WO2016178525A1 - 감전 방지 소자 및 이를 구비하는 전자기기 - Google Patents

감전 방지 소자 및 이를 구비하는 전자기기 Download PDF

Info

Publication number
WO2016178525A1
WO2016178525A1 PCT/KR2016/004740 KR2016004740W WO2016178525A1 WO 2016178525 A1 WO2016178525 A1 WO 2016178525A1 KR 2016004740 W KR2016004740 W KR 2016004740W WO 2016178525 A1 WO2016178525 A1 WO 2016178525A1
Authority
WO
WIPO (PCT)
Prior art keywords
esd protection
electrodes
electric shock
capacitor
insulating
Prior art date
Application number
PCT/KR2016/004740
Other languages
English (en)
French (fr)
Inventor
박인길
노태형
조승훈
허성진
이동석
신민섭
Original Assignee
주식회사 이노칩테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160025953A external-priority patent/KR101871448B1/ko
Application filed by 주식회사 이노칩테크놀로지 filed Critical 주식회사 이노칩테크놀로지
Priority to CN201680004444.XA priority Critical patent/CN107112134B/zh
Publication of WO2016178525A1 publication Critical patent/WO2016178525A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an electric shock prevention device, and more particularly, to an electric shock prevention device capable of preventing the electric shock voltage from being transmitted to a user through a chargeable electronic device such as a smart phone.
  • the use of mobile communication terminal has evolved from the center of voice call to the convenience service of smartphone based life through data communication service.
  • various frequency bands are used according to the multifunctionalization of smart phones and the like. That is, a plurality of functions using different frequency bands, such as wireless LAN, Bluetooth, and GPS, are adopted in one smartphone.
  • the internal circuit density in a limited space is increased. This inevitably causes noise interference between internal circuits.
  • a plurality of circuit protection elements are used. For example, a capacitor, a chip bead, a common mode filter, and the like, which remove noise in different frequency bands, are used.
  • a shock current is generated by charging using a non-genuine charger or a defective charger using an overcurrent protection circuit or a low quality device. Such a shock current is transmitted to the ground terminal of the smartphone, and again from the ground terminal to the metal case, the user in contact with the metal case may be electrocuted.
  • using a smartphone during charging using a non-genuine charger in a smartphone using a metal case may cause an electric shock accident.
  • the present invention provides an electric shock prevention device which is provided between a circuit part inside an electronic device and a metal case to block an electric shock voltage generated from a defective charger.
  • the present invention provides an electric shock prevention device that is not dielectrically broken by an electrostatic discharge (ESD).
  • ESD electrostatic discharge
  • the present invention provides an electric shock prevention device that is implemented in plural on a single chip.
  • An electric shock prevention device includes a laminate in which a plurality of insulating sheets are stacked; A capacitor part in which a plurality of internal electrodes are provided in the laminate with the insulating sheet interposed therebetween; An ESD protection unit formed on at least a portion of the insulating sheet to prevent an ESD voltage; And an external electrode provided outside the stack and connected to the capacitor part and the ESD protection part, wherein the ESD protection part includes an ESD protection layer including a porous insulating material.
  • the external electrodes are formed on the first and second surfaces of the laminate that face each other and are connected to the capacitor portion and the ESD protection portion, and the first external electrodes are perpendicular to the first and second surfaces. And second external electrodes formed on opposing third and fourth surfaces and connected to the ESD protection unit.
  • the ESD protection unit includes a first discharge electrode connected to a first external electrode, a second discharge electrode connected to a second external electrode, and a third discharge electrode connected to a first external electrode, and the first to third discharges.
  • the electrodes are formed to be spaced apart in the vertical direction and to cross each other.
  • first ESD protection layer formed between the first and second discharge electrodes, and a second ESD protection layer formed between the second and third discharge electrodes.
  • At least two capacitor parts and the ESD protection part are provided in the stack.
  • the internal electrodes are stacked in a vertical direction to form one capacitor portion, and are arranged in a horizontal direction to form a plurality of capacitor portions.
  • the capacitances of at least one capacitor portion are different.
  • the capacitance is adjusted by adjusting at least one of the length of the inner electrode, the overlapping area of the inner electrode, and the number of stacks of the inner electrode.
  • At least one of the internal electrodes is formed longer and wider than the discharge electrode.
  • At least one of the internal electrodes is formed in a shape in which at least one region is removed.
  • a plurality of first and third discharge electrodes are spaced apart from each other by a predetermined interval in one direction, and the second discharge electrodes extend in the one direction.
  • At least two ESD protection layers are provided on the same plane, or at least two or more ESD planes are provided on at least two planes.
  • the ESD protection layer further includes at least one of a conductive material and a void.
  • the voids are formed between the insulating materials, or the pores in the insulating material are connected to each other.
  • An electric shock prevention device includes a laminate in which a plurality of insulating sheets are stacked; A capacitor part in which a plurality of internal electrodes are provided in the laminate with the insulating sheet interposed therebetween; An ESD protection unit formed on at least a portion of the insulating sheet to protect the ESD voltage; A first external electrode formed outside the stack and connected to the capacitor part and the ESD protection part; And a second external electrode formed spaced apart from the first external electrode outside the stack and connected to the ESD protection unit, the second external electrode being provided inside the electronic device including a metal case and being transmitted to the user through the metal case. Cut off the electric shock voltage and bypass the ESD voltage.
  • At least two capacitor parts and the ESD protection part are provided in the stack.
  • an electronic device includes an electric shock prevention device provided between a metal case and an internal circuit to block an electric shock voltage and bypass an ESD voltage, wherein the electric shock prevention device includes a plurality of insulating sheets stacked thereon. Laminate; A capacitor part in which a plurality of internal electrodes are provided in the laminate with the insulating sheet interposed therebetween; An ESD protection unit formed on at least a portion of the insulating sheet to protect the ESD voltage; A first external electrode formed outside the stack and connected to the capacitor part and the ESD protection part; And a second external electrode formed spaced apart from the first external electrode outside the stack and connected to the ESD protection unit, wherein the capacitor unit and the ESD protection unit are provided in at least two of the stack.
  • An electric shock prevention device may be provided between a metal case of an electronic device and an internal circuit to block an electric shock voltage transmitted from a ground terminal of the internal circuit. Therefore, it is possible to prevent the electric shock voltage generated in the defective charger from being transmitted to the user through the metal case from the ground terminal inside the electronic device.
  • the electric shock prevention device may include an ESD protection unit, and the ESD protection unit may be made of a porous structure to allow current to flow through the micropores to bypass the incoming ESD to the ground terminal to maintain the insulation state of the device. Therefore, the electric shock voltage can be interrupted continuously and the ESD voltage applied from the outside can be bypassed to the ground terminal.
  • a plurality of electric shock prevention devices may be implemented in one stack.
  • at least one capacitance of the plurality of capacitor units may be differently formed.
  • a single chip can be connected with a plurality of signal lines, thereby reducing the total area occupied by the electric shock prevention device.
  • the internal electrode of the capacitor portion by deforming the internal electrode of the capacitor portion to a floating type (floating type) it is possible to increase the thickness of the insulating sheet more than twice in at least one region between the internal electrodes, so that even if the chip size is smaller, the insulation resistance of the insulating sheet Breakage can be prevented and high voltage withstand voltage characteristics can be maintained.
  • a floating type floating type
  • FIG 1 and 2 are a perspective view and a disassembled perspective view of the electric shock prevention device according to the first embodiment of the present invention.
  • 3 and 4 are cross-sectional views taken along the line A-A 'and line B-B' of FIG.
  • FIG. 5 is an equivalent circuit diagram of an electric shock prevention device according to a first embodiment of the present invention.
  • 6 and 7 are cross-sectional schematic and cross-sectional photograph of the ESD protection layer of the electric shock protection device according to embodiments of the present invention.
  • FIG 8 and 9 are a perspective view and a disassembled perspective view of the electric shock prevention device according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line AA ′ of FIG. 8;
  • FIG. 11 is an equivalent circuit diagram of an electric shock prevention device according to a second embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional view of an electric shock prevention device according to a third embodiment of the present invention.
  • FIG 13, 14 and 15 are plan views schematically illustrating modified examples of an ESD protection unit of an electric shock prevention device according to a third embodiment of the present invention.
  • 16 and 17 are exploded perspective views of the electric shock protection device according to a modification of the embodiments of the present invention.
  • 20 is an equivalent circuit diagram of an electric shock prevention device according to a fourth embodiment of the present invention.
  • 21 to 24 are cross-sectional views of modified examples of a capacitor part of an electric shock prevention device according to embodiments of the present invention.
  • 26 to 28 are cross-sectional views of modified examples of an ESD protection unit of an electric shock prevention device according to embodiments of the present disclosure.
  • FIG. 1 is a perspective view of an electric shock prevention device according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view
  • 3 and 4 are cross-sectional views taken along the A-A 'line and the B-B' line
  • FIG. 5 is an equivalent circuit diagram.
  • an electric shock prevention device is provided in a laminate 1000 in which a plurality of insulating sheets 101 to 109 and 100 are stacked, and in a laminate 1000.
  • an ESD protection unit 3000 including at least one capacitor unit 2000 and 4000 including a plurality of internal electrodes 201 to 204; 200, and at least two discharge electrodes 310 and an ESD protection layer 320. ) May be included.
  • the first and second capacitor parts 2000 and 4000 may be provided in the stack 1000, and the ESD protection part 3000 may be provided therebetween. That is, the ESD protection unit 3000 may be provided between the capacitor units 2000 and 4000.
  • first external electrodes 5100, 5200; 5000 which are formed on two opposite sides of the stack 1000 and connected to the first and second capacitor parts 2000 and 4000 and the ESD protection part 3000, respectively; And second external electrodes 6100, 6200; 6000 formed on two opposite sides of the stack 1000 that are perpendicular to the first external electrode 5000, and connected to the ESD protection unit 3000.
  • Such an electric shock prevention device is provided between the PCB and the metal case inside the electronic device to block the electric shock voltage, bypass the ESD voltage, and can continuously block the electric shock voltage because the insulation is not destroyed by the ESD.
  • the laminate 1000 is formed by stacking a plurality of insulating sheets 101 to 109; 100.
  • the laminate 1000 has a predetermined length in one direction (for example, the X direction) and another direction (for example, the Y direction) orthogonal thereto, and has a predetermined height in the vertical direction (for example, the Z direction). It may be provided in a substantially hexahedral shape having a. That is, when making the formation direction of the 1st external electrode 5000 into the X direction, the direction orthogonal to this may be made into the Y direction, and the vertical direction may be made into the Z direction.
  • the length of the X direction is longer than the length of the Y direction and the length of the Z direction
  • the length of the Y direction may be equal to or different from the length of the Z direction.
  • the length of the Y direction may be shorter or longer than the length of the Z direction.
  • the ratio of the lengths in the X, Y, and Z directions may be 2 to 5: 1: 0.5 to 1. That is, the length of the X direction may be about 2 to 5 times longer than the length of the Y direction based on the length of the Y direction, and the length of the Z direction may be 0.5 to 1 times the length of the Y direction.
  • the length of the X, Y and Z directions can be variously modified according to the internal structure of the electronic device to which the discharge sensing device is connected, the shape of the discharge sensing device, and the like.
  • at least one capacitor part 2000 and 4000 and the ESD protection part 3000 may be provided in the stack 1000.
  • the first capacitor part 2000, the ESD protection part 3000, and the second capacitor part 4000 may be provided in the stacking direction of the sheet 100, that is, the Z direction. That is, the ESD protection unit 3000 may be provided between the capacitor units 2000 and 4000.
  • one capacitor may be provided above or below the ESD protection unit 3000.
  • the plurality of insulating sheets 100 may be dielectric sheets having a predetermined dielectric constant, for example, a dielectric constant of 10 to 20,000.
  • the plurality of insulating sheets 100 may all be formed to have the same thickness, and at least one may be formed thicker or thinner than the others.
  • the insulating sheets constituting the ESD protection unit 3000 that is, the fifth to seventh insulating sheets 104, 105, and 106 are formed of the insulating sheets 102, 103, constituting the first and second capacitor parts 2000, 4000, respectively. 107, 108 and a different thickness, and the insulating sheets 104, 107 formed between the ESD protection unit 3000 and the first and second capacitors 2000, 4000 are different from the other sheets 100.
  • the insulating sheets 104, 105, and 107 forming the ESD protection unit 3000 are formed thicker than the insulating sheets 102, 103, 108, and 109 forming the first and second capacitor parts 2000 and 4000.
  • the insulating sheets 104 and 107 between the ESD protection unit 3000 and the first and second capacitor portions 2000 and 4000 may be formed thicker than other insulating sheets. Therefore, the distance between the two electrodes of the ESD protection unit 3000 may be formed farther than the distance between the electrodes of each of the first and second capacitors 2000 and 4000.
  • the insulating sheets constituting the first and second capacitors 2000 and 4000 may be formed to have the same thickness, and the thicknesses of the insulating sheets constituting the first capacitor 2000 have the thickness of the insulating sheets constituting the second capacitor 4000. It may be thinner or thicker than thickness. Meanwhile, the insulating sheets constituting the first and second capacitors 2000 and 4000 may be formed to have a thickness that does not break upon application of ESD, for example, 15 ⁇ m to 300 ⁇ m. In addition, the sheets 101 and 109 formed on the outermost side of the laminate 1000 may function as a cover layer.
  • the first and ninth sheets 101 and 109 may be provided on the lower and upper portions of the first and second capacitor portions 2000 and 4000, respectively, and may function as a lower cover layer and an upper cover layer to protect internal structures.
  • the lower and upper cover layers, that is, the first and ninth sheets 101 and 109 may be formed thicker than the remaining sheets 102 to 108.
  • the second to eighth sheets 102 to 108 are each formed of one sheet having a first thickness, and the first and ninth sheets 101 and 109 have at least two sheets having a first thickness. It may be stacked and formed to have a second thickness thicker than the first thickness.
  • the first and ninth sheets 101 and 109 may be formed in a different composition from the remaining sheets 102 to 108.
  • the first and ninth sheets 101 and 109 may be provided by stacking a plurality of magnetic sheets, and may have the same thickness.
  • a nonmagnetic sheet for example, a glassy sheet, may be further formed on the outermost, ie, lower and upper surfaces of the first and ninth sheets 101 and 109 made of magnetic sheets.
  • the first capacitor part 2000 may be provided under the ESD protection part 3000, and may include at least two internal electrodes and at least two insulating sheets provided therebetween.
  • the first capacitor part 2000 may include the first and second internal electrodes formed on the second and third insulating sheets 102 and 103 and the second and third insulating sheets 102 and 103, respectively.
  • the first and second internal electrodes 201 and 202 are formed such that one side is connected to the first external electrodes 5100, 5200 and 5000 formed to face each other in the X direction, and the other side is spaced apart from each other.
  • the first internal electrode 201 is formed on the second insulating sheet 102 in a predetermined area, one side of which is connected to the first a external electrode 5100 and the other side of which is spaced apart from the first b external electrode 5200. It is formed to be.
  • the second internal electrode 202 is formed on the third insulating sheet 103 to have a predetermined area, and one side is connected to the first b external electrode 5200 and the other side is spaced apart from the first a external electrode 5100. . That is, the first and second internal electrodes 201 and 202 are connected to any one of the first external electrodes 5000 and are formed to overlap a predetermined region with the third insulating sheet 203 interposed therebetween.
  • the first and second internal electrodes 201 and 202 may be formed with an area of 10% to 85% of the area of each of the second and third insulating sheets 102 and 103, respectively. Further, the first and second internal electrodes 201 and 202 are formed to overlap with an area of 10% to 85% of the area of each of these electrodes. Meanwhile, the first and second internal electrodes 201 and 202 may be formed in various shapes such as a square, a rectangle, a predetermined pattern shape, a spiral shape having a predetermined width and spacing, and the like.
  • the first capacitor part 2000 capacitance is formed between the first and second internal electrodes 201 and 202, and the capacitance is an overlapping area of the first and second internal electrodes 201 and 202, and the insulating sheets ( 102, 103 may be adjusted according to the thickness and the like. Meanwhile, in the first capacitor part 2000, at least one or more inner electrodes may be further formed in addition to the first and second inner electrodes 201 and 202, and at least one insulating sheet on which at least one inner electrode is formed may be further formed. It may be.
  • the ESD protection unit 3000 may include first to third discharge electrodes 311, 312, and 313 formed on the fourth to sixth insulating sheets 104 to 106 and the fourth to sixth insulating sheets 104 to 106, respectively. 310 and the first and second ESD protection layers 320-1 and 320-2; 320 formed in the fifth and sixth insulating sheets 105 and 106. That is, the ESD protection unit 3000 may include at least two ESD protection layers 320 and at least three discharge electrodes 310.
  • the ESD protection layer 320 may be formed to be connected to the discharge electrode 310. That is, the first ESD protection layer 320-1 is formed between the first and second discharge electrodes 311 and 312, and the second ESD protection layer 320-2 is formed of the second and third discharge electrodes 312. , 313 is formed.
  • the first to third discharge electrodes 310 may be selectively connected to the first and second external electrodes 5000 and 6000.
  • the first discharge electrode 311 is formed on the fourth insulating sheet 104 by being connected to the first external electrode 5100 and has a distal end connected to the first ESD protection layer 320-1.
  • the second discharge electrode 312 is formed on the fifth insulating sheet 105 to be connected to the second and second external electrodes 6100 and 6200 and 6000, and a predetermined region is formed on the first and second ESD protection layers 320. -1, 320-2).
  • the second discharge electrode 312 extends between the second external electrodes 6100 and 6200 on the fifth insulating sheet 105, and for example, a lower side of the center portion of the second discharge electrode 312 extends between the first ESD protection layer 320-1. ) And an upper side is connected to the second ESD protection layer 320-2.
  • the third discharge electrode 313 is formed on the sixth sheet 106 by being connected to the first b external electrode 5200 and has an end portion connected to the second ESD protection layer 320-2. That is, the first and third discharge electrodes 311 and 313 are formed in one direction, for example, the X direction, and the second discharge electrode 312 is perpendicular to the first and third discharge electrodes 311 and 313.
  • an area in contact with the ESD protection layer 320 of the first to third discharge electrodes 311, 312, and 313 may be formed to be the same size or larger than the ESD protection layer 320. It can be formed larger than.
  • the first to third discharge electrodes 311, 312, and 313 may be formed to completely overlap each other without leaving the ESD protection layer 320. That is, edges of the first to third discharge electrodes 311, 312, and 313 may form a vertical component in a direction perpendicular to the edge of the ESD protection layer 320.
  • the first to third discharge electrodes 311, 312, and 313 may be formed to overlap the ESD protection layer 320, or may overlap the portion of the ESD protection layer 320.
  • the ESD protection layer 320 may be formed by embedding or at least partially applying an ESD protection material to a through hole formed to penetrate the fifth and sixth insulating sheets 105 and 106, for example, using a printing process. That is, the ESD protection material may be formed to completely fill the through holes, or the ESD protection material may be formed to partially fill the through holes. For example, the ESD protection material may be applied to the side of the through hole and thus maintain a shape in which the through hole penetrates up and down, and the ESD protection material may be embedded only at a predetermined depth of the through hole. In this case, the ESD protection layer 320 may be formed with a plurality of pores, and the plurality of pores may be partially connected to form voids.
  • the ESD protection layer 320 may be formed, for example, in a width of 50 ⁇ m to 500 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m, depending on the size of the device.
  • the ESD protection layer 320 is 50 ⁇ m to 450. It may be formed to a width of 5 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m.
  • the fifth and sixth insulating sheets 105 and 106 may be formed to have a thickness of 5 ⁇ m to 50 ⁇ m.
  • the ESD protection layer 320 may be formed by filling a conductive material and an insulating material.
  • the ESD protection layer 320 may be formed by filling the conductive ceramic and the insulating ceramic. A more detailed description of the ESD protection layer 300 will be described later.
  • the discharge electrode 310 in the region in contact with the ESD protection layer 320 may be formed in the same area as the ESD protection layer 320 or may be formed in a large or small area. That is, the ESD protection layer 320 may be formed to be the same size as the discharge electrode 310 in contact with it, and may be formed to be small or large.
  • the second capacitor part 4000 may be provided above the ESD protection part 3000 and may include at least two or more internal electrodes and at least two or more insulating sheets provided therebetween.
  • the second capacitor part 400 may include third and fourth internal electrodes formed on the seventh and eighth insulating sheets 107 and 108 and the seventh and eighth insulating sheets 107 and 108, respectively. 203, 204.
  • the third internal electrode 203 is formed on the seventh insulating sheet 107 in a predetermined area, and is formed such that one side is connected to the first a external electrode 5100 and the other side is spaced apart from the first b external electrode 5200.
  • the fourth internal electrode 204 is formed on the eighth insulating sheet 108 to have a predetermined area, and one side is connected to the first b external electrode 5200 and the other side is spaced apart from the first a external electrode 5100. That is, the third internal electrode 203 and the fourth internal electrode 204 thereon are connected to any one of the first external electrodes 5000 and are formed to overlap a predetermined area with the eighth insulating sheet 108 interposed therebetween. do. In this case, the third and fourth internal electrodes 203 and 204 may be formed with an area of 10% to 85% of the area of each of the seventh and eighth insulating sheets 107 and 108, respectively.
  • the third and fourth internal electrodes 203 and 204 are formed to overlap with an area of 10% to 85% of the area of each of these electrodes.
  • the third and fourth internal electrodes 203 and 204 may be formed in various shapes such as square, rectangular, predetermined pattern shape, spiral shape having a predetermined width and spacing.
  • capacitances are formed between the third and fourth internal electrodes 203 and 204, respectively, and the capacitances are overlapped areas of the third and fourth internal electrodes 203 and 204, and insulating sheets.
  • the thicknesses 108 and 109 are further formed in addition to the third and fourth internal electrodes 203 and 204, and at least one insulating sheet on which at least one internal electrode is formed is further formed. It may be.
  • At least two or more internal electrodes 201 and 202 of the first capacitor part 2000 and at least two or more internal electrodes 203 and 204 of the second capacitor part 4000 may be formed in the same shape and the same area. The overlap area may also be the same.
  • the insulating sheets 102 and 103 of the first capacitor part 2000 and the insulating sheets 108 and 109 of the second capacitor part 4000 may have the same thickness. Therefore, the first and second capacitor parts 2000 and 4000 may have the same capacitance.
  • the first and second capacitor parts 2000 and 4000 may have different capacitances, and in this case, an area of the inner electrode, an overlapping area of the inner electrode, and a thickness of the insulating sheet may be different.
  • overlap areas of the internal electrodes 201 to 204 of the first and second capacitor parts 2000 and 4000 may be larger than overlap areas of the discharge electrodes 311, 312 and 313 of the ESD protection part 3000.
  • the thickness of each of the internal electrodes 201 to 204 of the first and second capacitor parts 2000 and 4000 may be the same as or different from that of the discharge electrodes 311, 312 and 313 of the ESD protection part 3000. Can be formed.
  • the internal electrodes 201 to 204 of the capacitor parts 2000 and 4000 may be 1.1 to 10 times thicker than the discharge electrodes 311, 312 and 313 of the ESD protection part 3000.
  • the lengths and widths of the internal electrodes 201 to 204 of the capacitor parts 2000 and 4000 may be greater than the lengths and widths of the discharge electrodes 311, 312 and 313 of the ESD protection part 3000.
  • the first external electrodes 5100, 5200; 5000 are provided on two opposite sides of the stack 1000 to the inner electrodes of the first and second capacitor parts 2000 and 4000 and the discharge electrodes of the ESD protection part 3000.
  • the first external electrode 5000 may be formed on two side surfaces of the laminate 1000 facing in the X direction.
  • the first external electrode 5000 may be formed of at least one layer.
  • the first external electrode 5000 may be formed of a metal layer such as Ag, and at least one plating layer may be formed on the metal layer.
  • the first external electrode 5000 may be formed by laminating a copper layer, a Ni plating layer, and a Sn plating layer.
  • the second external electrodes 6100, 6200; 6000 are provided at two opposite sides of the laminate 1000 in which the first external electrode 5000 is not formed, and are connected to the discharge electrodes of the ESD protection unit 3000.
  • the second external electrode 6000 may be formed on two side surfaces of the stack 1000 facing the Y direction, and may be spaced apart from the first external electrode 5000.
  • the second external electrode 6000 is connected to the second discharge electrode 312 of the ESD protection unit 3000.
  • the second external electrode 6000 may be formed of the same structure and the same material as the first external electrode 5000.
  • the second external electrode 6000 may be formed of a metal layer such as Ag, and at least one plating layer may be formed on the metal layer.
  • the second external electrode 6000 may be formed by laminating a copper layer, a Ni plating layer, and a Sn plating layer.
  • the first and second external electrodes 5000 and 6000 may, for example, mix a multi-component glass frit containing 0.5% to 20% of Bi 2 O 3 or SiO 2 with a metal powder. Can be formed.
  • the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the laminate 1000.
  • the glass frit is included in the first and second external electrodes 5000 and 6000, thereby improving adhesion between the first and second external electrodes 5000 and 6000 and the stack 1000, and the internal electrode 200.
  • the contact reaction between the first and second external electrodes 5000 and 6000 may be improved.
  • At least one plating layer may be formed on the upper portion thereof to form the external electrode 5000. That is, the metal layer including glass and at least one plating layer may be formed on the first and second external electrodes 5000 and 6000.
  • the first and second external electrodes 5000 and 6000 may form a layer including a glass frit and at least one of Ag and Cu, and then sequentially form the Ni plating layer and the Sn plating layer through electrolytic or electroless plating. Can be.
  • the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer.
  • the first and second external electrodes 5000 and 6000 may be formed of only at least one plating layer.
  • the first and second external electrodes 5000 and 6000 may be formed by forming at least one plating layer by using at least one plating process without applying paste. Meanwhile, the first and second external electrodes 5000 and 6000 may be formed to have a thickness of 2 ⁇ m to 100 ⁇ m, the Ni plating layer may be formed to have a thickness of 1 ⁇ m to 10 ⁇ m, and the Sn or Sn / Ag plating layer may be formed to have a thickness of 2 ⁇ m to 100 ⁇ m. It may be formed to a thickness of ⁇ m to 10 ⁇ m.
  • the oxide powder may be distributed on the surface of the laminate before forming the first and second external electrodes 5000 and 6000.
  • the oxide powder may be distributed before forming a portion of the first and second external electrodes 5000 and 6000 by a printing process or may be formed before performing the plating process. That is, the oxide powder may be distributed on the surface of the laminate before the plating process when the first and second external electrodes 5000 and 6000 are formed by the plating process.
  • the resistance of the surface of the laminate can be made uniform, whereby the plating process can be performed uniformly. That is, the surface of the laminate may be different from the resistance of other regions of at least one region.
  • the oxide powder can be dispersed on the surface of the laminate.
  • the oxide powder may be distributed on the surface of the laminate as a whole, and may be formed in a film form, or may be partially distributed on the surface of the laminate, and may be formed in a film form in at least one region and partially distributed in at least one region. It may be.
  • the oxide powder may be distributed over the entire surface of the laminate, and the oxide powder may be connected to form an oxide film having a predetermined thickness.
  • the oxide powder may be distributed in the form of islands on the surface of the laminate. That is, the oxide powders may be spaced apart from each other and distributed in an island form on the surface of the laminate, whereby at least a portion of the laminate surface may be exposed.
  • the oxide powder may be formed in a film form in at least one region and distributed in an island form in at least a portion thereof. That is, at least two oxide powders may be connected to each other to form a film in at least one region and may be formed in an island form at least in part. Thus, at least a portion of the laminate surface may be exposed by the oxide powder.
  • the total area of the oxide powder distributed in at least a portion in island form may be, for example, 10% to 80% of the total area of the laminate surface.
  • at least one or more metal oxides may be used as the oxide powder for making the surface resistance of the laminate uniform, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO
  • At least one or more of materials containing 2 , Al 2 O 3 , MnO may be used.
  • FIGS. 6 and 7 are cross-sectional schematic and cross-sectional photographs of the ESD protection layer 320 of the electric shock prevention device of the first embodiment of the present invention.
  • one of the first and second ESD protection layers 320-1 and 320-2 is shown, and the first and second ESD protection layers 320-1 and 320-2 are each one of the following embodiments, respectively.
  • the ESD protection layer 320 may be formed by mixing a conductive material and an insulating material.
  • the ESD protection layer 320 may be formed by mixing a conductive ceramic and an insulating ceramic.
  • the ESD protection layer 320 may be formed by mixing the conductive ceramic and the insulating ceramic in a mixing ratio of 10:90 to 90:10.
  • the mixing ratio of the conductive ceramic and the insulating ceramic can be adjusted to obtain a predetermined discharge start voltage.
  • a plurality of pores (not shown) may be formed in the ESD protection layer 320. The formation of pores makes it easier to bypass the ESD voltage.
  • the ESD protection layer 320 may be formed by stacking a conductive layer and an insulating layer in a predetermined stacked structure. That is, the ESD protection layer 320 may be formed by dividing the conductive layer and the insulating layer at least once and separating the conductive layer and the insulating layer. For example, the ESD protection layer 320 may be formed in a two-layer structure by laminating a conductive layer and an insulating layer, and may be formed in a three-layer structure by laminating the conductive layer, the insulating layer, and the conductive layer. In addition, the conductive layer 320-1 and the insulating layer 320-2 may be repeatedly stacked a plurality of times to form a laminated structure of three or more layers.
  • an ESD having a three-layer structure in which a first conductive layer 320-1a, an insulating layer 320-2, and a second conductive layer 320-1b are stacked is stacked.
  • the protective layer 320 may be formed.
  • 7B is a photograph in which an ESD protection layer having a three-layer structure is formed between internal electrodes between insulating sheets.
  • the conductive layer and the insulating layer are laminated a plurality of times, the uppermost layer and the lowest layer may be a conductive layer.
  • a plurality of pores may be formed in at least a portion of the conductive layer 320-1 and the insulating layer 320-2.
  • a plurality of pores may be formed in the insulating layer 320-2.
  • a void may be further formed in a predetermined region of the ESD protection layer 320.
  • a void may be formed between the layer in which the conductive material and the insulating material are mixed, and a gap may be formed between the conductive layer and the insulating layer. That is, the first mixed layer, the void, and the second mixed layer of the conductive material and the insulating material may be laminated, and the conductive layer, the void, and the insulating layer may be laminated.
  • the ESD protection layer 320 may include the first conductive layer 320-1a, the first insulating layer 320-2a, the void 320-3, and the first conductive layer 320-1a as shown in FIG. 6C.
  • the second insulating layer 320-2b and the second conductive layer 320-1b may be stacked. That is, the insulating layer 320-2 may be formed between the conductive layers 320-1, and the void 320-3 may be formed between the insulating layers 320-2. 7C is a cross-sectional photograph of the ESD protection layer 320 having such a laminated structure. Of course, the conductive layer, the insulating layer, and the pores may be repeatedly stacked to form the ESD protection layer 320. Meanwhile, when the conductive layers 320-1, the insulating layers 320-2, and the voids 320-3 are stacked, all of them may have the same thickness, and at least one of them may be thinner than the others. Can be.
  • the void 320-3 may be thinner than the conductive layer 320-1 and the insulating layer 320-2.
  • the conductive layer 320-1 may be formed to have the same thickness as the insulating layer 320-2, or may be formed thicker or thinner than the insulating layer 320-2.
  • the void 320-3 may be formed by filling the polymer material and then performing a sintering process to remove the polymer material.
  • the first polymer material including conductive ceramics, the second polymer material including insulating ceramics, and the third polymer material not containing conductive ceramics or insulating ceramics are filled in the via hole, and then a firing process is performed.
  • the void 320-3 may be formed without being divided into layers.
  • the insulating layer 320-2 is formed between the conductive layers 320-1a and 320-1b, and a plurality of pores are connected in the insulating layer 320-2 in the vertical direction or the horizontal direction to form a gap 320. -3) can be formed. That is, the gap 320-3 may be formed with a plurality of pores in the insulating layer 320-2.
  • the void 320-3 may be formed in the conductive layer 320-1 by a plurality of pores.
  • the ESD protection layer 320 may be formed by applying an ESD protection material including a porous insulating material and a conductive material to a portion of the hole, and the remaining area is not coated with the ESD protection material, thereby forming voids.
  • an ESD protection material is not formed in the through hole, and a gap may be formed between the two discharge electrodes 311 and 312.
  • the conductive layer 320-1 used in the ESD protection layer 300 may flow a current with a predetermined resistance.
  • the conductive layer 320-1 may be a resistor having several kilowatts to several hundred kilowatts.
  • the conductive layer 320-1 prevents structural destruction of the electric shock prevention device due to the overvoltage by lowering an energy level when an ESD voltage or the like is introduced. That is, the conductive layer 320-1 serves as a heat sink that converts electrical energy into thermal energy.
  • the conductive layer 320-1 may be formed using a conductive ceramic, and the conductive ceramic includes one or more of La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, and Bi. Mixtures can be used.
  • the conductive layer 320-1 may be formed to a thickness of 1 ⁇ m to 50 ⁇ m. That is, when the conductive layer 320-1 is formed of a plurality of layers, the sum of the total thicknesses may be formed to 1 ⁇ m to 50 ⁇ m.
  • the insulating layer 320-2 used in the ESD protection layer 320 may be made of a discharge inducing material, and may function as an electrical barrier having a porous structure.
  • the insulating layer 320-2 may be formed of an insulating ceramic, and the insulating ceramic may use a ferroelectric material having a dielectric constant of about 50 to 500,000.
  • the insulating ceramic can be formed using a mixture containing at least one of dielectric material powder such as MLCC, BaTiO 3 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 .
  • the insulating layer 320-2 may have a porous structure in which a plurality of pores having a size of about 1 nm to about 5 ⁇ m are formed to have a porosity of about 30% to about 80%. That is, the insulating layer 320-2 is formed of an electrically insulating material through which no current flows, but since pores are formed, current may flow through the pores. In this case, as the size of the pores increases or the porosity increases, the discharge start voltage may decrease. On the contrary, when the size of the pores decreases or the porosity decreases, the discharge start voltage may increase. However, when the pore size exceeds 5 ⁇ m or the porosity exceeds 80%, it may be difficult to maintain the shape of the ESD protection layer 320.
  • the pore size and the porosity of the insulating layer 320-2 may be adjusted to adjust the discharge start voltage while maintaining the shape of the ESD protection layer 320.
  • the insulating material may use an insulating ceramic having fine porosity and porosity.
  • the insulating layer 320-2 may have a resistance lower than that of the insulating sheet 100 by micropores, and partial discharge may be performed through the micropores. That is, the micropore is formed in the insulating layer 320-2 and partial discharge is performed through the micropore.
  • the insulating layer 320-2 may be formed to a thickness of 1 ⁇ m to 50 ⁇ m. That is, when the insulating layer 320-2 is formed of a plurality of layers, the sum of the total thicknesses may be formed to be 1 ⁇ m to 50 ⁇ m.
  • At least one capacitor C and two ESD protection parts V1 and V2 may be formed as shown in FIG. 5. That is, the capacitor C may be formed between the internal circuit of the electronic device and the metal case, and the ESD protection units V1 and V2 may be formed between the capacitor C and the ground terminal. In this case, the ground terminal may be provided in an internal circuit.
  • the first external electrode 5000 may be provided between the metal case of the electronic device and the internal circuit, and the second external electrode 6000 may be connected to the ground terminal. That is, the first external electrode 5000 may be connected to two regions between the metal case of the electronic device and the internal circuit, respectively, and the second external electrode 6000 may be connected to the ground terminal.
  • the electric shock voltage transmitted from the ground terminal of the internal circuit to the metal case can be cut off, and the ESD voltage applied to the internal circuit from the outside through the metal case can be bypassed to the ground terminal. That is, in the electric shock prevention device of the present invention, current does not flow between the external electrodes 5000 and 6000 at the rated voltage and the electric shock voltage, and when the ESD voltage is higher than the discharge start voltage, current flows through the ESD protection unit 3000 to prevent the ESD voltage. Bypass to this ground terminal. Meanwhile, the electric shock prevention device may have a discharge start voltage higher than the rated voltage and lower than the ESD voltage.
  • the electric shock prevention device may have a rated voltage of 100 V to 240 V, a discharge start voltage of 310 V or more, and an electric shock voltage may be equal to or higher than an operating voltage of a circuit, and may be generated by external static electricity or the like.
  • the ESD voltage may be higher than the discharge start voltage.
  • communication signals may be transmitted between the external circuit and the internal circuit 20 by the capacitor units 2000 and 4000. That is, a communication signal from the outside, that is, an RF signal may be transmitted to the internal circuit 20 by the capacitor units 2000 and 4000, and the communication signal from the internal circuit 20 is transmitted to the capacitor units 2000 and 4000. Can be delivered to the outside.
  • the electric shock prevention device may block an electric shock voltage applied from the ground terminal of the internal circuit, bypass the ESD voltage applied from the outside to the ground terminal, and transmit a communication signal between the external device and the electronic device.
  • the electric shock prevention device in the electric shock prevention device according to the first embodiment of the present invention, a plurality of insulating sheets having high breakdown voltage characteristics are stacked to form a capacitor, so that an electric shock voltage of, for example, 310V may be introduced into the metal case from an internal circuit caused by a defective charger. Insulation resistance can be maintained so that no leakage current flows, and the ESD protection unit can bypass the ESD voltage when the ESD voltage flows from the metal case to the internal circuit to maintain a high insulation resistance state without damaging the device. That is, the ESD protection unit 3000 is formed of a conductive layer 320-1 for converting electrical energy into thermal energy by lowering an energy level and an insulating layer 320-2 for flowing current through micropores.
  • the circuit may be protected by bypassing an ESD voltage flowing from the outside. Therefore, it is not dielectric breakdown even by the ESD voltage, and thus it is possible to continuously prevent the electric shock voltage generated from the defective charger from being delivered to the user through the metal case of the electronic device provided in the electronic device having the metal case.
  • the general MLCC Multi Layer Capacitance Circuit
  • the ESD protection layer including the conductive layer and the insulating layer is formed between the capacitor parts so that the capacitor part is not destroyed by passing the ESD voltage through the ESD protection layer.
  • FIG. 8 is a perspective view of an electric shock prevention device according to a second embodiment of the present invention
  • FIG. 9 is an exploded perspective view
  • 10 is a cross-sectional view taken along the line A-A '
  • FIG. 11 is an equivalent circuit diagram.
  • an electric shock prevention device may include a laminate 1000 in which a plurality of insulating sheets 101 to 108 and 100 are stacked, and provided in the laminate 1000. At least one capacitor part 2000 and 4000, the ESD protection part 3000 provided in the stack 1000, and the first and second capacitor parts 2000 formed on two opposite sides of the stack 1000. , 4000, and external electrodes 5100, 5200; 5000 connected to the ESD protection unit 3000.
  • at least two internal electrodes and discharge electrode ESD protection layers may be provided on the same plane.
  • the capacitor parts 2000 and 4000 may be formed in the Y direction.
  • four discharge electrodes 310, and an ESD protection layer 320 of the ESD protection part 3000 may be formed in the Y direction.
  • a plurality of electric shock prevention devices may be provided in parallel in the laminate 1000.
  • the same content as the description of the first embodiment of the present invention will be omitted.
  • the laminate 1000 is formed by stacking a plurality of insulating sheets 101 to 108; 100.
  • the laminate 1000 has a predetermined length in one direction (for example, the X direction) and the other direction (for example, the Y direction) orthogonal thereto, and has a predetermined height in the vertical direction (for example, the Z direction). It may be provided in a substantially hexahedral shape having a.
  • the X direction when the direction between two external electrodes 5000 facing each other is called the X direction, the direction orthogonal to the X direction is the Y direction, and the upper direction is the Z direction, the length of the X direction is shorter than the length of the Y direction It may be longer than or equal to the length in the Z direction.
  • the ratio of the lengths in the X, Y and Z directions may be 1: 2 to 5: 0.5 to 1, for example. That is, the length of the Y direction may be about 2 to 5 times longer than the length of the X direction, and the length of the Z direction may be 0.5 to 1 times based on the length of the X direction.
  • at least one capacitor part 2000 and 4000 and the ESD protection part 3000 may be provided in the stack 1000.
  • the first capacitor part 2000, the ESD protection part 3000, and the second capacitor part 4000 may be provided in the stacking direction of the sheet 100, that is, the Z direction. That is, the ESD protection unit 3000 may be provided between the capacitor units 2000 and 4000.
  • one capacitor may be provided above or below the ESD protection unit 3000.
  • the first capacitor part 2000 is provided below the ESD protection part 3000 and includes at least two or more internal electrodes spaced apart in the vertical direction (ie, Z direction) and at least two or more insulating sheets provided therebetween.
  • the first capacitor part 2000 may include the first and second internal electrodes formed on the second and third insulating sheets 102 and 103 and the second and third insulating sheets 102 and 103, respectively.
  • 201, 202 In this case, each of the first and second internal electrodes 201 and 202 may be provided in at least two directions in one direction, that is, in the Y direction.
  • first internal electrodes 201a, 201b, 201c, 201d; 201 are formed spaced apart from each other in the Y direction, and four first internal electrodes 201a, 201b, 201c, 201d; 201 are formed. It is formed extending in the X direction, one side is connected to the plurality of external electrodes (5110 to 5140; 5100), respectively, and the other side is formed to be spaced apart from the plurality of external electrodes (5210 to 5240; 5200).
  • second internal electrodes 202a, 202b, 202c, and 202d may be spaced apart from each other in the Y direction by, for example, four, and extend in the Y direction so that one side of the second internal electrodes 5210 to 5240 is formed. Connected to each other and the other side is formed spaced apart from the plurality of external electrodes (5110 to 5140). That is, each of the plurality of first and second internal electrodes 201 and 202 formed to be spaced apart in the horizontal direction is connected to one of the external electrodes 5100 and 5200, respectively, and is provided with the third insulating sheet 203 interposed therebetween. The regions are formed to overlap.
  • the sum of the areas of the plurality of first and second internal electrodes 201 and 202 may be 10% to 85% of the area of each of the second and third insulating sheets 102 and 103, respectively.
  • the plurality of first and second internal electrodes 201 and 202 are respectively formed to overlap with an area of 10% to 85% of the area of each of these electrodes.
  • the ESD protection unit 3000 may include the fourth and fifth insulating sheets 104 and 105 and the first and second discharge electrodes 311, 312 and 310 formed on the fourth and fifth insulating sheets 104 and 105, respectively. And an ESD protection layer 320 formed in the fifth insulating sheet 105. That is, the ESD protection unit 3000 may include two discharge electrodes 311 and 312 and an ESD protection layer 320 provided therebetween.
  • the first and second discharge electrodes 311 and 312 may be formed to be spaced apart in the vertical direction, that is, the Z direction, and may be formed in plurality in the one direction, that is, the Y direction.
  • first discharge electrodes 311a, 311b, 311c, 311d; 311, and four second discharge electrodes 312a, 312b, 313c, 314d, and 312 may be formed spaced apart from each other in the Y direction.
  • the plurality of first and second discharge electrodes 311 and 312 may be connected to the external electrodes 5100 and 5200, respectively. That is, the plurality of first discharge electrodes 311a, 311b, 311c, 311d; 311 have one side connected to the plurality of first external electrodes 5110 to 5140; 5100, and the other side of the plurality of second external electrodes 5210 to 511. 5240; may extend in the X direction to be spaced apart from each other.
  • each of the plurality of second discharge electrodes 312a, 312b, 312c, 312d; and 312 may be connected to the plurality of second external electrodes 5210 to 5240; 5200, and the other side of the plurality of first external electrodes 5110 to 5200. 5140; may extend in the X direction to be spaced apart from each other.
  • each of the plurality of first and second discharge electrodes 311 and 312 may be in contact with ESD protection layers 320a, 320b, 320c, and 320d;
  • regions in contact with the ESD protection layers 320 of the first and second discharge electrodes 311 and 312, respectively, may be formed to be the same size or larger than the ESD protection layer 320.
  • first and second discharge electrodes 311 and 312 may be formed to completely overlap each other without leaving the ESD protection layer 320. That is, edges of the first and second discharge electrodes 311 and 312 may form a vertical component in a vertical direction with the edges of the ESD protection layer 320.
  • the first and second discharge electrodes 311 and 312 may be formed to overlap the ESD protection layer 320, or may overlap the portion of the ESD protection layer 320.
  • the ESD protection layer 320 may be formed by embedding or at least partially applying the ESD protection material using a printing process in a through hole formed to penetrate the fifth insulating sheet 105.
  • the ESD protection material may be formed so that the through-holes are completely embedded, or the ESD protection material may be formed so that some of the through holes are embedded.
  • the ESD protection layer 320 may be formed with a plurality of pores, a plurality of pores may be connected to form a gap.
  • voids may be artificially formed in the ESD protection layer 320.
  • the second capacitor part 4000 is provided above the ESD protection part 3000, and may include at least two or more internal electrodes spaced apart in the vertical direction (ie, Z direction) and at least two or more insulating sheets provided therebetween. Can be.
  • the second capacitor part 4000 may include the sixth and seventh insulating sheets 106 and 107 and the third and fourth internal electrodes formed on the sixth and seventh insulating sheets 106 and 107, respectively. 203, 204.
  • each of the third and fourth internal electrodes 203 and 204 may be provided at least two in one direction, that is, in the Y direction.
  • third internal electrodes 203a, 203b, 203c, and 203d; 203 are formed spaced apart from each other in the Y direction and four third internal electrodes 203a, 203b, 203c, and 203d; It is formed extending in the X direction, one side is connected to the plurality of external electrodes (5110 to 5140; 5100), respectively, and the other side is formed to be spaced apart from the plurality of second external electrodes (5210 to 5240; 5200).
  • four fourth internal electrodes 204a, 204b, 204c, and 204d may be spaced apart from each other in the Y direction, for example, and formed in four, and extend in the Y direction, and one side may be provided with a plurality of external electrodes 5210 to 5240; 5200. Each other is connected and the other side is formed to be spaced apart from the plurality of external electrodes (5110 to 5140; 5100). That is, each of the plurality of third and fourth internal electrodes 203 and 204 formed to be spaced apart in the horizontal direction is connected to one of the plurality of external electrodes 5100 and 5200, respectively, and the seventh insulating sheet 207 is interposed therebetween. It is formed so as to overlap a predetermined area.
  • the sum of the areas of the third and fourth internal electrodes 203 and 204 may be 10% to 85% of the area of each of the sixth and seventh insulating sheets 106 and 107, respectively.
  • the plurality of third and fourth internal electrodes 203 and 204, respectively, are formed to overlap an area of 10% to 85% of the area of each of these electrodes.
  • At least two or more internal electrodes 201 and 202 of the first capacitor part 2000 and at least two or more internal electrodes 203 and 204 of the second capacitor part 4000 may be formed in the same shape and the same area. The overlap area may also be the same.
  • the insulating sheets 102 and 103 of the first capacitor part 2000 and the insulating sheets 106 and 107 of the second capacitor part 4000 may have the same thickness. Therefore, the first and second capacitor parts 2000 and 4000 may have the same capacitance.
  • the first and second capacitor parts 2000 and 4000 may have different capacitances, and in this case, an area of the inner electrode, an overlapping area of the inner electrode, and a thickness of the insulating sheet may be different.
  • an overlapping area of each of the internal electrodes 201 to 204 of the first and second capacitor parts 2000 and 4000 may be larger than an overlapping area of the discharge electrodes 311 and 312 of the ESD protection part 3000.
  • the thickness of each of the internal electrodes 201 to 204 of the first and second capacitor parts 2000 and 4000 may be the same as or different from that of the discharge electrodes 311 and 312 of the ESD protection part 3000. Can be.
  • the internal electrodes 201 to 204 of the capacitor parts 2000 and 4000 may be formed 1.1 to 10 times thicker than the discharge electrodes 311 and 312 of the ESD protection part 3000.
  • the widths of the internal electrodes 201 to 204 of the capacitor parts 2000 and 4000 may be wider than the widths of the discharge electrodes 311 and 312 of the ESD protection part 3000.
  • the external electrode 5000 may be provided on two side surfaces of the stack 1000 that face each other.
  • the external electrodes 5100 and 5200 may be provided on two opposite sides of the stack 1000 that face each other in the X direction, and the internal electrodes and the ESD protection portions of the first and second capacitor portions 2000 and 4000 may be formed. 3000 discharge electrode.
  • the external electrodes 5100 and 5200 may be formed to correspond to the number of internal electrodes of the first and second capacitor parts 2000 and 4000 and the discharge electrodes of the ESD protection part 3000. For example, four external electrodes 5100 and 5200 may be formed.
  • a plurality of electric shock prevention devices may be implemented in one laminate 1000. That is, at least one capacitor part and the ESD protection part stacked in the vertical direction are arranged in at least two in the horizontal direction, and are connected to at least two or more external electrodes 5000 arranged in the horizontal direction, as shown in FIG. 11.
  • a plurality of electric shock prevention elements including C1 to C4) and ESD protection units V1 to V4 may be provided in parallel. Therefore, two or more electric shock prevention devices may be implemented in one laminate 1000.
  • the plurality of external electrodes 5100 may be connected to a plurality of regions between the internal circuit of the electronic device and the metal case, and the plurality of external electrodes 5200 may be connected to the internal circuit or the ground terminal.
  • an ESD protection material is embedded or coated in a through hole in which the ESD protection layer 320 is formed in the insulating sheet 105.
  • the ESD protection layer 320 may be formed in a predetermined region of the insulating sheet, and the discharge electrode 310 may be formed to contact the insulating sheet, respectively. That is, as shown in the cross-sectional view of the third embodiment of FIG. 12, two discharge electrodes 311 and 312 are formed on the insulating sheet 105 spaced apart by a predetermined interval in the horizontal direction, and between the two discharge electrodes 311 and 312.
  • An ESD protection layer 320 may be formed on the substrate.
  • the ESD protection unit 3000 includes at least two discharge electrodes 311 and 312 spaced apart on the same plane and at least one ESD protection layer 300 provided between the at least two discharge electrodes 311 and 312. can do. That is, two discharge electrodes 311 and 312 may be provided in a direction in which the external electrodes 5000 are formed so as to be spaced apart from each other in a predetermined region of the sheet, for example, in the X direction, and at least in a direction orthogonal thereto. Two or more discharge electrodes (not shown) may be further provided. Accordingly, at least one discharge electrode may be formed in a direction orthogonal to the direction in which the external electrode 5000 is formed, and at least one discharge electrode may be formed to face each other at a predetermined interval.
  • the ESD protection unit 3000 may include first and second discharge electrodes 311 and 312 spaced apart from the fifth insulating sheet 105 and the fifth insulating sheet 105 as shown in FIG. 12. ) And an ESD protection layer 320 formed on the fifth insulating sheet 115.
  • the ESD protection layer 320 may be formed such that at least a portion thereof is connected to the first and second discharge electrodes 311 and 312.
  • the first discharge electrode 311 is formed on the fifth insulating sheet 105 by being connected to the external electrode 5100 and has a distal end connected to the ESD protection layer 320.
  • the second discharge electrode 312 is connected to the external electrode 5200 and is formed to be spaced apart from the first discharge electrode 311 on the fifth insulating sheet 105, and the end portion thereof is connected to the ESD protection layer 320. .
  • the ESD protection layer 320 may be formed to be connected to the first and second discharge electrodes 311 and 312 at a predetermined region, for example, a central portion of the fifth insulating sheet 105. In this case, the ESD protection layer 320 may be formed to partially overlap the first and second discharge electrodes 311 and 312.
  • An ESD protection layer 320 is formed on the exposed fifth insulating sheet 105 between the first and second discharge electrodes 311 and 312 to be connected to the side surfaces of the first and second discharge electrodes 311 and 312. It may be.
  • the ESD protection layer 320 may be spaced apart from the first and second discharge electrodes 311 and 312 without being in contact with each other, the ESD protection layer 320 may overlap the first and second discharge electrodes 311 and 312. It is preferred to form 320).
  • FIG. 13 is a schematic top plan view of an ESD protection unit 3000 of an electric shock prevention device according to a third embodiment of the present invention.
  • an ESD protection layer 320 is formed between two spaced apart internal electrodes, that is, the first and second discharge electrodes 311 and 312, and the ESD protection layer 320 is formed.
  • the silver conductive material and insulating material may be mixed and formed.
  • the first conductive layer 320-1a, the insulating layer 320-2, and the second conductive layer 320-1b are formed in a horizontal direction to form a triple structure.
  • ESD protection layer 320 may be formed. That is, the first and second conductive layers 320-1a and 320-1b are formed to contact the first and second discharge electrodes 311 and 312, respectively, and the first and second conductive layers 320-1a are respectively formed. , 320-1b) and an insulating layer 320-2 may be formed to be connected to them.
  • the ESD protection layer 320 may be formed by using the conductive layer 320-1 and the insulating layer 320-2 at least once in the planar direction.
  • the ESD protection layer 320 may be formed in a double structure using the conductive layer 320-1 and the insulating layer 320-2, and the conductive layer 320-1 and the insulating layer 320 can be formed. -2) and the conductive layer 320-1 may be alternately formed to form a triple structure.
  • the conductive layer 320-1 and the insulating layer 320-2 may be alternately provided a plurality of times to form a structure having a triple structure or more.
  • a plurality of pores may be formed in at least the insulating layer 320-2.
  • a plurality of pores may also be formed in the conductive layer 320-1.
  • the ESD protection layer 320 may include the first conductive layer 320-1a and the first insulating layer 320 between the first and second discharge electrodes 311 and 312, as shown in FIG. 13C. -2a), the void 320-3, the second insulating layer 320-2b, and the second conductive layer 320-1b may be provided and formed.
  • first and second conductive layers 320-1a and 320-1b are formed to contact the first and second discharge electrodes 301 and 302, respectively, and the first and second conductive layers 320-1a, First and second insulating layers 320-2a and 320-2b are formed between the first and second insulating layers 320-2b, and the gap 320-3 is formed between the first and second insulating layers 320-2a and 320-2b.
  • the conductive layer, the insulating layer, and the gap may be repeatedly provided a plurality of times to form the ESD protection layer 320.
  • the widths of all of them may be the same, and at least one of the widths is different. It may be narrower than.
  • the gap 320-3 may have a smaller width than the conductive layer 320-1 and the insulating layer 320-2.
  • the conductive layer 320-1 may be formed to have the same width as the insulating layer 320-2, and may be formed to be wider or narrower than the insulating layer 320-2.
  • the gap 320-3 may be formed by forming the insulating layer 320-2 so that a predetermined interval is maintained when the insulating layer 320-2 is formed by a printing process.
  • each of the conductive layer 320-1, the insulating layer 320-2, and the gap 320-3 has a width of 30% to 50% of the width between the first and second discharge electrodes 311 and 312. Can be formed. That is, when at least one conductive layer 320-1, the insulating layer 320-2, and the voids 320-3 are formed in the horizontal direction, the conductive layer 320-1, the insulating layer 320-2, and Each of the gaps 320-3 may have a sum of widths of 30% to 50% of a width between the first and second discharge electrodes 311 and 312. Meanwhile, the gap 320-3 may not be divided between the insulating layers 320-2. That is, the void 320-3 may be formed in the insulating layer 320-2, and a plurality of pores in the insulating layer 320-2 may be connected to each other to be formed in a horizontal or vertical direction.
  • the ESD protection layer 320 may be formed only of the voids 320-3. That is, as shown in (d) of FIG. 13, the first and second discharge electrodes 311 and 312 are spaced apart by a predetermined interval so that the gap 320-3 is formed therebetween, and the gap 320-3 is formed. It may also function as the ESD protection layer 320.
  • the ESD protection layer 320 is formed using only the voids 320-3, the ESD protection layer 320 is formed of the conductive layer 320-1, the insulating layer 320-2, or a mixture thereof. In comparison, the width of the ESD protection layer 320 may be narrower.
  • three or more discharge electrodes of the ESD protection unit 3000 may be formed, and at least two ESD protection layers may be formed therebetween. Modifications of the third embodiment of the ESD protection unit 3000 according to the present invention will be described with reference to the plan view of FIG. 14 as follows.
  • At least three discharge electrodes 311, 312, and 313 spaced apart from each other in one direction are formed on the same plane, and an ESD protection unit 3000 is disposed between adjacent discharge electrodes.
  • 320a may be formed, and a second ESD protection layer 320b may be formed between the third and second discharge electrodes 313 and 312.
  • the first and second ESD protection layers 320a and 320b may be formed of the same material or different materials, respectively.
  • the first and second ESD protection layers 320a and 320b may be formed of a mixed material layer of an insulating material and a conductive material, may be formed of a conductive layer, or may be formed of an insulating layer.
  • one of the first and second ESD protection layers 320a and 320b may be formed of a conductive layer, and the other may be formed of an insulating layer.
  • FIG. 14B four discharge electrodes 311, 312, 313, and 314 spaced apart from each other in one direction are formed on the same plane, and an ESD protection layer (between adjacent discharge electrodes) is formed.
  • 320 may be formed. That is, four discharge electrodes 311, 312, 313, and 314 are formed spaced apart in one direction by a predetermined interval, and a first ESD protection layer 320a is formed between the first and third discharge electrodes 311 and 313.
  • the second ESD protection layer 320b is formed between the third and fourth discharge electrodes 313 and 314, and the third ESD protection layer 320c is formed between the fourth and second discharge electrodes 314 and 312. Can be formed.
  • the first to third ESD protection layers 320a, 320b, and 320c may be formed of the same material.
  • the first to third ESD protection layers 320a, 320b, and 320c may be each formed of a mixed material layer of an insulating material and a conductive material, may be formed of a conductive layer, or may be formed of an insulating layer. have.
  • at least one of the first to third ESD protection layers 320a, 320b, and 320c may be formed of different materials.
  • the first and third ESD protection layers 320a and 320c may be formed of a conductive layer
  • the second ESD protection layer 320b may be formed of an insulating layer.
  • the first and third ESD protection layers 320a and 320c may be formed of an insulating layer
  • the second ESD protection layer 320b may be formed of a conductive layer.
  • At least one of the plurality of ESD protection layers 320 may be formed as the void 320-3. That is, as shown in FIG. 14C, four discharge electrodes 311, 312, 313, and 314 are formed to be spaced apart from each other by a predetermined interval in one direction, and between the first and third discharge electrodes 311 and 313.
  • the first ESD protection layer 320a is formed in the gap
  • the void 320-3 is formed as the second ESD protection layer 320b between the third and fourth discharge electrodes 313 and 314, and the fourth and fourth A third ESD protection layer 320c may be formed between the two discharge electrodes 314 and 312.
  • the first and third ESD protection layers 320a and 320c may be formed of the same material.
  • the first and third ESD protection layers 320a and 320c may be formed of a mixed material layer of an insulating material and a conductive material, may be formed of a conductive layer, or may be formed of an insulating layer.
  • the first and third ESD protection layers 320a and 320c may be formed of different materials.
  • one of the first and third ESD protection layers 320a and 320c may be formed of a conductive layer, and the other may be formed of an insulating layer.
  • the electric shock prevention device of the present invention may deform the discharge electrode of the ESD protection unit 3000 in various shapes.
  • distal end portions of the discharge electrodes 311 and 312 facing each other are sharply formed, or as shown in FIG. 15B, discharge electrodes 311 and 312.
  • End portions facing each other may be rounded. That is, at least one region of the discharge electrodes 311 and 312 facing each other may be formed closer than the other regions.
  • the two discharge electrodes 311 and 312 may be formed in various shapes while maintaining the same distance.
  • one discharge electrode 311 is formed to have a predetermined slope from one side to the other side, and the other discharge electrode 312 is formed to have a predetermined slope in a shape opposite thereto.
  • the discharge electrodes 311 and 312 may be formed in at least one concave-convex structure at regular intervals from each other.
  • one discharge electrode 311 has a concave end portion
  • the other discharge electrode 312 has a convex portion inserted into the concave portion. It may be formed.
  • the two inner electrodes are formed in various shapes while maintaining the same distance, thereby increasing the area between the two inner electrodes, thereby increasing the ESD resistance.
  • At least two or more capacitances of the capacitor parts 2000 and 4000 may be different in the horizontal direction. That is, internal electrodes spaced apart at predetermined intervals in the Y direction are stacked in the vertical direction to have a predetermined capacitance, and at least one or more capacitances in the horizontal direction may be different from at least the other.
  • at least one length of the internal electrodes arranged in the horizontal direction of the capacitance units 2000 and 4000 may be different. For example, as illustrated in FIG.
  • At least one of the plurality of first internal electrodes 201a, 201b, 201c, and 201d may have a different length, and the plurality of third internal electrodes 203a, 203b, 203c, and 203d may be different. ) May have a different length.
  • the plurality of third internal electrodes 203a, 203b, 203c, and 203d May have a different length.
  • two first internal electrodes 201b, 201c, which are located at the center are located at the two first internal electrodes 201a, 201d, which are located at the outside. It can be formed short.
  • two third internal electrodes 203b and 203c located at the center of the four third internal electrodes 203a, 203b, 203c and 203d are compared with two third internal electrodes 203a and 203d located at the outside. It can be formed short.
  • the plurality of second and fourth internal electrodes 202 and 204 may have the same length, for example, the first internal electrodes 201a and 201d and the third internal electrodes 203a and 203d. It can be formed in the same length.
  • the first internal electrode having a short length of overlapping area between the first internal electrodes 201a and 201d and the second and fourth internal electrodes 202 and 204 of the third internal electrodes 203a and 203d having a long length are formed. It may be larger than the overlapping area of the second and fourth internal electrodes 202 and 204 of the 201b and 201c and the third internal electrodes 203b and 203d. Accordingly, the first internal electrode having a shorter length of capacitance between the first internal electrodes 201a and 201d and the third internal electrodes 203a and 203d and the second and fourth internal electrodes 202 and 204 having a longer length is formed. The capacitance may be greater than the capacitance of 201b and 201c and the third internal electrodes 203b and 203d and the second and fourth internal electrodes 202 and 204.
  • the capacitance may be adjusted by adding an internal electrode in the vertical direction of the capacitance units 2000 and 4000. That is, as shown in FIG. 17, the plurality of first to fourth internal electrodes 201 to 204 are formed to have the same length and have the same overlapping area, respectively, and have a fifth internal portion below the first internal electrode 201.
  • the electrode 205 may be further formed, and the sixth internal electrode 206 may be further formed on the fourth internal electrode 204.
  • two fifth internal electrodes 205a and 205b may be formed under the four first internal electrodes 201a to 201d so as to overlap the first external electrodes 201a and 201d.
  • two sixth internal electrodes 206a and 206b may be formed on the upper side of the four fourth internal electrodes 204a to 204d so as to overlap the outer fourth internal electrodes 204a and 204d. Therefore, three inner electrodes outside the plurality of inner electrodes arranged in the horizontal direction may be overlapped with each other in the vertical direction, and two inner electrodes in the center may overlap each other. Therefore, in a region where three internal electrodes overlap, a capacitance may be larger than a region where two internal electrodes overlap.
  • FIG. 18 is a perspective view of an electric shock prevention device according to a fourth embodiment of the present invention
  • FIG. 19 is an exploded perspective view
  • FIG. 20 is an equivalent circuit diagram.
  • the fourth embodiment of the present invention combines the first embodiment with the second embodiment of the present invention.
  • an electric shock prevention device may include a laminate 1000 in which a plurality of insulating sheets 101 to 109 and 100 are stacked, and provided in the laminate 1000.
  • the first and second capacitor parts 2000 and 4000 and the ESD protection part are formed on at least two capacitor parts 2000 and 4000, the ESD protection part 3000, and two opposite sides of the stack 1000.
  • the ESD protection unit 3000 is formed on two opposite sides of the first external electrodes 5100 and 5200 connected to the 3000 and the stack 1000 in a direction orthogonal to the first external electrodes 5000. ) May include second external electrodes 6100, 6200; 6000.
  • the ESD protection unit 3000 may include first to third discharge electrodes 311, 312, and 313 formed on the fourth to sixth insulating sheets 104 to 106 and the fourth to sixth insulating sheets 104 to 106, respectively. 310 and the first and second ESD protection layers 320-1 and 320-2; 320 formed in the fifth and sixth insulating sheets 105 and 106. That is, the ESD protection unit 3000 may include at least two ESD protection layers 320 and at least three discharge electrodes 310 in the vertical direction. In addition, at least two ESD protection layers 320 and discharge electrodes 310 may be formed in a horizontal direction.
  • the plurality of first discharge electrodes 311a, 311b, 311c, and 311d and the plurality of third discharge electrodes 313a, 313b, 313c, and 313d are formed in the horizontal direction (that is, the X direction), and the second in the X direction.
  • One discharge electrode 312 may be formed.
  • the plurality of first and third discharge electrodes 311 and 313 are selectively connected to the plurality of first external electrodes 5100 and 5200, respectively, and the second discharge electrode 312 is connected to the second external electrodes 6100 and 6200. It can be connected with. Therefore, as illustrated in FIG. 20, a plurality of electric shock prevention devices including one capacitor C1, C1, C3, and C4 and two ESD protection parts V1 and V2 may be provided in a horizontal direction.
  • the ESD resistance characteristics may be maintained. This, combined with the design of the ESD protection of the electric shock protection device, results in a higher ESD immunity improvement. As a result, if the ESD is not passed to the ESD protection layer of the ESD protection due to the repetitive ESD voltage of the ESD protection, the capacitor part may be damaged, causing dielectric breakdown, and the ESD protection may not be degraded.
  • an ESD voltage load may be generated in the capacitor part for a while at a time between 1 ns and 30 ns of vacancy until the response time of the ESD protection part of the electric shock protection device, thereby causing dielectric breakdown.
  • the capacitor portion in the floating type, it is possible to improve the ESD breakdown characteristic of the capacitor layer, thereby improving the phenomenon in which the insulation resistance is destroyed and the short is generated.
  • an electric shock prevention device may be formed of a laminate 1000 in which a plurality of insulating sheets 101 to 113; 100 are stacked, and within the laminate 1000.
  • the first capacitor part 2000, the ESD protection part 3000, and the second capacitor part 4000 may be provided.
  • the electronic device may further include external electrodes 5100, 5200; 5000 formed on two opposite sides of the stack 1000 and connected to the first and second capacitor parts 2000 and 4000 and the ESD protection part 3000. can do.
  • the first capacitor part 2000 may include a plurality of internal electrodes 201 to 205, and the second capacitor part 4000 may also include a plurality of internal electrodes 208 to 212.
  • the first and second capacitor parts 2000 and 4000 may have the same number, for example, five internal electrodes.
  • an ESD protection unit 3000 including discharge electrodes 311 and 312 and an ESD protection layer 320 provided therebetween is provided between the first and second capacitor units 2000 and 4000.
  • the first and second capacitor parts 2000 and 4000 may be formed in a shape in which at least one internal electrode has at least one region removed.
  • the internal electrode 201 of the first capacitor part 2000 is formed in a shape in which the center part is removed to a predetermined width, for example, and is symmetrical with the ESD protection part 3000 interposed therebetween.
  • the internal electrode 210 of the second capacitor part 4000 provided at the location may also be formed in a shape in which a predetermined region is removed at the same location as the internal electrode 201. Since the internal electrodes 201 and 210 are formed by removing a predetermined region, an overlapping area with the internal electrodes 202 and 209 adjacent thereto is reduced. In this case, two regions may be connected to the first and second external electrodes 5100 and 5200, respectively.
  • the predetermined regions of the internal electrodes 201 and 210 are removed to form a thick insulating sheet 102 and 112 between the internal electrodes 201 and 210 and the adjacent internal electrodes 202 and 209. That is, since two insulating sheets 101 and 102 are provided between the inner electrode 202 and the removed portion of the inner electrode 201, the thickness of the insulating sheet 100 is increased. Therefore, since the thickness of the insulating sheet 100 is increased at least twice in one region between the internal electrodes 200 of the capacitor parts 2000 and 4000, the ESD resistance characteristic may be maintained.
  • a predetermined region of the internal electrodes 201, 203, and 205 of the first capacitor unit 2000 is removed, and the ESD protection unit 3000 is interposed therebetween.
  • predetermined regions of the internal electrodes 206, 208, and 210 of the second capacitor unit 4000 positioned symmetrically may be removed.
  • the internal electrodes 202, 204, 207, and 209 are formed to overlap at least some of the internal electrodes 201, 203, 205, 206, 208, and 210 without being in contact with the external electrode 5000. Can be.
  • the internal electrodes 202, 204, 207, and 209 are formed at the center of the insulating sheet 100 and not formed at the center of the insulating sheet 100, and the internal electrodes 201, 203, 205, 206, 208, It may be formed to overlap with 210.
  • the internal electrodes of the first and second capacitor parts 2000 and 4000 may be removed from the central area as well as the areas spaced a predetermined distance therefrom.
  • the central region of the internal electrodes 201, 203, and 205 of the first capacitor unit 2000 is removed, and the internal electrodes 202 and 204 positioned therebetween are disposed in the center. Removal portions may be formed at both sides of the region spaced apart from each other by a predetermined interval.
  • the second capacitor part 4000 has internal electrodes 206 and 208 at positions symmetrical with the internal electrodes 201, 203 and 205 of the first capacitor part 2000 with the ESD protection part 3000 interposed therebetween.
  • a central region of 210 may be removed, and internal regions 207 and 209 disposed therebetween may have a removal region formed at the same position as internal electrodes 202 and 204 of the first capacitor unit 2000. .
  • At least two removal regions are formed in the central region of the internal electrodes 201, 203, and 205 of the first capacitor unit 2000, and the internal electrodes 202, which are positioned therebetween. 204 may be formed with removal regions on both sides spaced apart from the central region by a predetermined interval.
  • the second capacitor part 4000 has internal electrodes 206 and 208 at positions symmetrical with the internal electrodes 201, 203 and 205 of the first capacitor part 2000 with the ESD protection part 3000 interposed therebetween.
  • At least two removal regions are formed in the central region of the second and second regions 210, and the internal electrodes 207 and 209 disposed therebetween are disposed at the same position as the internal electrodes 202 and 204 of the first capacitor unit 2000. This can be formed.
  • At least one ESD protection layer 300 of the ESD protection unit 3000 may be formed. That is, as shown in FIG. 9, one ESD protection layer 300 may be formed in the X direction, and two or more ESD protection layers 300 may be formed in the X direction as shown in FIGS. 26 to 28. can do. In this case, a plurality of ESD protection layers 300 may be formed in the Y direction. For example, two ESD protection layers 320a and 320b may be formed on the same plane as shown in FIG. 26, and three ESD protection layers 320a, 320b and 320c may also be formed.
  • At least two ESD protection layers 320a, 320b, and 320c may be connected by internal electrodes.
  • four ESD protection layers 320a, 320b, 320c, and 320d may be divided into two, respectively, and as shown in FIG. 28, six ESD protection layers 320a, 320b, 320c, 320d, 320e, and 320f may be formed by being divided up and down by three.
  • the upper ESD protection layers may be connected to each other, and the lower ESD protection layers may be connected to each other.
  • each ESD protection layer 320 may be formed in the same structure or may be formed in a different structure.
  • 21 to 28 illustrate various cases in which the discharge electrode 310 and the ESD protection layer 320 are formed in the vertical direction, the discharge electrode 310 and the ESD protection layer as shown in FIGS. 12 to 15. The same may be applied when the 320 is formed in the horizontal direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

본 발명은 복수의 절연 시트가 적층된 적층체와, 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부와, 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방지하는 ESD 보호부와, 적층체 외부에 마련되며 캐패시터부 및 ESD 보호부와 연결된 외부 전극을 포함하고, ESD 보호부는 다공성의 절연 물질을 포함하는 ESD 보호층을 포함하는 감전 방지 소자 및 이를 구비하는 전자기기를 제시한다.

Description

감전 방지 소자 및 이를 구비하는 전자기기
본 발명은 감전 방지 소자에 관한 것으로, 특히 스마트 폰 등의 충전 가능한 전자기기를 통해 사용자에게 감전 전압이 전달되는 것을 방지할 수 있는 감전 방지 소자에 관한 것이다.
이동통신 단말기의 이용은 과거 음성통화 중심에서 데이터 통신 서비스를 거쳐 스마트폰 기반의 생활편의 서비스로 진화되어 왔다. 또한, 스마트폰 등의 다기능화에 따라 다양한 주파수 대역이 사용되고 있다. 즉, 하나의 스마트폰 내에서 무선 LAN(wireless LAN), 블루투스(bluetooth), GPS 등 다른 주파수 대역을 이용하는 복수의 기능을 채용하게 되었다. 또한, 전자 기기의 고집적화에 따라 한정된 공간에서의 내부 회로 밀도가 높아지게 된다. 그에 따라 내부 회로 사이에 노이즈 간섭이 필연적으로 발생하게 된다. 휴대용 전자 기기의 다양한 주파수의 노이즈를 억제하고, 내부 회로 사이의 노이즈를 억제하기 위해 복수의 회로 보호 소자가 이용되고 있다. 예를 들어, 각각 서로 다른 주파수 대역의 노이즈를 제거하는 콘덴서, 칩 비드, 공통 모드 필터(common mode filter) 등이 이용되고 있다.
한편, 최근들어 스마트폰의 고급스런 이미지와 내구성이 강조되면서 금속 소재를 이용한 단말기의 보급이 증가하고 있다. 즉, 테두리를 금속으로 제작하거나, 전면의 화면 표시부를 제외한 나머지 케이스를 금속으로 제작한 스마트폰의 보급이 증가하고 있다.
그런데, 과전류 보호 회로가 내장되지 않거나 저품질의 소자를 사용한 비정품 충전기 또는 불량 충전기를 이용하여 충전함으로써 쇼크 전류(Shock Current)가 발생된다. 이러한 쇼크 전류는 스마트폰의 접지 단자로 전달되고, 다시 접지 단자로부터 금속 케이스로 전달되어 금속 케이스에 접촉된 사용자가 감전될 수 있다. 결국, 금속 케이스를 이용한 스마트폰에 비정품 충전기를 이용한 충전 중 스마트폰을 이용하면 감전 사고가 발생할 수 있다.
(선행기술문헌)
한국등록특허 제10876206호
본 발명은 전자기기 내부의 회로부와 금속 케이스 사이에 마련되어 불량 충전기로부터 발생되는 감전 전압을 차단할 수 있는 감전 방지 소자를 제공한다.
본 발명은 ESD(ElectroStatic Discharge)에 의해 절연 파괴되지 않는 감전 방지 소자를 제공한다.
본 발명은 단일 칩에 복수 구현되는 감전 방지 소자를 제공한다.
본 발명의 일 양태에 따른 감전 방지 소자는 복수의 절연 시트가 적층된 적층체; 상기 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부; 상기 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방지하는 ESD 보호부; 및 상기 적층체 외부에 마련되며 상기 캐패시터부 및 ESD 보호부와 연결된 외부 전극을 포함하고, 상기 ESD 보호부는 다공성의 절연 물질을 포함하는 ESD 보호층을 포함한다.
상기 외부 전극은 상기 적층체의 서로 대향되는 제 1 및 제 2 면에 형성되며 상기 캐패시터부 및 상기 ESD 보호부와 연결된 제 1 외부 전극과, 상기 상기 제 1 및 제 2 면과 직교하는 방향으로 서로 대향되는 제 3 및 제 4 면에 형성되며 상기 ESD 보호부와 연결된 제 2 외부 전극을 포함한다.
상기 ESD 보호부는 제 1a 외부 전극과 연결된 제 1 방전 전극과, 상기 제 2 외부 전극과 연결된 제 2 방전 전극과, 제 1b 외부 전극과 연결된 제 3 방전 전극을 포함하고, 상기 제 1 내지 제 3 방전 전극이 수직 방향으로 이격되고 서로 교차하도록 형성된다.
상기 제 1 및 제 2 방전 전극 사이에 형성된 제 1 ESD 보호층과, 상기 제 2 및 제 3 방전 전극 사이에 형성된 제 2 ESD 보호층을 포함한다.
상기 캐패시터부 및 상기 ESD 보호부는 상기 적층체 내에 적어도 둘 이상 마련된다.
상기 내부 전극이 수직 방향으로 적층되어 일 캐패시터부를 형성하고, 수평 방향으로 배열되어 복수의 캐패시터부를 형성한다.
적어도 하나의 캐패시터부의 캐패시턴스가 상이하다.
상기 내부 전극의 길이, 내부 전극의 중첩 면적, 내부 전극의 적층 수의 적어도 하나를 조절하여 상기 캐패시턴스를 조절한다.
상기 내부 전극의 적어도 하나는 상기 방전 전극보다 길고 넓게 형성된다.
상기 내부 전극의 적어도 하나가 적어도 일 영역이 제거된 형상으로 형성된다.
상기 제 1 및 제 3 방전 전극이 일 방향으로 소정 간격 이격되어 복수 마련되고, 상기 제 2 방전 전극이 상기 일 방향으로 연장 형성된다.
상기 ESD 보호층은 동일 평면 상에 적어도 둘 이상 마련되거나, 적어도 둘 이상의 평면 상에 적어도 둘 이상 마련된다.
상기 ESD 보호층은 전도성 물질 및 공극의 적어도 하나를 더 포함한다.
상기 공극은 상기 절연성 물질 사이에 형성되거나, 상기 절연성 물질 내의 기공이 연결되어 형성된다.
본 발명의 다른 양태에 따른 감전 방지 소자는 복수의 절연 시트가 적층된 적층체; 상기 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부; 상기 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방호하는 ESD 보호부; 상기 적층체 외부에 형성되고 상기 캐패시터부 및 상기 ESD 보호부와 연결된 제 1 외부 전극; 및 상기 적층체 외부에 상기 제 1 외부 전극과 이격되어 형성되며 상기 ESD 보호부와 연결된 제 2 외부 전극을 포함하고, 금속 케이스를 포함하는 전자기기의 내부에 마련되어 상기 금속 케이스를 통해 사용자에게 전달되는 감전 전압을 차단하고, ESD 전압을 바이패스한다.
상기 캐패시터부 및 상기 ESD 보호부는 상기 적층체 내에 적어도 둘 이상 마련된다.
본 발명의 또다른 양태에 따른 전자기기는 금속 케이스와 내부 회로 사이에 마련되어 감전 전압을 차단하고 ESD 전압을 바이패스시키는 감전 방지 소자를 포함하며, 상기 감전 방지 소자는, 복수의 절연 시트가 적층된 적층체; 상기 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부; 상기 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방호하는 ESD 보호부; 상기 적층체 외부에 형성되고 상기 캐패시터부 및 상기 ESD 보호부와 연결된 제 1 외부 전극; 및 상기 적층체 외부에 상기 제 1 외부 전극과 이격되어 형성되며 상기 ESD 보호부와 연결된 제 2 외부 전극을 포함하고, 상기 캐패시터부 및 상기 ESD 보호부는 상기 적층체 내에 적어도 둘 이상 마련된다.
본 발명의 실시 예들에 따른 감전 방지 소자는 전자기기의 금속 케이스와 내부 회로 사이에 마련되어 내부 회로의 접지 단자로부터 전달되는 감전 전압을 차단할 수 있다. 따라서, 불량 충전기에서 발생된 감전 전압이 전자기기 내부의 접지 단자로부터 금속 케이스를 통해 사용자에게 전달되는 것을 방지할 수 있다. 또한, 감전 방지 소자는 ESD 보호부를 구비하고, ESD 보호부가 다공성 구조로 이루어져 미세 기공을 통해 전류를 흐르게 함으로써 유입되는 ESD를 접지 단자로 바이패스시켜 소자의 절연 상태를 유지할 수 있다. 따라서, 감전 전압을 지속적으로 차단할 수 있고, 외부로부터 인가되는 ESD 전압을 접지 단자로 바이패스시킬 수 있다.
또한, 단일 칩 내에 복수의 캐패시터부와 복수의 ESD 보호부를 형성함으로써 하나의 적층체 내에 복수의 감전 방지 소자를 구현할 수 있다. 그리고, 복수의 캐패시터부의 캐패시턴스를 적어도 하나 이상 다르게 형성할 수 있다. 따라서, 단일 칩을 복수의 신호선과 연결할 수 있고, 그에 따라 감전 방지 소자가 차지하는 전체 면적을 줄일 수 있다.
한편, 캐패시터부의 내부 전극을 플로팅 타입(floating type)으로 변형함으로써 내부 전극 사이의 적어도 일 영역에서 절연 시트의 두께를 2배 이상 증가시킬 수 있고, 그에 따라 칩 사이즈가 작아지더라도 절연 시트의 절연 저항 파괴를 방지할 수 있어 고전압 내압 특성을 유지할 수 있다.
도 1 및 도 2는 본 발명의 제 1 실시 예에 따른 감전 방지 소자의 결합 사시도 및 분리 사시도.
도 3 및 도 4는 도 1의 A-A' 라인 및 B-B' 라인을 따라 절취한 단면도.
도 5는 본 발명의 제 1 실시 예에 따른 감전 방지 소자의 등가 회로도.
도 6 및 도 7은 본 발명의 실시 예들에 따른 감전 방지 소자의 ESD 보호층의 단면 개략도 및 단면 사진.
도 8 및 도 9는 본 발명의 제 2 실시 예에 따른 감전 방지 소자의 결합 사시도 및 분리 사시도.
도 10은 도 8의 A-A' 라인을 따라 절취한 단면도.
도 11은 본 발명의 제 2 실시 예에 따른 감전 방지 소자의 등가 회로도.
도 12는 본 발명의 제 3 실시 예에 따른 감전 방지 소자의 일부 단면도.
도 13, 도 14 및 도 15는 본 발명의 제 3 실시 예에 따른 감전 방지 소자의 ESD 보호부의 변형 예들에 따른 평면 개략도.
도 16 및 도 17은 본 발명의 실시 예들의 변형 예에 따른 감전 보호 소자의 분리 사시도.
도 18 및 도 19는 본 발명의 제 4 실시 예에 따른 감전 방지 소자의 결합 사시도 및 분리 사시도.
도 20은 본 발명의 제 4 실시 예에 따른 감전 방지 소자의 등가 회로도.
도 21 내지 도 24는 본 발명의 실시 예들에 따른 감전 방지 소자의 캐패시터부의 변형 예들에 따른 단면도.
도 26 내지 도 28은 본 발명의 실시 예들에 따른 감전 방지 소자의 ESD 보호부의 변형 예들에 따른 단면도.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 제 1 실시 예에 따른 감전 방지 소자의 사시도이고, 도 2는 분리 사시도이다. 또한, 도 3 및 도 4는 A-A' 라인 및 B-B' 라인을 따라 절취한 단면도이고, 도 5는 등가 회로도이다.
도 1 내지 도 5를 참조하면, 본 발명의 제 1 실시 예에 따른 감전 방지 소자는 복수의 절연 시트(101 내지 109; 100)가 적층된 적층체(1000)와, 적층체(1000) 내에 마련되며 복수의 내부 전극(201 내지 204; 200)을 구비하는 적어도 하나의 캐패시터부(2000, 4000)와, 적어도 둘 이상의 방전 전극(310)과 ESD 보호층(320)을 구비하는 ESD 보호부(3000)를 포함할 수 있다. 예를 들어, 적층체(1000) 내에 제 1 및 제 2 캐패시터부(2000, 4000)가 마련되고, 그 사이에 ESD 보호부(3000)가 마련될 수 있다. 즉, ESD 보호부(3000)는 캐패시터부(2000, 4000) 사이에 마련될 수 있다. 또한, 적층체(1000)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2000, 4000)와 ESD 보호부(3000)와 연결되는 제 1 외부 전극(5100, 5200; 5000)과, 제 1 외부 전극(5000)과 직교하는 방향의 적층체(1000)의 서로 대향하는 두 측면에 형성되어 ESD 보호부(3000)와 연결되는 제 2 외부 전극(6100, 6200; 6000)을 더 포함할 수 있다. 이러한 감전 방지 소자는 전자기기 내부의 PCB와 금속 케이스 사이에 마련되어 감전 전압을 차단하며, ESD 전압을 바이패스 시키며, ESD에 의해 절연이 파괴되지 않아 감전 전압을 지속적으로 차단할 수 있다.
적층체(1000)는 복수의 절연 시트(101 내지 109; 100)가 적층되어 형성된다. 이러한 적층체(1000)는 일 방향(예를 들어 X 방향) 및 이와 직교하는 타 방향(예를 들어 Y 방향)으로 각각 소정이 길이를 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 즉, 제 1 외부 전극(5000)의 형성 방향을 X 방향으로 할 때, 이와 직교하는 방향을 Y 방향으로 하고 수직 방향을 Z 방향으로 할 수 있다. 여기서, X 방향의 길이는 Y 방향의 길이 및 Z 방향의 길이보다 길고, Y 방향의 길이는 Z 방향의 길이와 같거나 다를 수 있다. Y 방향과 Z 방향의 길이가 다를 경우 Y 방향의 길이는 Z 방향의 길이보다 짧거나 길 수 있다. 예를 들어, X, Y 및 Z 방향의 길이의 비는 2∼5:1:0.5∼1일 수 있다. 즉, Y 방향의 길이를 기준으로 X 방향의 길이가 Y 방향의 길이보다 2배 내지 5배 정도 길 수 있고, Z 방향의 길이는 Y 방향의 길이보다 0.5배 내지 1배일 수 있다. 그러나, 이러한 X, Y 및 Z 방향의 길이는 하나의 예로서 방전 감지 소자가 연결되는 전자기기의 내부 구조, 방전 감지 소자의 형상 등에 따라 다양하게 변형 가능하다. 또한, 적층체(1000) 내부에는 적어도 하나의 캐패시터부(2000, 4000)와, ESD 보호부(3000)가 마련될 수 있다. 예를 들어, 제 1 캐패시터부(2000), ESD 보호부(3000) 및 제 2 캐패시터부(4000)가 시트(100)의 적층 방향, 즉 Z 방향으로 마련될 수 있다. 즉, 캐패시터부(2000, 4000) 사이에 ESD 보호부(3000)가 마련될 수 있다. 물론, ESD 보호부(3000)의 상측 또는 하측에 하나의 캐패시터부가 마련될 수도 있다. 복수의 절연 시트(100)는 소정의 유전율, 예를 들어 10∼20000의 유전율을 갖는 유전체 시트일 수 있다. 또한, 복수의 절연 시트(100)는 모두 동일 두께로 형성될 수 있고, 적어도 어느 하나가 다른 것들에 비해 두껍거나 얇게 형성될 수 있다. 즉, ESD 보호부(3000)를 이루는 절연 시트, 즉 제 5 내지 제 7 절연 시트(104, 105, 106)는 제 1 및 제 2 캐패시터부(2000, 4000)를 이루는 절연 시트(102, 103, 107, 108)와 다른 두께로 형성될 수 있고, ESD 보호부(3000)와 제 1 및 제 2 캐패시터(2000, 4000) 사이에 형성된 절연 시트(104, 107)가 다른 시트들(100)과 다른 두께로 형성될 수 있다. 예를 들어, ESD 보호부(3000)를 이루는 절연 시트(104, 105, 107)가 제 1 및 제 2 캐패시터부(2000, 4000)를 이루는 절연 시트(102, 103, 108, 109)보다 두껍게 형성될 수 있고, ESD 보호부(3000)와 제 1 및 제 2 캐패시터부(2000, 4000) 사이의 절연 시트(104, 107)가 다른 절연 시트들에 비해 두껍게 형성될 수 있다. 따라서, ESD 보호부(3000)의 두 전극 사이의 거리는 제 1 및 제 2 캐패시터(2000, 4000) 각각의 전극 사이의 거리보다 멀게 형성될 수 있다. 물론, 제 1 및 제 2 캐패시터(2000, 4000)를 이루는 절연 시트는 동일 두께로 형성될 수 있고, 제 1 캐패시터(2000)를 이루는 절연 시트들의 두께가 제 2 캐패시터(4000)를 이루는 절연 시트들의 두께보다 얇거나 두꺼울 수 있다. 한편, 제 1 및 제 2 캐패시터(2000, 4000)를 이루는 절연 시트는 ESD 인가 시 파괴되지 않는 두께, 예를 들어 15㎛∼300㎛의 두께로 형성될 수 있다. 또한, 적층체(1000)의 최외측에 형성된 시트(101, 109)은 커버층으로 기능할 수 있다. 즉, 제 1 및 제 9 시트(101, 109)는 제 1 및 제 2 캐패시터부(2000, 4000)의 하부 및 상부에 각각 마련되어 내부 구조물들을 보호하는 하부 커버층 및 상부 커버층으로 기능할 수 있다. 여기서, 하부 및 상부 커버층, 즉 제 1 및 제 9 시트(101, 109)는 나머지 시트들(102 내지 108)보다 두껍게 형성될 수 있다. 예를 들어, 제 2 내지 제 8 시트(102 내지 108)가 각각 제 1 두께를 갖는 하나의 시트로 형성되고 제 1 및 제 9 시트(101, 109)는 제 1 두께를 갖는 시트가 적어도 둘 이상 적층되어 제 1 두께보다 두꺼운 제 2 두께를 갖도록 형성될 수 있다. 또한, 제 1 및 제 9 시트(101, 109)는 나머지 시트들(102 내지 108)과는 다른 조성으로 형성될 수 있다. 예를 들어, 제 1 및 제 9 시트(101, 109)는 자성체 시트가 복수 적층되어 마련될 수 있으며, 동일 두께로 형성될 수 있다. 여기서, 자성체 시트로 이루어진 제 1 및 제 9 시트(101, 109)의 최외곽, 즉 하부 및 상부 표면에 비자성 시트, 예를 들어 유리질의 시트가 더 형성될 수 있다.
제 1 캐패시터부(2000)는 ESD 보호부(3000)의 하측에 마련되며, 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 절연 시트를 포함할 수 있다. 예를 들어, 제 1 캐패시터부(2000)는 제 2 및 제 3 절연 시트(102, 103)와, 제 2 및 제 3 절연 시트(102, 103) 상에 각각 형성된 제 1 및 제 2 내부 전극(201, 202)를 포함할 수 있다. 제 1 및 제 2 내부 전극(201, 202)은 X 방향으로 서로 대향되도록 형성된 제 1 외부 전극(5100, 5200; 5000)과 일측이 연결되고 타측이 이격되도록 형성된다. 예를 들어, 제 1 내부 전극(201)은 제 2 절연 시트(102) 상에 소정 면적으로 형성되며, 일측이 제 1a 외부 전극(5100)과 연결되고 타측이 제 1b 외부 전극(5200)과 이격되도록 형성된다. 또한, 제 2 내부 전극(202)은 제 3 절연 시트(103) 상에 소정 면적으로 형성되며 일측이 제 1b 외부 전극(5200)과 연결되고 타측이 제 1a 외부 전극(5100)과 이격되도록 형성된다. 즉, 제 1 및 제 2 내부 전극(201, 202)은 제 1 외부 전극(5000)의 어느 하나와 연결되며 제 3 절연 시트(203)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 제 1 및 제 2 내부 전극(201, 202)은 제 2 및 제 3 절연 시트(102, 103) 각각의 면적 대비 10%∼85%의 면적으로 각각 형성될 수 있다. 또한, 제 1 및 제 2 내부 전극(201, 202)은 이들 전극 각각의 면적 대비 10%∼85%의 면적으로 중첩되도록 형성된다. 한편, 제 1 및 제 2 내부 전극(201, 202)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다. 이러한 제 1 캐패시터부(2000)는 제 1 및 제 2 내부 전극(201, 202) 사이에 캐패시턴스가 형성되며, 캐패시턴스는 제 1 및 제 2 내부 전극(201, 202)의 중첩 면적, 절연 시트들(102, 103)의 두께 등에 따라 조절될 수 있다. 한편, 제 1 캐패시터부(2000)는 제 1 및 제 2 내부 전극(201, 202) 이외에 적어도 하나 이상의 내부 전극이 더 형성되고, 적어도 하나의 내부 전극이 형성되는 적어도 하나의 절연 시트가 더 형성될 수도 있다.
ESD 보호부(3000)는 제 4 내지 제 6 절연 시트(104 내지 106)과, 제 4 내지 제 6 절연 시트(104 내지 106) 상에 각각 형성된 제 1 내지 제 3 방전 전극(311, 312, 313; 310)과, 제 5 및 제 6 절연 시트(105, 106) 내에 형성된 제 1 및 제 2 ESD 보호층(320-1, 320-2; 320)을 포함할 수 있다. 즉, ESD 보호부(3000)는 적어도 두 개의 ESD 보호층(320)과, 적어도 세 개의 방전 전극(310)을 포함할 수 있다. 여기서, ESD 보호층(320)은 방전 전극(310)과 연결되도록 형성될 수 있다. 즉, 제 1 ESD 보호층(320-1)은 제 1 및 제 2 방전 전극(311, 312) 사이에 형성되며, 제 2 ESD 보호층(320-2)은 제 2 및 제 3 방전 전극(312, 313) 사이에 형성된다.
제 1 내지 제 3 방전 전극(310)은 제 1 및 제 2 외부 전극(5000, 6000)과 선택적으로 연결될 수 있다. 예를 들어, 제 1 방전 전극(311)은 제 1a 외부 전극(5100)과 연결되어 제 4 절연 시트(104) 상에 형성되며 말단부가 제 1 ESD 보호층(320-1)과 연결되도록 형성된다. 제 2 방전 전극(312)은 제 2a 및 제 2b 외부 전극(6100, 6200; 6000)과 연결되도록 제 5 절연 시트(105) 상에 형성되며, 소정 영역이 제 1 및 제 2 ESD 보호층(320-1, 320-2)와 연결되도록 형성된다. 즉, 제 2 방전 전극(312)은 제 5 절연 시트(105) 상에 제 2 외부 전극(6100, 6200) 사이에 연장 형성되며, 예를 들어 중앙부의 하측이 제 1 ESD 보호층(320-1)과 연결되고 상측이 제 2 ESD 보호층(320-2)과 연결되도록 형성된다. 또한, 제 3 방전 전극(313)은 제 1b 외부 전극(5200)과 연결되어 제 6 시트(106) 상에 형성되며 말단부가 제 2 ESD 보호층(320-2)과 연결되도록 형성된다. 즉, 제 1 및 제 3 방전 전극(311, 313)이 일 방향, 예를 들어 X 방향으로 형성되고, 제 2 방전 전극(312)은 제 1 및 제 3 방전 전극(311, 313)과 직교하는 타 방향, 예를 들어 Y 방향으로 형성된다. 여기서, 제 1 내지 제 3 방전 전극(311, 312, 313)의 ESD 보호층(320)과 접촉되는 영역은 ESD 보호층(320)과 동일 크기 또는 이보다 크게 형성될 수 있고, 이를 위해 다른 영역에 비해 크게 형성될 수 있다. 또한, 제 1 내지 제 3 방전 전극(311, 312, 313)은 ESD 보호층(320)을 벗어나지 않고 완전히 중첩되어 형성될 수도 있다. 즉, 제 1 내지 제 3 방전 전극(311, 312, 313)의 가장자리는 ESD 보호층(320)의 가장자리와 수직 방향으로 수직 성분을 이룰 수 있다. 물론, 제 1 내지 제 3 방전 전극(311, 312, 313)는 ESD 보호층(320)을 벗어나 중첩되도록 형성될 수도 있고, ESD 보호층(320)의 일부에 중첩되도록 형성될 수도 있다.
ESD 보호층(320)은 제 5 및 제 6 절연 시트(105, 106)를 관통하도록 형성된 관통홀 내에 예를 들어 인쇄 공정을 이용하여 ESD 보호 물질이 매립되거나 적어도 일부 도포되어 형성될 수도 있다. 즉, 관통홀이 완전히 매립되도록 ESD 보호 물질이 형성될 수도 있고, 관통홀이 일부 매립되도록 ESD 보호 물질이 형성될 수도 있다. 예를 들어, ESD 보호 물질은 관통홀의 측면에 도포되고 그에 따라 관통홀이 상하 관통되는 형상을 유지할 수 있고, ESD 보호 물질이 관통홀의 소정 깊이에만 매립될 수도 있다. 이때, ESD 보호층(320)은 복수의 기공(pore)이 형성될 수 있고, 복수의 기공이 일부 연결되어 공극을 형성할 수도 있다. 물론, ESD 보호층(320) 내에 인위적으로 공극이 형성될 수도 있다. ESD 보호층(320)은 소자의 사이즈에 따라 예를 들어 50㎛∼500㎛의 폭과 5㎛∼50㎛의 두께로 형성될 수 있다. 예를 들어, 길이×너비×두께가 1.0㎜×0.5㎜×0.5㎜, 0.6㎜×0.3㎜×0.3㎜ 및 0.4㎜×0.2㎜×0.2㎜인 소자에서 ESD 보호층(320)은 50㎛∼450㎛의 폭과 5㎛∼50㎛의 두께로 형성될 수 있다. 따라서, 제 5 및 제 6 절연 시트(105, 106)는 5㎛∼50㎛의 두께로 형성될 수 있다. 이때, ESD 보호층(320)의 두께가 얇을수록 방전 개시 전압이 낮아진다. ESD 보호층(320)은 도전성 물질과 절연성 물질을 충진시켜 형성할 수 있다. 예를 들어, 도전성 세라믹과 절연성 세라믹을 충진시켜 ESD 보호층(320)을 형성할 수 있다. ESD 보호층(300)에 대한 보다 자세한 설명은 후술하도록 하겠다. 한편, ESD 보호층(320)과 접촉되는 영역의 방전 전극(310)은 ESD 보호층(320)과 동일 면적으로 형성될 수도 있고, 크거나 작은 면적으로 형성될 수도 있다. 즉, ESD 보호층(320)은 그와 접촉되는 방전 전극(310)과 동일 크기로 형성될 수 있고, 작거나 크게 형성될 수도 있다.
제 2 캐패시터부(4000)는 ESD 보호부(3000)의 상측에 마련되며, 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 절연 시트를 포함할 수 있다. 예를 들어, 제 2 캐패시터부(400)는 제 7 및 제 8 절연 시트(107, 108)와, 제 7 및 제 8 절연 시트(107, 108) 상에 각각 형성된 제 3 및 제 4 내부 전극(203, 204)를 포함할 수 있다. 제 3 내부 전극(203)은 제 7 절연 시트(107) 상에 소정 면적으로 형성되며, 일측이 제 1a 외부 전극(5100)과 연결되고 타측이 제 1b 외부 전극(5200)과 이격되도록 형성된다. 제 4 내부 전극(204)는 제 8 절연 시트(108) 상에 소정 면적으로 형성되며 일측이 제 1b 외부 전극(5200)과 연결되고 타측이 제 1a 외부 전극(5100)과 이격되도록 형성된다. 즉, 제 3 내부 전극(203)과 그 상측의 제 4 내부 전극(204)은 제 1 외부 전극(5000)의 어느 하나와 연결되며 제 8 절연 시트(108)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 제 3 및 제 4 내부 전극(203, 204)은 제 7 및 제 8 절연 시트(107, 108) 각각의 면적 대비 10%∼85%의 면적으로 각각 형성될 수 있다. 또한, 제 3 및 제 4 내부 전극(203, 204)은 이들 전극 각각의 면적 대비 10%∼85%의 면적으로 중첩되도록 형성된다. 한편, 제 3 및 제 4 내부 전극(203, 204)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다. 이러한 제 2 캐패시터부(4000)는 제 3 및 제 4 내부 전극(203, 204) 사이에 캐패시턴스가 각각 형성되며, 캐패시턴스는 제 3 및 제 4 내부 전극(203, 204)의 중첩 면적, 절연 시트들(108, 109)의 두께 등에 따라 조절될 수 있다. 한편, 제 2 캐패시터부(4000)는 제 3 및 제 4 내부 전극(203, 204) 이외에 적어도 하나 이상의 내부 전극이 더 형성되고, 적어도 하나의 내부 전극이 형성되는 적어도 하나의 절연 시트가 더 형성될 수도 있다.
한편, 제 1 캐패시터부(2000)의 적어도 둘 이상의 내부 전극들(201, 202)과 제 2 캐패시터부(4000)의 적어도 둘 이상의 내부 전극들(203, 204)은 동일 형상 및 동일 면적으로 형성될 수 있고, 중첩 면적 또한 동일할 수 있다. 또한, 제 1 캐패시터부(2000)의 절연 시트들(102, 103)과 제 2 캐패시터부(4000)의 절연 시트들(108, 109)은 동일 두께를 가질 수 있다. 따라서, 제 1 및 제 2 캐패시터부(2000, 4000)는 캐패시턴스가 동일할 수 있다. 그러나, 제 1 및 제 2 캐패시터부(2000, 4000)는 캐패시턴스가 다를 수 있으며, 이 경우 내부 전극의 면적, 내부 전극의 중첩 면적, 절연 시트의 두께가 서로 다를 수 있다. 그리고, 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204) 각각의 중첩 면적은 ESD 보호부(3000)의 방전 전극(311, 312, 313)의 중첩 면적보다 클 수 있다. 또한, 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204) 각각의 두께는 ESD 보호부(3000)의 방전 전극들(311, 312, 313)의 두께와 같거나 다르게 형성될 수 있다. 예를 들어, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204)이 ESD 보호부(3000)의 방전 전극들(311, 312, 313)보다 1.1배 내지 10배 두껍게 형성될 수 있다. 그리고, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204)의 길이 및 폭은 ESD 보호부(3000)의 방전 전극들(311, 312, 313)의 길이 및 폭보다 클 수 있다.
제 1 외부 전극(5100, 5200; 5000)는 적층체(1000)의 서로 대향되는 두 측면에 마련되어 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극 및 ESD 보호부(3000)의 방전 전극과 연결된다. 예를 들어, 제 1 외부 전극(5000)은 X 방향으로 대향하는 적층체(1000)의 두 측면에 형성될 수 있다. 이러한 제 1 외부 전극(5000)은 적어도 하나의 층으로 형성될 수 있다. 제 1 외부 전극(5000)은 Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 제 1 외부 전극(5000)은 구리층, Ni 도금층 및 Sn 도금층이 적층 형성될 수도 있다.
제 2 외부 전극(6100, 6200; 6000)는 제 1 외부 전극(5000)이 형성되지 않은 적층체(1000)의 서로 대향되는 두 측면에 마련되어 ESD 보호부(3000)의 방전 전극과 연결된다. 예를 들어, 제 2 외부 전극(6000)은 Y 방향으로 대향하는 적층체(1000)의 두 측면에 형성되며, 제 1 외부 전극(5000)과 이격되어 형성될 수 있다. 또한, 제 2 외부 전극(6000)은 ESD 보호부(3000)의 제 2 방전 전극(312)과 연결된다. 이러한 제 2 외부 전극(6000)은 제 1 외부 전극(5000)과 동일 구조 및 동일 물질로 형성될 수 있다. 제 2 외부 전극(6000)은 Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 제 2 외부 전극(6000)은 구리층, Ni 도금층 및 Sn 도금층이 적층 형성될 수도 있다.
또한, 제 1 및 제 2 외부 전극(5000, 6000)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 적층체(1000)의 두면에 도포될 수 있다. 이렇게 제 1 및 제 2 외부 전극(5000, 6000)에 글래스 프릿이 포함됨으로써 제 1 및 제 2 외부 전극(5000, 6000)과 적층체(1000)의 밀착력을 향상시킬 수 있고, 내부 전극(200)과 제 1 및 제 2 외부 전극(5000, 6000)의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(5000)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 제 1 및 제 2 외부 전극(5000, 6000)이 형성될 수 있다. 예를 들어, 제 1 및 제 2 외부 전극(5000, 6000)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 물론, 제 1 및 제 2 외부 전극(5000, 6000)은 적어도 하나의 도금층만으로 형성될 수도 있다. 즉, 페이스트를 도포하지 않고 적어도 1회의 도금 공정을 이용하여 적어도 일층의 도금층을 형성하여 제 1 및 제 2 외부 전극(5000, 6000)을 형성할 수도 있다. 한편, 제 1 및 제 2 외부 전극(5000, 6000)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.
또한, 제 1 및 제 2 외부 전극(5000, 6000)을 형성하기 이전에 적층체의 표면에 산화물 분말을 분포시킬 수 있다. 이때, 산화물 분말은 제 1 및 제 2 외부 전극(5000, 6000)의 일부를 인쇄 공정으로 형성하기 이전에 분포시킬 수도 있고, 도금 공정을 실시하기 이전에 형성할 수도 있다. 즉, 산화물 분말은 도금 공정으로 제 1 및 제 2 외부 전극(5000, 6000)을 형성할 때 도금 공정 이전에 적층체 표면에 분포될 수 있다. 이렇게 도금 공정 이전에 산화물 분말을 분포시킴으로써 적층체 표면의 저항을 균일하게 할 수 있고, 그에 따라 도금 공정이 균일하게 실시될 수 있다. 즉, 적층체의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 예를 들어 도금 공정 시 저항이 낮은 영역에 저항이 높은 영역보다 도금이 잘 진행되어 도금층의 성장 불균일이 발생된다. 따라서, 이러한 문제를 해결하기 위해 적층체의 표면 저항을 균일하게 유지해야 하고, 이를 위해 적층체의 표면에 산화물 분말을 분산시킬 수 있다. 이때, 산화물 분말은 적층체의 표면에 전체적으로 분포되어 막 형태로 형성될 수 있고, 적층체의 표면에 부분적으로 분포될 수도 있으며, 적어도 일 영역에 막 형태로 형성되고 적어도 일 영역에 부분적으로 분포될 수도 있다. 예를 들어, 산화물 분말이 적층체의 전체 표면에 분포되고, 산화물 분말이 연결되어 소정 두께의 산화물 막이 형성될 수 있다. 이때, 적층체 표면에 산화물 막이 형성되므로 적층체의 표면은 노출되지 않을 수 있다. 또한, 산화물 분말이 적층체의 표면에 섬(island) 형태로 분포될 수 있다. 즉, 적층체 표면에 산화물 분말이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 적층체 표면의 적어도 일부가 노출될 수 있다. 그리고, 산화물 분말은 적어도 일 영역에는 막 형태로 형성되고, 적어도 일부에는 섬 형태로 분포될 수 있다. 즉, 적어도 둘 이상의 산화물 분말이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 따라서, 적층체 표면의 적어도 일부가 산화물 분말에 의해 노출될 수 있다. 적어도 일부에 섬 형태로 분포되는 산화물 분말의 총 면적은 적층체 표면 전체 면적의 예를 들어 10% 내지 80%일 수 있다. 여기서, 적층체의 표면 저항을 균일하게 하기 위한 산화물 분말은 적어도 하나 이상의 금속 산화물이 이용될 수 있는데, 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO를 포함하는 물질의 적어도 하나 이상을 이용할 수 있다.
도 6 및 도 7은 본 발명의 제 1 실시 예의 감전 방지 소자의 ESD 보호층(320)의 단면 개략도 및 단면 사진이다. 여기서는, 제 1 및 제 2 ESD 보호층(320-1, 320-2)의 어느 하나를 도시하며, 제 1 및 제 2 ESD 보호층(320-1, 320-2)은 아래 실시 예의 어느 하나로 각각 형성될 수 있다. 즉, 제 1 및 제 2 ESD 보호층(320-1, 320-2)는 동일 구조로 형성될 수도 있고, 다른 구조로 형성될 수도 있다.
도 6의 (a) 및 도 7의 (a)에 도시된 바와 같이, ESD 보호층(320)은 도전성 물질과 절연성 물질을 혼합하여 형성할 수 있다. 예를 들어, ESD 보호층(320)은 도전성 세라믹과 절연성 세라믹을 혼합하여 형성할 수 있다. 이 경우 ESD 보호층(320)은 도전성 세라믹과 절연성 세라믹을 예를 들어 10:90 내지 90:10의 혼합 비율로 혼합하여 형성할 수 있다. 절연성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 높아지고, 도전성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 낮아질 수 있다. 따라서, 소정의 방전 개시 전압을 얻을 수 있도록 도전성 세라믹과 절연성 세라믹의 혼합 비율을 조절할 수 있다. 이때, ESD 보호층(320)에는 복수의 기공(미도시)이 형성될 수 있다. 기공이 형성됨으로써 ESD 전압을 더욱 용이하게 바이패스시킬 수 있다.
또한, ESD 보호층(320)은 도전층과 절연층을 적층하여 소정의 적층 구조로 형성할 수 있다. 즉, ESD 보호층(320)은 도전층과 절연층을 적어도 1회 적층하여 도전층과 절연층이 구분되어 형성할 수 있다. 예를 들어, ESD 보호층(320)은 도전층과 절연층이 적층되어 2층 구조로 형성될 수 있고, 도전층, 절연층 및 도전층이 적층되어 3층 구조로 형성될 수 있다. 또한, 도전층(320-1)과 절연층(320-2)이 복수회 반복 적층되어 3층 이상의 적층 구조로 형성될 수도 있다. 예를 들어, 도 6의 (b)에 도시된 바와 같이 제 1 도전층(320-1a), 절연층(320-2) 및 제 2 도전층(320-1b)이 적층된 3층 구조의 ESD 보호층(320)이 형성될 수 있다. 도 7의 (b)는 절연 시트 사이의 내부 전극 사이에 3층 구조의 ESD 보호층이 형성된 사진이다. 한편, 도전층과 절연층을 복수회 적층하는 경우 최상층 및 최하층은 도전층이 위치할 수 있다. 이때, 도전층(320-1)과 절연층(320-2)의 적어도 일부에는 복수의 기공(미도시)이 형성될 수 있다. 예를 들어, 도전층(320-1) 사이에 형성된 절연층(320-2)은 다공성 구조로 형성되므로 절연층(320-2) 내에 복수의 기공이 형성될 수 있다.
또한, ESD 보호층(320)은 소정 영역에 공극(void)이 더 형성될 수도 있다. 예를 들어, 도전성 물질과 절연성 물질이 혼합된 층의 사이에 공극이 형성될 수 있고, 도전층과 절연층 사이에 공극이 형성될 수도 있다. 즉, 도전성 물질과 절연성 물질의 제 1 혼합층, 공극 및 제 2 혼합층이 적층 형성될 수 있고, 도전층, 공극 및 절연층이 적층 형성될 수도 있다. 예를 들어, ESD 보호층(320)은 도 6의 (c)에 도시된 바와 같이 제 1 도전층(320-1a), 제 1 절연층(320-2a), 공극(320-3), 제 2 절연층(320-2b) 및 제 2 도전층(320-1b)이 적층되어 형성될 수 있다. 즉, 도전층(320-1) 사이에 절연층(320-2)이 형성되고, 절연층(320-2) 사이에 공극(320-3)이 형성될 수 있다. 도 7의 (c)에는 이러한 적층 구조를 갖는 ESD 보호층(320)의 단면 사진이다. 물론, 도전층, 절연층, 공극이 반복 적층되어 ESD 보호층(320)이 형성될 수도 있다. 한편, 도전층(320-1), 절연층(320-2) 및 공극(320-3)이 적층되는 경우 이들 모두의 두께가 모두 동일할 수 있고, 적어도 어느 하나의 두께가 다른 것들에 비해 얇을 수 있다. 예를 들어, 공극(320-3)이 도전층(320-1) 및 절연층(320-2)보다 얇을 수 있다. 또한, 도전층(320-1)은 절연층(320-2)과 동일 두께로 형성될 수 있고, 절연층(320-2)보다 두껍거나 얇게 형성될 수도 있다. 한편, 공극(320-3)은 고분자 물질을 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 형성할 수 있다. 예를 들어, 도전성 세라믹이 포함된 제 1 고분자 물질, 절연성 세라믹이 포함된 제 2 고분자 물질, 그리고 도전성 세라믹 또는 절연성 세라믹 등이 포함되지 않은 제 3 고분자 물질을 비아홀 내에 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 도전층, 절연층 및 공극이 형성될 수 있다. 한편, 공극(320-3)은 층이 구분되지 않고 형성될 수도 있다. 예를 들어, 도전층(320-1a, 320-1b) 사이에 절연층(320-2)이 형성되고 절연층(320-2) 내에 수직 방향 또는 수평 방향으로 복수의 기공이 연결되어 공극(320-3)이 형성될 수 있다. 즉, 공극(320-3)은 절연층(320-2) 내에 복수의 기공으로 형성될 수 있다. 물론, 공극(320-3)이 복수의 기공에 의해 도전층(320-1)에 형성될 수도 있다.
또한, ESD 보호층(320)은 다공성 절연 물질 및 도전 물질을 포함하는 ESD 보호 물질이 홀의 일부에 도포되고 나머지 영역은 ESD 보호 물질이 도포되지 않아 공극이 형성될 수 있다. 물론, ESD 보호층(320)은 관통홀 내부에 ESD 보호 물질이 형성되지 않고 두 방전 전극(311, 312) 사이에 공극이 형성될 수도 있다.
한편, ESD 보호층(300)에 이용되는 도전층(320-1)은 소정의 저항을 갖고 전류를 흐르게 할 수 있다. 예를 들어, 도전층(320-1)은 수Ω 내지 수백㏁을 갖는 저항체일 수 있다. 이러한 도전층(320-1)은 ESD 등이 과전압이 유입될 경우 에너지 레벨을 낮춰 과전압에 의한 감전 방지 소자의 구조적인 파괴가 일어나지 않도록 한다. 즉, 도전층(320-1)은 전기 에너지를 열 에너지로 변환시키는 히트 싱크(heat sink)의 역할을 한다. 이러한 도전층(320-1)은 도전성 세라믹을 이용하여 형성할 수 있으며, 도전성 세라믹은 La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, Bi 중의 하나 이상을 포함한 혼합물을 이용할 수 있다. 또한, 도전층(320-1)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 도전층(320-1)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.
또한, ESD 보호층(320)에 이용되는 절연층(320-2)은 방전 유도 물질로 이루어질 수 있고, 다공성 구조를 가진 전기 장벽으로 기능할 수 있다. 이러한 절연층(320-2)은 절연성 세라믹으로 형성될 수 있고, 절연성 세라믹은 50∼50000 정도의 유전율을 갖는 강유전체 물질이 이용될 수 있다. 예를 들어, 절연성 세라믹은 MLCC 등의 유전체 재료 분말, BaTiO3, BaCO3, TiO2, Nd, Bi, Zn, Al2O3 중의 하나 이상을 포함한 혼합물을 이용하여 형성할 수 있다. 이러한 절연층(320-2)은 1㎚∼5㎛ 정도 크기의 기공이 복수 형성되어 30%∼80%의 기공률로 형성된 다공성 구조로 형성될 수 있다. 즉, 절연층(320-2)은 전류가 흐르지 못하는 전기 절연성 물질로 형성되지만, 기공이 형성되므로 기공을 통해 전류가 흐를 수 있다. 이때, 기공의 크기가 커지거나 기공률이 커질수록 방전 개시 전압이 낮아질 수 있고, 이와 반대로 기공의 크기가 작아지거나 기공률이 낮아지면 방전 개시 전압이 높아질 수 있다. 그러나, 기공의 크기가 5㎛를 초과하거나 기공률이 80%를 초과하면 ESD 보호층(320)의 형상 유지가 어려울 수 있다. 따라서, ESD 보호층(320)의 형상을 유지하면서 방전 개시 전압을 조절하도록 절연층(320-2)의 기공 크기 및 기공률을 조절할 수 있다. 한편, ESD 보호층(320)이 절연 물질과 도전 물질의 혼합 물질로 형성되는 경우 절연 물질은 미세 기공 및 기공률을 갖는 절연성 세라믹을 이용할 수 있다. 또한, 절연층(320-2)은 미세 기공에 의해 절연 시트(100)의 저항보다 낮은 저항을 갖고, 미세 기공을 통해 부분 방전이 이루어질 수 있다. 즉, 절연층(320-2)은 미세 기공이 형성되어 미세 기공을 통해 부분 방전이 이루어진다. 이러한 절연층(320-2)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 절연층(320-2)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.
상기한 바와 같이 본 발명의 제 1 실시 예에 따른 감전 보호 소자는 도 5에 도시된 바와 같이 적어도 하나의 캐패시터(C)와 두개의 ESD 보호부(V1, V2)가 형성될 수 있다. 즉, 전자기기의 내부 회로와 금속 케이스 사이에 캐패시터(C)가 형성되고, 캐패시터(C)와 접지 단자 사이에 ESD 보호부(V1, V2)가 형성될 수 있다. 이때, 접지 단자는 내부 회로 내에 마련될 수 있다. 또한, 제 1 외부 전극(5000)이 전자기기의 금속 케이스와 내부 회로 사이에 각각 마련되고, 제 2 외부 전극(6000)이 접지 단자와 연결될 수 있다. 즉, 제 1 외부 전극(5000)이 전자기기의 금속 케이스와 내부 회로 사이의 두 영역에 각각 연결되고 제 2 외부 전극(6000)은 접지 단자에 연결될 수 있다. 따라서, 내부 회로의 접지 단자로부터 금속 케이스로 전달되는 감전 전압을 차단할 수 있고, 외부로부터 금속 케이스를 통해 내부 회로로 인가되는 ESD 전압을 접지 단자로 바이패스시킬 수 있다. 즉, 본 발명의 감전 방지 소자는 정격 전압 및 감전 전압에서는 외부 전극(5000, 6000) 사이에서 전류가 흐르지 못하고, 방전 개시 전압보다 높은 ESD 전압에서는 ESD 보호부(3000)를 통해 전류가 흘러 ESD 전압이 접지 단자로 바이패스된다. 한편, 감전 방지 소자는 방전 개시 전압이 정격 전압보다 높고 ESD 전압보다 낮을 수 있다. 예를 들어, 감전 방지 소자는 정격 전압이 100V 내지 240V일 수 있고, 방전 개시 전압이 예를 들어 310V 이상일 수 있으며, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 ESD 전압은 방전 개시 전압보다 높을 수 있다. 또한, 캐패시터부(2000, 4000)에 의해 외부와 내부 회로(20) 사이에 통신 신호가 전달될 수 있다. 즉, 외부로부터의 통신 신호, 즉 RF 신호는 캐패시터부(2000, 4000)에 의해 내부 회로(20)로 전달될 수 있고, 내부 회로(20)로부터의 통신 신호는 캐패시터부(2000, 4000)에 의해 외부로 전달될 수 있다. 따라서, 별도의 안테나가 마련되지 않고 금속 케이스(10)를 안테나로 이용하는 경우에도 캐패시터부(2000, 4000)를 이용하여 외부와의 통신 신호를 주고받을 수 있다. 결국, 본 발명에 따른 감전 방지 소자는 내부 회로의 접지 단자로부터 인가되는 감전 전압을 차단하고, 외부로부터 인가되는 ESD 전압을 접지 단자로 바이패스시키며, 외부와 전자기기 사이에 통신 신호를 전달할 수 있다.
또한, 본 발명의 제 1 실시 예에 따른 감전 방지 소자는 내압 특성이 높은 절연 시트를 복수 적층하여 캐패시터부를 형성함으로써 불량 충전기에 의한 내부 회로에서 금속 케이스로의 예를 들어 310V의 감전 전압이 유입될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, ESD 보호부 역시 금속 케이스에서 내부 회로로의 ESD 전압 유입 시 ESD 전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 즉, ESD 보호부(3000)는 에너지 레벨을 낮춰 전기 에너지를 열 에너지로 변환시키는 도전층(320-1)과 다공성 구조로 이루어져 미세 기공을 통해 전류를 흐르게 하는 절연층(320-2)으로 이루어진 ESD 보호층(320)을 포함함으로써 외부로부터 유입되는 ESD 전압을 바이패스시켜 회로를 보호할 수 있다. 따라서, ESD 전압에 의해서도 절연 파괴되지 않고, 그에 따라 금속 케이스를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 감전 전압이 전자기기의 금속 케이스를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있다. 한편, 일반적인 MLCC(Multi Layer Capacitance Circuit)는 감전 전압은 보호하지만 ESD에는 취약한 소자로 이는 반복적인 ESD 인가 시 전하 차징(Charging)에 의한 누설 포인트(Leak point)로 스파크(Spark)가 발생하여 소자 파손 현상이 발생될 수 있다. 그러나, 본 발명은 캐패시터부 사이에 도전층과 절연층을 포함하는 ESD 보호층이 형성됨으로써 ESD 전압을 ESD 보호층을 통해 패스시킴으로써 캐패시터부가 파괴되지 않는다.
도 8은 본 발명의 제 2 실시 예에 따른 감전 방지 소자의 사시도이고, 도 9은 분리 사시도이다. 또한, 도 10은 A-A' 라인을 따라 절취한 단면도이며, 도 11은 등가 회로도이다.
도 8 내지 도 11을 참조하면, 본 발명의 제 2 실시 예에 따른 감전 방지 소자는 복수의 절연 시트(101 내지 108; 100)가 적층된 적층체(1000)와, 적층체(1000) 내에 마련된 적어도 하나의 캐패시터부(2000, 4000)와, 적층체(1000) 내에 마련된 ESD 보호부(3000)와, 적층체(1000)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2000, 4000)와 ESD 보호부(3000)와 연결되는 외부 전극(5100, 5200; 5000)을 포함할 수 있다. 또한, 본 발명의 제 2 실시 예에 따른 감전 방지 소자는 동일 평면 상에 내부 전극, 방전 전극 ESD 보호층이 적어도 둘 이상 마련될 수 있다. 예를 들어, 캐패시터부(2000, 4000)의 내부 전극(201, 202, 203, 204)과 ESD 보호부(3000)의 방전 전극(310) 및 ESD 보호층(320)이 Y 방향으로 네개 형성될 수 있다. 따라서, 본 발명의 제 2 실시 예는 적층체(1000) 내에 복수의 감전 방지 소자가 병렬로 마련될 수 있다. 한편, 본 발명의 제 2 실시 예의 이하의 설명에서 본 발명의 제 1 실시 예의 설명과 동일 내용은 그 상세한 설명을 생략한다.
적층체(1000)는 복수의 절연 시트(101 내지 108; 100)가 적층되어 형성된다. 이러한 적층체(1000)는 일 방향(예를 들어 X 방향) 및 이와 직교하는 타 방향(예를 들어 Y 방향)으로 각각 소정의 길이를 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 여기서, 서로 대향하는 두 외부 전극(5000) 사이의 방향을 X 방향이라 하고 X 방향과 직교하는 방향을 Y 방향, 그리고 상측 방향을 Z 방향이라 할 때, X 방향의 길이는 Y 방향의 길이보다 짧고 Z 방향의 길이보다 길거나 같을 수 있다. 예를 들어, X, Y 및 Z 방향의 길이의 비는 예를 들어 1:2∼5:0.5∼1일 수 있다. 즉, X 방향의 길이를 기준으로 Y 방향의 길이는 X 방향의 길이에 비해 2배 내지 5배 정도 길 수 있고, Z 방향의 길이는 0.5배 내지 1배일 수 있다. 또한, 적층체(1000) 내부에는 적어도 하나의 캐패시터부(2000, 4000)와, ESD 보호부(3000)가 마련될 수 있다. 예를 들어, 제 1 캐패시터부(2000), ESD 보호부(3000) 및 제 2 캐패시터부(4000)가 시트(100)의 적층 방향, 즉 Z 방향으로 마련될 수 있다. 즉, 캐패시터부(2000, 4000) 사이에 ESD 보호부(3000)가 마련될 수 있다. 물론, ESD 보호부(3000)의 상측 또는 하측에 하나의 캐패시터부가 마련될 수도 있다.
제 1 캐패시터부(2000)는 ESD 보호부(3000)의 하측에 마련되며, 수직 방향(즉 Z 방향)으로 이격되어 형성된 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 절연 시트를 포함할 수 있다. 예를 들어, 제 1 캐패시터부(2000)는 제 2 및 제 3 절연 시트(102, 103)와, 제 2 및 제 3 절연 시트(102, 103) 상에 각각 형성된 제 1 및 제 2 내부 전극(201, 202)을 포함할 수 있다. 이때, 제 1 및 제 2 내부 전극(201, 202) 각각은 일 방향, 즉 Y 방향으로 적어도 둘 이상 마련될 수 있다. 예를 들어, Y 방향으로 소정 간격 이격되어 네 개의 제 1 내부 전극(201a, 201b, 201c, 201d; 201)이 형성되고, 네 개의 제 1 내부 전극(201a, 201b, 201c, 201d; 201)은 X 방향으로 연장 형성되어 일측이 복수의 외부 전극(5110 내지 5140; 5100)와 각각 연결되고 타측이 복수의 외부 전극(5210 내지 5240; 5200)과 이격되어 형성된다. 또한, 제 2 내부 전극(202a, 202b, 202c, 202d; 202)은 Y 방향으로 소정 간격 이격되어 예를 들어 네개 형성되고, Y 방향으로 연장 형성되어 일측이 복수의 외부 전극(5210 내지 5240)와 각각 연결되고 타측이 복수의 외부 전극(5110 내지 5140)와 이격되어 형성된다. 즉, 수평 방향으로 이격되어 형성된 각각 복수의 제 1 및 제 2 내부 전극(201, 202)은 외부 전극(5100, 5200)의 어느 하나와 각각 연결되며 제 3 절연 시트(203)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 각각 복수의 제 1 및 제 2 내부 전극(201, 202)의 면적의 합은 제 2 및 제 3 절연 시트(102, 103) 각각의 면적 대비 10% 내지 85%로 형성될 수 있다. 또한, 각각 복수의 제 1 및 제 2 내부 전극(201, 202)은 이들 전극 각각의 면적 대비 10% 내지 85%의 면적으로 중첩되도록 형성된다.
ESD 보호부(3000)는 제 4 및 제 5 절연 시트(104, 105)과, 제 4 및 제 5 절연 시트(104, 105) 상에 각각 형성된 제 1 및 2 방전 전극(311, 312; 310)과, 제 5 절연 시트(105) 내에 형성된 ESD 보호층(320)을 포함할 수 있다. 즉, ESD 보호부(3000)는 두개의 방전 전극(311, 312)과, 그 사이에 마련된 ESD 보호층(320)을 포함할 수 있다. 여기서, 제 1 및 제 2 방전 전극(311, 312)는 수직 방향, 즉 Z 방향으로 이격되어 형성되며, 일 방향, 즉 Y 방향으로 소정 간격 이격되어 복수 형성될 수 있다. 예를 들어 Y 방향으로 소정 간격 이격되어 네개의 제 1 방전 전극(311a, 311b, 311c, 311d; 311)과 네개의 제 2 방전 전극(312a, 312b, 313c, 314d; 312)이 형성될 수 있다. 또한, 각각 복수의 제 1 및 제 2 방전 전극(311, 312)은 외부 전극(5100, 5200)와 각각 연결될 수 있다. 즉, 복수의 제 1 방전 전극(311a, 311b, 311c, 311d; 311)은 일측이 복수의 제 1 외부 전극(5110 내지 5140; 5100)과 각각 연결되고 타측이 복수의 제 2 외부 전극(5210 내지 5240; 5200)과 각각 이격되도록 X 방향으로 연장 형성될 수 있다. 또한, 복수의 제 2 방전 전극(312a, 312b, 312c, 312d; 312)은 일측이 복수의 제 2 외부 전극(5210 내지 5240; 5200)과 각각 연결되고 타측이 복수의 제 1 외부 전극(5110 내지 5140; 5100)과 각각 이격되도록 X 방향으로 연장 형성될 수 있다. 또한, 복수의 제 1 및 제 2 방전 전극(311, 312)는 각각의 말단부가 ESD 보호층(320a, 320b, 320c, 320d; 320)과 접촉될 수 있다. 여기서, 각각 복수의 제 1 및 제 2 방전 전극(311, 312)의 ESD 보호층(320)과 접촉되는 영역은 ESD 보호층(320)과 동일 크기 또는 이보다 크게 형성될 수 있다. 또한, 제 1 및 제 2 방전 전극(311, 312)은 ESD 보호층(320)을 벗어나지 않고 완전히 중첩되어 형성될 수도 있다. 즉, 제 1 및 제 2 방전 전극(311, 312)의 가장자리는 ESD 보호층(320)의 가장자리와 수직 방향으로 수직 성분을 이룰 수 있다. 물론, 제 1 및 제 2 방전 전극(311, 312)는 ESD 보호층(320)을 벗어나 중첩되도록 형성될 수도 있고, ESD 보호층(320)의 일부에 중첩되도록 형성될 수도 있다. ESD 보호층(320)은 제 5 절연 시트(105)를 관통하도록 형성된 관통홀 내에 인쇄 공정을 이용하여 ESD 보호 물질이 매립되거나 적어도 일부 도포되어 형성될 수도 있다. 즉, 관통홀이 완전히 매립되도록 ESD 보호 물질이 형성될 수도 있고, 일부가 매립되도록 ESD 보호 물질이 형성될 수도 있다. 이때, ESD 보호층(320)은 복수의 기공이 형성될 수 있고, 복수의 기공이 일부 연결되어 공극을 형성할 수도 있다. 물론, ESD 보호층(320) 내에 인위적으로 공극이 형성될 수도 있다.
제 2 캐패시터부(4000)는 ESD 보호부(3000)의 상측에 마련되며, 수직 방향(즉 Z 방향)으로 이격되어 형성된 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 절연 시트를 포함할 수 있다. 예를 들어, 제 2 캐패시터부(4000)는 제 6 및 제 7 절연 시트(106, 107)와, 제 6 및 제 7 절연 시트(106, 107) 상에 각각 형성된 제 3 및 제 4 내부 전극(203, 204)을 포함할 수 있다. 이때, 제 3 및 제 4 내부 전극(203, 204) 각각은 일 방향, 즉 Y 방향으로 적어도 둘 이상 마련될 수 있다. 예를 들어, Y 방향으로 소정 간격 이격되어 네 개의 제 3 내부 전극(203a, 203b, 203c, 203d; 203)이 형성되고, 네 개의 제 3 내부 전극(203a, 203b, 203c, 203d; 203)은 X 방향으로 연장 형성되어 일측이 복수의 외부 전극(5110 내지 5140; 5100)와 각각 연결되고 타측이 복수의 제 2 외부 전극(5210 내지 5240; 5200)과 이격되어 형성된다. 또한, 제 4 내부 전극(204a, 204b, 204c, 204d)은 Y 방향으로 소정 간격 이격되어 예를 들어 네개 형성되고, Y 방향으로 연장 형성되어 일측이 복수의 외부 전극(5210 내지 5240; 5200)와 각각 연결되고 타측이 복수의 외부 전극(5110 내지 5140; 5100)와 이격되어 형성된다. 즉, 수평 방향으로 이격되어 형성된 각각 복수의 제 3 및 제 4 내부 전극(203, 204)은 복수의 외부 전극(5100, 5200)의 어느 하나와 각각 연결되며 제 7 절연 시트(207)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 각각 복수의 제 3 및 제 4 내부 전극(203, 204)의 면적의 합은 제 6 및 제 7 절연 시트(106, 107) 각각의 면적 대비 10% 내지 85%로 형성될 수 있다. 또한, 각각 복수의 제 3 및 제 4 내부 전극(203, 204)은 이들 전극 각각의 면적 대비 10% 내지 85%의 면적으로 중첩되도록 형성된다.
한편, 제 1 캐패시터부(2000)의 적어도 둘 이상의 내부 전극들(201, 202)와 제 2 캐패시터부(4000)의 적어도 둘 이상의 내부 전극들(203, 204)은 동일 형상 및 동일 면적으로 형성될 수 있고, 중첩 면적 또한 동일할 수 있다. 또한, 제 1 캐패시터부(2000)의 절연 시트들(102, 103)와 제 2 캐패시터부(4000)의 절연 시트들(106, 107)은 동일 두께를 가질 수 있다. 따라서, 제 1 및 제 2 캐패시터부(2000, 4000)는 캐패시턴스가 동일할 수 있다. 그러나, 제 1 및 제 2 캐패시터부(2000, 4000)는 캐패시턴스가 다를 수 있으며, 이 경우 내부 전극의 면적, 내부 전극의 중첩 면적, 절연 시트의 두께가 서로다를 수 있다. 그리고, 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204) 각각의 중첩 면적은 ESD 보호부(3000)의 방전 전극(311, 312)의 중첩 면적보다 클 수 있다. 또한, 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204) 각각의 두께는 ESD 보호부(3000)의 방전 전극들(311, 312)의 두께와 같거나 다르게 형성될 수 있다. 예를 들어, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204)이 ESD 보호부(3000)의 방전 전극들(311, 312)보다 1.1배 내지 10배 두껍게 형성될 수 있다. 또한, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 204)의 폭은 ESD 보호부(3000)의 방전 전극들(311, 312)의 폭보다 넓을 수 있다.
외부 전극(5000)은 적층체(1000)의 서로 대향되는 두 측면에 마련될 수 있다. 예를 들어, 외부 전극(5100, 5200)는 X 방향으로 대향되는 적층체(1000)의 서로 대향되는 두 측면에 마련되어 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극 및 ESD 보호부(3000)의 방전 전극과 연결된다. 또한, 외부 전극(5100, 5200)는 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극 및 ESD 보호부(3000)의 방전 전극의 수에 대응되는 수로 형성될 수 있다. 예를 들어, 외부 전극(5100, 5200)은 각각 네개 형성될 수 있다.
상기한 바와 같이 본 발명의 제 2 실시 예는 하나의 적층체(1000) 내에 복수의 감전 방지 소자가 구현될 수 있다. 즉, 수직 방향으로 적층된 적어도 하나의 캐패시터부와 ESD 보호부가 수평 방향으로 적어도 둘 이상 배열되고, 수평 방향으로 배열된 적어도 둘 이상의 외부 전극(5000)와 연결됨으로써 도 11에 도시된 바와 같이 캐패시터(C1 내지 C4)와 ESD 보호부(V1 내지 V4)로 이루어진 복수의 감전 방지 소자가 병렬로 마련될 수 있다. 따라서, 하나의 적층체(1000) 내에 두개 이상이 감전 방지 소자가 구현될 수 있다. 이때, 예를 들어 복수의 외부 전극(5100)은 전자기기의 내부 회로와 메탈 케이스 사이의 복수의 영역에 연결되고, 복수의 외부 전극(5200)은 내부 회로 또는 접지 단자에 연결될 수 있다.
한편, 본 발명의 제 2 실시 예는 ESD 보호층(320)이 절연 시트(105)에 형성된 관통홀에 ESD 보호 물질이 매립 또는 도포되어 형성되었다. 그러나, ESD 보호층(320)은 절연 시트의 소정 영역에 형성되고, 절연 시트에 각각 접촉되도록 방전 전극(310)이 형성될 수 있다. 즉, 도 12의 제 3 실시 예의 단면도에 도시된 바와 같이 절연 시트(105) 상에 두 방전 전극(311, 312)이 수평 방향으로 소정 간격 이격되어 형성되고, 두 방전 전극(311, 312) 사이에 ESD 보호층(320)이 형성될 수 있다.
ESD 보호부(3000)는 동일 평면 상에 이격되어 형성된 적어도 두개의 방전 전극(311, 312)과, 적어도 두개의 방전 전극(311, 312) 사이에 마련된 적어도 하나의 ESD 보호층(300)을 포함할 수 있다. 즉, 시트의 소정 영역, 예를 들어 중앙부에서 서로 이격되도록 외부 전극(5000)이 형성된 방향, 즉 X 방향으로 두개의 방전 전극(311, 312)이 마련될 수 있고, 또한 이와 직교하는 방향으로 적어도 둘 이상의 방전 전극(미도시)이 더 마련될 수도 있다. 따라서, 외부 전극(5000)이 형성된 방향과 직교하는 방향으로 적어도 하나의 방전 전극이 형성되고, 소정 간격 이격되어 대향되도록 적어도 하나의 방전 전극이 형성될 수 있다. 예를 들어, ESD 보호부(3000)는 도 12에 도시된 바와 같이 제 5 절연 시트(105)와, 제 5 절연 시트(105) 상에 이격되어 형성된 제 1 및 제 2 방전 전극(311, 312)과, 제 5 절연 시트(115) 상에 형성된 ESD 보호층(320)을 포함할 수 있다. 여기서, ESD 보호층(320)은 적어도 일부가 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 제 1 방전 전극(311)은 외부 전극(5100)과 연결되어 제 5 절연 시트(105) 상에 형성되며 말단부가 ESD 보호층(320)과 연결되도록 형성된다. 제 2 방전 전극(312)은 외부 전극(5200)과 연결되어 제 5 절연 시트(105) 상에 제 1 방전 전극(311)과 이격되어 형성되며 말단부가 ESD 보호층(320)과 연결되도록 형성된다. ESD 보호층(320)은 제 5 절연 시트(105)의 소정 영역, 예를 들어 중심부에 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 이때, ESD 보호층(320)은 제 1 및 제 2 방전 전극(311, 312)과 일부 중첩되도록 형성될 수 있다. ESD 보호층(320)이 제 1 및 제 2 방전 전극(311, 312) 사이의 노출된 제 5 절연 시트(105) 상에 형성되어 제 1 및 제 2 방전 전극(311, 312)의 측면과 연결될 수도 있다. 그러나, 이 경우 ESD 보호층(320)이 제 1 및 제 2 방전 전극(311, 312)과 접촉되지 않고 이격될 수 있으므로 제 1 및 제 2 방전 전극(311, 312)과 중첩되도록 ESD 보호층(320)을 형성하는 것이 바람직하다.
도 13은 본 발명의 제 3 실시 예에 따른 감전 방지 소자의 ESD 보호부(3000)의 일 실시 예들에 따른 평면 개략도이다.
도 13의 (a)에 도시된 바와 같이, 두개의 이격된 내부 전극, 즉 제 1 및 제 2 방전 전극(311, 312) 사이에 ESD 보호층(320)이 형성되고, ESD 보호층(320)은 도전성 물질과 절연성 물질을 혼합하여 형성할 수 있다.
또한, 도 13의 (b)에 도시된 바와 같이 제 1 도전층(320-1a), 절연층(320-2) 및 제 2 도전층(320-1b)이 수평 방향으로 형성되어 3중 구조의 ESD 보호층(320)이 형성될 수 있다. 즉, 제 1 및 제 2 방전 전극(311, 312)과 각각 접촉되도록 제 1 및 제 2 도전층(320-1a, 320-1b)이 각각 형성되고, 제 1 및 제 2 도전층(320-1a, 320-1b) 사이와 이들과 연결되도록 절연층(320-2)이 형성될 수 있다. 그러나, ESD 보호층(320)은 평면 방향으로 도전층(320-1)과 절연층(320-2)을 적어도 1회 이용하여 형성할 수 있다. 예를 들어, ESD 보호층(320)은 도전층(320-1)과 절연층(320-2)을 이용하여 2중 구조로 형성할 수 있고, 도전층(320-1), 절연층(320-2) 및 도전층(320-1)을 교대로 형성하여 3중 구조로 형성할 수도 있다. 또한, 도전층(320-1)과 절연층(320-2)이 교대로 복수회 반복 마련되어 3중 구조 이상의 구조로 형성될 수도 있다. 이때, 적어도 절연층(320-2) 내에는 복수의 기공이 형성될 수 있다. 물론, 도전층(320-1) 내에도 복수의 기공이 형성될 수도 있다.
그리고, ESD 보호층(320)은 도 13의 (c)에 도시된 바와 같이 제 1 및 제 2 방전 전극(311, 312) 사이에 제 1 도전층(320-1a), 제 1 절연층(320-2a), 공극(320-3), 제 2 절연층(320-2b) 및 제 2 도전층(320-1b)이 마련되어 형성될 수 있다. 즉, 제 1 및 제 2 방전 전극(301, 302)과 각각 접촉되도록 제 1 및 제 2 도전층(320-1a, 320-1b)이 형성되고, 제 1 및 제 2 도전층(320-1a, 320-1b) 사이에 제 1 및 제 2 절연층(320-2a, 320-2b)이 형성되며, 제 1 및 제 2 절연층(320-2a, 320-2b) 사이에 공극(320-3)이 형성될 수 있다. 물론, 도전층, 절연층, 공극이 복수회 반복 마련되어 ESD 보호층(320)이 형성될 수도 있다. 한편, 도전층(320-1), 절연층(320-2) 및 공극(320-3)이 수평 방향으로 마련되는 경우 이들 모두의 폭이 모두 동일할 수 있고, 적어도 어느 하나의 폭이 다른 것들에 비해 좁을 수 있다. 예를 들어, 공극(320-3)이 도전층(320-1) 및 절연층(320-2)보다 폭이 좁을 수 있다. 또한, 도전층(320-1)은 절연층(320-2)과 동일 폭으로 형성될 수 있고, 절연층(320-2)보다 폭이 넓거나 좁게 형성될 수도 있다. 한편, 공극(320-3)은 인쇄 공정으로 절연층(320-2)을 형성할 때 소정의 간격이 유지되도록 절연층(320-2)을 형성함으로써 형성될 수 있다. 한편, 도전층(320-1), 절연층(320-2) 및 공극(320-3) 각각은 제 1 및 제 2 방전 전극(311, 312) 사이의 폭의 30% 내지 50%의 폭으로 형성될 수 있다. 즉, 도전층(320-1), 절연층(320-2) 및 공극(320-3)이 수평 방향으로 각각 적어도 하나 형성될 경우 도전층(320-1), 절연층(320-2) 및 공극(320-3) 각각은 그 폭의 합이 제 1 및 제 2 방전 전극(311, 312) 사이의 폭의 30% 내지 50%으로 형성될 수 있다. 한편, 공극(320-3)은 절연층(320-2) 사이에 구분되어 형성되지 않을 수도 있다. 즉, 공극(320-3)은 절연층(320-2) 내에 형성될 수 있고, 절연층(320-2) 내의 복수의 기공이 연결되어 수평 방향 또는 수직 방향으로 형성될 수 있다.
물론, ESD 보호층(320)은 공극(320-3)만으로 형성될 수도 있다. 즉, 도 13의 (d)에 도시된 바와 같이 제 1 및 제 2 방전 전극(311, 312)이 소정 간격 이격되어 그 사이에 공극(320-3)이 형성되고, 공극(320-3)이 ESD 보호층(320)으로 기능할 수도 있다. 이렇게 공극(320-3)만으로 ESD 보호층(320)을 형성하는 경우 도전층(320-1), 절연층(320-2) 또는 이들의 혼합 물질로 ESD 보호층(320)을 형성하는 경우에 비해 ESD 보호층(320)의 폭이 좁게 형성될 수 있다.
또한, 본 발명의 제 3 실시 예에 따른 감전 방지 소자는 ESD 보호부(3000)의 방전 전극이 셋 이상으로 형성되고 그 사이에 적어도 둘 이상의 ESD 보호층이 형성될 수 있다. 이러한 본 발명의 ESD 보호부(3000)의 제 3 실시 예의 변형 예들을 도 14의 평면 개략도를 이용하여 설명하면 다음과 같다.
도 14의 (a)에 도시된 바와 같이, 동일 평면 상에 일 방향으로 서로 이격된 적어도 세개의 방전 전극(311, 312, 313)이 형성되고, 인접한 방전 전극 사이에 ESD 보호부(3000)가 형성될 수 있다. 즉, 제 1, 제 2 및 제 3 방전 전극(311, 312, 313)이 일 방향으로 소정 간격 이격되어 형성되고, 제 1 및 제 3 방전 전극(311, 313) 사이에 제 1 ESD 보호층(320a)이 형성되며, 제 3 및 제 2 방전 전극(313, 312) 사이에 제 2 ESD 보호층(320b)이 형성될 수 있다. 여기서, 제 1 및 제 2 ESD 보호층(320a, 320b)은 각각 동일 물질로 형성될 수도 있고, 다른 물질로 형성될 수도 있다. 예를 들어, 제 1 및 제 2 ESD 보호층(320a, 320b)은 각각 절연성 물질과 도전성 물질의 혼합 물질층으로 형성될 수도 있고, 도전층으로 형성될 수도 있으며, 절연층으로 형성될 수도 있다. 또한, 제 1 및 제 2 ESD 보호층(320a, 320b)은 어느 하나가 도전층으로 형성되고, 다른 하나가 절연층으로 형성될 수도 있다.
또한, 도 14의 (b)에 도시된 바와 같이, 동일 평면 상에 일 방향으로 서로 이격된 네개의 방전 전극(311, 312, 313, 314)이 형성되고, 인접한 방전 전극 사이에 ESD 보호층(320)가 형성될 수 있다. 즉, 네개의 방전 전극(311, 312, 313, 314)이 일 방향으로 소정 간격 이격되어 형성되고, 제 1 및 제 3 방전 전극(311, 313) 사이에 제 1 ESD 보호층(320a)이 형성되며, 제 3 및 제 4 방전 전극(313, 314) 사이에 제 2 ESD 보호층(320b)이 형성되고, 제 4 및 제 2 방전 전극(314, 312) 사이에 제 3 ESD 보호층(320c)가 형성될 수 있다. 여기서, 제 1 내지 제 3 ESD 보호층(320a, 320b, 320c)은 각각 동일 물질로 형성될 수도 있다. 예를 들어, 제 1 내지 제 3 ESD 보호층(320a, 320b, 320c)이 각각 절연성 물질과 도전성 물질의 혼합 물질층으로 형성될 수 있고, 도전층으로 형성될 수도 있으며, 절연층으로 형성될 수도 있다. 또한, 제 1 내지 제 3 ESD 보호층(320a, 320b, 320c)는 적어도 하나가 다른 물질로 형성될 수 있다. 예를 들어, 제 1 및 제 3 ESD 보호층(320a, 320c)이 도전층으로 형성되고, 제 2 ESD 보호층(320b)이 절연층으로 형성될 수 있다. 또한, 제 1 및 제 3 ESD 보호층(320a, 320c)이 절연층으로 형성되고, 제 2 ESD 보호층(320b)이 도전층으로 형성될 수 있다.
물론, 복수의 ESD 보호층(320)의 적어도 하나가 공극(320-3)으로 형성될 수 있다. 즉, 도 14의 (c)에 도시된 바와 같이 네개의 방전 전극(311, 312, 313, 314)이 일 방향으로 소정 간격 이격되어 형성되고, 제 1 및 제 3 방전 전극(311, 313) 사이에 제 1 ESD 보호층(320a)가 형성되며, 제 3 및 제 4 방전 전극(313, 314) 사이에 제 2 ESD 보호층(320b)으로서 공극(320-3)이 형성되고, 제 4 및 제 2 방전 전극(314, 312) 사이에 제 3 ESD 보호층(320c)가 형성될 수 있다. 여기서, 제 1 및 제 3 ESD 보호층(320a, 320c)은 각각 동일 물질로 형성될 수도 있다. 예를 들어, 제 1 및 제 3 ESD 보호층(320a, 320c)이 각각 절연성 물질과 도전성 물질의 혼합 물질층으로 형성될 수 있고, 도전층으로 형성될 수도 있으며, 절연층으로 형성될 수도 있다. 또한, 제 1 및 제 3 ESD 보호층(320a, 320c)은 서로 다른 물질로 형성될 수 있다. 예를 들어, 제 1 및 제 3 ESD 보호층(320a, 320c)의 어느 하나가 도전층으로 형성되고, 다른 하나가 절연층으로 형성될 수 있다.
또한, 본 발명의 감전 방지 소자는 ESD 보호부(3000)의 방전 전극을 다양한 형상으로 변형할 수 있다. 예를 들어, 도 15의 (a)에 도시된 바와 같이, 방전 전극(311, 312)의 서로 대면하는 말단부가 뾰족하게 형성되거나 도 15의 (b)에 도시된 바와 같이 방전 전극(311, 312)의 서로 대면하는 말단부가 라운드하게 형성될 수도 있다. 즉, 서로 대면하는 방전 전극(311, 312)의 적어도 일 영역이 다른 영역보다 가깝게 형성될 수 있다. 이렇게 서로 이격된 두 방전 전극(311, 312)의 말단부를 뾰족하거나 라운드하게 형성함으로써 두 방전 전극(311, 312) 사이의 거리가 가까워지게 되어 두 방전 전극(311, 312) 사이에 방전이 잘 일어나도록 할 수 있다.
또한, 두 방전 전극(311, 312)이 동일 간격을 유지하면서 다양한 형상으로 형성될 수 있다. 예를 들어, 도 15의 (c)에 도시된 바와 같이 일 방전 전극(311)이 일측으로부터 타 측으로 소정 경사를 갖도록 형성되고, 타 방전 전극(312)이 이와는 반대 형상으로 소정의 경사를 갖도록 형성될 수 있다. 또한, 방전 전극(311, 312)은 서로 일정한 간격을 유지하며 적어도 하나의 요철 구조로 형성될 수 있다. 예를 들어, 도 15의 (d)에 도시된 바와 같이 일 방전 전극(311)은 말단부가 오목하게 형성되고 타 방전 전극(312)은 말단부가 볼록하게 형성되어 오목부 내에 볼록부가 삽입되는 형태로 형성될 수도 있다. 이렇게 두 내부 전극이 동일 간격을 유지하면서 다양한 형상으로 형성됨으로써 두 내부 전극 사이의 면적이 증가하게 되고 그에 따라 ESD 내성을 증가시킬 수 있다.
한편, 본 발명의 제 2 및 제 3 실시 예에 따른 감전 방지 소자는 캐패시터부(2000, 4000)의 캐패시턴스가 수평 방향으로 적어도 둘 이상이 다를 수 있다. 즉, Y 방향으로 소정 간격 이격된 내부 전극들이 수직 방향으로 적층되어 소정의 캐패시턴스를 갖게 되는데, 수평 방향으로 적어도 하나 이상의 캐패시턴스가 적어도 다른 하나와 다를 수 있다. 이렇게 수평 방향으로 캐패시턴스를 다르게 하기 위해 캐패시턴스부(2000, 4000)의 수평 방향으로 배열된 내부 전극의 적어도 하나의 길이가 다를 수 있다. 예를 들어, 도 16에 도시된 바와 같이 복수의 제 1 내부 전극(201a, 201b, 201c, 201d) 중에서 적어도 하나의 길이가 다를 수 있고, 복수의 제 3 내부 전극(203a, 203b, 203c, 203d) 중에서 적어도 하나의 길이가 다를 수 있다. 예를 들어, 네개의 제 1 내부 전극(201a, 201b, 201c, 201d) 중에서 중앙에 위치한 두개의 제 1 내부 전극(201b, 201c)이 외측에 위치한 두개의 제 1 내부 전극(201a, 201d)에 비해 짧게 형성될 수 있다. 이와 마찬가지로, 네개의 제 3 내부 전극(203a, 203b, 203c, 203d) 중에서 중앙에 위치한 두개의 제 3 내부 전극(203b, 203c)가 외측에 위치한 두개의 제 3 내부 전극(203a, 203d)에 비해 짧게 형성될 수 있다. 이때, 각각 복수의 제 2 및 제 4 내부 전극(202, 204)은 길이가 동일하게 형성될 수 있는데, 예를 들어 제 1 내부 전극(201a, 201d) 및 제 3 내부 전극(203a, 203d)와 동일 길이로 형성될 수 있다. 따라서, 길이가 길게 형성된 제 1 내부 전극(201a, 201d) 및 제 3 내부 전극(203a, 203d)의 제 2 및 제 4 내부 전극(202, 204)의 중첩 면적이 길이가 짧게 형성된 제 1 내부 전극(201b, 201c) 및 제 3 내부 전극(203b, 203d)의 제 2 및 제 4 내부 전극(202, 204)의 중첩 면적보다 클 수 있다. 따라서, 길이가 길게 형성된 제 1 내부 전극(201a, 201d) 및 제 3 내부 전극(203a, 203d)과 제 2 및 제 4 내부 전극(202, 204) 사이의 캐패시턴스가 길이가 짧게 형성된 제 1 내부 전극(201b, 201c) 및 제 3 내부 전극(203b, 203d)과 제 2 및 제 4 내부 전극(202, 204)의 캐패시턴스보다 클 수 있다.
또한, 캐패시턴스부(2000, 4000)의 수직 방향으로 내부 전극을 추가하여 캐패시턴스를 조절할 수도 있다. 즉, 도 17에 도시된 바와 같이 각각 복수의 제 1 내지 제 4 내부 전극(201 내지 204)이 동일 길이로 형성되며 동일 중첩 면적을 갖도록 형성되고, 제 1 내부 전극(201) 하측에 제 5 내부 전극(205)이 더 형성되고, 제 4 내부 전극(204) 상측에 제 6 내부 전극(206)이 더 형성될 수 있다. 이때, 네개의 제 1 내부 전극(201a 내지 201d) 중에서 외측의 제 1 내부 전극(201a, 201d)과 중첩되도록 그 하측에 두개의 제 5 내부 전극(205a, 205b)가 형성될 수 있다. 또한, 네개의 제 4 내부 전극(204a 내지 204d) 중에서 외측의 제 4 내부 전극(204a, 204d)와 중첩되도록 그 상측에 두개의 제 6 내부 전극(206a, 206b)이 형성될 수 있다. 따라서, 수평 방향으로 배열된 복수의 내부 전극 중에서 외측의 두개의 내부 전극은 수직 방향으로 세개가 중첩되어 형성되고, 중앙부의 두 내부 전극은 두개가 중첩되어 형성될 수 있다. 따라서, 세개의 내부 전극이 중첩된 영역에서 두개의 내부 전극이 중첩된 영역보다 캐패시턴스가 더 클 수 있다.
도 18은 본 발명의 제 4 실시 예에 따른 감전 방지 소자의 사시도이고, 도 19는 분리 사시도이며, 도 20은 등가 회로도이다. 이러한 본 발명의 제 4 실시 예는 본 발명의 제 2 실시 예에 제 1 실시 예를 결합한 것이다.
도 18 내지 도 20을 참조하면, 본 발명의 제 4 실시 예에 따른 감전 방지 소자는 복수의 절연 시트(101 내지 109; 100)가 적층된 적층체(1000)와, 적층체(1000) 내에 마련된 적어도 하나의 캐패시터부(2000, 4000)와, ESD 보호부(3000)와, 적층체(1000)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2000, 4000)와 ESD 보호부(3000)와 연결되는 제 1 외부 전극(5100, 5200; 5000)과, 제 1 외부 전극(5000)과 직교하는 방향의 적층체(1000)의 서로 대향하는 두 측면에 형성되어 ESD 보호부(3000)와 연결되는 제 2 외부 전극(6100, 6200; 6000)을 포함할 수 있다.
ESD 보호부(3000)는 제 4 내지 제 6 절연 시트(104 내지 106)과, 제 4 내지 제 6 절연 시트(104 내지 106) 상에 각각 형성된 제 1 내지 제 3 방전 전극(311, 312, 313; 310)과, 제 5 및 제 6 절연 시트(105, 106) 내에 형성된 제 1 및 제 2 ESD 보호층(320-1, 320-2; 320)을 포함할 수 있다. 즉, ESD 보호부(3000)는 수직 방향으로 적어도 두 개의 ESD 보호층(320)과, 적어도 세 개의 방전 전극(310)을 포함할 수 있다. 또한, ESD 보호층(320) 및 방전 전극(310)은 수평 방향으로 적어도 둘 이상 형성될 수 있다. 즉, 수평 방향(즉 X 방향)으로 복수의 제 1 방전 전극(311a, 311b, 311c, 311d)과 복수의 제 3 방전 전극(313a, 313b, 313c, 313d)이 형성되고, X 방향으로 제 2 방전 전극(312)이 하나 형성될 수 있다. 복수의 제 1 및 제 3 방전 전극(311, 313)은 각각 복수의 제 1 외부 전극(5100, 5200)과 선택적으로 연결되고, 제 2 방전 전극(312)은 제 2 외부 전극(6100, 6200)과 연결될 수 있다. 따라서, 도 20에 도시된 바와 같이 하나의 캐패시터(C1, C1, C3, C4)와 두개의 ESD 보호부(V1, V2)로 이루어진 감전 방지 소자가 수평 방향으로 복수 마련될 수 있다.
한편, 칩 사이즈가 작아지면서 설계 가능한 공간이 적어지게 된다. 따라서, 좁은 공간에서도 높은 ESD 내압 특성을 갖는 감전 방지 소자의 내부 구조가 필요하다. 그런데, 감전 방지 소자의 사이즈가 작아지게 되면 공간 부족으로 인하여 절연 시트의 두께가 얇아질 수 밖에 없고, 이는 절연 시트 자체의 내압 특성이 저하되어 낮은 레벨의 ESD를 인가하여도 쉽게 절연 시트의 절연 저항이 파괴되는 현상이 발생된다. 이러한 문제를 해결하기 위해 복수 형상의 플로팅 타입(floating type) 구조를 이용하여 일반적인 적층 타입보다 동일 공간 내에서 ESD 내압 특성을 개선할 수 있다. 즉, 캐패시터부의 내부 전극의 형상을 변형하여 내부 전극 사이의 일 영역에서 절연 시트의 두께가 2배 이상 증가되기 때문에 ESD 내압 특성이 유지될 수 있다. 이는 감전 방지 소자가 갖는 ESD 보호부의 설계와 맞물려 보다 높은 ESD 내성 개선 효과를 보인다. 결국, ESD 보호부의 반복적인 ESD 전압에 의한 기능 저하로 인하여 ESD가 ESD 보호부의 ESD 보호층으로 패스되지 않을 경우 캐패시터부가 데미지를 입어 절연 파괴가 발생될 수 있고, ESD 보호부의 기능 저하가 없더라고 ESD 전압 유입 시 감전 방지 소자의 ESD 보호부의 반응 시간까지의 1ns 내지 30ns 공백 시간에 캐패시터부에 ESD 전압 부하가 잠시 동안 발생되어 절연 파괴가 발생될 수 있다. 그러나, 캐패시터부를 플로팅 타입으로 형성함으로써 캐패시터층의 ESD 내압 특성을 높혀 절연 저항이 파괴되어 쇼트가 발생되는 현상을 개선할 수 있다.
이러한 캐패시터부를 플로팅 타입으로 형성하는 본 발명의 다양한 실시 예를 도 21 내지 도 24를 이용하여 설명하면 다음과 같다.
도 21 내지 도 24를 참조하면, 본 발명의 다른 실시 예들에 따른 감전 방지 소자는 복수의 절연 시트(101 내지 113; 100)가 적층된 적층체(1000)로 이루어지며, 적층체(1000) 내에 제 1 캐패시터부(2000), ESD 보호부(3000) 및 제 2 캐패시터부(4000)가 마련될 수 있다. 또한, 적층체(1000)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2000, 4000)와 ESD 보호부(3000)와 연결되는 외부 전극(5100, 5200; 5000)을 더 포함할 수 있다. 제 1 캐패시터부(2000)는 복수의 내부 전극(201 내지 205)을 구비하며, 제 2 캐패시터부(4000) 또한 복수의 내부 전극(208 내지 212)을 포함할 수 있다. 즉, 제 1 및 제 2 캐패시터부(2000, 4000)는 동일한 수, 예를 들어 5개의 내부 전극을 각각 구비할 수 있다. 또한, 제 1 및 제 2 캐패시터부(2000, 4000) 사이에 방전 전극(311 및 312)과 이들 사이에 마련된 ESD 보호층(320)을 포함하는 ESD 보호부(3000)가 마련된다. 여기서, 제 1 및 제 2 캐패시터부(2000, 4000)는 적어도 하나의 내부 전극이 적어도 일 영역이 제거된 형상으로 형성될 수 있다.
도 21에 도시된 바와 같이, 제 1 캐패시터부(2000)의 내부 전극(201)이 예를 들어 중앙부가 소정 폭으로 제거된 형상으로 형성되고, ESD 보호부(3000)를 사이에 두고 이와 대칭적 위치에 마련된 제 2 캐패시터부(4000)의 내부 전극(210) 또한 내부 전극(201)과 동일한 위치에 소정 영역이 제거된 형상으로 형성될 수 있다. 내부 전극(201, 210)이 소정 영역이 제거되어 형성되므로 그와 인접한 내부 전극(202, 209)과의 중첩 면적이 작아지게 된다. 이때, 소정 영역이 제거되어 두 영역으로 나뉜 내부 전극(201, 210)은 두 영역이 각각 제 1 및 제 2 외부 전극(5100, 5200)과 연결될 수 있다. 이렇게 내부 전극(201, 210)의 소정 영역이 제거된 형상으로 형성됨으로써 내부 전극(201, 210)와 인접한 내부 전극(202, 209) 사이에 절연 시트(102, 112)이 두껍게 형성된다. 즉, 내부 전극(202)과 내부 전극(201)의 제거된 부분 사이에 두개의 절연 시트(101, 102)가 마련되므로 절연 시트(100)의 두께가 증가하게 된다. 따라서, 캐패시터부(2000, 4000)의 내부 전극(200) 사이의 일 영역에서 절연 시트(100)의 두께가 적어도 2배 증가되기 때문에 ESD 내압 특성이 유지될 수 있다.
또한, 도 22에 도시된 바와 같이, 제 1 캐패시터부(2000)의 내부 전극들(201, 203, 205)의 예를 들어 중앙부의 소정 영역이 제거되고, 이와 ESD 보호부(3000)를 사이에 두고 대칭적으로 위치되는 제 2 캐패시터부(4000)의 내부 전극들(206, 208, 210)의 예를 들어 중앙부의 소정 영역이 제거될 수 있다. 이때, 내부 전극들(202, 204, 207, 209)은 외부 전극(5000)에 접촉되지 않고 내부 전극들(201, 203, 205, 206, 208, 210) 사이에서 이들의 적어도 일부와 중첩되도록 형성될 수 있다. 즉, 내부 전극들(202, 204, 207, 209)은 절연 시트(100)의 중앙부에 형성되어 절연 시트(100)의 중앙부에는 형성되지 않은 내부 전극들(201, 203, 205, 206, 208, 210)과 중첩되도록 형성될 수 있다.
한편, 제 1 및 제 2 캐패시터부(2000, 4000)의 내부 전극은 중앙 영역 뿐만 아니라 이로부터 소정 간격 이격된 영역이 제거될 수도 있다. 예를 들어, 도 23에 도시된 바와 같이 제 1 캐패시터부(2000)의 내부 전극들(201, 203, 205)의 중앙 영역이 제거되고, 이들 사이에 위치한 내부 전극들(202, 204)은 중앙 영역에서 소정 간격 이격된 양측에 제거부가 형성될 수 있다. 또한, 제 2 캐패시터부(4000)는 ESD 보호부(3000)를 사이에 두고 제 1 캐패시터부(2000)의 내부 전극들(201, 203, 205)과 대칭되는 위치의 내부 전극들(206, 208, 210)의 중앙 영역이 제거되고, 이들 사이에 위치한 내부 전극들(207, 209)은 제 1 캐패시터부(2000)의 내부 전극들(202, 204)과 동일 위치에 제거 영역이 형성될 수 있다.
또한, 도 24에 도시된 바와 같이, 제 1 캐패시터부(2000)의 내부 전극들(201, 203, 205)의 중앙 영역에 둘 이상의 제거 영역이 형성되고, 이들 사이에 위치한 내부 전극들(202, 204)은 중앙 영역에서 소정 간격 이격된 양측에 제거 영역이 형성될 수 있다. 또한, 제 2 캐패시터부(4000)는 ESD 보호부(3000)를 사이에 두고 제 1 캐패시터부(2000)의 내부 전극들(201, 203, 205)과 대칭되는 위치의 내부 전극들(206, 208, 210)의 중앙 영역에 둘 이상의 제거 영역이 형성되고, 이들 사이에 위치한 내부 전극들(207, 209)은 제 1 캐패시터부(2000)의 내부 전극들(202, 204)과 동일 위치에 제거 영역이 형성될 수 있다.
한편, 본 발명의 제 2 실시 예에 따른 감전 방지 소자는 ESD 보호부(3000)의 ESD 보호층(300)을 적어도 하나 이상 형성할 수 있다. 즉, 도 9에 도시된 바와 같이 X 방향으로 ESD 보호층(300)을 하나 형성할 수도 있고, 도 26 내지 도 28에 도시된 바와 같이 X 방향으로 ESD 보호층(300)을 둘 이상 복수로 형성할 수 있다. 이때, Y 방향으로는 ESD 보호층(300)이 복수 형성될 수 있다. 예를 들어, 도 26에 도시된 바와 같이 동일 평면 상에 두개의 ESD 보호층(320a, 320b)을 형성할 수도 있고, 도 27에 도시된 바와 같이 동일 평면 상에 세개의 ESD 보호층(320a, 320b, 320c)을 형성할 수도 있다. 적어도 두개 이상의 ESD 보호층(320a, 320b, 320c)은 내부 전극에 의해 연결될 수 있다. 또한, 도 27에 도시된 바와 같이 네개의 ESD 보호층(320a, 320b, 320c, 320d)가 두개씩 상하로 나뉘어 형성될 수도 있고, 도 28에 도시된 바와 같이 여섯개의 ESD 보호층(320a, 320b, 320c, 320d, 320e, 320f)가 세개씩 상하로 나뉘어 형성될 수 있다. 상하 이격되어 형성된 ESD 보호층들(320)은 상측 ESD 보호층들이 서로 연결되고 하측 ESD 보호층들이 서로 연결될 수 있다. 이렇게 복수의 ESD 보호층(320)이 형성되는 경우에도 각 ESD 보호층(320)은 동일 구조로 형성될 수 있고, 서로 다른 구조로 형성될 수 있다.
한편, 도 21 내지 28은 방전 전극(310)과 ESD 보호층(320)이 수직 방향으로 형성되는 다양한 경우를 도시하였으나, 도 12 내지 도 15에 도시된 바와 같이 방전 전극(310)과 ESD 보호층(320)이 수평 방향으로 형성될 경우에도 적용될 수 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.

Claims (17)

  1. 복수의 절연 시트가 적층된 적층체;
    상기 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부;
    상기 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방지하는 ESD 보호부; 및
    상기 적층체 외부에 마련되며 상기 캐패시터부 및 ESD 보호부와 연결된 외부 전극을 포함하고,
    상기 ESD 보호부는 다공성의 절연 물질을 포함하는 ESD 보호층을 포함하는 감전 방지 소자.
  2. 청구항 1에 있어서, 상기 외부 전극은 상기 적층체의 서로 대향되는 제 1 및 제 2 면에 형성되며 상기 캐패시터부 및 상기 ESD 보호부와 연결된 제 1 외부 전극과, 상기 제 1 및 제 2 면과 직교하는 방향으로 서로 대향되는 제 3 및 제 4 면에 형성되며 상기 ESD 보호부와 연결된 제 2 외부 전극을 포함하는 감전 방지 소자.
  3. 청구항 2에 있어서, 상기 ESD 보호부는 제 1a 외부 전극과 연결된 제 1 방전 전극과, 상기 제 2 외부 전극과 연결된 제 2 방전 전극과, 제 1b 외부 전극과 연결된 제 3 방전 전극을 포함하고, 상기 제 1 내지 제 3 방전 전극이 수직 방향으로 이격되고 서로 교차하도록 형성된 감전 방지 소자.
  4. 청구항 3에 있어서, 상기 제 1 및 제 2 방전 전극 사이에 형성된 제 1 ESD 보호층과, 상기 제 2 및 제 3 방전 전극 사이에 형성된 제 2 ESD 보호층을 포함하는 감전 방지 소자.
  5. 청구항 1에 있어서, 상기 캐패시터부 및 상기 ESD 보호부는 상기 적층체 내에 적어도 둘 이상 마련되는 감전 방지 소자.
  6. 청구항 5에 있어서, 상기 내부 전극이 수직 방향으로 적층되어 일 캐패시터부를 형성하고, 수평 방향으로 배열되어 복수의 캐패시터부를 형성하는 감전 방지 소자.
  7. 청구항 6에 있어서, 적어도 하나의 캐패시터부의 캐패시턴스가 상이한 감전 방지 소자.
  8. 청구항 7에 있어서, 상기 내부 전극의 길이, 내부 전극의 중첩 면적, 내부 전극의 적층 수의 적어도 하나를 조절하여 상기 캐패시턴스를 조절하는 감전 방지 소자.
  9. 청구항 8에 있어서, 상기 내부 전극의 적어도 하나는 상기 방전 전극보다 길고 넓게 형성된 감전 방지 소자.
  10. 청구항 9에 있어서, 상기 내부 전극의 적어도 하나가 적어도 일 영역이 제거된 형상으로 형성된 감전 방지 소자.
  11. 청구항 4 또는 청구항 5에 있어서, 상기 제 1 및 제 3 방전 전극이 일 방향으로 소정 간격 이격되어 복수 마련되고, 상기 제 2 방전 전극이 상기 일 방향으로 연장 형성된 감전 방지 소자.
  12. 청구항 11에 있어서, 상기 ESD 보호층은 동일 평면 상에 적어도 둘 이상 마련되거나, 적어도 둘 이상의 평면 상에 적어도 둘 이상 마련되는 감전 방지 소자.
  13. 청구항 1에 있어서, 상기 ESD 보호층은 전도성 물질 및 공극의 적어도 하나를 더 포함하는 감전 방지 소자.
  14. 청구항 13에 있어서, 상기 공극은 상기 절연성 물질 사이에 형성되거나, 상기 절연성 물질 내의 기공이 연결되어 형성된 감전 방지 소자.
  15. 복수의 절연 시트가 적층된 적층체;
    상기 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부;
    상기 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방호하는 ESD 보호부;
    상기 적층체 외부에 형성되고 상기 캐패시터부 및 상기 ESD 보호부와 연결된 제 1 외부 전극; 및
    상기 적층체 외부에 상기 제 1 외부 전극과 이격되어 형성되며 상기 ESD 보호부와 연결된 제 2 외부 전극을 포함하고,
    금속 케이스를 포함하는 전자기기의 내부에 마련되어 상기 금속 케이스를 통해 사용자에게 전달되는 감전 전압을 차단하고, ESD 전압을 바이패스하는 감전 방지 소자.
  16. 청구항 15에 있어서, 상기 캐패시터부 및 상기 ESD 보호부는 상기 적층체 내에 적어도 둘 이상 마련되는 감전 방지 소자.
  17. 금속 케이스와 내부 회로 사이에 마련되어 감전 전압을 차단하고 ESD 전압을 바이패스시키는 감전 방지 소자를 포함하며,
    상기 감전 방지 소자는,
    복수의 절연 시트가 적층된 적층체;
    상기 적층체 내부에 상기 절연 시트를 사이에 두고 복수의 내부 전극이 마련된 캐패시터부;
    상기 절연 시트의 적어도 일부에 형성되어 ESD 전압을 방호하는 ESD 보호부;
    상기 적층체 외부에 형성되고 상기 캐패시터부 및 상기 ESD 보호부와 연결된 제 1 외부 전극; 및
    상기 적층체 외부에 상기 제 1 외부 전극과 이격되어 형성되며 상기 ESD 보호부와 연결된 제 2 외부 전극을 포함하고,
    상기 캐패시터부 및 상기 ESD 보호부는 상기 적층체 내에 적어도 둘 이상 마련되는 전자기기.
PCT/KR2016/004740 2015-05-07 2016-05-04 감전 방지 소자 및 이를 구비하는 전자기기 WO2016178525A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680004444.XA CN107112134B (zh) 2015-05-07 2016-05-04 防止触电的装置以及包含防止触电的装置的电子装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0063841 2015-05-07
KR20150063841 2015-05-07
KR10-2016-0025953 2016-03-03
KR1020160025953A KR101871448B1 (ko) 2015-05-07 2016-03-03 적층형 소자

Publications (1)

Publication Number Publication Date
WO2016178525A1 true WO2016178525A1 (ko) 2016-11-10

Family

ID=57218227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004740 WO2016178525A1 (ko) 2015-05-07 2016-05-04 감전 방지 소자 및 이를 구비하는 전자기기

Country Status (1)

Country Link
WO (1) WO2016178525A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080056917A (ko) * 2006-12-19 2008-06-24 주식회사 아모텍 칩형 서지 흡수기
JP2009194169A (ja) * 2008-02-14 2009-08-27 Tdk Corp 積層コンデンサ
JP2010103184A (ja) * 2008-10-21 2010-05-06 Tdk Corp 積層コンデンサの製造方法
JP2010146779A (ja) * 2008-12-17 2010-07-01 Panasonic Corp 過電圧保護部品
KR101082079B1 (ko) * 2009-12-09 2011-11-10 조인셋 주식회사 정전방전 보호 기능을 갖는 이엠아이 엘씨 필터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080056917A (ko) * 2006-12-19 2008-06-24 주식회사 아모텍 칩형 서지 흡수기
JP2009194169A (ja) * 2008-02-14 2009-08-27 Tdk Corp 積層コンデンサ
JP2010103184A (ja) * 2008-10-21 2010-05-06 Tdk Corp 積層コンデンサの製造方法
JP2010146779A (ja) * 2008-12-17 2010-07-01 Panasonic Corp 過電圧保護部品
KR101082079B1 (ko) * 2009-12-09 2011-11-10 조인셋 주식회사 정전방전 보호 기능을 갖는 이엠아이 엘씨 필터

Similar Documents

Publication Publication Date Title
TWI685941B (zh) 防止觸電的裝置以及包含該裝置的電子裝置
WO2017209448A1 (ko) 컨택터
WO2018105912A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2018021786A1 (ko) 복합 소자 및 이를 구비하는 전자기기
WO2017200250A1 (ko) 회로 보호 소자
WO2017082451A1 (ko) 회로 보호 소자
WO2018066871A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2016178524A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2016178525A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2016178529A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2017135566A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2016178528A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2018117447A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2016178533A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2019066221A1 (ko) 적층형 소자 및 이를 구비하는 전자기기
WO2016178541A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2018004276A1 (ko) 칩 부품 및 그 제조 방법
WO2016178543A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
WO2017196151A1 (ko) 컨택터 및 이를 구비하는 전자기기
WO2017196150A1 (ko) 컨택터 및 이를 구비하는 전자기기
WO2018124492A1 (ko) 복합 소자 및 이를 구비하는 전자기기
KR101842211B1 (ko) 감전 방지 컨택터 및 이를 구비하는 전자기기
KR20180066003A (ko) 감전 방지 컨택터
KR20170126840A (ko) 적층형 소자 및 이를 구비하는 전자기기
WO2019031738A1 (ko) 복합형 감전방지소자 및 이를 구비한 휴대용 전자장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789631

Country of ref document: EP

Kind code of ref document: A1