WO2018066871A1 - 복합 보호 소자 및 이를 구비하는 전자기기 - Google Patents
복합 보호 소자 및 이를 구비하는 전자기기 Download PDFInfo
- Publication number
- WO2018066871A1 WO2018066871A1 PCT/KR2017/010675 KR2017010675W WO2018066871A1 WO 2018066871 A1 WO2018066871 A1 WO 2018066871A1 KR 2017010675 W KR2017010675 W KR 2017010675W WO 2018066871 A1 WO2018066871 A1 WO 2018066871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main body
- protection
- electrodes
- electrode
- internal
- Prior art date
Links
- 239000002131 composite material Substances 0.000 claims description 69
- 230000001681 protective effect Effects 0.000 claims description 60
- 239000004020 conductor Substances 0.000 claims description 33
- 239000010410 layer Substances 0.000 description 196
- 230000004048 modification Effects 0.000 description 42
- 238000012986 modification Methods 0.000 description 42
- 238000007747 plating Methods 0.000 description 41
- 229910052751 metal Inorganic materials 0.000 description 36
- 239000002184 metal Substances 0.000 description 36
- 239000000463 material Substances 0.000 description 31
- 230000006698 induction Effects 0.000 description 28
- 239000011148 porous material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 239000000919 ceramic Substances 0.000 description 21
- 239000011810 insulating material Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 20
- 230000003071 parasitic effect Effects 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000011800 void material Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 7
- 238000007639 printing Methods 0.000 description 7
- 230000003252 repetitive effect Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- -1 BaCO 3 Inorganic materials 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- SWPMTVXRLXPNDP-UHFFFAOYSA-N 4-hydroxy-2,6,6-trimethylcyclohexene-1-carbaldehyde Chemical compound CC1=C(C=O)C(C)(C)CC(O)C1 SWPMTVXRLXPNDP-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 206010014405 Electrocution Diseases 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910010052 TiAlO Inorganic materials 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/14—Protection against electric or thermal overload
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
Definitions
- the present invention relates to a composite protection device, and more particularly, to a composite protection device capable of protecting an electronic device or a user from voltage and current.
- Electronic devices having multifunction such as smartphones are integrated with various components according to their functions.
- the electronic device is provided with an antenna capable of receiving various frequency bands such as wireless LAN, Bluetooth, and Global Positioning System (GPS) in various frequency bands, and some of them are built-in antennas. It may be installed in the case constituting the electronic device. Therefore, a contactor for electrical connection is provided between the antenna installed in the case and the internal circuit of the electronic device.
- GPS Global Positioning System
- a shock current is generated by charging using a non-genuine charger or a poor charger using a low-quality device without built-in overcurrent protection circuit, and the shock current is conducted to the ground terminal of the smartphone, and then the metal case Electric shock may be caused to the user who is in contact with the metal case.
- Korean Patent No. 10-1585604 is provided with an external electrode for mounting on a circuit board on the lower surface of the body, the upper surface is provided with a connecting electrode for connecting with the conductive gasket.
- the prior patent is provided with an intermediate electrode connected to both sides of the inner body, that is, the outer electrode at the edge.
- Such an electric shock protection device should not have an insertion loss of S21 (frequency characteristics after input) in the wireless communication frequency range of 700 MHz to 3 kHz or more.
- the prior patent has a long length of the electrode constituting the capacitance and the intermediate electrode is formed through a narrow diameter via, the parasitic resistance and parasitic inductance is increased. Therefore, S21 insertion loss becomes a problem in the wireless communication frequency range of 700 MHz to 3 GHz.
- the present invention provides a complex protection device provided in an electronic device such as a smart phone to protect the electronic device and the user from at least one of overvoltage and leakage current.
- the present invention provides a composite protection device that can prevent the electric shock of the user by the shock current input from the charger, and can protect the internal circuit from the overvoltage applied from the outside.
- the present invention provides a composite protection device that can reduce the parasitic resistance and parasitic inductance to reduce the loss in the radio frequency range.
- a composite protective device includes a main body; Two or more internal electrodes provided in the main body; One or more protection units provided between the two or more internal electrodes; Two or more connection electrodes provided inside the main body to be connected to the two or more internal electrodes; At least two external electrodes formed on the outside of the main body to be connected to the at least two connection electrodes, wherein the connection electrodes are formed to at least partially overlap the protective part.
- the main body is formed by stacking a plurality of sheets, and the external electrodes are formed on two surfaces facing each other in the stacking direction of the sheets.
- the said protection part is formed in the center part of the length, the width, and the thickness direction of the said main body.
- the protective part further includes an extension part formed to have a diameter different from that of at least one region.
- connection electrode is formed at a central portion of the longitudinal direction and the width direction of the main body.
- the connecting electrode is formed with a diameter of at least 1% of the body length and at least 5% of the body width.
- connection electrode has a horizontal area smaller than or equal to the internal electrode
- protective part has a horizontal area smaller than or equal to the connection electrode
- connection electrode is formed to be higher than or equal to the height of the protective part.
- the height of the two or more connection electrodes is 100 ⁇ m to 1000 ⁇ m, or the height of the protective part is 5 ⁇ m to 600 ⁇ m.
- connection electrodes have at least one of different sizes and shapes.
- the contact unit may further include a contact unit provided to be connected to any one of the external electrodes.
- a capacitance is formed between the at least two internal electrodes, and an area overlapping at least the protective part of the internal electrode serves as a discharge electrode.
- One of the external electrodes is connected to an internal circuit of the electronic device, and the other is connected to a conductor that can be contacted by a user outside the electronic device.
- an electronic device includes a complex protection device provided between a user contactable conductor and an internal circuit to block an electric shock voltage and pass an overvoltage, wherein the complex protection device includes: a main body; Two or more internal electrodes provided in the main body; One or more protection units provided between the two or more internal electrodes; Two or more connection electrodes provided inside the main body to be connected to the two or more internal electrodes; At least two external electrodes formed on the outside of the main body to be connected to the at least two connection electrodes, wherein the connection electrodes are formed to at least partially overlap the protective part.
- One of the external electrodes is connected to the internal circuit and the other is connected to the conductor.
- the semiconductor device may further include a contact portion provided between the conductor and the composite protective element.
- connection electrode is preferably formed in a central portion of the main body and has a width wider than that of the protection portion, thereby reducing parasitic resistance and parasitic inductance. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz.
- connection electrode is formed to have a width wider than the width of the protective part, it is possible to prevent deterioration due to repetitive ESD voltage and to suppress an increase in the discharge start voltage.
- FIG. 1 is a perspective view of a composite protective device according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a composite protective device according to an embodiment of the present invention.
- 3 and 4 are cross-sectional and cross-sectional photograph of the protection unit according to the first embodiment of the composite protection device of the present invention.
- FIG. 5 is a cross-sectional view of a protection unit according to a second embodiment of a composite protection device of the present invention.
- FIG. 6 is a cross-sectional view of a protection unit according to a third embodiment of the composite protection device of the present invention.
- FIG. 7 is an equivalent circuit diagram of a composite protective element according to the present invention.
- FIG. 8 is a cross-sectional view of a composite protective device according to another embodiment of the present invention.
- 9 and 10 are cross-sectional views of the composite protective device according to the modification of the present invention.
- FIG. 11 is a sectional view of a composite protective device according to a comparative example.
- 12 and 13 are graphs showing frequency characteristics of a composite protective device according to a comparative example and an embodiment of the present invention.
- FIG. 1 is a perspective view of a composite protective device according to an embodiment of the present invention
- Figure 2 is a cross-sectional view.
- a composite protection device may include a main body 100, at least two or more internal electrodes 200 provided inside the main body 1000, and at least two or more internal electrodes ( At least one protection unit 300 provided between the 200, at least two or more connection electrodes 400 provided inside the main body 100 to be connected to the at least two or more internal electrodes 200, and the connection electrode 400 and It includes an external electrode 500 formed on the outside of the main body 100 to be connected.
- At least one protection unit 300 provided between the 200, at least two or more connection electrodes 400 provided inside the main body 100 to be connected to the at least two or more internal electrodes 200, and the connection electrode 400 and It includes an external electrode 500 formed on the outside of the main body 100 to be connected.
- the present invention will be described by taking an example of a composite protection device that protects an electronic device from an overvoltage such as an ESD applied from the outside, and protects a user from electric shock by blocking a leakage current from the inside of the electronic device.
- the main body 100 may be provided in a substantially hexahedral shape. That is, the main body 100 has a predetermined length and width in one direction (for example, X direction) and the other direction (for example, Y direction) orthogonal to each other in the horizontal direction, and has a vertical direction (for example, Z direction). ) May be provided in a substantially hexahedral shape having a predetermined height.
- the length in the X direction may be greater than the width in the Y direction and the height in the Z direction, and the width in the Y direction may be the same as or different from the height in the Z direction. If the width (Y direction) and the height (Z direction) are different, the width may be larger or smaller than the height.
- the ratio of length, width and height may be 2-5: 1: 0.3-1. That is, the length may be about 2 to 5 times greater than the width and the height may be about 0.3 to 1 times greater than the width.
- the size of the X, Y and Z directions can be variously modified according to the internal structure of the electronic device to which the composite protective element is connected, the shape of the composite protective element, and the like, as one example.
- at least two internal electrodes 200, a protection unit 300, and a connection electrode 400 are formed inside the main body 100, and an external electrode 500 is formed outside the main body 100.
- the main body 100 may be formed by stacking a plurality of sheets having a predetermined thickness. That is, the main body 100 may be formed by stacking a plurality of sheets having a predetermined length in the X direction, a predetermined width in the Y direction, and a predetermined thickness in the Z direction. Therefore, the length and width of the main body 100 can be determined by the length and width of the sheet, and the height of the main body 100 can be determined by the number of laminated sheets.
- the plurality of sheets constituting the main body 100 can be formed using a dielectric material such as MLCC, LTCC, HTCC.
- the MLCC dielectric material includes at least one of Bi 2 O 3 , SiO 2 , CuO, MgO, and ZnO based on at least one of BaTiO 3 and NdTiO 3
- the LTCC dielectric material is Al 2 O 3 , SiO 2. It may include a glass material.
- the sheet also includes one or more of BaTiO 3 , NdTiO 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , Nd 2 O 3 , SiO 2 , CuO, MgO, Zn0, Al 2 O 3 in addition to MLCC, LTCC, HTCC It may be formed of a material.
- the sheet may be formed of a material having varistor characteristics such as Pr-based, Bi-based, or ST-based ceramic materials. Accordingly, the sheets may each have a predetermined dielectric constant, for example, 5 to 20000, preferably 7 to 5000, and more preferably 200 to 3000.
- the plurality of sheets may all be formed with the same thickness, and at least one may be formed thicker or thinner than the others. That is, at least one sheet is provided between the internal electrodes 200 to form the ESD protection unit 300 in at least some regions, and a plurality of sheets are stacked on the upper and lower portions of the internal electrodes 200 to connect the at least partial regions. 400 is formed, the thickness of each sheet may be all the same, the thickness of at least one sheet may be thicker or thinner than other sheets.
- the sheet in which the ESD protection unit 300 is formed between the internal electrodes 200 may have a thickness greater than that of each of the other sheets.
- the plurality of sheets may be formed, for example, in a thickness of 1 ⁇ m to 5000 ⁇ m, and may be formed in a thickness of 3000 ⁇ m or less. That is, the thickness of each sheet may be 1 ⁇ m to 5000 ⁇ m, and preferably 5 ⁇ m to 300 ⁇ m, depending on the thickness of the main body 100.
- the thickness of the sheet, the number of stacked layers, etc. may be adjusted according to the size of the composite protective device. That is, the sheet may be formed in a thin thickness when the size is applied to the composite protective device having a small size, and may be formed in a thick thickness when the size is applied to the composite protective device having a large size.
- the sheets are stacked in the same number, the smaller the size of the composite protection device is, the thinner the height becomes, and the larger the size of the composite protection device may be thicker.
- a thin sheet can also be applied to a composite protective element of a large size, in which case the number of sheets of the sheet is increased.
- the sheet may be formed to a thickness that does not break when the ESD is applied. That is, even when the number of sheets or the thickness of the sheets is formed differently, at least one sheet may be formed to a thickness that is not broken by repeated application of ESD.
- the main body 100 may further include a lower cover layer (not shown) and an upper cover layer (not shown) respectively provided on the lowermost layer and the uppermost layer.
- the lowermost sheet may serve as the lower cover layer and the uppermost sheet may serve as the upper cover layer.
- the lower and upper cover layers which are separately provided, may be formed to have the same thickness, and a plurality of magnetic sheets may be stacked.
- the lower and upper cover layers may be formed in other thicknesses, for example, the upper cover layer may be formed thicker than the lower cover layer.
- a nonmagnetic sheet for example, a glassy sheet, may be further formed on the surfaces of the lower and upper cover layers made of magnetic sheets, that is, the lower and upper surfaces.
- the lower and upper cover layers may be thicker than the sheets therein. That is, the cover layer may be thicker than the thickness of one sheet. Thus, when the lowermost and uppermost sheets function as lower and upper cover layers, they may be formed thicker than each of the sheets therebetween. Meanwhile, the lower and upper cover layers may be formed of a glass sheet, and the surface of the main body 100 may be coated with a polymer or glass material.
- the at least two internal electrodes 210, 220; 200 may be provided to be spaced apart from each other within the main body 100 by a predetermined interval. That is, at least two internal electrodes 200 may be formed to be spaced apart by a predetermined interval in the stacking direction of the sheet, that is, the Z direction. In addition, at least two internal electrodes 200 may be formed with the protection part 300 interposed therebetween. For example, the first internal electrode 210 may be formed below the protection part 300 in the Z direction, and the second internal electrode 220 may be formed above the protection part 300. Of course, at least one internal electrode may be further formed between the first and second internal electrodes 210 and the lowermost and uppermost sheets.
- the internal electrodes 200 are connected to the connection electrodes 400 and are formed to be connected to the protection unit 300. That is, the first internal electrode 210 is formed such that one side is connected to the first connection electrode 410 and the other side is connected to the protection part 300. In addition, the second internal electrode 220 is formed such that one side is connected to the second connection electrode 420 and the other side is connected to the protection part 300. At this time, one surface of the first and second internal electrodes 210 and 220 facing each other is connected to the protection unit 300.
- the internal electrode 200 may be formed of a conductive material.
- the internal electrode 200 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu.
- Ag and Pd alloys may be used.
- Al may form aluminum oxide (Al 2 O 3 ) on its surface during firing and maintain Al therein. That is, when Al is formed on the sheet, it comes into contact with air. In the Al process, the surface is oxidized to form Al 2 O 3 , and the inside maintains Al as it is. Therefore, the internal electrode 200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on the surface.
- various metals having an insulating layer may be used on the surface.
- the porous insulating layer is formed on the surface of the internal electrode 200, the ESD voltage may be more easily and smoothly discharged through the protection unit 300. That is, as will be described later, the protection unit 300 is formed by including a porous insulating material, and discharge is performed through the fine pores, when the porous insulating layer is formed on the surface of the internal electrode 200 of the protection unit 300 It is possible to increase the number of fine pores more than the fine pores, thereby improving the discharge efficiency.
- the internal electrode 200 may be formed to have a predetermined length in the X direction, a predetermined width in the Y direction, and a predetermined thickness in the Z direction.
- the internal electrode 200 may be formed to a thickness of 1 ⁇ m to 10 ⁇ m.
- the internal electrode 200 may be formed so that at least one region has a thin thickness or at least one region is removed to expose the sheet.
- the internal electrode 200 may have a length in the X direction and a width in the Y direction smaller than the length and the width of the main body 100.
- the internal electrode 200 may be formed smaller than the length and width of the sheet.
- the internal electrode 200 may be formed to have a length of 10% to 90% and a width of 10% to 90% of the length of the body 100 or the sheet.
- the internal electrode 200 may be formed in an area of 10% to 90% of the area of each sheet. That is, the internal electrode 200 formed on one sheet in the main body 100 has an area of 10% to 90% of the sheet area.
- the internal electrode 200 may be formed in various shapes such as a square, a rectangle, a predetermined pattern shape, a spiral shape having a predetermined width and spacing, and the like.
- the internal electrode 200 may serve as a capacitor and also serve as a discharge electrode of the protection unit 300.
- the capacitor is formed by the first and second internal electrodes 200 and the sheets therebetween.
- the capacitance may be adjusted according to the overlapping area of the first and second internal electrodes 200, the thickness of the sheet between the first and second internal electrodes 200, and the like.
- at least a region overlapping the protection unit 300 serves as a discharge electrode in the first and second internal electrodes 200, and transmits an overvoltage such as an ESD applied from the outside to the protection unit 300, and protects the protection unit 300. Passing the 300 passes, for example, the overvoltage that is bypassed to the ground terminal of the electronic device.
- At least one protection unit 300 is provided between the internal electrodes 200 and bypasses an overvoltage such as an ESD flowing from the outside to the ground terminal of the electronic device. That is, the overvoltage from the outside of the electronic device employing the composite protection element is introduced into the protection unit 300 through, for example, the second connection electrode 420 and the second internal electrode 220, and again, the first internal electrode. Bypass 210 and the first connection electrode 410 to the internal circuit of the electronic device.
- At least one of the planar shape and the cross-sectional shape may have a polygonal shape having a circular shape, an ellipse shape, a rectangle shape, a square shape, a pentagon shape or more, and have a predetermined thickness. That is, the protection unit 300 may be formed in the shape of a cylinder, a hexahedron, a polyhedron.
- the protection part 300 may at least partially overlap the first and second internal electrodes 210 and 220.
- the first and second internal electrodes 210 and 220 may be formed to overlap 10% to 100% of the horizontal area of the protection part 300. That is, the protection part 300 is formed to have a length and a width of 10% to 100% in the X and Y directions of the first and second internal electrodes 210 and 220, respectively, and the first and second internal electrodes 210. 220 is formed so as not to escape.
- the protection part 300 may be formed in a central area between the first and second internal electrodes 210 and 220. More preferably, the protection part 300 may be formed in the central area of the main body 100.
- the body 100 may be formed to have a predetermined diameter in the central region of one half of the longitudinal direction (that is, the X direction) and one half of the width direction (that is, the Y direction).
- the protection parts 300 may be spaced apart from each other by a predetermined interval in the central area of the main body 100.
- the at least one protection unit 300 may have a central area formed in the central area of the main body 100 or the central area of the first and second internal electrodes 210 and 220.
- the protection part 300 may be formed to have a thickness of 1% to 20% of the thickness of the main body 100, and may be formed to have a length of 3% to 50% of one length of the main body 100 in one direction. In this case, when the protection unit 300 is formed in plural, the sum of the thicknesses of the plurality of protection units 300 may be 1% to 50% of the thickness of the main body 100.
- the protection part 300 may be formed in a long hole shape having a length in at least one direction, for example, the X direction, it may be formed of 5% to 75% of the length of the X direction of the sheet.
- the protection part 300 may have a width in the Y direction of 3% to 50% of the width of the Y direction of the sheet.
- the protection part 300 may be formed to a diameter smaller than or equal to the thickness of the connection electrode 400 and smaller than or equal to the diameter of the connection electrode 400.
- the protection part 300 may be formed to have a thickness of 1/5 times to 1 times the thickness of the connection electrode 400, and may be formed to have a diameter of 1/10 to 1 times the diameter of the connection electrode 400.
- the protection part 300 may be formed, for example, with a diameter of 50 ⁇ m to 1000 ⁇ m and a thickness of 5 ⁇ m to 600 ⁇ m. At this time, the thinner the thickness of the protection unit 300, the lower the discharge start voltage.
- the protection part 300 may include at least one opening formed in a predetermined area of the sheet between the internal electrodes 200. That is, each of the at least one opening may function as the overvoltage protection unit 300.
- the protection part 300 may be formed by applying an overvoltage protection material to at least a portion of the opening or filling the opening. That is, the protection part 300 may include an opening having an empty interior and an overvoltage protection material formed in at least a portion of the opening.
- a through hole having a predetermined size may be formed between the internal electrodes 200, and the overvoltage protection material may be applied to at least a portion of the through hole or filled in the through hole.
- the overvoltage protection material may be applied to at least a portion of the side surface of the through hole, at least one portion of the upper and lower portions of the through hole, and the inside of the through hole at a predetermined thickness.
- a polymer material volatilized upon firing may be used.
- the protection part 300 may use a conductive material and an insulating material as an overvoltage protection material.
- the insulating material may be a porous insulating material having a plurality of pores.
- the protective part 300 may be formed by printing a mixed material of a conductive ceramic and an insulating ceramic on a sheet.
- the protection unit 300 may be formed on at least one sheet. That is, the protective part 300 is formed on two sheets stacked in the vertical direction, for example, and the first and second internal electrodes 210 and 220 are formed on the sheet to be spaced apart from each other. ) Can be connected. The structure, material, and the like of the protective part 300 will be described later.
- the discharge start voltage may be adjusted according to the structure, material, size, etc. of the protection unit 300, the discharge start voltage of the composite protection device may be 1kV to 30kV, for example.
- connection electrode 400 is formed inside the main body 100 and is formed between the internal electrode 300 and the external electrode 500. That is, the connection electrode 400 is formed to connect the internal electrode 300 and the external electrode 500. Accordingly, the connecting electrode 400 is connected between the first and second external electrodes 510, 520; 500 and the first and second internal electrodes 210, 220; 200, respectively. It may include electrodes 410 and 420. At least one of the planar shape and the cross-sectional shape may have a polygonal shape of at least one of a circular shape, an ellipse shape, a rectangular shape, a square shape, a pentagon shape, and have a predetermined thickness.
- the protection unit 300 may be formed in the shape of a cylinder, a hexahedron, a polyhedron.
- the connection electrode 400 may be formed to at least overlap the protective part 300.
- the connection electrode 400 may be formed at the central portion of the main body 100, and may overlap the protection part 300.
- connection electrode 400 is formed to form an opening in a predetermined region of at least one or more sheets stacked on the internal electrode 200 and to fill the opening by using a conductive material.
- the connection electrode 400 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu.
- the connection electrode 400 may be formed using various conductive materials in addition to the metal.
- connection electrode 400 may be formed in the Z direction, that is, the height in the vertical direction is the same as or different from the height of the protection part 300, and the width in the X direction and the Y direction is the same as the width of the protection part 300. Or may be formed differently. That is, the connection electrode 400 may be formed to be greater than or equal to the height of the protection part 300, and may be formed to be equal to or greater than the diameter or width. Preferably, the height of the connection electrode 400 may be higher than the height of the protection part 300, and the plane width may be greater than the plane width of the protection part 300. For example, each of the first and second connection electrodes 410 and 420 may be formed to have a height of 0.5 to 3 times the height of the protection part 300.
- the sum of the heights of the first and second connection electrodes 410 and 420 may be formed to be 1 to 6 times the height of the protection part 300.
- the sum of the heights of the first and second connection electrodes 410 and 420 may be formed to be 100 ⁇ m to 1000 ⁇ m, preferably 200 ⁇ m to 900 ⁇ m, and more preferably 400 ⁇ m to 700 ⁇ m. .
- heights of the first and second connection electrodes 410 and 420 may be different from each other, and widths thereof may also be different from each other.
- the width in the X direction of the connection electrode 400 may be formed from 1% to 90% of the length of the X direction of the main body 100, and the width of the Y direction may be 5% to the width of the Y direction of the main body 100. 90% may be formed.
- the width of the X direction and the width of the Y direction of the connection electrode 400 may be the same or different. That is, the width of at least one region including the X-direction width and the Y-direction width of the connection electrode 400 may be the same as or different from the width of the other region. In other words, at least one region of the connection electrode 400 may be formed in an asymmetric shape.
- the width of the X and Y directions of the connection electrode 400 may be formed to be 1 to 10 times the width of the X and Y direction of the protection part 300, and the X direction length and the Y direction of the internal electrode 200. It can be formed from 1/10 to 1 times the width, respectively. That is, the width of the connection electrode 400 is shorter than the length and width of the main body 100 in the X direction and the Y direction, is equal to or larger than the width of the protection part 300, and is smaller than or equal to the width of the internal electrode 200. Can be formed.
- connection electrode 400 functions to connect the external electrode 500 and the internal electrode 200. Therefore, an overvoltage such as an ESD applied through the external electrode 500 is transferred to the internal electrode 200 and the protection unit 300 through the connection electrode 400, and the overvoltage through the protection unit 300 is again an internal electrode. It is transmitted to the external electrode 500 through the 200 and the connection electrode 400.
- connection electrode 400 since the connection electrode 400 is formed at the center of the main body 100 and preferably wider than the width of the protection part 300, parasitic resistance and parasitic inductance may be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced compared to the case where the connection electrode 400 is formed outside the main body 100. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz.
- connection electrode 400 is formed to have a width wider than the width of the protection part 300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the protection unit 300 bypasses the ESD voltage by generating sparks inside by, for example, ESD energy.
- the connection electrode 400 is changed according to a repetitive ESD voltage. Dissipation may cause an increase in discharge start voltage.
- the thickness of the connection electrode 400 to 10 ⁇ m or more, the loss of the connection electrode 400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
- the external electrodes 510, 520 and 500 may be provided on two surfaces of the main body 100 facing each other.
- the external electrode 500 is two faces of the main body 100 in the Z direction, that is, the vertical direction. That is, it may be formed on the lower surface and the upper surface, respectively.
- the external electrode 500 may be connected to the connection electrode 400 inside the body 100, respectively.
- any one of the external electrodes 500 may be connected to an internal circuit such as a printed circuit board inside the electronic device, and the other may be connected to the outside of the electronic device, for example, a metal case.
- the first external electrode 510 may be connected to an internal circuit
- the second external electrode 520 may be connected to a metal case.
- the second external electrode 520 may be connected to the metal case through a conductive member, for example, a contactor or a conductive gasket.
- the external electrode 500 may be formed in various ways. That is, the external electrode 500 may be formed by an immersion or printing method using a conductive paste, or may be formed by various methods such as deposition, sputtering, plating, and the like. On the other hand, the external electrode 500 may be formed on the entire surface of the lower surface and the upper surface, or may be formed on a portion of the lower surface and the upper surface. That is, the external electrode 500 may be formed in the remaining regions except for a predetermined width from edges of the lower and upper surfaces. For example, the external electrode 500 may be formed with an area of 50% to 95% except for a predetermined width from edges of the lower surface and the upper surface.
- the external electrode 500 may be formed on the entire area of the lower surface and the upper surface, and may extend from the upper and lower portions thereof to be formed on the other side. That is, the external electrode 500 may extend to a predetermined region of the lower and upper surfaces facing in the Z direction as well as the surfaces facing the X and Y directions, respectively.
- the external electrode 500 may be formed not only on the upper and lower surfaces of the Z direction but also on the side surfaces in the X and Y directions.
- the external electrode 500 when formed by printing, deposition, sputtering, plating, or the like, the external electrode 500 may be formed on the lower and upper surfaces of the Z direction with a predetermined area.
- the external electrode 500 may be formed not only on the lower surface mounted on the printed circuit board and the upper surface connected to the metal case, but also in other areas according to the formation method or process conditions.
- the external electrode 500 may be formed of a metal having electrical conductivity.
- the external electrode 500 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof.
- at least a portion of the external electrode 500 connected to the connection electrode 400 that is, at least one surface of the main body 100 and part of the external electrode 500 connected to the connection electrode 400 may be connected to the connection electrode ( 400 and the same material.
- connection electrode 400 when the connection electrode 400 is formed of copper, at least part of the connection electrode 400 may be formed of copper from a region in contact with the connection electrode 400 of the external electrode 500.
- copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like.
- the external electrode 500 may be formed by plating.
- the seed layer may be formed on upper and lower surfaces of the main body 100, and then the external electrode 500 may be formed by forming a plating layer from the seed layer.
- at least a part of the external electrode 500 connected to the connection electrode 400 may be the entire upper and lower surfaces of the main body 100 in which the external electrode 500 is formed, or may be a partial region.
- the external electrode 500 may further include at least one plating layer.
- the external electrode 500 may be formed of a metal layer such as Cu or Ag, and at least one plating layer may be formed on the metal layer.
- the external electrode 500 may be formed by laminating a copper layer, a Ni plating layer, and a Sn or Sn / Ag plating layer.
- the plating layer may be laminated with a Cu plating layer and a Sn plating layer, the Cu plating layer, Ni plating layer and Sn plating layer may be laminated.
- the external electrode 500 may be formed by mixing, for example, glass frit having a multi-component glass frit containing 0.5% to 20% of Bi 2 O 3 or SiO 2 as a main component.
- the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the main body 100.
- the adhesion between the external electrode 500 and the main body 100 may be improved, and the contact reaction between the connection electrode 400 and the external electrode 500 may be improved.
- at least one plating layer may be formed on the upper portion thereof to form the external electrode 500. That is, the metal layer including the glass and at least one plating layer formed thereon may form the external electrode 500.
- the external electrode 500 may sequentially form a Ni plating layer and a Sn plating layer through electrolytic or electroless plating after forming a layer including glass frit and at least one of Ag and Cu.
- the Sn plating layer may be formed to the same or thicker thickness than the Ni plating layer.
- the external electrode 5000 may be formed of only at least one plating layer. That is, the external electrode 500 may be formed by forming at least one plating layer using at least one plating process without applying paste.
- the external electrode 5000 may be formed to have a thickness of 2 ⁇ m to 100 ⁇ m
- the Ni plating layer may be formed to have a thickness of 1 ⁇ m to 10 ⁇ m
- the Sn or Sn / Ag plating layer may have a thickness of 2 ⁇ m to 10 ⁇ m. Can be formed.
- a surface modification member (not shown) may be formed on at least one surface of the main body 100.
- the surface modification member may be formed by, for example, distributing an oxide on the surface of the main body 100 before forming the external electrode 500.
- the oxide may be dispersed and distributed on the surface of the main body 100 in a crystalline state or an amorphous state.
- the surface modification member may be distributed on the surface of the main body 100 before the plating process when the external electrode 500 is formed by the plating process. That is, the surface modification member may be distributed before forming a part of the external electrode 500 by the printing process, or may be distributed before performing the plating process after the printing process.
- the plating process may be performed after the surface modification member is distributed. At this time, at least a portion of the surface modification member distributed on the surface may be melted.
- the surface modification member may be evenly distributed on the surface of the main body 100 in the same size, and at least a portion may be irregularly distributed in different sizes.
- a recess may be formed on at least part of the surface of the main body 100. That is, the surface modification member may be formed to form a convex portion, and at least a portion of the region where the surface modification member is not formed may be recessed to form a recess. In this case, at least a portion of the surface modification member may be formed deeper than the surface of the main body 100. That is, the surface modification member may be formed with a predetermined thickness to be embedded at a predetermined depth of the main body 100 and the remaining thickness is higher than the surface of the main body 100.
- the thickness of the main body 100 may be 1/20 to 1 of the average diameter of the oxide particles. That is, all of the oxide particles may be embedded into the body 100, and at least a portion thereof may be embedded.
- the oxide particles may be formed only on the surface of the body 100. Therefore, the oxide particles may be formed in a hemispherical shape on the surface of the main body 100, or may be formed in a spherical shape.
- the surface modification member may be partially distributed on the surface of the main body 100 as described above, or may be distributed in a film form on at least one region. That is, the oxide particles may be distributed in the form of islands on the surface of the main body 100 to form a surface modification member.
- oxides in a crystalline state or an amorphous state may be distributed in an island form on the surface of the main body 100 so that at least a part of the surface of the main body 100 may be exposed.
- the oxide may be formed as a film in at least one region and at least a portion thereof in an island form by connecting at least two surface modification members. That is, at least two or more oxide particles may be aggregated or adjacent oxide particles may be connected to form a film. However, even when the oxide is present in the form of particles or when two or more particles are aggregated or connected, at least a part of the surface of the main body 100 is exposed to the outside by the surface modification member.
- the total area of the surface modification member may be, for example, 5% to 90% of the total surface area of the main body 100.
- the plating bleeding phenomenon of the surface of the main body 100 may be controlled according to the area of the surface modifying member.
- contact between the conductive pattern inside the main body 100 and the external electrode 400 may be difficult. . That is, when the surface modification member is formed to less than 5% of the surface area of the main body 100, it is difficult to control the plating bleeding phenomenon.
- the surface modification member is formed to exceed 90%, the conductive pattern and the external electrode 400 inside the main body 100 May not be contacted.
- the surface modification member may control the plating bleeding phenomenon, and it is preferable to form an area that can be in contact with the conductive pattern inside the main body 100 and the external electrode 400.
- the surface modification member may be formed of 10% to 90% of the surface area of the main body 100, preferably 30% to 70% of the area, more preferably 40% to 50% of the area It can be formed as.
- the surface area of the main body 100 may be one surface area, or may be the surface area of six surfaces of the main body 100 forming a hexahedron.
- the surface modification member may be formed to a thickness of 10% or less of the thickness of the main body 100. That is, the surface modification member may be formed to a thickness of 0.01% to 10% of the thickness of the main body 100.
- the surface modification member may exist in a size of 0.1 ⁇ m to 50 ⁇ m, and thus the surface modification member may be formed to a thickness of 0.1 ⁇ m to 50 ⁇ m from the surface of the main body 100. That is, the surface modification member may be formed to have a thickness of 0.1 ⁇ m to 50 ⁇ m from the surface of the main body 100 except for a region that is stuck to the surface of the main body 100. Accordingly, when the thickness of the body 100 is embedded, the surface modification member may have a thickness greater than 0.1 ⁇ m to 50 ⁇ m.
- the surface modification member is formed to be less than 0.01% of the thickness of the main body 100, it is difficult to control the plating bleeding phenomenon, and if the surface modification member is formed to a thickness exceeding 10% of the main body 100, the conductive inside the main body 100 is formed.
- the pattern and the external electrode 400 may not be in contact. That is, the surface modification member may have various thicknesses according to material properties (conductivity, semiconductivity, insulation, magnetic material, etc.) of the main body 100, and may have various thicknesses depending on the size, distribution amount, and aggregation of the oxide powder. .
- the surface modification member is formed on the surface of the main body 100 so that the surface of the main body 100 may have at least two regions having different components. That is, different components may be detected in the region where the surface modification member is formed and the region where the surface modification member is not formed.
- the region in which the surface modification member is formed may have a component according to the surface modification member, that is, an oxide
- the region in which the surface modification member is not formed may include a component according to the body 100, that is, a component of the sheet.
- the surface of the main body 100 may be provided with a roughness to be modified.
- the plating process can be performed uniformly, thereby controlling the shape of the external electrode 500. That is, the surface of the main body 100 may have at least one resistance different from that of the other regions. If the plating process is performed in a state where the resistance is uneven, growth unevenness of the plating layer may occur. In order to solve this problem, the surface of the main body 100 may be modified by dispersing oxides in a particulate state or a molten state on the surface of the main body 100 to form a surface modification member, and the growth of the plating layer may be controlled.
- the oxide in the granular or molten state for uniform surface resistance of the main body 100 is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al 2 At least one or more of O 3 , MnO, H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used.
- the surface modification member may be formed on at least one sheet in the main body 100. That is, although the conductive patterns of various shapes on the sheet may be formed by a plating process, the shape of the conductive patterns can be controlled by forming the surface modification member.
- FIGS. 3 and 4 are cross-sectional schematic and cross-sectional photograph of the protection unit 300 according to the first embodiment of the composite protection device of the present invention. That is, the protection part 300 may have a thickness at least one area smaller or larger than another area.
- FIGS. 3 and 4 are cross-sectional schematics and cross-sectional photographs of an enlarged portion of the protection part 300.
- the protection part 300 may be formed of an insulating material.
- the insulating material may be a porous insulating material including a plurality of pores (not shown). That is, a plurality of pores (not shown) may be formed in the protection part 300. By forming pores, it is possible to more easily bypass overvoltage such as ESD.
- the protection unit 300 may be formed by mixing a conductive material and an insulating material.
- the protection part 300 may be formed by mixing a conductive ceramic and an insulating ceramic.
- the protection part 300 may be formed by mixing the conductive ceramic and the insulating ceramic in a mixing ratio of 10:90 to 90:10.
- the mixing ratio of the insulating ceramic increases, the discharge starting voltage increases, and as the mixing ratio of the conductive ceramic increases, the discharge starting voltage decreases. Therefore, the mixing ratio of the conductive ceramic and the insulating ceramic can be adjusted to obtain a predetermined discharge start voltage.
- the protection part 300 may form a predetermined stacked structure by stacking a conductive layer and an insulating layer. That is, the protection part 300 may be formed by stacking the conductive layer and the insulating layer at least once and separating the conductive layer and the insulating layer.
- the protection part 300 may be formed in a two-layer structure by laminating a conductive layer and an insulating layer, and may be formed in a three-layer structure by laminating the conductive layer, the insulating layer, and the conductive layer.
- the conductive layers 311, 312; 310 and the insulating layer 320 may be repeatedly stacked a plurality of times to form a stack structure of three or more layers. For example, as illustrated in FIG.
- a protection part 300 having a three-layer structure in which the first conductive layer 311, the insulating layer 320, and the second conductive layer 312 are stacked may be formed.
- Can be. 4 (b) is a photograph in which an ESD protection layer having a three-layer structure is formed between internal electrodes between sheets.
- the conductive layer and the insulating layer are laminated a plurality of times, the uppermost layer and the lowest layer may be a conductive layer.
- a plurality of pores (not shown) may be formed in at least a portion of the conductive layer 310 and the insulating layer 320.
- a plurality of pores may be formed in the insulating layer 320.
- the protection part 300 may further include a void in a predetermined region.
- a void may be formed between the layer in which the conductive material and the insulating material are mixed, and a gap may be formed between the conductive layer and the insulating layer. That is, the first mixed layer, the void, and the second mixed layer of the conductive material and the insulating material may be laminated, and the conductive layer, the void, and the insulating layer may be laminated.
- the protection part 300 may include the first conductive layer 311, the first insulating layer 321, the void 330, the second insulating layer 322 and the first conductive layer 311 as illustrated in FIG. 3C. 2 conductive layers 312 may be stacked.
- the insulating layers 321, 322; 320 may be formed between the conductive layers 311, 312; 310, and the void 330 may be formed between the insulating layers 320.
- 4 (c) is a cross-sectional photograph of the protective part 300 having such a laminated structure.
- the protective layer 300 may be formed by repeatedly stacking the conductive layer, the insulating layer, and the gap. Meanwhile, when the conductive layer 310, the insulating layer 320, and the gap 330 are stacked, all of them may have the same thickness, and at least one thickness may be thinner than the others. For example, the void 330 may be thinner than the conductive layer 310 and the insulating layer 320.
- the conductive layer 310 may be formed to have the same thickness as the insulating layer 320, or may be formed thicker or thinner than the insulating layer 320.
- the void 330 may be formed by filling the polymer material and then performing a sintering process to remove the polymer material.
- the first polymer material including conductive ceramics, the second polymer material including insulating ceramics, and the third polymer material not containing conductive ceramics or insulating ceramics are filled in the via hole, and then a firing process is performed. By removing the polymer material, a conductive layer, an insulating layer and a void can be formed.
- the void 330 may be formed without being divided into layers.
- the insulating layer 320 may be formed between the conductive layers 311 and 312, and a plurality of pores may be connected to the insulating layer 320 in a vertical direction or a horizontal direction to form a gap 330. That is, the gap 330 may be formed of a plurality of pores in the insulating layer 320.
- the void 330 may be formed in the conductive layer 310 by a plurality of pores.
- the conductive layer 310 used for the protection unit 300 may have a predetermined resistance to flow a current.
- the conductive layer 310 may be a resistor having several kilowatts to several hundred microwatts.
- the conductive layer 310 prevents structural destruction of the composite protection device due to the overvoltage by lowering the energy level when an overvoltage flows through the ESD or the like. That is, the conductive layer 310 serves as a heat sink that converts electrical energy into thermal energy.
- the conductive layer 310 may be formed using a conductive ceramic, and the conductive ceramic may include a mixture including one or more of La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, and Bi. It is available.
- the conductive layer 310 may be formed to a thickness of 1 ⁇ m to 50 ⁇ m. That is, when the conductive layer 310 is formed of a plurality of layers, the sum of the total thicknesses may be formed to be 1 ⁇ m to 50 ⁇ m.
- the insulating layer 320 used for the protection part 300 may be made of a discharge inducing material, and may function as an electrical barrier having a porous structure.
- the insulating layer 320 may be formed of an insulating ceramic, and the insulating ceramic may be a ferroelectric material having a dielectric constant of about 50 to 500,000.
- the insulating ceramic uses a mixture containing one or more of dielectric material powders such as MLCC, ZrO, ZnO, BaTiO 3 , Nd 2 O 5 , BaCO 3 , TiO 2 , Nd, Bi, Zn, Al 2 O 3 Can be formed.
- the insulating layer 320 may have a porous structure in which a plurality of pores having a size of about 1 nm to about 5 ⁇ m are formed to have a porosity of about 30% to about 80%.
- the shortest distance between the pores may be about 1nm to 5 ⁇ m. That is, although the insulating layer 320 is formed of an electrically insulating material through which no current flows, pores are formed so that current may flow through the pores.
- the discharge start voltage may decrease.
- the discharge start voltage may increase.
- the pore size and porosity of the insulating layer 320 may be adjusted to adjust the discharge start voltage while maintaining the shape of the protection part 300.
- the protection part 300 is formed of a mixed material of an insulating material and a conductive material
- the insulating material may use an insulating ceramic having fine pores and porosity.
- the insulating layer 320 may have a resistance lower than that of the sheet due to the fine pores, and partial discharge may be performed through the fine pores. That is, the insulating layer 320 is fine pores are formed is a partial discharge through the fine pores.
- the insulating layer 320 may be formed to a thickness of 1 ⁇ m 50 ⁇ m. That is, when the insulating layer 320 is formed of a plurality of layers, the sum of the total thicknesses may be formed to be 1 ⁇ m to 50 ⁇ m.
- the protection part 300 may include a gap 330 as shown in FIG. 5 (a). That is, the protection part 300 may have a gap 330 formed without filling the overvoltage protection material in the opening formed through the sheet.
- the protection part 300 may have a porous insulating material formed in at least one region of the through hole. That is, as illustrated in FIG. 5B, a porous insulating material may be applied to the sidewalls of the through-holes to form an insulating layer 320, and as illustrated in FIG. 5C, at least upper and lower portions of the through-holes.
- One insulating layer 320 may be formed.
- the protection unit 300 includes internal electrodes 210, 220; And a discharge induction layer 340 formed between the overvoltage protection unit 300. That is, the discharge induction layer 340 may be further formed between the internal electrode 200 and the protection part 300.
- the internal electrode 200 may include conductive layers 211a and 212a and porous insulating layers 211b and 212b formed on at least one surface of the conductive layers 211a and 212a.
- the internal electrode 200 may be a conductive layer on which a porous insulating layer is not formed.
- the discharge induction layer 340 may be formed when the protective part 300 is formed using a porous insulating material.
- the discharge induction layer 340 may be formed of a dielectric layer having a higher density than the protection part 300. That is, the discharge induction layer 340 may be formed of a conductive material or may be formed of an insulating material.
- the protective part 300 is formed using porous ZrO and the internal electrode 200 is formed using Al
- the discharge induction layer 340 of AlZrO between the protective part 300 and the internal electrode 210. ) May be formed.
- TiO may be used instead of ZrO as the protection part 300, and in this case, the discharge induction layer 340 may be formed of TiAlO.
- the discharge induction layer 340 may be formed by the reaction between the internal electrode 200 and the protection part 300.
- the discharge induction layer 340 may be formed by further reacting the sheet material.
- the discharge induction layer 340 may be formed by a reaction of an internal electrode material (eg, Al), a protection material (eg, ZrO), and a sheet material (eg, BaTiO 3 ).
- the discharge induction layer 340 may be formed by reacting with the sheet material. That is, the discharge induction layer 340 may be formed in a reaction between the protective part 300 and the sheet in an area where the protective part 300 is in contact with the sheet. Therefore, the discharge induction layer 340 may be formed to surround the protection part 300.
- the discharge induction layer 340 between the protection unit 300 and the discharge electrode 310 and the discharge induction layer 340 between the protection unit 300 and the sheet may have different compositions.
- the discharge induction layer 340 may be formed by removing at least one region, or may be formed differently from other regions of at least one region. That is, the discharge induction layer 340 may be discontinuously formed by removing at least one region, and the thickness of the discharge induction layer 340 may be differently formed.
- the discharge induction layer 340 may be formed during the firing process. That is, during the firing process at a predetermined temperature, the discharge electrode material, the ESD protection material, and the like may be diffused to each other to form a discharge induction layer 340 between the internal electrode 200 and the protection part 300.
- the discharge induction layer 340 may be formed to have a thickness of 10% to 70% of the thickness of the protection part 300. That is, some thicknesses of the protection part 300 may be changed to the discharge induction layer 340. Therefore, the discharge induction layer 340 may be formed thinner than the protection part 300, and may be formed to have a thickness that is thicker, equal to, or thinner than that of the internal electrode 200. The discharge induction layer 340 may reduce the level of the discharge energy induced by the ESD voltage to the protection unit 300 or the protection unit 300. Therefore, it is possible to discharge the ESD voltage more easily to improve the discharge efficiency. In addition, since the discharge induction layer 340 is formed, diffusion of heterogeneous materials into the protection unit 300 may be prevented.
- the protection part 300 may further include a conductive material, in which case the conductive material may be coated with an insulating ceramic.
- the conductive material may be coated using NiO, CuO, WO, or the like. Therefore, a conductive material may be used as the material of the protection part 300 together with the porous insulating material.
- the discharge induction layer 340 may be formed between the conductive layer 310 and the insulating layer 320.
- the internal electrode 200 may be formed in a shape in which some regions are removed. That is, the discharge induction layer 340 may be formed in a region in which the internal electrode 200 is partially removed. However, even if the internal electrode 200 is partially removed, the electrical characteristics are not degraded since the internal electrode 200 maintains a shape that is entirely connected on the plane.
- the internal electrode 200 may be formed of a metal or a metal alloy on which an insulating layer is formed. That is, the internal electrode 200 may include conductive layers 211a and 212a and porous insulating layers 211b and 212b formed on at least one surface of the conductive layers 211a and 212a. In this case, the porous insulating layers 211b and 212b may be formed on at least one surface of the internal electrode 200. That is, only one surface that is not in contact with the protection part 300 and the other surface that is in contact with each other, or may be formed on both one surface that is not in contact with the protection part 300 and the other surface in contact with the protection part 300. Can be.
- the porous insulating layers 211b and 212b may be formed on at least one surface of the conductive layers 211a and 212a or may be formed on at least a portion thereof. In addition, at least one region may be removed or the porous insulating layers 211b and 212b may be formed to have a thin thickness. That is, the porous insulating layers 211b and 212b may not be formed in at least one region on the conductive layers 211a and 212a, and the thickness of at least one region may be thinner or thicker than the thickness of the other regions.
- the internal electrode 200 may be formed of Al to form an oxide film on the surface of the internal electrode 200 and maintain conductivity. That is, when Al is formed on the sheet, it comes into contact with air.
- the internal electrode 200 may be formed of Al coated with Al 2 O 3 , which is a porous thin insulating layer on the surface.
- various metals having an insulating layer, preferably a porous insulating layer, may be used on the surface.
- the composite protection device may be provided between the metal case 10 and the internal circuit 20 of the electronic device. That is, any one of the external electrodes 500 may be connected to the ground terminal, and the other may be connected to the metal case 10 of the electronic device.
- the ground terminal may be provided in the internal circuit 20.
- the first external electrode 510 may be connected to the ground terminal
- the second external electrode 520 may be connected to the metal case 10.
- a conductive member such as a contactor or a conductive gasket may be further provided between the second external electrode 520 and the metal case 10.
- the electric shock voltage transmitted from the ground terminal of the internal circuit 20 to the metal case 10 can be cut off, and an overvoltage such as an ESD applied from the outside to the internal circuit can be bypassed to the ground terminal. That is, in the composite protection device of the present invention, current does not flow between the external electrodes 500 at the rated voltage and the electric shock voltage, and current flows through the protection unit 300 at the ESD voltage, and the overvoltage is bypassed to the ground terminal.
- the composite protection device may have a discharge start voltage higher than the rated voltage and lower than the ESD voltage.
- the composite protection device may have a rated voltage of 100V to 240V, an electric shock voltage may be equal to or higher than an operating voltage of a circuit, and an ESD voltage generated by external static electricity or the like may be higher than an electric shock voltage.
- a communication signal from the outside that is, an alternating frequency may be transmitted to the internal circuit 20 by a capacitor formed between the internal electrodes 200. Therefore, even when a separate antenna is not provided and the metal case 10 is used as an antenna, communication signals can be applied from the outside. As a result, the composite protection device according to the present invention can block the electric shock voltage, bypass the ESD voltage to the ground terminal, and apply a communication signal to the internal circuit.
- the composite protection device is formed by stacking a plurality of sheets with high breakdown voltage characteristics to form the main body 100, for example 310V from the internal circuit 20 to the metal case 10 by a defective charger Insulation resistance can be maintained so that a leakage current does not flow when an electric shock voltage is introduced, and the protection unit 300 also bypasses the overvoltage when the overvoltage flows from the metal case 10 to the internal circuit 20 without damaging the device. High insulation resistance can be maintained. That is, the protection unit 300 includes a porous insulating material made of a porous structure to flow a current through the micro-pores, and further includes a conductive material for converting electrical energy into thermal energy by lowering the energy level, thereby overvoltage introduced from the outside.
- the insulation is not destroyed even by the overvoltage, and thus is continuously provided in the electronic device having the metal case 10 to prevent the electric shock voltage generated from the defective charger from being transmitted to the user through the metal case 10 of the electronic device. can do.
- the general MLCC Multi Layer Capacitance Circuit
- the protection part 300 including the porous insulating material is formed between the internal electrodes 200, at least a part of the main body 100 is not destroyed by passing the overvoltage through the protection part 300.
- connection electrode 400 is formed at the center of the main body 100 and preferably wider than the width of the protection part 300, parasitic resistance and parasitic inductance may be reduced. That is, the parasitic resistance and the parasitic inductance can be reduced compared to the case where the connection electrode 400 is formed outside the main body 100. Therefore, the insertion loss of S21 can be reduced in the wireless communication frequency range of 700 MHz to 3 GHz.
- connection electrode 400 is formed to have a width wider than the width of the protection part 300, it is possible to prevent deterioration due to repetitive ESD voltages and to suppress an increase in the discharge start voltage. That is, the protection unit 300 bypasses the ESD voltage by generating sparks inside by, for example, ESD energy.
- connection electrode 400 When the thickness of the connection electrode 400 is thin, the connection electrode 400 is changed according to a repetitive ESD voltage. Dissipation may cause an increase in discharge start voltage. However, by forming the thickness of the connection electrode 400 to 10 ⁇ m or more, the loss of the connection electrode 400 due to the repetitive ESD voltage can be prevented, thereby preventing the rise of the discharge start voltage.
- the present invention has been described by taking an example of a composite protection device provided in the electronic device of the smart phone to protect the electronic device from overvoltage, such as ESD applied from the outside, and protects the user by blocking the leakage current from the inside of the electronic device.
- the composite protection device of the present invention may be provided in various electric and electronic devices in addition to the smart phone to perform two or more protection functions.
- FIG. 8 is a cross-sectional view of a composite protective device according to another embodiment of the present invention.
- the composite protection device may include a main body 100 in which a plurality of sheets are stacked, at least two or more internal electrodes 200 provided in the main body 1000, and at least two or more.
- At least one protective part 300 provided between the internal electrodes 200, a connection electrode 400 provided inside the main body 100 to be connected to at least two internal electrodes 200, and a connection electrode 400. It includes an external electrode 500 formed on the outside of the main body 100.
- the protection part 300 may further include an expansion part 350 formed to widen the width of at least one region. That is, the protection part 300 may further include an extension part 350 having a wide width of at least one region.
- the expansion unit 350 may be formed to have a width of 1% to 150% of the diameter of the protection unit 300. That is, the width of the expansion unit 350 may be formed to have a width of 1% to 150% of the width of other areas of the protection unit 300 in which the expansion unit 350 is not formed.
- the extension part 350 may be formed to a diameter of 10 ⁇ m to 100 ⁇ m added to the diameter of the protection part 300.
- the height of the expansion unit 350 may be formed to a height of 10% to 70% of the overall height of the protection unit 300.
- the expansion unit 350 is formed to block the short path of the protection unit 300.
- connection electrode 400 when an excessive voltage such as ESD is continuously applied, a melting phenomenon of the connection electrode 400 occurs, and thus a connection phenomenon may occur due to the connection electrode material being adhered to the sidewall of the through hole of the protection part 300. have. However, the short path may be blocked by the expansion part 350 having a different diameter in the protection part 300.
- FIGS. 9 and 10 are cross-sectional views of a composite protective device according to modified examples of the embodiment of the present invention.
- Modifications of the present invention further include a contact portion in contact with a conductor such as a metal case 10 on the composite protective element. That is, a composite protective element is provided between the metal case 10 and the internal circuit 20, and the clip-shaped contact is shown on the second external electrode 520 of the composite protective element as shown in FIGS. 9 and 10, respectively.
- the contact portion 620 using the portion 610 or the conductive material layer may be provided.
- the contact parts 610 and 620 may be made of a material having an elastic force to relieve the impact when an external force is applied from the outside of the electronic device and including a conductive material.
- the first external electrode 510 of the composite protection device may be provided in contact with the internal circuit 20, and a metal layer such as stainless steel is further provided between the internal circuit 20 and the first external electrode 510. Can be.
- the contact portion may have a clip shape as shown in FIG. 9.
- the clip-shaped contact portion includes a support portion 611 provided on the composite protection element, a contact portion 612 disposed above the support portion 611 to face a conductor such as a metal case and at least partially contacting the conductor.
- the support part 611 may be provided between one side of the contact part 612 to connect them, and may include a connection part 613 having an elastic force.
- the connecting portion 613 is formed to connect one end of the support portion 611 and one end of the contact portion 612, it may be formed to have a curvature.
- the connecting portion 613 is pressed in the direction in which the circuit board 20 is located when pressed by an external force, and has an elastic force that is restored to its original state when the external force is released.
- the contact portion 610 may be formed of a metal material having at least the connecting portion 613 having an elastic force.
- the contact portion of the present invention may include a conductive rubber, a conductive silicone, an elastic body having a conductive conductor inserted therein, and a gasket having a surface coated or bonded with a conductor in addition to a clip having conductive and elastic properties. That is, as shown in FIG. 10, the contact portion 620 may include a conductive material layer.
- the contact portion 620 may include a conductive material layer.
- the inside may be made of a nonconductive elastomer and the outside may be coated with a conductive material.
- the conductive gasket may include an insulating elastic core having a through hole formed therein and a conductive layer formed to surround the insulating elastic core.
- the insulating elastic core has a tube shape having a through hole formed therein, and a cross section may be formed in a substantially rectangular or circular shape, but is not limited thereto and may be formed in various shapes.
- the through-hole may not be formed in the insulating elastic core.
- the insulating elastic core may be formed of silicone or elastic rubber.
- the conductive layer may be formed to surround the insulating elastic core.
- the conductive layer may be formed of at least one metal layer, for example, gold, silver, copper, or the like. Meanwhile, the conductive layer may be mixed with the elastic core without forming the conductive layer.
- the contact parts 610 and 620 may be provided in the horizontal direction with the main body 100 of the composite protection device and mounted in the internal circuit 20. That is, although the modified example of FIGS. 9 and 10 is illustrated by showing that the contact portions 610 and 620 are formed on the upper surface of the main body 100, the contact portions 610 and 620 are spaced apart from the main body 100 to the side surface. It may be provided and mounted in the internal circuit 20 to be connected through the external electrode 510 of the main body 100.
- the composite protective device according to the embodiment of the present invention has a structure as shown in FIG. That is, the protection unit 300 is formed at the center of the main body 100, and the internal electrodes 210 and 220 are formed on the lower and upper portions of the protection unit 300 larger than the protection unit 300, respectively. Connection electrodes 410 and 420 are formed on the lower and upper portions of 210 and 220 and smaller than the protection unit 300 and smaller than the internal electrodes 210 and 220, respectively. In this case, the connection electrodes 410 and 420 are formed in the central region inside the main body 100 and overlap the protective part 300.
- an electric shock protection device was manufactured as shown in FIG. 11. That is, the protection unit 300a is formed in the center of the main body 100 according to the structure shown in Korean Patent Registration No. 10-1585604, and the first internal electrodes 210a and 210b are disposed below and above the protection unit 300a. Was formed.
- the second internal electrodes 220a and 220b and the third internal electrodes 23a and 230b are formed under and inside the internal electrodes 210a and 210b, respectively, and the first to third internal electrodes 210, 220 and 230 are formed. Connection electrodes 400a and 400b are formed.
- the protection unit 300a according to the comparative example was formed under the same conditions as the protection unit 300 according to the embodiment.
- connection electrodes 410a and 410b of the comparative example were formed adjacent to the edge rather than being formed in the center part of the main body 100, but were formed in the 1/4 area
- connection electrodes 410a and 420b of the comparative example are formed to have a smaller diameter than the connection electrodes 410 and 420 according to the embodiment, and the connection electrodes 410a and 410b of the comparative example are smaller than those of the connection electrodes 410 and 420 of the embodiment. It was formed to a diameter of 1/4.
- all other conditions were the same, and the multi-sided comparative example further formed second and third internal electrodes 220 and 230.
- FIGS. 13 and 14 Frequency characteristics of the electric shock protection device according to the comparative example and the composite protection device according to the embodiment of the present invention are illustrated in FIGS. 13 and 14, and are shown in [Table 1].
- the electric shock protection device according to the comparative example generates a loss of -0.5 dB or more at a frequency of 1.24 kHz or more, but the composite protection device according to the embodiment of the present invention is less than the comparative example. Loss occurs. That is, by forming the connection electrode at the center of the main body and having a wide width, the parasitic resistance and the parasitic inductance can be minimized and the insertion loss can be reduced as compared with the connection electrode at the outer portion and the narrow width.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Thermistors And Varistors (AREA)
- Ceramic Capacitors (AREA)
Abstract
본 발명은 본체; 상기 본체 내부에 마련된 둘 이상의 내부 전극; 상기 둘 이상의 내부 전극 사이에 마련된 하나 이상의 보호부; 상기 둘 이상의 내부 전극과 연결되도록 상기 본체 내부에 마련된 둘 이상의 연결 전극; 상기 둘 이상의 연결 전극과 연결되도록 상기 본체 외부에 형성된 둘 이상의 외부 전극을 포함하고, 상기 연결 전극은 상기 보호부와 적어도 일부 중첩되도록 형성된 복합 보호 소자 및 이를 구비하는 전자기기가 제시된다.
Description
본 발명은 복합 보호 소자에 관한 것으로, 특히 각종 전자기기에 마련되어 전압 및 전류로부터 전자기기 또는 사용자를 보호할 수 있는 복합 보호 소자에 관한 것이다.
스마트폰 등과 같이 다기능을 가지는 전자기기에는 그 기능에 따라 다양한 부품들이 집적되어 있다. 또한, 전자기기에는 기능 별로 다양한 주파수 대역 무선 LAN(wireless LAN), 블루투스(bluetooth), GPS(Global Positioning System) 등 다른 주파수 대역 등을 수신할 수 있는 안테나가 구비되며, 이중 일부는 내장형 안테나로서, 전자기기를 구성하는 케이스에 설치될 수 있다. 따라서, 케이스에 설치된 안테나와 전자기기의 내부 회로 사이에 전기적 접속을 위한 컨택터가 설치된다.
한편, 최근 들어 스마트폰의 고급스런 이미지와 내구성이 강조되면서 금속 소재를 이용한 단말기의 보급이 증가하고 있다. 즉, 테두리를 금속으로 제작하거나, 전면의 화면 표시부를 제외한 나머지 케이스를 금속으로 제작한 스마트폰의 보급이 증가하고 있다.
그런데, 금속 케이스를 이용한 스마트폰에 비정품 충전기를 이용한 충전 중 스마트폰을 이용하면 감전 사고가 발생할 수 있다. 즉, 과전류 보호 회로가 내장되지 않거나 저품질의 소자를 사용한 비정품 충전기 또는 불량 충전기를 이용하여 충전함으로써 쇼크 전류(Shock Current)가 발생되고, 이러한 쇼크 전류는 스마트폰의 그라운드 단자로 도전되고, 다시 금속 케이스로 도전되어 금속 케이스에 접촉된 사용자가 감전될 수 있다.
따라서, 정전기에 의한 내부 회로의 파손 및 사용자의 감전 사고를 방지할 수 있는 부품이 필요하다.
이를 위한 소자의 예로서 한국등록특허 제10-1585604호에는 소체의 하면에 회로기판에 실장하기 위한 외부 전극이 구비되고, 상면은 도전성 가스켓과 연결하기 위한 연결 전극이 구비된다. 또한, 선행특허에는 소체 내부의 양측, 즉 가장자리에 외부 전극과 각각 연결되는 중간 전극이 마련된다. 이러한 감전 보호 소자는 700㎒∼3㎓의 무선통신주파수 영역에서 S21(입력 후 출력되는 주파수 특성) 삽입 손실이 -0.5dB 이상 커지면 안된다. 그런데, 상기 선행특허는 캐패시턴스를 구성하는 전극의 길이가 길고 좁은 지름의 비아를 통해 중간 전극이 형성되므로 기생 저항과 기생 인덕턴스가 커지게 된다. 따라서, 700㎒∼3㎓의 무선통신주파수 영역에서 S21 삽입 손실이 문제가 된다.
(선행기술문헌)
한국등록특허 제10-0876206호
한국등록특허 제10-1585604호
본 발명은 스마트폰 등의 전자기기 내에 마련되어 과전압 및 누설 전류의 적어도 어느 하나로부터 전자기기 및 사용자를 보호하는 복합 보호 소자를 제공한다.
본 발명은 충전기로부터 입력되는 쇼크 전류에 의한 사용자의 감전을 방지할 수 있고, 외부로부터 인가되는 과전압으로부터 내부 회로를 보호할 수 있는 복합 보호 소자를 제공한다.
본 발명은 기생 저항과 기생 인덕턴스를 줄여 무선통신주파수 영역에서의 손실을 줄일 수 있는 복합 보호 소자를 제공한다.
본 발명의 일 양태에 따른 복합 보호 소자는 본체; 상기 본체 내부에 마련된 둘 이상의 내부 전극; 상기 둘 이상의 내부 전극 사이에 마련된 하나 이상의 보호부; 상기 둘 이상의 내부 전극과 연결되도록 상기 본체 내부에 마련된 둘 이상의 연결 전극; 상기 둘 이상의 연결 전극과 연결되도록 상기 본체 외부에 형성된 둘 이상의 외부 전극을 포함하고, 상기 연결 전극은 상기 보호부와 적어도 일부 중첩되도록 형성된다.
상기 본체는 복수의 시트가 적층되어 형성되며, 상기 외부 전극은 상기 시트의 적층 방향으로 서로 대향되는 두 면에 형성된다.
상기 보호부는 상기 본체의 길이, 폭 및 두께 방향의 중앙부에 형성된다.
상기 보호부는 적어도 일 영역의 직경이 다른 영역과 다르게 형성된 확장부를 더 포함한다.
상기 연결 전극은 상기 본체의 길이 방향 및 폭 방향의 중앙부에 형성된다.
상기 연결 전극은 상기 본체 길이의 1% 이상과 상기 본체 폭의 5% 이상의 직경으로 형성된다.
상기 연결 전극은 수평 면적이 상기 내부 전극보다 작거나 같게 형성되고, 상기 보호부는 수평 면적이 상기 연결 전극보다 작거나 같게 형성된다.
상기 연결 전극은 상기 보호부의 높이보다 높거나 같게 형성된다.
상기 둘 이상의 연결 전극의 높이가 100㎛ 내지 1000㎛이거나, 상기 보호부의 높이가 5㎛ 내지 600㎛이다.
상기 둘 이상의 연결 전극은 서로 다른 크기 및 형상의 적어도 하나를 갖는다.
상기 외부 전극의 어느 하나와 연결되도록 마련된 컨택부를 더 포함한다.
상기 적어도 둘 이상의 내부 전극 사이에 캐패시턴스가 형성되고, 상기 내부 전극의 적어도 상기 보호부와 중첩되는 영역이 방전 전극으로 작용한다.
상기 외부 전극의 하나는 전자기기의 내부 회로에 연결되고, 다른 하나는 전자기기 외부의 사용자가 접촉 가능한 도전체에 연결된다.
본 발명의 다른 양태에 따른 전자기기는 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련되어 감전 전압을 차단하고 과전압을 통과시키는 복합 보호 소자를 포함하며, 상기 복합 보호 소자는, 본체; 상기 본체 내부에 마련된 둘 이상의 내부 전극; 상기 둘 이상의 내부 전극 사이에 마련된 하나 이상의 보호부; 상기 둘 이상의 내부 전극과 연결되도록 상기 본체 내부에 마련된 둘 이상의 연결 전극; 상기 둘 이상의 연결 전극과 연결되도록 상기 본체 외부에 형성된 둘 이상의 외부 전극을 포함하고, 상기 연결 전극은 상기 보호부와 적어도 일부 중첩되도록 형성된다.
상기 외부 전극의 하나는 상기 내부 회로에 연결되고, 다른 하나는 상기 도전체에 연결된다.
상기 도전체와 상기 복합 보호 소자 사이에 마련된 컨택부를 더 포함한다.
본 발명의 실시 예들에 따른 복합 보호 소자는 연결 전극이 본체의 바람직하게는 중앙부에 형성되고 보호부의 폭보다 넓은 폭으로 형성됨으로써 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 따라서, 무선통신주파수 영역 700㎒∼3㎓에서 S21의 삽입 손실을 줄일 수 있다.
또한, 연결 전극이 보호부의 폭보다 넓은 폭으로 형성됨으로써 반복적인 ESD 전압에 따른 열화를 방지할 수 있어 방전 개시 전압의 상승을 억제할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 복합 보호 소자의 사시도.
도 2는 본 발명의 일 실시 예에 따른 복합 보호 소자의 단면도.
도 3 및 도 4는 본 발명의 복합 보호 소자의 제 1 실시 예에 따른 보호부의 단면도 및 단면 사진.
도 5는 본 발명의 복합 보호 소자의 제 2 실시 예에 따른 보호부의 단면도.
도 6은 본 발명의 복합 보호 소자의 제 3 실시 예에 따른 보호부의 단면도.
도 7은 본 발명에 따른 복합 보호 소자의 등가 회로도.
도 8은 본 발명의 다른 실시 예에 따른 복합 보호 소자의 단면도.
도 9 및 도 10은 본 발명의 변형 예들에 따른 복합 보호 소자의 단면도.
도 11은 비교 예에 따른 복합 보호 소자의 단면도.
도 12 및 도 13은 비교 예 및 본 발명의 실시 예에 따른 복합 보호 소자의 주파수 특성을 나타낸 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 일 실시 예에 따른 복합 보호 소자의 사시도이고, 도 2는 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시 예에 따른 복합 보호 소자는 본체(100)와, 본체(1000) 내부에 마련된 적어도 둘 이상의 내부 전극(200)과, 적어도 둘 이상의 내부 전극(200) 사이에 마련된 적어도 하나의 보호부(300)와, 적어도 둘 이상의 내부 전극(200)과 각각 연결되도록 본체(100) 내부에 마련된 적어도 둘 이상의 연결 전극(400)과, 연결 전극(400)과 연결되도록 본체(100) 외부에 형성된 외부 전극(500)을 포함한다. 이하, 본 발명은 외부로부터 인가되는 ESD 등의 과전압으로부터 전자기기를 보호하고, 전자기기 내부로부터의 누설 전류를 차단하여 사용자를 감전으로부터 보호하는 복합 보호 소자를 예를 들어 설명한다.
1. 본체
본체(100)는 대략 육면체 형상으로 마련될 수 있다. 즉, 본체(100)는 수평 방향으로 서로 직교하는 일 방향(예를 들어 X 방향) 및 타 방향(예를 들어 Y 방향)으로 각각 소정의 길이 및 폭을 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 여기서, X 방향으로의 길이는 Y 방향으로의 폭 및 Z 방향으로의 높이보다 크고, Y 방향으로의 폭은 Z 방향으로의 높이와 같거나 다를 수 있다. 폭(Y 방향)과 높이(Z 방향)가 다를 경우 폭은 높이보다 크거나 작을 수 있다. 예를 들어, 길이, 폭 및 높이의 비는 2∼5:1:0.3∼1일 수 있다. 즉, 폭을 기준으로 길이가 폭보다 2배 내지 5배 정도 클 수 있고, 높이는 폭보다 0.3배 내지 1배일 수 있다. 그러나, 이러한 X, Y 및 Z 방향의 크기는 하나의 예로서 복합 보호 소자가 연결되는 전자기기의 내부 구조, 복합 보호 소자의 형상 등에 따라 다양하게 변형 가능하다. 또한, 본체(100) 내부에는 적어도 둘 이상의 내부 전극(200)과, 보호부(300)와, 연결 전극(400)이 형성되며, 본체(100) 외부에는 외부 전극(500)이 형성된다.
본체(100)는 소정 두께를 갖는 복수의 시트가 적층되어 형성될 수 있다. 즉, 본체(100)는 X 방향으로 소정의 길이를 갖고 Y 방향으로 소정의 폭을 가지며, Z 방향으로 소정의 두께를 갖는 복수의 시트를 적층하여 형성될 수 있다. 따라서, 시트의 길이 및 폭에 의해 본체(100)의 길이 및 폭이 결정되고, 시트의 적층 수에 의해 본체(100)의 높이가 결정될 수 있다. 한편, 본체(100)를 이루는 복수의 시트는 MLCC, LTCC, HTCC 등의 유전체 재료를 이용하여 형성할 수 있다. 여기서, MLCC 유전체 물질은 BaTiO3 및 NdTiO3의 적어도 어느 하나를 주성분으로 Bi2O3, SiO2, CuO, MgO, ZnO 중 적어도 하나 이상이 첨가되고, LTCC 유전체 물질은 Al2O3, SiO2, 글래스 물질을 포함할 수 있다. 또한, 시트는 MLCC, LTCC, HTCC 이외에 BaTiO3, NdTiO3, Bi2O3, BaCO3, TiO2, Nd2O3, SiO2, CuO, MgO, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 그리고, 시트는 상기 물질들 이외에 예를 들어 Pr계, Bi계, ST계 세라믹 물질 등 바리스터 특성을 가지는 재료로 형성될 수도 있다. 따라서, 시트는 재질에 따라 각각 소정의 유전율, 예를 들어 5∼20000, 바람직하게는 7∼5000, 더욱 바람직하게는 200∼3000의 유전율을 가질 수 있다.
또한, 복수의 시트는 모두 동일 두께로 형성될 수 있고, 적어도 어느 하나가 다른 것들에 비해 두껍거나 얇게 형성될 수 있다. 즉, 내부 전극(200) 사이에 적어도 하나의 시트가 마련되어 적어도 일부 영역에 ESD 보호부(300)가 형성되고, 내부 전극(200) 상부 및 하부에 복수의 시트가 적층되어 적어도 일부 영역에 연결 전극(400)이 형성되는데, 각 시트의 두께가 모두 동일할 수 있고, 적어도 하나의 시트의 두께가 다른 시트보다 두껍거나 얇을 수 있다. 예를 들어, 내부 전극(200) 사이에 ESD 보호부(300)가 형성되는 시트는 하나의 두께가 다른 시트들 각각의 두께에 비해 두껍게 형성될 수 있다. 한편, 복수의 시트는 예를 들어 1㎛∼5000㎛의 두께로 형성될 수 있고, 3000㎛ 이하의 두께로 형성될 수 있다. 즉, 본체(100)의 두께에 따라 시트 각각의 두께가 1㎛∼5000㎛일 수 있고, 바람직하게는 5㎛∼300㎛일 수 있다. 또한, 복합 보호 소자의 사이즈에 따라 시트의 두께 및 적층 수 등이 조절될 수 있다. 즉, 사이즈가 작은 복합 보호 소자에 적용되는 경우 시트는 얇은 두께로 형성될 수 있고, 사이즈가 큰 복합 보호 소자에 적용되는 경우 두꺼운 두께로 형성될 수 있다. 또한, 시트들이 동일한 수로 적층되는 경우 복합 보호 소자의 사이즈가 작아 높이가 낮을수록 두께가 얇아지고 복합 보호 소자의 사이즈가 커질수록 두께가 두꺼울 수 있다. 물론, 얇은 시트가 큰 사이즈의 복합 보호 소자에도 적용될 수 있는데, 이 경우 시트의 적층 수가 증가하게 된다. 이때, 시트는 ESD 인가 시 파괴되지 않는 두께로 형성될 수 있다. 즉, 시트들의 적층 수 또는 두께가 다르게 형성되는 경우에도 적어도 하나의 시트가 ESD의 반복적인 인가에 의해 파괴되지 않는 두께로 형성될 수 있다.
한편, 본체(100)는 최하층 및 최상층에 각각 마련된 하부 커버층(미도시) 및 상부 커버층(미도시)을 더 포함할 수 있다. 물론, 최하층의 시트가 하부 커버층으로 기능하고 최상층의 시트가 상부 커버층으로 기능할 수도 있다. 별도로 마련되는 하부 및 상부 커버층은 동일 두께로 형성될 수 있으며, 자성체 시트가 복수 적층되어 마련될 수 있다. 그러나, 하부 및 상부 커버층은 다른 두께로도 형성될 수 있는데, 예를 들어 상부 커버층이 하부 커버층보다 두껍게 형성될 수 있다. 여기서, 자성체 시트로 이루어진 하부 및 상부 커버층의 표면, 즉 하부 표면 및 상부 표면에 비자성 시트, 예를 들어 유리질 시트가 더 형성될 수 있다. 또한, 하부 및 상부 커버층은 내부의 시트보다 두꺼울 수 있다. 즉, 커버층은 시트 하나의 두께보다 두꺼울 수 있다. 따라서, 최하층 및 최상층의 시트가 하부 및 상부 커버층으로 기능하는 경우 그 사이의 시트들 각각보다 두껍게 형성될 수 있다. 한편, 하부 및 상부 커버층은 유리질 시트로 형성될 수도 있고, 본체(100)의 표면이 폴리머, 글래스 재질로 코팅될 수도 있다.
2. 내부 전극
적어도 둘 이상의 내부 전극(210, 220; 200)은 본체(100) 내부에 소정 간격 이격되어 마련될 수 있다. 즉, 적어도 둘 이상의 내부 전극(200)는 시트의 적층 방향, 즉 Z 방향으로 소정 간격 이격되어 형성될 수 있다. 또한, 적어도 둘 이상의 내부 전극(200)는 보호부(300)를 사이에 두고 형성될 수 있다. 예를 들어, Z 방향으로 보호부(300)의 하측에 제 1 내부 전극(210)이 형성되고, 보호부(300)의 상측에 제 2 내부 전극(220)이 형성될 수 있다. 물론, 제 1 및 제 2 내부 전극(210)과 최하층 및 최상층 시트 사이에 적어도 하나의 내부 전극이 더 형성될 수 있다. 여기서, 내부 전극(200)은 연결 전극(400)과 각각 연결되고 보호부(300)와 연결되도록 형성된다. 즉, 제 1 내부 전극(210)은 일측이 제 1 연결 전극(410)과 연결되고, 타측이 보호부(300)와 연결되도록 형성된다. 또한, 제 2 내부 전극(220)은 일측이 제 2 연결 전극(420)과 연결되고 타측이 보호부(300)와 연결되도록 형성된다. 이때, 제 1 및 제 2 내부 전극(210, 220)은 서로 대면하는 일 면이 보호부(300)와 연결된다.
이러한 내부 전극(200)은 도전성 물질로 형성될 수 있는데, 예를 들어 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 합금의 경우 예를 들어 Ag와 Pd 합금을 이용할 수 있다. 한편, Al은 소성 중 표면에 알루미늄 옥사이드(Al2O3)가 형성되고 내부는 Al을 유지할 수 있다. 즉, Al을 시트 상에 형성할 때 공기와 접촉하게 되는데, 이러한 Al은 소성 공정에서 표면이 산화되어 Al2O3가 형성되고, 내부는 Al을 그대로 유지한다. 따라서, 내부 전극(200)은 표면에 다공성의 얇은 절연층인 Al2O3로 피복된 Al로 형성될 수 있다. 물론, Al 이외에 표면에 절연층, 바람직하게는 다공성의 절연층이 형성되는 다양한 금속이 이용될 수 있다. 이렇게 내부 전극(200)의 표면에 다공성의 절연층이 형성되면 ESD 전압을 더욱 용이하고 원활하게 보호부(300)를 통해 방전시킬 수 있다. 즉, 후술하겠지만 보호부(300)는 다공성의 절연 물질을 포함하여 형성되고, 미세 기공을 통해 방전이 이루어지는데, 내부 전극(200)의 표면에 다공성의 절연층이 형성되면 보호부(300)의 미세 기공보다 미세 기공의 수를 더 증가시키고, 그에 따라 방전 효율을 향상시킬 수 있다.
또한, 내부 전극(200)은 X 방향으로 소정의 길이를 갖고 Y 방향으로 소정의 폭을 가지며, Z 방향으로 소정의 두께를 갖도록 형성될 수 있다. 예를 들어, 내부 전극(200)는 1㎛∼10㎛의 두께로 형성할 수 있다. 이때, 내부 전극(200)은 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되어 시트가 노출되도록 형성될 수 있다. 그러나, 내부 전극(200)의 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되더라도 전체적으로 연결된 상태를 유지하므로 전기 전도성에는 전혀 문제가 발생되지 않는다. 또한, 내부 전극(200)은 X 방향의 길이 및 Y 방향의 폭이 본체(100)의 길이 및 폭보다 작게 형성될 수 있다. 즉. 내부 전극(200)은 시트의 길이 및 폭보다 작게 형성될 수 있다. 예를 들어, 내부 전극(200)은 본체(100) 또는 시트의 길이의 10% 내지 90%의 길이와 10% 내지 90%의 폭으로 형성될 수 있다. 또한, 내부 전극(200)은 시트 각각의 면적 대비 10% 내지 90%의 면적으로 각각 형성될 수 있다. 즉, 본체(100) 내부의 일 시트 상에 형성되는 내부 전극(200)은 시트 면적 대비 10% 내지 90%의 면적으로 형성된다. 한편, 내부 전극(200)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다.
이러한 내부 전극(200)은 캐패시터로 작용하는 동시에 보호부(300)의 방전 전극으로 작용할 수 있다. 캐패시터는 제 1 및 제 2 내부 전극(200)과, 그 사이의 시트에 의해 형성된다. 캐패시턴스는 제 1 및 제 2 내부 전극(200)의 중첩 면적, 제 1 및 제 2 내부 전극(200) 사이의 시트의 두께 등에 따라 조절될 수 있다. 또한, 제 1 및 제 2 내부 전극(200)은 적어도 보호부(300)와 중첩되는 영역이 방전 전극으로 작용하는데, 외부로부터 인가되는 ESD 등의 과전압을 보호부(300)로 전달하고, 보호부(300)를 통과하여 예를 들어 전자기기의 접지 단자로 바이패스되는 과전압을 전달한다.
3. 보호부
보호부(300)는 내부 전극(200) 사이에 적어도 하나 마련되며, 외부로부터 유입되는 ESD 등의 과전압을 전자기기의 접지 단자로 바이패스시킨다. 즉, 복합 보호 소자가 채용된 전자기기의 외부로부터의 과전압은 예를 들어 제 2 연결 전극(420), 제 2 내부 전극(220)을 통해 보호부(300)로 유입되고, 다시 제 1 내부 전극(210) 및 제 1 연결 전극(410)을 통해 전자기기 내부 회로로 바이패스된다. 이러한 보호부(300)는 평면 형상 및 단면 형상의 적어도 하나가 대략 원형, 타원형, 직사각형, 정사각형, 오각형 이상의 다각형 형상을 가지고 소정의 두께를 가질 수 있다. 즉, 보호부(300)은 원통, 육면체, 다면체 등의 형상으로 형성될 수 있다.
보호부(300)는 제 1 및 제 2 내부 전극(210, 220)과 적어도 일부 중첩될 수 있다. 예를 들어, 보호부(300)의 수평 면적의 10% 내지 100% 중첩되도록 제 1 및 제 2 내부 전극(210, 220)이 형성될 수 있다. 즉, 보호부(300)는 제 1 및 제 2 내부 전극(210, 220)의 X 방향 및 Y 방향으로 각각 10% 내지 100%의 길이 및 폭으로 형성되며, 제 1 및 제 2 내부 전극(210, 220)을 벗어나지 않도록 형성된다. 또한, 보호부(300)는 제 1 및 제 2 내부 전극(210, 220) 사이의 중심 영역에 형성될 수 있다. 더욱 바람직하게, 보호부(300)는 본체(100)의 중심 영역에 형성될 수 있다. 즉, 본체(100)의 길이 방향(즉 X 방향)의 1/2과 폭 방향(즉 Y 방향)의 1/2에 의한 중심 영역에 소정의 직경으로 형성될 수 있다. 물론, 보호부(300)가 둘 이상 복수 형성될 경우 본체(100)의 중심 영역에서 소정 간격 이격되어 형성될 수 있다. 따라서, 적어도 하나 이상의 보호부(300)는 중심 영역이 본체(100)의 중심 영역 또는 제 1 및 제 2 내부 전극(210, 220)의 중심 영역에 형성될 수 있다.
보호부(300)는 본체(100) 두께의 1%∼20%의 두께로 형성되고, 본체(100)의 일 방향 길이의 3%∼50%의 길이로 형성될 수 있다. 이때, 보호부(300)가 복수로 형성되는 경우 복수의 보호부(300)의 두께의 합은 본체(100) 두께의 1%∼50%로 형성될 수 있다. 또한, 보호부(300)은 적어도 일 방향, 예를 들어 X 방향으로 길이가 긴 장공형으로 형성될 수 있고, 시트의 X 방향 길이의 5%∼75%로 형성될 수 있다. 그리고, 보호부(300)은 Y 방향으로의 폭이 시트의 Y 방향 폭의 3%∼50%로 형성될 수 있다. 이러한 보호부(300)는 연결 전극(400)의 두께보다 작거나 같은 두께와 연결 전극(400)의 직경보다 작거나 같은 직경으로 형성될 수 있다. 예를 들어, 보호부(300)는 연결 전극(400) 두께의 1/5배 내지 1배의 두께로 형성될 수 있고, 연결 전극(400)의 직경의 1/10 내지 1배의 직경으로 형성될 수 있다. 구체적으로, 보호부(300)는 예를 들어 50㎛∼1000㎛의 직경과 5㎛∼600㎛의 두께로 형성될 수 있다. 이때, 보호부(300)의 두께가 얇을수록 방전 개시 전압이 낮아진다.
이러한 보호부(300)는 내부 전극(200) 사이의 시트의 소정 영역에 형성된 적어도 하나의 개구를 포함할 수 있다. 즉, 적어도 하나의 개구 각각이 과전압 보호부(300)로 기능할 수 있다. 여기서, 보호부(300)는 개구 내의 적어도 일부에 과전압 보호 물질이 도포되거나, 개구를 매립하여 형성될 수 있다. 즉, 보호부(300)은 내부가 빈 개구와, 개구의 적어도 일부에 형성된 과전압 보호 물질을 포함할 수 있다. 과전압 보호 물질을 형성하기 위해 내부 전극(200) 사이에 소정 크기의 관통홀을 형성하고, 관통홀의 적어도 일부에 과전압 보호 물질을 도포하거나 관통홀을 매립할 수 있다. 이때, 관통홀 측면의 적어도 일부, 관통홀 상부 및 하부의 적어도 하나의 적어도 일부, 관통홀 내부에 소정 두께로 과전압 보호 물질을 도포할 수 있다. 관통홀의 일부에 과전압 보호 물질을 형성하기 위해 소성 시 휘발되는 고분자 물질 등을 이용할 수 있다.
보호부(300)는 과전압 보호 물질로서, 도전 물질과 절연 물질을 이용할 수 있다. 이때, 절연 물질은 복수의 기공(pore)을 갖는 다공성의 절연 물질일 수 있다. 예를 들어, 도전성 세라믹과 절연성 세라믹의 혼합 물질을 시트 상에 인쇄하여 보호부(300)를 형성할 수 있다. 한편, 보호부(300)는 적어도 하나의 시트 상에 형성될 수도 있다. 즉, 수직 방향으로 적층된 예를 들어 두개의 시트에 보호부(300)가 각각 형성되고, 그 시트 상에 서로 이격되도록 제 1 및 제 2 내부 전극(210, 220)이 형성되어 보호부(300)와 연결될 수 있다. 보호부(300)의 구조, 재료 등의 보다 자세한 설명은 후술하도록 하겠다. 한편, 보호부(300)의 구조, 재료, 크기 등에 따라 방전 개시 전압이 조절될 수 있는데, 복합 보호 소자의 방전 개시 전압은 예를 들어 1kV 내지 30kV일 수 있다.
4. 연결 전극
연결 전극(400)은 본체(100) 내부에 형성되며, 내부 전극(300)과 외부 전극(500) 사이에 형성된다. 즉, 연결 전극(400)은 내부 전극(300)과 외부 전극(500)을 연결하도록 형성된다. 따라서, 연결 전극(400)은 제 1 및 제 2 외부 전극(510, 520; 500)과 제 1 및 제 2 내부 전극(210, 220; 200) 사이에서 이들과 각각 연결되는 제 1 및 제 2 연결 전극(410, 420)을 포함할 수 있다. 이러한 연결 전극(400)은 평면 형상 및 단면 형상의 적어도 어느 하나가 대략 원형, 타원형, 직사각형, 정사각형, 오각형 이상의 다각형 형상을 갖고 소정의 두께를 가질 수 있다. 즉, 보호부(300)은 원통, 육면체, 다면체 등의 형상으로 형성될 수 있다. 또한, 연결 전극(400)은 보호부(300)와 적어도 중첩되도록 형성될 수 있다. 바람직하게, 연결 전극(400)은 본체(100)의 중앙부에 형성될 수 있고, 보호부(300)와 중첩되도록 형성될 수 있다.
연결 전극(400)은 내부 전극(200) 상에 적층되는 적어도 하나 이상의 시트의 소정 영역에 개구를 형성하고 도전 물질을 이용하여 개구가 매립되도록 형성된다. 예를 들어, 연결 전극(400)은 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 물론, 연결 전극(400)은 금속 이외에 다양한 도전성 재료를 이용하여 형성할 수도 있다.
연결 전극(400)은 Z 방향, 즉 수직 방향으로의 높이가 보호부(300)의 높이와 같거나 다르게 형성될 수 있고, X 방향 및 Y 방향으로의 폭이 보호부(300)의 폭보다 같거나 다르게 형성될 수 있다. 즉, 연결 전극(400)은 보호부(300)의 높이보다 크거나 같게 형성되고, 직경 또는 폭보다 넓거나 같게 형성될 수 있다. 바람직하게, 연결 전극(400)의 높이는 보호부(300)의 높이보다 높고, 평면 넓이는 보호부(300)의 평면 넓이보다 크게 형성될 수 있다. 예를 들어, 제 1 및 제 2 연결 전극(410, 420) 각각은 보호부(300) 높이의 0.5배 내지 3배의 높이로 형성될 수 있다. 또한, 제 1 및 제 2 연결 전극(410, 420)의 높이의 합은 보호부(300) 높이의 1배 내지 6배로 형성될 수 있다. 예를 들어, 제 1 및 제 2 연결 전극(410, 420)의 높이의 합은 100㎛∼1000㎛, 바람직하게는 200㎛∼900㎛, 더욱 바람직하게는 400㎛∼700㎛로 형성될 수 있다. 이때, 제 1 및 제 2 연결 전극(410, 420)의 높이는 서로 다를 수 있고, 폭 또한 서로 다를 수 있다. 또한, 연결 전극(400)의 X 방향의 폭은 본체(100)의 X 방향 길이의 1% 내지 90%로 형성될 수 있고, Y 방향의 폭은 본체(100)의 Y 방향 폭의 5% 내지 90%로 형성될 수 있다. 이때, 연결 전극(400)의 X 방향 폭과 Y 방향 폭은 서로 같을 수도 있고, 다를 수도 있다. 즉, 연결 전극(400)의 X 방향 폭과 Y 방향 폭을 포함한 적어도 일 영역의 폭은 다른 영역의 폭보다 같거나 다를 수 있다. 다시 말하면, 연결 전극(400)은 적어도 일 영역이 비대칭 형상으로 형성될 수 있다. 그리고, 연결 전극(400)의 X 방향 및 Y 방향의 폭은 보호부(300) X 방향 및 Y 방향 폭의 1배 내지 10배로 형성될 수 있으며, 내부 전극(200)의 X 방향 길이 및 Y 방향 폭의 1/10배 내지 1배로 각각 형성될 수 있다. 즉, 연결 전극(400)의 폭은 본체(100)의 X 방향 및 Y 방향의 길이 및 폭보다 짧고, 보호부(300)의 폭과 같거나 크며, 내부 전극(200)의 폭보다 작거나 같게 형성될 수 있다.
이러한 연결 전극(400)은 외부 전극(500)과 내부 전극(200)을 연결하는 기능을 한다. 따라서, 외부 전극(500)을 통해 인가되는 ESD 등의 과전압은 연결 전극(400)을 통해 내부 전극(200) 및 보호부(300)로 전달되고, 보호부(300)를 통한 과전압은 다시 내부 전극(200) 및 연결 전극(400)을 통해 외부 전극(500)으로 전달된다. 또한, 연결 전극(400)이 본체(100)의 중앙부에 형성되고 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 즉, 연결 전극(400)이 본체(100)의 외곽에 형성되는 경우에 비해 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 따라서, 무선통신주파수 영역 700㎒∼3㎓에서 S21의 삽입 손실을 줄일 수 있다. 또한, 연결 전극(400)이 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 반복적인 ESD 전압에 따른 열화를 방지할 수 있어 방전 개시 전압의 상승을 억제할 수 있다. 즉, 보호부(300)는 예를 들어 ESD 에너지에 의해 내부에서 스파크가 발생되어 ESD 전압을 바이패스하는데, 연결 전극(400)의 두께가 얇으면 반복적인 ESD 전압에 따라 연결 전극(400)이 소실되어 방전 개시 전압의 상승 현상이 발생될 수 있다. 그러나, 연결 전극(400)의 두께를 10㎛ 이상으로 형성함으로써 반복적인 ESD 전압에 의한 연결 전극(400)의 소실을 방지하고, 그에 따라 방전 개시 전압의 상승 현상을 방지할 수 있다.
5. 외부 전극
외부 전극(510, 520; 500)는 본체(100) 외부의 서로 대향되는 두 면에 마련될 수 있다. 예를 들어, 외부 전극(500)은 Z 방향, 즉 수직 방향으로 본체(100)의 대향되는 두 면. 즉 하부면 및 상부면에 각각 형성될 수 있다. 또한, 외부 전극(500)은 본체(100) 내부의 연결 전극(400)과 각각 연결될 수 있다. 이때, 외부 전극(500)의 어느 하나는 전자기기 내부의 인쇄회로기판 등의 내부 회로와 접속될 수 있고, 다른 하나는 전자기기의 외부, 예를 들어 금속 케이스와 연결될 수 있다. 예를 들어, 제 1 외부 전극(510)은 내부 회로에 접속될 수 있고, 제 2 외부 전극(520)은 금속 케이스와 연결될 수 있다. 또한, 제 2 외부 전극(520)은 도전성 부재, 예를 들어 컨택터 또는 도전성 가스켓을 통해 금속 케이스와 연결될 수 있다.
이러한 외부 전극(500)은 다양한 방법으로 형성될 수 있다. 즉, 외부 전극(500)은 도전성 페이스트를 이용하여 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 다양한 방법으로 형성될 수도 있다. 한편, 외부 전극(500)은 하부면 및 상부면의 전체면에 형성되거나, 하부면 및 상부면의 일부에 형성될 수 있다. 즉, 외부 전극(500)은 하부면 및 상부면의 가장자리로부터 소정 폭을 제외한 나머지 영역에 형성될 수 있다. 예를 들어, 외부 전극(500)은 하부면 및 상부면의 가장자리로부터 소정 폭을 제외한 50% 내지 95%의 면적으로 형성될 수 있다. 또한, 외부 전극(500)이 하부면 및 상부면의 전체 영역에 형성되고, 그로부터 상부 및 하부로 연장되어 다른 측면에 형성될 수도 있다. 즉, 외부 전극(500)은 Z 방향으로 대향되는 하부면 및 상부면 뿐만 아니라 X 방향 및 Y 방향으로 각각 대향되는 면의 소정 영역까지 연장 형성될 수 있다. 예를 들어, 도전성 페이스트에 침지하는 경우 Z 방향의 상하면 뿐만 아니라 X 방향 및 Y 방향으로의 측면에도 외부 전극(500)이 형성될 수 있다. 이에 비해, 인쇄, 증착, 스퍼터링, 도금 등의 방법으로 형성할 경우 Z 방향의 하부면 및 상부면에 소정 면적으로 외부 전극(500)이 형성될 수 있다. 즉, 외부 전극(500)은 인쇄회로기판에 실장되는 하부면 및 금속 케이스와 연결되는 상부면 뿐만 아니라 형성 방법 또는 공정 조건에 따라 그 이외의 영역에도 형성될 수 있다. 이러한 외부 전극(500)은 전기 전도성을 가지는 금속으로 형성될 수 있는데, 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 이때, 연결 전극(400)과 연결되는 외부 전극(500)의 적어도 일부, 즉 본체(100)의 적어도 일 표면에 형성되어 연결 전극(400)과 연결되는 외부 전극(500)의 일부는 연결 전극(400)과 동일 물질로 형성될 수 있다. 예를 들어, 연결 전극(400)이 구리를 이용하여 형성되는 경우 외부 전극(500)의 연결 전극(400)과 접촉되는 영역으로부터 적어도 일부는 구리를 이용하여 형성할 수 있다. 이때, 구리는 앞서 설명한 바와 같이 도전성 페이스트를 이용한 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 방법으로 형성할 수 있다. 바람직하게는 외부 전극(500)은 도금으로 형성할 수 있다. 도금 공정으로 외부 전극(500)을 형성하기 위해 본체(100)의 상하부면에 시드층을 형성한 후 시드층으로부터 도금층을 형성하여 외부 전극(500)을 형성할 수 있다. 여기서, 외부 전극(500)의 연결 전극(400)과 연결되는 적어도 일부는 외부 전극(500)이 형성되는 본체(100)의 상하부면 전체일 수 있고, 일부 영역일 수도 있다.
또한, 외부 전극(500)은 적어도 하나의 도금층을 더 포함할 수 있다. 외부 전극(500)은 Cu, Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 외부 전극(500)은 구리층, Ni 도금층 및 Sn 또는 Sn/Ag 도금층이 적층 형성될 수도 있다. 물론, 도금층은 Cu 도금층 및 Sn 도금층이 적층될 수도 있으며, Cu 도금층, Ni 도금층 및 Sn 도금층이 적층될 수도 있다. 또한, 외부 전극(500)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 본체(100)의 두면에 도포될 수 있다. 이렇게 외부 전극(500)에 글래스 프릿이 포함됨으로써 외부 전극(500)과 본체(100)의 밀착력을 향상시킬 수 있고, 연결 전극(400)과 외부 전극(500)의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(500)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(500)이 형성될 수 있다. 예를 들어, 외부 전극(500)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 물론, 외부 전극(5000)은 적어도 하나의 도금층만으로 형성될 수도 있다. 즉, 페이스트를 도포하지 않고 적어도 1회의 도금 공정을 이용하여 적어도 일층의 도금층을 형성하여 외부 전극(500)을 형성할 수도 있다. 한편, 외부 전극(5000)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.
6. 표면 개질 부재
한편, 본체(100)의 적어도 일 표면에는 표면 개질 부재(미도시)가 형성될 수 있다. 이러한 표면 개질 부재는 외부 전극(500)을 형성하기 이전에 본체(100)의 표면에 예를 들어 산화물을 분포시켜 형성할 수 있다. 여기서, 산화물은 결정 상태 또는 비결정 상태로 본체(100)의 표면에 분산되어 분포될 수 있다. 표면 개질 부재는 도금 공정으로 외부 전극(500)을 형성할 때 도금 공정 이전에 본체(100) 표면에 분포될 수 있다. 즉, 표면 개질 부재는 외부 전극(500)의 일부를 인쇄 공정으로 형성하기 이전에 분포시킬 수도 있고, 인쇄 공정 후 도금 공정을 실시하기 이전에 분포시킬 수도 있다. 물론, 인쇄 공정을 실시하지 않는 경우 표면 개질 부재를 분포시킨 후 도금 공정을 실시할 수 있다. 이때, 표면에 분포된 표면 개질 부재는 적어도 일부가 용융될 수 있다.
한편, 표면 개질 부재는 적어도 일부가 동일한 크기로 본체(100)의 표면에 고르게 분포될 수 있고, 적어도 일부가 서로 다른 크기로 불규칙하게 분포될 수도 있다. 또한, 본체(100)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 표면 개질 부재가 형성되어 볼록부가 형성되고 표면 개질 부재가 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이때, 표면 개질 부재는 적어도 일부가 본체(100)의 표면보다 깊이 형성될 수 있다. 즉, 표면 개질 부재는 소정 두께가 본체(100)의 소정 깊이로 박히고 나머지 두께가 본체(100)의 표면보다 높게 형성될 수 있다. 이때, 본체(100)에 박히는 두께는 산화물 입자의 평균 직경의 1/20 내지 1일 수 있다. 즉, 산화물 입자는 본체(100) 내부로 모두 함입될 수 있고, 적어도 일부가 함입될 수 있다. 물론, 산화물 입자는 본체(100)의 표면에만 형성될 수 있다. 따라서, 산화물 입자는 본체(100)의 표면에서 반구형으로 형성될 수도 있고, 구 형태로 형성될 수도 있다. 또한, 표면 개질 부재는 상기한 바와 같이 본체(100)의 표면에 부분적으로 분포될 수도 있으며, 적어도 일 영역에 막 형태로 분포될 수도 있다. 즉, 산화물 입자가 본체(100)의 표면에 섬(island) 형태로 분포되어 표면 개질 부재가 형성될 수 있다. 즉, 본체(100) 표면에 결정 상태 또는 비결정 상태의 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 본체(100) 표면의 적어도 일부가 노출될 수 있다. 또한, 산화물은 표면 개질 부재는 적어도 둘 이상이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 즉, 적어도 둘 이상의 산화물 입자가 응집되거나 인접한 산화물 입자가 연결되어 막 형태를 이룰 수 있다. 그러나, 산화물이 입자 상태로 존재하거나, 둘 이상의 입자가 응집되거나 연결된 경우에도 본체(100) 표면의 적어도 일부는 표면 개질 부재에 의해 외부로 노출된다.
이때, 표면 개질 부재의 총 면적은 본체(100) 표면 전체 면적의 예를 들어 5% 내지 90%일 수 있다. 표면 개질 부재의 면적에 따라 본체(100) 표면의 도금 번짐 현상이 제어될 수 있지만, 표면 개질 부재가 너무 많이 형성되면 본체(100) 내부의 도전 패턴과 외부 전극(400)의 접촉이 어려울 수 있다. 즉, 표면 개질 부재가 본체(100) 표면적의 5% 미만으로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 90%를 초과하여 형성될 경우 본체(100) 내부의 도전 패턴과 외부 전극(400)이 접촉되지 않을 수 있다. 따라서, 표면 개질 부재는 도금 번짐 현상을 제어할 수 있고 본체(100) 내부의 도전 패턴과 외부 전극(400)의 접촉될 수 있는 정도의 면적으로 형성하는 것이 바람직하다. 이를 위해 표면 개질 부재는 본체(100) 표면적의 10% 내지 90%로 형성될 수 있고, 바람직하게는 30% 내지 70%의 면적으로 형성될 수 있으며, 더욱 바람직하게는 40% 내지 50%의 면적으로 형성될 수 있다. 이때, 본체(100)의 표면적은 일 면의 표면적일 수도 있고, 육면체를 이루는 본체(100)의 여섯면의 표면적일 수도 있다. 한편, 표면 개질 부재는 본체(100) 두께의 10% 이하의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 본체(100) 두께의 0.01% 내지 10%의 두께로 형성될 수 있다. 예를 들어, 표면 개질 부재는 0.1㎛∼50㎛의 크기로 존재할 수 있는데, 그에 따라 표면 개질 부재는 본체(100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 본체(100)의 표면보다 박힌 영역을 제외하고 본체(100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 따라서, 본체(100) 내측으로 박힌 두께를 포함하면 표면 개질 부재는 0.1㎛∼50㎛보다 두꺼운 두께를 가질 수 있다. 표면 개질 부재가 본체(100) 두께의 0.01% 미만의 두께로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 본체(100) 두께의 10%를 초과하는 두께로 형성될 경우 본체(100) 내부의 도전 패턴과 외부 전극(400)이 접촉되지 않을 수 있다. 즉, 표면 개질 부재는 본체(100)의 재료 특성(전도성, 반도성, 절연성, 자성체 등)에 따라 다양한 두께를 가질 수 있고, 산화물 분말의 크기, 분포량, 응집 여부에 따라 다양한 두께를 가질 수 있다.
이렇게 본체(100)의 표면에 표면 개질 부재가 형성됨으로써 본체(100)의 표면은 성분이 다른 적어도 두 영역이 존재할 수 있다. 즉, 표면 개질 부재가 형성된 영역과 형성되지 않은 영역은 서로 다른 성분이 검출될 수 있다. 예를 들어, 표면 개질 부재가 형성된 영역은 표면 개질 부재에 따른 성분, 즉 산화물이 존재할 수 있고, 형성되지 않은 영역은 본체(100)에 따른 성분, 즉 시트의 성분이 존재할 수 있다. 이렇게 도금 공정 이전에 본체(100)의 표면에 표면 개질 부재를 분포시킴으로써 본체(100) 표면에 거칠기를 부여하여 개질시킬 수 있다. 따라서, 도금 공정이 균일하게 실시될 수 있고, 그에 따라 외부 전극(500)의 형상을 제어할 수 있다. 즉, 본체(100)의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 저항이 불균일한 상태에서 도금 공정을 실시하면 도금층의 성장 불균일이 발생된다. 이러한 문제를 해결하기 위해 본체(100)의 표면에 입자 상태 또는 용융 상태의 산화물을 분산시켜 표면 개질 부재를 형성함으로써 본체(100)의 표면을 개질시킬 수 있고, 도금층의 성장을 제어할 수 있다.
여기서, 본체(100)의 표면 저항을 균일하게 하기 위한 입자 상태 또는 용융 상태의 산화물은 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다. 한편, 표면 개질 부재는 본체(100) 내의 적어도 하나의 시트 상에도 형성될 수 있다. 즉, 시트 상의 다양한 형상의 도전 패턴은 도금 공정으로 형성할 수도 있는데, 표면 개질 부재를 형성함으로써 도전 패턴의 형상을 제어할 수 있다.
도 3 및 도 4는 본 발명의 복합 보호 소자의 제 1 실시 예에 따른 보호부(300)의 단면 개략도 및 단면 사진이다. 즉, 보호부(300)은 적어도 일 영역의 두께가 다른 영역보다 작거나 크게 형성될 수 있는데, 도 3 및 도 4는 보호부(300)의 일부 영역을 확대한 단면 개략도 및 단면 사진이다.
도 3(a) 및 도 4(a)에 도시된 바와 같이, 보호부(300)는 절연성 물질로 형성될 수 있다. 이때, 절연성 물질은 복수의 기공(미도시)을 포함하는 다공성 절연 물질을 이용할 수 있다. 즉, 보호부(300)에는 복수의 기공(미도시)이 형성될 수 있다. 기공이 형성됨으로써 ESD 등의 과전압을 더욱 용이하게 바이패스시킬 수 있다. 또한, 보호부(300)는 도전성 물질과 절연성 물질을 혼합하여 형성할 수 있다. 예를 들어, 보호부(300)는 도전성 세라믹과 절연성 세라믹을 혼합하여 형성할 수 있다. 이 경우 보호부(300)는 도전성 세라믹과 절연성 세라믹을 예를 들어 10:90 내지 90:10의 혼합 비율로 혼합하여 형성할 수 있다. 절연성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 높아지고, 도전성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 낮아질 수 있다. 따라서, 소정의 방전 개시 전압을 얻을 수 있도록 도전성 세라믹과 절연성 세라믹의 혼합 비율을 조절할 수 있다.
또한, 보호부(300)는 도전층과 절연층을 적층하여 소정의 적층 구조로 형성할 수 있다. 즉, 보호부(300)는 도전층과 절연층을 적어도 1회 적층하여 도전층과 절연층이 구분되어 형성할 수 있다. 예를 들어, 보호부(300)는 도전층과 절연층이 적층되어 2층 구조로 형성될 수 있고, 도전층, 절연층 및 도전층이 적층되어 3층 구조로 형성될 수 있다. 또한, 도전층(311, 312; 310)과 절연층(320)이 복수회 반복 적층되어 3층 이상의 적층 구조로 형성될 수도 있다. 예를 들어, 도 3(b)에 도시된 바와 같이 제 1 도전층(311), 절연층(320) 및 제 2 도전층(312)이 적층된 3층 구조의 보호부(300)가 형성될 수 있다. 도 4(b)는 시트 사이의 내부 전극 사이에 3층 구조의 ESD 보호층이 형성된 사진이다. 한편, 도전층과 절연층을 복수회 적층하는 경우 최상층 및 최하층은 도전층이 위치할 수 있다. 이때, 도전층(310)과 절연층(320)의 적어도 일부에는 복수의 기공(미도시)이 형성될 수 있다. 예를 들어, 도전층(310) 사이에 형성된 절연층(320)은 다공성 구조로 형성되므로 절연층(320) 내에 복수의 기공이 형성될 수 있다.
또한, 보호부(300)는 소정 영역에 공극(void)이 더 형성될 수도 있다. 예를 들어, 도전성 물질과 절연성 물질이 혼합된 층의 사이에 공극이 형성될 수 있고, 도전층과 절연층 사이에 공극이 형성될 수도 있다. 즉, 도전성 물질과 절연성 물질의 제 1 혼합층, 공극 및 제 2 혼합층이 적층 형성될 수 있고, 도전층, 공극 및 절연층이 적층 형성될 수도 있다. 예를 들어, 보호부(300)는 도 3(c)에 도시된 바와 같이 제 1 도전층(311), 제 1 절연층(321), 공극(330), 제 2 절연층(322) 및 제 2 도전층(312)이 적층되어 형성될 수 있다. 즉, 도전층(311, 312; 310) 사이에 절연층(321, 322; 320)이 형성되고, 절연층(320) 사이에 공극(330)이 형성될 수 있다. 도 4(c)에는 이러한 적층 구조를 갖는 보호부(300)의 단면 사진이다. 물론, 도전층, 절연층, 공극이 반복 적층되어 보호부(300)가 형성될 수도 있다. 한편, 도전층(310), 절연층(320) 및 공극(330)이 적층되는 경우 이들 모두의 두께가 모두 동일할 수 있고, 적어도 어느 하나의 두께가 다른 것들에 비해 얇을 수 있다. 예를 들어, 공극(330)이 도전층(310) 및 절연층(320)보다 얇을 수 있다. 또한, 도전층(310)은 절연층(320)과 동일 두께로 형성될 수도 있고, 절연층(320)보다 두껍거나 얇게 형성될 수도 있다. 한편, 공극(330)은 고분자 물질을 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 형성할 수 있다. 예를 들어, 도전성 세라믹이 포함된 제 1 고분자 물질, 절연성 세라믹이 포함된 제 2 고분자 물질, 그리고 도전성 세라믹 또는 절연성 세라믹 등이 포함되지 않은 제 3 고분자 물질을 비아홀 내에 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 도전층, 절연층 및 공극이 형성될 수 있다. 한편, 공극(330)은 층이 구분되지 않고 형성될 수도 있다. 예를 들어, 도전층(311, 312) 사이에 절연층(320)이 형성되고 절연층(320) 내에 수직 방향 또는 수평 방향으로 복수의 기공이 연결되어 공극(330)이 형성될 수 있다. 즉, 공극(330)은 절연층(320) 내에 복수의 기공으로 형성될 수 있다. 물론, 공극(330)이 복수의 기공에 의해 도전층(310)에 형성될 수도 있다.
한편, 보호부(300)에 이용되는 도전층(310)은 소정의 저항을 갖고 전류를 흐르게 할 수 있다. 예를 들어, 도전층(310)은 수Ω 내지 수백㏁을 갖는 저항체일 수 있다. 이러한 도전층(310)은 ESD 등이 과전압이 유입될 경우 에너지 레벨을 낮춰 과전압에 의한 복합 보호 소자의 구조적인 파괴가 일어나지 않도록 한다. 즉, 도전층(310)은 전기 에너지를 열 에너지로 변환시키는 히트 싱크(heat sink)의 역할을 한다. 이러한 도전층(310)은 도전성 세라믹을 이용하여 형성할 수 있으며, 도전성 세라믹은 La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, Bi 중의 하나 이상을 포함한 혼합물을 이용할 수 있다. 또한, 도전층(310)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 도전층(310)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.
또한, 보호부(300)에 이용되는 절연층(320)은 방전 유도 물질로 이루어질 수 있고, 다공성 구조를 가진 전기 장벽으로 기능할 수 있다. 이러한 절연층(320)은 절연성 세라믹으로 형성될 수 있고, 절연성 세라믹은 50∼50000 정도의 유전율을 갖는 강유전체 물질이 이용될 수 있다. 예를 들어, 절연성 세라믹은 MLCC 등의 유전체 재료 분말, ZrO, ZnO, BaTiO3, Nd2O5, BaCO3, TiO2, Nd, Bi, Zn, Al2O3 중의 하나 이상을 포함한 혼합물을 이용하여 형성할 수 있다. 이러한 절연층(320)은 1㎚∼5㎛ 정도 크기의 기공이 복수 형성되어 30%∼80%의 기공률로 형성된 다공성 구조로 형성될 수 있다. 이때, 기공 사이의 최단 거리는 1㎚∼5㎛ 정도일 수 있다. 즉, 절연층(320)은 전류가 흐르지 못하는 전기 절연성 물질로 형성되지만, 기공이 형성되므로 기공을 통해 전류가 흐를 수 있다. 이때, 기공의 크기가 커지거나 기공률이 커질수록 방전 개시 전압이 낮아질 수 있고, 이와 반대로 기공의 크기가 작아지거나 기공률이 낮아지면 방전 개시 전압이 높아질 수 있다. 그러나, 기공의 크기가 5㎛를 초과하거나 기공률이 80%를 초과하면 보호부(300)의 형상 유지가 어려울 수 있다. 따라서, 보호부(300)의 형상을 유지하면서 방전 개시 전압을 조절하도록 절연층(320)의 기공 크기 및 기공률을 조절할 수 있다. 한편, 보호부(300)이 절연 물질과 도전 물질의 혼합 물질로 형성되는 경우 절연 물질은 미세 기공 및 기공률을 갖는 절연성 세라믹을 이용할 수 있다. 또한, 절연층(320)은 미세 기공에 의해 시트의 저항보다 낮은 저항을 갖고, 미세 기공을 통해 부분 방전이 이루어질 수 있다. 즉, 절연층(320)은 미세 기공이 형성되어 미세 기공을 통해 부분 방전이 이루어진다. 이러한 절연층(320)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 절연층(320)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.
도 5는 본 발명의 복합 보호 소자의 제 2 실시 예에 따른 보호부(300)의 단면 개략도이다. 즉, 보호부(300)은 도 5(a)에 도시된 바와 같이 공극(330)을 포함할 수 있다. 즉, 보호부(300)는 시트를 관통하여 형성된 개구 내에 과전압 보호 물질을 충진하지 않고 공극(330)이 형성될 수 있다. 또한, 보호부(300)는 관통홀의 적어도 일 영역에 다공성 절연 물질이 형성될 수 있다. 즉, 도 5(b)에 도시된 바와 같이 관통홀의 측벽에 다공성 절연 물질이 도포되어 절연층(320)이 형성될 수 있고, 도 5(c)에 도시된 바와 같이 관통홀의 상부 및 하부의 적어도 하나에 절연층(320)이 형성될 수 있다.
한편, 도 6은 본 발명의 복합 보호 소자의 제 3 실시 예에 따른 보호부(300)의 단면 개략도로서, 도 6에 도시된 바와 같이 보호부(300)는 내부 전극(210, 220; 200)과 과전압 보호부(300) 사이에 형성된 방전 유도층(340)을 더 포함할 수 있다. 즉, 내부 전극(200)과 보호부(300) 사이에 방전 유도층(340)이 더 형성될 수 있다. 이때, 내부 전극(200)은 도전층(211a, 212a)과, 도전층(211a, 212a)의 적어도 일 표면에 형성된 다공성 절연층(211b, 212b)을 포함할 수 있다. 물론, 내부 전극(200)은 표면에 다공성 절연층이 형성되지 않은 도전층일 수도 있다.
이러한 방전 유도층(340)은 보호부(300)를 다공성 절연 물질을 이용하여 형성하는 경우 형성될 수 있다. 이때, 방전 유도층(340)은 보호부(300)보다 밀도가 높은 유전체층으로 형성될 수 있다. 즉, 방전 유도층(340)은 도전 물질로 형성될 수도 있고, 절연 물질로 형성될 수도 있다. 예를 들어, 다공성 ZrO를 이용하여 보호부(300)를 형성하고 Al을 이용하여 내부 전극(200)을 형성하는 경우 보호부(300)와 내부 전극(210) 사이에 AlZrO의 방전 유도층(340)이 형성될 수 있다. 한편, 보호부(300)로서 ZrO 대신에 TiO를 이용할 수 있고, 이 경우 방전 유도층(340)은 TiAlO로 형성될 수 있다. 즉, 방전 유도층(340)은 내부 전극(200)과 보호부(300)의 반응으로 형성될 수 있다. 물론, 방전 유도층(340)은 시트 물질이 더 반응하여 형성될 수 있다. 이 경우 방전 유도층(340)은 내부 전극 물질(예를 들어 Al), 보호부 물질(예를 들어 ZrO), 그리고 시트 물질(예를 들어 BaTiO3)의 반응에 의해 형성될 수 있다. 또한, 방전 유도층(340)은 시트 물질과 반응하여 형성될 수 있다. 즉, 보호부(300)가 시트와 접촉되는 영역에는 보호부(300)와 시트의 반응으로 방전 유도층(340)이 형성될 수 있다. 따라서, 방전 유도층(340)은 보호부(300)를 둘러싸도록 형성될 수 있다. 이때, 보호부(300)와 방전 전극(310) 사이의 방전 유도층(340)과 보호부(300)와 시트 사이의 방전 유도층(340)은 서로 다른 조성을 가질 수 있다. 한편, 방전 유도층(340)은 적어도 일 영역이 제거되어 형성될 수 있고, 적어도 일 영역의 두께가 다른 영역과 다르게 형성될 수도 있다. 즉, 방전 유도층(340)은 적어도 일 영역이 제거되어 불연속적으로 형성될 수 있고, 두께가 적어도 일 영역의 두께가 다르게 불균일하게 형성될 수 있다. 이러한 방전 유도층(340)은 소성 공정 시 형성될 수 있다. 즉, 소정의 온도에서 소성 공정 시 방전 전극 물질, ESD 보호 물질 등이 상호 확산하여 내부 전극(200)과 보호부(300) 사이에 방전 유도층(340)이 형성될 수 있다. 한편, 방전 유도층(340)은 보호부(300) 두께의 10%∼70%의 두께로 형성될 수 있다. 즉, 보호부(300)의 일부 두께가 방전 유도층(340)으로 변화될 수 있다. 따라서, 방전 유도층(340)은 보호부(300)보다 얇게 형성될 수 있고, 내부 전극(200)보다 두껍거나 같거나 얇은 두께로 형성될 수 있다. 이러한 방전 유도층(340)에 의해 ESD 전압이 보호부(300)로 유도되거나 보호부(300)로 유도되는 방전 에너지의 레벨을 저하시킬 수 있다. 따라서, ESD 전압을 더욱 용이하게 방전하여 방전 효율을 향상시킬 수 있다. 또한, 방전 유도층(340)이 형성됨으로써 이종의 물질의 보호부(300)로의 확산을 방지할 수 있다. 즉, 시트 물질과 내부 전극 물질의 보호부(300)로의 확산을 방지할 수 있고, 과전압 보호 물질의 외부 확산을 방지할 수 있다. 따라서, 방전 유도층(340)이 확산 배리어(diffusion barrier)로서 이용될 수 있고, 그에 따라 보호부(300)의 파괴를 방지할 수 있다. 한편, 보호부(300)에 도전성 물질을 더 포함할 수 있는데, 이 경우 도전성 물질은 절연성 세라믹으로 코팅할 수 있다. 예를 들어, 도 3(a)를 이용하여 설명한 바와 같이 보호부(300)이 다공성 절연 물질과 도전성 물질이 혼합되어 형성되는 경우 도전 물질은 NiO, CuO, WO 등을 이용하여 코팅할 수 있다. 따라서, 도전성 물질이 다공성 절연 물질과 함께 보호부(300)의 재료로서 이용될 수 있다. 또한, 보호부(300)로 다공성의 절연 물질 이외에 도전 물질을 더 이용하는 경우, 예를 들어 도 3(b) 및 도 3(c)에 도시된 바와 같이 두개의 도전층(311, 312) 사이에 절연층(320)이 형성되는 경우 방전 유도층(340)은 도전층(310)과 절연층(320) 사이에 형성될 수 있다. 한편, 내부 전극(200)은 일부 영역이 제거된 형상으로 형성될 수 있다. 즉, 내부 전극(200)은 부분적으로 제거되고 제거된 영역에 방전 유도층(340)이 형성될 수 있다. 그러나, 내부 전극(200)이 부분적으로 제거되더라도 평면 상으로 전체적으로 연결된 형상을 유지하므로 전기적인 특성이 저하되지는 않는다.
내부 전극(200)은 표면에 절연층이 형성되는 금속 또는 금속 합금으로 형성될 수 있다. 즉, 내부 전극(200)은 도전층(211a, 212a)과, 도전층(211a, 212a)의 적어도 일 표면에 형성된 다공성 절연층(211b, 212b)을 포함할 수 있다. 이때, 다공성 절연층(211b, 212b)은 내부 전극(200)의 적어도 일 표면에 형성될 수 있다. 즉, 보호부(300)와 접촉되지 않는 일 표면 및 접촉되는 타 표면에만 각각 형성될 수도 있고, 보호부(300)와 접촉되지 않는 일 표면 및 보호부(300)와 접촉되는 타 표면에 모두 형성될 수 있다. 또한, 다공성 절연층(211b. 212b)은 도전층(211a, 212a)의 적어도 일 표면에 전체적으로 형성될 수도 있고, 적어도 일부에만 형성될 수도 있다. 그리고, 다공성 절연층(211b, 212b)은 적어도 일 영역이 제거되거나 얇은 두께로 형성될 수도 있다. 즉, 도전층(211a, 212a) 상의 적어도 일 영역에 다공성 절연층(211b, 212b)이 형성되지 않을 수 있고, 적어도 일 영역의 두께가 다른 영역의 두께보다 얇거나 두껍게 형성될 수도 있다. 이러한 내부 전극(200)은 소성 중 표면에 산화막이 형성되고 내부는 도전성을 유지하는 Al로 형성할 수 있다. 즉, Al을 시트 상에 형성할 때 공기와 접촉하게 되는데, 이러한 Al은 소성 공정에서 표면이 산화되어 Al2O3가 형성되고, 내부는 Al을 그대로 유지한다. 따라서, 내부 전극(200)은 표면에 다공성의 얇은 절연층인 Al2O3로 피복된 Al로 형성될 수 있다. 물론, Al 이외에 표면에 절연층, 바람직하게는 다공성의 절연층이 형성되는 다양한 금속이 이용될 수 있다.
상기한 바와 같은 본 발명의 일 실시 예에 따른 복합 보호 소자는 도 7에 도시된 바와 같이 전자기기의 금속 케이스(10)와 내부 회로(20) 사이에 마련될 수 있다. 즉, 외부 전극(500)의 어느 하나가 접지 단자에 연결될 수 있고, 다른 하나가 전자기기의 금속 케이스(10)에 연결될 수 있다. 이때, 접지 단자는 내부 회로(20) 내에 마련될 수 있다. 예를 들어, 제 1 외부 전극(510)이 접지 단자에 연결되고, 제 2 외부 전극(520)이 금속 케이스(10)에 연결될 수 있다. 또한, 제 2 외부 전극(520)과 금속 케이스(10) 사이에 컨택터, 도전성 가스켓 등 도전성 부재가 더 마련될 수 있다. 따라서, 내부 회로(20)의 접지 단자로부터 금속 케이스(10)로 전달되는 감전 전압을 차단할 수 있고, 외부로부터 내부 회로로 인가되는 ESD 등의 과전압을 접지 단자로 바이패스시킬 수 있다. 즉, 본 발명의 복합 보호 소자는 정격 전압 및 감전 전압에서는 외부 전극(500) 사이에서 전류가 흐르지 못하고, ESD 전압에서는 보호부(300)를 통해 전류가 흘러 과전압이 접지 단자로 바이패스된다. 한편, 복합 보호 소자는 방전 개시 전압이 정격 전압보다 높고 ESD 전압보다 낮을 수 있다. 예를 들어, 복합 보호 소자는 정격 전압이 100V 내지 240V일 수 있고, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 ESD 전압은 감전 전압보다 높을 수 있다. 또한, 외부로부터의 통신 신호, 즉 교류 주파수는 내부 전극(200) 사이에 형성되는 캐패시터에 의해 내부 회로(20)로 전달될 수 있다. 따라서, 별도의 안테나가 마련되지 않고 금속 케이스(10)를 안테나로 이용하는 경우에도 외부로부터 통신 신호를 인가받을 수 있다. 결국, 본 발명에 따른 복합 보호 소자는 감전 전압을 차단하고, ESD 전압을 접지 단자로 바이패스시키며, 통신 신호를 내부 회로로 인가할 수 있다.
또한, 본 발명의 일 실시 예에 따른 복합 보호 소자는 내압 특성이 높은 시트를 복수 적층하여 본체(100)를 형성함으로써 불량 충전기에 의한 내부 회로(20)에서 금속 케이스(10)로의 예를 들어 310V의 감전 전압이 유입될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, 보호부(300) 역시 금속 케이스(10)에서 내부 회로(20)로의 과전압 유입 시 과전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 즉, 보호부(300)는 다공성 구조로 이루어져 미세 기공을 통해 전류를 흐르게 하는 다공성 절연 물질을 포함하고, 에너지 레벨을 낮춰 전기 에너지를 열 에너지로 변환시키는 도전성 물질을 더 포함함으로써 외부로부터 유입되는 과전압을 바이패스시켜 회로를 보호할 수 있다. 따라서, 과전압에 의해서도 절연 파괴되지 않고, 그에 따라 금속 케이스(10)를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 감전 전압이 전자기기의 금속 케이스(10)를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있다. 한편, 일반적인 MLCC(Multi Layer Capacitance Circuit)는 감전 전압은 보호하지만 ESD에는 취약한 소자로 이는 반복적인 ESD 인가 시 전하 차징(Charging)에 의한 누설 포인트(Leak point)로 스파크(Spark)가 발생하여 소자 파손 현상이 발생될 수 있다. 그러나, 본 발명은 내부 전극(200) 사이에 다공성 절연 물질을 포함하는 보호부(300)가 형성됨으로써 과전압을 보호부(300)를 통해 패스시킴으로써 본체(100)의 적어도 일부가 파괴되지 않는다.
또한, 연결 전극(400)이 본체(100)의 중앙부에 형성되고 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 즉, 연결 전극(400)이 본체(100)의 외곽에 형성되는 경우에 비해 기생 저항 및 기생 인덕턴스를 줄일 수 있다. 따라서, 무선통신주파수 영역 700㎒∼3㎓에서 S21의 삽입 손실을 줄일 수 있다. 또한, 연결 전극(400)이 보호부(300)의 폭보다 바람직하게는 넓은 폭으로 형성됨으로써 반복적인 ESD 전압에 따른 열화를 방지할 수 있어 방전 개시 전압의 상승을 억제할 수 있다. 즉, 보호부(300)는 예를 들어 ESD 에너지에 의해 내부에서 스파크가 발생되어 ESD 전압을 바이패스하는데, 연결 전극(400)의 두께가 얇으면 반복적인 ESD 전압에 따라 연결 전극(400)이 소실되어 방전 개시 전압의 상승 현상이 발생될 수 있다. 그러나, 연결 전극(400)의 두께를 10㎛ 이상으로 형성함으로써 반복적인 ESD 전압에 의한 연결 전극(400)의 소실을 방지하고, 그에 따라 방전 개시 전압의 상승 현상을 방지할 수 있다.
한편, 본 발명은 스마트 폰의 전자기기 내에 마련되어 외부로부터 인가되는 ESD 등의 과전압으로부터 전자기기를 보호하고, 전자기기 내부로부터의 누설 전류를 차단하여 사용자를 보호하는 복합 보호 소자를 예로 들어 설명하였다. 그러나, 본 발명의 복합 보호 소자는 스마트 폰 이외에 각종 전기전자 기기 내에 마련되어 적어 둘 이상의 보호 기능을 수행할 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 복합 보호 소자의 단면도이다.
도 8을 참조하면, 본 발명의 다른 실시 예에 따른 복합 보호 소자는 복수의 시트가 적층된 본체(100)와, 본체(1000) 내부에 마련된 적어도 둘 이상의 내부 전극(200)과, 적어도 둘 이상의 내부 전극(200) 사이에 마련된 적어도 하나의 보호부(300)와, 적어도 둘 이상의 내부 전극(200)과 연결되도록 본체(100) 내부에 마련된 연결 전극(400)과, 연결 전극(400)과 연결되도록 본체(100) 외부에 형성된 외부 전극(500)을 포함한다. 이때, 보호부(300)는 적어도 일 영역의 폭이 넓어지도록 형성된 확장부(350)를 더 포함할 수 있다. 즉, 보호부(300)는 적어도 일 영역의 폭이 넓은 확장부(350)를 더 포함하여 형성될 수 있다. 확장부(350)는 보호부(300) 직경의 1% 내지 150%의 폭으로 형성될 수 있다. 즉, 확장부(350)의 폭은 확장부(350)가 형성되지 않은 보호부(300)의 다른 영역의 폭 대비 1% 내지 150%의 폭으로 형성될 수 있다. 예를 들어, 확장부(350)는 보호부(300) 직경에 10㎛∼100㎛를 더한 직경으로 형성될 수 있다. 또한, 확장부(350)의 높이는 보호부(300) 전체 높이의 10% 내지 70%의 높이로 형성될 수 있다. 이렇게 확장부(350)가 형성됨으로써 보호부(300)의 쇼트 경로를 차단할 수 있다. 즉, ESD 등의 과전압을 지속적으로 인가받게 되면 연결 전극(400)의 멜팅 현상이 발생되고, 그에 따라 보호부(300)의 관통홀 측벽에 연결 전극 물질이 고착될 수 있어 쇼트 현상이 발생될 수 있다. 그러나, 보호부(300)에 지름이 다른 확장부(350)가 형성됨으로써 쇼트 경로를 차단할 수 있다.
도 9 및 도 10은 본 발명의 일 실시 예의 변형 예들에 따른 복합 보호 소자의 단면도이다. 본 발명의 변형 예는 복합 보호 소자 상에 금속 케이스(10) 등의 도전체에 접촉되는 컨택부를 더 포함한다. 즉, 금속 케이스(10)와 내부 회로(20) 사이에 복합 보호 소자가 마련되고, 복합 보호 소자의 제 2 외부 전극(520) 상에 도 9 및 도 10에 각각 도시된 바와 같이 클립 형상의 컨택부(610) 또는 도전성 물질층을 이용한 컨택부(620)가 마련될 수 있다. 컨택부(610, 620)는 전자 기기의 외부에서 외력이 가해질 때, 그 충격을 완화할 수 있도록 탄성력을 가지며, 도전성의 물질을 포함하는 재료로 이루어진다. 한편, 복합 보호 소자의 제 1 외부 전극(510)은 내부 회로(20)에 접촉되어 마련될 수 있고, 내부 회로(20)와 제 1 외부 전극(510) 사이에 스테인레스 스틸 등의 금속층이 더 마련될 수 있다.
컨택부는 도 9에 도시된 바와 같이 클립(clip) 형상일 수 있다. 클립 형상의 컨택부는 복합 보호 소자 상에 마련된 지지부(611)와, 지지부(611)의 상측에 마련되어 금속 케이스 등의 도전체와 대향 위치되며 적어도 일부가 도전체와 접촉될 수 있는 접촉부(612)와, 지지부(611) 및 접촉부(612)의 일측 사이에 마련되어 이들을 연결하도록 하며 탄성력을 가지는 연결부(613)를 포함할 수 있다. 여기서, 연결부(613)는 지지부(611)의 일단과 접촉부(612)의 일단을 연결하도록 형성되는데, 곡률을 가지도록 형성될 수 있다. 즉, 연결부(613)은 외력에 의해 가압되면 회로 기판(20)이 위치된 방향으로 눌려지고, 외력이 해제되면 원래 상태로 복원되는 탄성력을 가진다. 따라서, 컨택부(610)는 적어도 연결부(613)가 탄성력을 갖는 금속 물질로 형성될 수 있다.
또한, 본 발명의 컨택부는 전도성 및 탄성을 가지는 클립 형태 이외에 전도성 고무, 전도성 실리콘, 내부에 전도성 도선이 삽입된 탄성체, 표면이 도체로 코팅 또는 접합된 가스켓을 포함할 수 있다. 즉, 도 10에 도시된 바와 같이 컨택부(620)는 전도성 물질층을 포함할 수 있다. 예를 들어, 전도성 가스켓의 경우 내부는 비전도성 탄성체로 이루어지고 외부는 전도성 물질이 코팅될 수 있다. 전도성 가스켓은 도시되지 않았지만 내부에 관통공이 형성된 절연 탄성 코어와, 절연 탄성 코어를 둘러싸도록 형성된 도전층을 포함할 수 있다. 절연 탄성 코어는 내부에 관통공이 형성된 튜브 형상으로, 단면은 대략 사각형이나 원형으로 형성될 수 있으나, 이에 한정되지 않고 다양한 형상으로 형성될 수 있다. 예를 들어, 절연 탄성 코어는 내부에 관통공이 형성되지 않을 수 있다. 이러한 절연 탄성 코어는 실리콘 또는 탄성 고무 등으로 형성될 수 있다. 도전층은 절연 탄성 코어를 감싸도록 형성될 수 있다. 이러한 도전층은 적어도 하나의 금속층으로 형성될 수 있는데, 예를 들어 금, 은, 구리 등으로 형성될 수 있다. 한편, 도전층이 형성되지 않고 탄성 코어에 도전성 파우더가 혼합될 수도 있다.
한편, 컨택부(610, 620)는 복합 보호 소자의 본체(100)와 수평 방향으로 마련되어 내부 회로(20)에 실장될 수도 있다. 즉, 도 9 및 도 10의 변형 예는 컨택부(610, 620)가 본체(100)의 상면에 형성된 것으로 도시하여 설명하였지만, 컨택부(610, 620)는 본체(100)와 이격되어 측면에 마련되고 내부 회로(20)에 실장되어 본체(100)의 외부 전극(510)을 통해 연결될 수도 있다.
비교 예 및 실시 예
복합 보호 소자의 연결 전극의 위치 및 크기에 따른 삽입 손실을 확인하였다. 이를 위해 본 발명의 실시 예에 따른 복합 보호 소자는 도 2에 도시된 바와 같은 구조로 제작하였다. 즉, 본체(100)의 중앙부에 보호부(300)가 형성되고, 보호부(300)의 하부 및 상부에 보호부(300)보다 크게 내부 전극(210, 220)이 각각 형성되며, 내부 전극(210, 220)의 하부 및 상부에 보호부(300)보다 크고 내부 전극(210, 220)보다 작게 연결 전극(410, 420)을 형성하였다. 이때, 연결 전극(410, 420)은 본체(100) 내부의 중앙 영역에 형성되며 보호부(300)와 중첩되도록 형성된다.
또한, 비교 예에 따른 감전 보호 소자는 도 11에 도시된 바와 같이 제작하였다. 즉, 한국등록특허 제10-1585604호에 제시된 구조를 따라 본체(100)의 중앙부에 보호부(300a)를 형성하고, 보호부(300a)의 하부 및 상부에 제 1 내부 전극(210a, 210b)를 형성하였다. 또한, 내부 전극(210a, 210b) 하부 및 상부에 각각 제 2 내부 전극(220a, 220b) 및 제 3 내부 전극(23a, 230b)를 형성하고, 제 1 내지 제 3 내부 전극(210, 220, 230)과 각각 연결되도록 연결 전극(400a, 400b)를 형성하였다. 이때, 비교 예에 따른 보호부(300a)는 실시 예에 따른 보호부(300)와 동일 조건으로 형성하였다. 또한, 비교 예의 연결 전극(410a, 410b)은 본체(100)의 중앙부에 형성하지 않고 가장자리에 인접하여 형성하였는데, 가장자리와 중앙부를 4등분하는 영역의 가장자리로부터 1/4의 영역에 형성하였다. 또한, 비교 예의 연결 전극(410a, 420b)은 실시 예에 따른 연결 전극(410, 420)보다 작은 직경으로 형성하였는데, 비교 예의 연결 전극(410a, 410b)은 실시 예의 연결 전극(410, 420)보다 1/4의 직경으로 형성하였다. 그리고, 그 이외의 조건을 모두 동일하게 하였고, 다면 비교 예는 제 2 및 제 3 내부 전극(220, 230)을 더 형성하였다.
이러한 비교 예에 따른 감전 보호 소자와 본 발명의 실시 예에 따른 복합 보호 소자의 주파수 특성을 도 13 및 도 14에 도시하였으며, [표 1]에 나타내었다.
주파수 | 비교 예 | 실시 예 |
S21(IL) | S21(IL) | |
700㎒ | -0.1175dB | -0.1334dB |
1.24㎓ | -0.8417dB | - |
2.45㎓ | -1.4080dB | - |
2.54㎓ | - | -0.2033dB |
3.0㎓ | -0.9873dB | -0.1424dB |
도 13 및 도 14, 그리고 표 1에 나타낸 바와 같이 비교 예에 따른 감전 보호 소자는 1.24㎓ 이상의 주파수에서 -0.5dB 이상의 손실이 발생되지만, 본 발명의 실시 예에 따른 복합 보호 소자는 비교 예보다 적은 손실이 발생된다. 즉, 연결 전극을 본체의 중앙부에 형성하고 넓은 폭으로 형성함으로써 연결 전극을 외곽부에 형성하고 좁은 폭으로 형성하는 것에 비해 기생 저항 및 기생 인덕턴스를 최소화할 수 있고, 삽입 손실을 줄일 수 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.
Claims (16)
- 본체;상기 본체 내부에 마련된 둘 이상의 내부 전극;상기 둘 이상의 내부 전극 사이에 마련된 하나 이상의 보호부;상기 둘 이상의 내부 전극과 연결되도록 상기 본체 내부에 마련된 둘 이상의 연결 전극;상기 둘 이상의 연결 전극과 연결되도록 상기 본체 외부에 형성된 둘 이상의 외부 전극을 포함하고,상기 연결 전극은 상기 보호부와 적어도 일부 중첩되도록 형성된 복합 보호 소자.
- 청구항 1에 있어서, 상기 본체는 복수의 시트가 적층되어 형성되며, 상기 외부 전극은 상기 시트의 적층 방향으로 서로 대향되는 두 면에 형성된 복합 보호 소자.
- 청구항 2에 있어서, 상기 보호부는 상기 본체의 길이, 폭 및 두께 방향의 중앙부에 형성된 복합 보호 소자.
- 청구항 3에 있어서, 상기 보호부는 적어도 일 영역의 직경이 다른 영역과 다르게 형성된 확장부를 더 포함하는 복합 보호 소자.
- 청구항 3 또는 청구항 4에 있어서, 상기 연결 전극은 상기 본체의 길이 방향 및 폭 방향의 중앙부에 형성된 복합 보호 소자.
- 청구항 5에 있어서, 상기 연결 전극은 상기 본체 길이의 1% 이상과 상기 본체 폭의 5% 이상의 직경으로 형성된 복합 보호 소자.
- 청구항 6에 있어서, 상기 연결 전극은 수평 면적이 상기 내부 전극보다 작거나 같게 형성되고, 상기 보호부는 수평 면적이 상기 연결 전극보다 작거나 같게 형성된 복합 보호 소자.
- 청구항 7에 있어서, 상기 연결 전극은 상기 보호부의 높이보다 높거나 같게 형성된 복합 보호 소자.
- 청구항 8에 있어서, 상기 둘 이상의 연결 전극의 높이가 100㎛ 내지 1000㎛이거나, 상기 보호부의 높이가 5㎛ 내지 600㎛인 복합 보호 소자.
- 청구항 1에 있어서, 상기 둘 이상의 연결 전극은 서로 다른 크기 및 형상의 적어도 하나를 갖는 복합 보호 소자.
- 청구항 1에 있어서, 상기 외부 전극의 어느 하나와 연결되도록 마련된 컨택부를 더 포함하는 복합 보호 소자.
- 청구항 1에 있어서, 상기 적어도 둘 이상의 내부 전극 사이에 캐패시턴스가 형성되고, 상기 내부 전극의 적어도 상기 보호부와 중첩되는 영역이 방전 전극으로 작용하는 복합 보호 소자.
- 청구항 1 또는 청구항 12에 있어서, 상기 외부 전극의 하나는 전자기기의 내부 회로에 연결되고, 다른 하나는 전자기기 외부의 사용자가 접촉 가능한 도전체에 연결된 복합 보호 소자.
- 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련되어 감전 전압을 차단하고 과전압을 통과시키는 복합 보호 소자를 포함하며,상기 복합 보호 소자는,본체;상기 본체 내부에 마련된 둘 이상의 내부 전극;상기 둘 이상의 내부 전극 사이에 마련된 하나 이상의 보호부;상기 둘 이상의 내부 전극과 연결되도록 상기 본체 내부에 마련된 둘 이상의 연결 전극;상기 둘 이상의 연결 전극과 연결되도록 상기 본체 외부에 형성된 둘 이상의 외부 전극을 포함하고,상기 연결 전극은 상기 보호부와 적어도 일부 중첩되도록 형성된 전자기기.
- 청구항 14에 있어서, 상기 외부 전극의 하나는 상기 내부 회로에 연결되고, 다른 하나는 상기 도전체에 연결된 전자기기.
- 청구항 14에 있어서, 상기 도전체와 상기 복합 보호 소자 사이에 마련된 컨택부를 더 포함하는 전자기기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780056215.7A CN109791841A (zh) | 2016-10-07 | 2017-09-27 | 复合保护构件以及包含该构件的电子装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0129999 | 2016-10-07 | ||
KR1020160129999A KR101789243B1 (ko) | 2016-10-07 | 2016-10-07 | 복합 보호 소자 및 이를 구비하는 전자기기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066871A1 true WO2018066871A1 (ko) | 2018-04-12 |
Family
ID=60808984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010675 WO2018066871A1 (ko) | 2016-10-07 | 2017-09-27 | 복합 보호 소자 및 이를 구비하는 전자기기 |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101789243B1 (ko) |
CN (1) | CN109791841A (ko) |
TW (1) | TWI674038B (ko) |
WO (1) | WO2018066871A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7231340B2 (ja) * | 2018-06-05 | 2023-03-01 | 太陽誘電株式会社 | セラミック電子部品およびその製造方法 |
KR102139772B1 (ko) * | 2018-11-27 | 2020-07-31 | 삼성전기주식회사 | 바리스터 및 바리스터 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257781A (ja) * | 2002-03-05 | 2003-09-12 | Murata Mfg Co Ltd | 放電機能付き積層セラミックコンデンサ |
KR101135354B1 (ko) * | 2010-10-14 | 2012-04-16 | 주식회사 이노칩테크놀로지 | 회로 보호 소자 및 그 제조 방법 |
KR20130117397A (ko) * | 2012-04-17 | 2013-10-28 | 주식회사 이노칩테크놀로지 | 회로 보호 소자 |
KR20150135909A (ko) * | 2014-05-26 | 2015-12-04 | 삼성전기주식회사 | 복합 전자부품, 제조방법, 그 실장 기판 및 포장체 |
KR101585604B1 (ko) * | 2015-07-01 | 2016-01-14 | 주식회사 아모텍 | 감전보호용 컨택터 및 이를 구비한 휴대용 전자장치 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100876206B1 (ko) * | 2007-04-11 | 2008-12-31 | 주식회사 이노칩테크놀로지 | 회로 보호 소자 및 그 제조 방법 |
WO2012129532A1 (en) * | 2011-03-23 | 2012-09-27 | Andelman Marc D | Polarized electrode for flow-through capacitive deionization |
KR101585619B1 (ko) * | 2014-11-20 | 2016-01-15 | 주식회사 아모텍 | 감전보호소자 및 이를 구비한 휴대용 전자장치 |
-
2016
- 2016-10-07 KR KR1020160129999A patent/KR101789243B1/ko active IP Right Grant
-
2017
- 2017-09-27 WO PCT/KR2017/010675 patent/WO2018066871A1/ko active Application Filing
- 2017-09-27 CN CN201780056215.7A patent/CN109791841A/zh active Pending
- 2017-10-03 TW TW106134096A patent/TWI674038B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257781A (ja) * | 2002-03-05 | 2003-09-12 | Murata Mfg Co Ltd | 放電機能付き積層セラミックコンデンサ |
KR101135354B1 (ko) * | 2010-10-14 | 2012-04-16 | 주식회사 이노칩테크놀로지 | 회로 보호 소자 및 그 제조 방법 |
KR20130117397A (ko) * | 2012-04-17 | 2013-10-28 | 주식회사 이노칩테크놀로지 | 회로 보호 소자 |
KR20150135909A (ko) * | 2014-05-26 | 2015-12-04 | 삼성전기주식회사 | 복합 전자부품, 제조방법, 그 실장 기판 및 포장체 |
KR101585604B1 (ko) * | 2015-07-01 | 2016-01-14 | 주식회사 아모텍 | 감전보호용 컨택터 및 이를 구비한 휴대용 전자장치 |
Also Published As
Publication number | Publication date |
---|---|
CN109791841A (zh) | 2019-05-21 |
TWI674038B (zh) | 2019-10-01 |
TW201815231A (zh) | 2018-04-16 |
KR101789243B1 (ko) | 2017-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101808799B1 (ko) | 적층형 소자 및 이를 구비하는 전자기기 | |
WO2018105912A1 (ko) | 복합 보호 소자 및 이를 구비하는 전자기기 | |
WO2017209448A1 (ko) | 컨택터 | |
WO2018021786A1 (ko) | 복합 소자 및 이를 구비하는 전자기기 | |
WO2017200250A1 (ko) | 회로 보호 소자 | |
WO2018066871A1 (ko) | 복합 보호 소자 및 이를 구비하는 전자기기 | |
WO2018117447A1 (ko) | 복합 보호 소자 및 이를 구비하는 전자기기 | |
WO2016178524A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
KR101949442B1 (ko) | 복합 소자 및 이를 구비하는 전자기기 | |
WO2018124535A1 (ko) | 복합 소자 및 이를 구비하는 전자기기 | |
KR20180065008A (ko) | 복합 보호 소자 및 이를 구비하는 전자기기 | |
WO2017135566A1 (ko) | 복합 보호 소자 및 이를 구비하는 전자기기 | |
WO2016178529A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
WO2016178528A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
WO2019066221A1 (ko) | 적층형 소자 및 이를 구비하는 전자기기 | |
WO2018004276A1 (ko) | 칩 부품 및 그 제조 방법 | |
WO2016178533A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
WO2017196151A1 (ko) | 컨택터 및 이를 구비하는 전자기기 | |
KR101934084B1 (ko) | 복합 소자 및 이를 구비하는 전자기기 | |
WO2016178525A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
WO2016178541A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
WO2017196150A1 (ko) | 컨택터 및 이를 구비하는 전자기기 | |
WO2016178543A1 (ko) | 감전 방지 소자 및 이를 구비하는 전자기기 | |
KR20190001805A (ko) | 복합 소자 및 이를 구비하는 전자기기 | |
WO2020204415A1 (ko) | 복합 소자 및 이를 구비하는 전자기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858665 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17858665 Country of ref document: EP Kind code of ref document: A1 |