9567460B2 (en) Molded reflectors for light-emitting diode assemblies
WO2016179772A1 (zh) 一种超支化树脂增韧的pps工程塑料及其制备方法
CN104845369A (zh) 一种超支化树脂增韧的pps工程塑料及其制备方法
CN104910623B (zh) 一种用于nmt技术的pps工程塑料及其制备方法
US9187621B2 (en) Reflector for light-emitting devices
JP5723022B2 (ja) ポリエステル組成物
KR101474802B1 (ko) 열가소성 수지 조성물
KR101351614B1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
KR20130000540A (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
CN105849190B (zh) 具有优异的耐冲击性和耐光性的热塑性树脂组合物
WO2016179771A1 (zh) 一种用于nmt技术的pps工程塑料及其制备方法
JP5005204B2 (ja) 電子部品を収容するケース、カバー又はハウジング成形品
JP6233228B2 (ja) 光半導体素子封止用熱硬化性エポキシ樹脂組成物及びそれを用いた半導体装置
JP7356252B2 (ja) ポリアリーレンサルファイド樹脂組成物及びインサート成形品
JP2859314B2 (ja) 樹脂組成物
CN113736229B (zh) 一种高后收缩率的pbt/pc组合物及其制备方法和应用
US4968731A (en) Glass fiber reinforced thermoplastic molding compositions based on polyesters and graft polymers
KR20170032672A (ko) 열안정성이 향상된 폴리카보네이트/폴리에스테르 얼로이 수지 조성물
KR101766038B1 (ko) 충격 및 표면 품질이 우수한 고강성 유리섬유 강화 폴리카보네이트 수지 조성물
KR102189455B1 (ko) 내열 치수 안정성이 뛰어난 백색 불투명한 레이저 용접가능한 열가소성 조성물
KR101184845B1 (ko) 열가소성 폴리에스테르 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891473

Country of ref document: EP

Kind code of ref document: A1