WO2016176948A1 - 一种多重优化的浆态床加氢反应器及其设计方法和用途 - Google Patents

一种多重优化的浆态床加氢反应器及其设计方法和用途 Download PDF

Info

Publication number
WO2016176948A1
WO2016176948A1 PCT/CN2015/089948 CN2015089948W WO2016176948A1 WO 2016176948 A1 WO2016176948 A1 WO 2016176948A1 CN 2015089948 W CN2015089948 W CN 2015089948W WO 2016176948 A1 WO2016176948 A1 WO 2016176948A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation
tower body
inlet
feed
reactor
Prior art date
Application number
PCT/CN2015/089948
Other languages
English (en)
French (fr)
Inventor
李苏安
邓清宇
王坤朋
Original Assignee
北京中科诚毅科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科诚毅科技发展有限公司 filed Critical 北京中科诚毅科技发展有限公司
Publication of WO2016176948A1 publication Critical patent/WO2016176948A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds

Definitions

  • the invention relates to a slurry bed hydrogenation reactor and a related related technology thereof, and belongs to the fields of petrochemical and coal chemical industry.
  • slurry bed hydrogenation has the characteristics of flexible operation, strong adaptability of raw materials, heavy and inferior feedstock oil and oil-coal mixture that can handle high metal and high asphaltene content. And become an important research direction.
  • the slurry bed hydrogenation process is as follows: firstly, the hydrocarbon raw material and the catalyst are uniformly mixed, and then mixed with hydrogen to flow into the reactor from the bottom of the reactor to carry out hydrocracking, hydrodesulfurization, denitrification and demetallization reaction.
  • Slurry bed hydrogenation typically employs an empty cylinder or a reactor with simple internals.
  • the catalyst is typically a solid particulate catalyst that is continuously fed into and out of the reactor with a hydrocarbon feedstock as a support. There is no fixed catalyst bed in the reactor, and the catalyst is added in small amounts, usually in the range of a few to a few ten thousandths of the amount of the raw material. Therefore, under the reaction conditions, the contact between the raw material and the catalyst is not tight, which is disadvantageous to the mass transfer heat transfer reaction between the raw material and the hydrogen and the catalyst.
  • inferior weight/oil and coal raw materials have a large solid content, a slow reaction rate, and due to a large specific gravity, often unreacted solid materials are accumulated in the bottom of the reactor tower, resulting in conversion rate. The reduction also severely affects the progress of further reactions in the reactor.
  • the invention provides a multi-optimized slurry bed hydrogenation reactor, which adds a forced internal circulation structure, enhances the backmixing degree of the reactants, improves the conversion rate of the raw materials and the light oil yield, and also solves the coking, clogging and Flying temperature problem.
  • a multiple optimized slurry bed hydrogenation reactor having a reactor column body, a feed port and a discharge port, the feed port being located at a lower portion of the reactor column body, and the discharge port being located at the tower body
  • the top portion is further characterized by an inner circulation structure and a feed distributor.
  • the inner circulation structure comprises a circulating blister, a circulation tube and a circulation pump, wherein the circulating blister and the circulation tube are located in the reactor tower, and the circulating blister is a table-shaped hollow cup having an upper bottom surface of the upper opening and a lower bottom surface, a lower end is connected to an upper end of the circulation pipe, and a lower end of the circulation pipe leads to a bottom of the reactor tower body and communicates with a circulation pump located outside the tower body; the feed port includes an inlet inlet port and a circulating feed port.
  • the feed distributor comprises an inlet feed distributor and a circulating feed distributor, and is located between the inner wall of the tower body and the circulation pipe and corresponding to the inlet inlet and the circulating feed inlet respectively, and the reaction material passes through After the feed inlet, the inlet material distributor enters the tower body, and the recycled material recovered by the inner circulation structure enters the circulation feed port through the circulation pump and then enters the tower body through the circulating feed distributor.
  • the reaction tower body is vertically arranged, and the height of the circulation pipe is 20-95% of the height of the reaction tower body.
  • the circulation pipe height is 70-92% of the height of the reaction column, and the circulation pipe diameter is 30-50% of the inner diameter of the column body.
  • the height of the tower body is 3500 mm and the inner diameter is 200 mm; the height of the circulation pipe is 3200 mm and the diameter is 80 mm.
  • a plurality of cold hydrogen inlets are included, uniformly distributed along the circumferential side walls of the tower body.
  • the inner wall of the reactor column has a coating of a composite material comprising a titanium alloy.
  • An emergency pressure relief port is included, located outside the tower body, between the circulation pipe and the circulation pump or between the circulation pump and the circulating feed port.
  • the reactors were used in series, and the number of series was 2-3.
  • the above-mentioned use of a multi-optimized slurry-bed hydrogenation reactor for heavy oil hydrogenation process, coal direct liquefaction process and oil-coal mixing process the heavy oil is heavy crude oil, residual oil, catalytic oil slurry, One or more combinations of deoiled asphalt and coal tar, the coal is one or a combination of lignite, bituminous coal, non-stick coal, and the ratio of oil to coal in oil-coal mixing ranges from 97:3-40 :60.
  • a feed distributor is added at the lower portion of the reactor to make the feedstock not accumulate in the bottom of the reactor to form a dead zone, which is beneficial to hydrocarbon raw materials and catalysts. Mass transfer heat transfer with hydrogen accelerates the reaction rate.
  • a forced internal circulation structure is arranged in the reactor, unreacted heavy materials are recovered through the circulating blister, the circulation pipe is drained, the circulating pump transmits the re-feeding, and is dispersed into the reaction zone through the circulating feed distributor, and the forced circulation amount is 1-7 times of the feed amount, effectively increasing the degree of back mixing and reaction time, deepening the degree of reaction, especially suitable for heavy crude oil, inferior residue hydrogenation or oil coal with high content of solid heavy materials in the reaction materials.
  • the hydrocarbon feedstock conversion rate and the light oil yield can be significantly improved; at the same time, the reactor tower body is too long to be increased and the cost is reduced in order to increase the conversion rate of the solid material.
  • the size ratio of the circulation pipe to the tower body can be selected according to the solid amount of the reaction material, so that the overall size of the reactor can be reasonable in the case of ensuring the conversion rate and the light oil yield, and solving the problems of coking and clogging.
  • the size ratio of the circulation pipe to the tower body can be selected according to the solid amount of the reaction material, so that the overall size of the reactor can be reasonable in the case of ensuring the conversion rate and the light oil yield, and solving the problems of coking and clogging.
  • a cold hydrogen inlet provided on the circumferential wall of the reactor is used to regulate the reaction temperature and emergency cooling.
  • the amount of cold hydrogen inlet can be determined based on reactor size and reactor thermodynamic model.
  • a flushing oil inlet uniformly distributed along the circumference is used to flush deposits and coke deposits on the inner wall of the reactor.
  • the coating is smooth under the premise of high temperature and high pressure, and the friction is reduced, so that the reactants are not easily deposited or accumulated on the side walls.
  • the reactor is equipped with an emergency pressure relief measure to handle the fly-temperature conditions.
  • Figure 1 is a schematic view of a reactor according to an embodiment of the present invention, and the numbers in the figures are listed as follows:
  • the multiple optimized slurry bed hydrogenation reactor of the present invention comprises a reactor column having a feed port 1 at the bottom, a discharge port 3 at the top, and a forced circulation device inside.
  • the circulation device includes a reactor inner circulation bubble 6, a reactor circulation tube 7, and a reactor circulation pump 8.
  • the circulating blister 6 in the reactor is located at the upper part of the tower body and below the discharge port 3, and is an inverted truncated cone-shaped hollow cup.
  • the reactor circulation pipe 7 is connected to the lower cup bottom of the circulating bubble hood 6 in the reactor, and is connected vertically to the bottom of the tower body and is connected to the outside of the tower body to be connected to the reactor circulation pump 8 outside the tower body.
  • a reactor is provided at the bottom of the reactor column, including an inlet feed distributor 2 and a recycle feed distributor 8, respectively located on either side of the reactor circulation tube 7, tilting between the reactor circulation tube 7 and the reactor column
  • the side wall of the reactor tower further has a cold hydrogen inlet 4 and a flushing oil inlet 5, which are evenly distributed on the circumferential wall of the tower body, and are alternately distributed up and down.
  • the reactor also includes an emergency pressure relief port 10, which may be located before and after the reactor circulation pump 8, i.e. between the circulation tube and the circulation pump or between the circulation pump and the circulating feed port.
  • the mixed coal-fired hydrocarbon raw material mixed with the catalyst is mixed with hydrogen.
  • the above flow enters the inside of the reactor tower through the feed port 1 from the bottom of the reactor, and the distribution of the inlet feed distributor 2 is uniformly dispersed, and the high temperature and high pressure in the tower body Gradually rise, enter the upper part of the tower, and simultaneously carry out catalytic hydrogenation, desulfurization, denitrification, de-heavy metal reaction, and the light product oil formed by the reaction at the top of the tower leaves the reactor tower from the discharge port 3, unreacted weight
  • the slag or pulverized coal is gravity dropped into the circulating blister 6 in the reactor, flows out of the outside of the column along the reactor circulating pipe 7, and is pumped by the reactor circulating pump 8 into the other side of the reactor circulating pipe 7 in the column.
  • the circulating feed distributor 8 is again introduced into the reaction column to carry out a reaction such as catalytic hydrogenation, and the cycle is repeated.
  • This example is an example of residue hydrogenation.
  • the reactor structural parameters are as follows: the inner diameter of the reactor shell is 200 mm, the height of the reactor shell is 3500 mm, the diameter of the reactor circulation tube is 80 mm, and the height is 3200 mm.
  • the heavy oil hydrogenation test was carried out using a FeOOH iron-based catalyst and the above-mentioned slurry-bed hydrogenation reactor under the slurry bed process conditions having the following basic parameters.
  • the properties of the test residue are shown in Table 1.
  • Airspeed 0.5h -1 ;
  • Circulating amount / feed amount 4.0;
  • Vulcanizing agent / feed residue 2.5 / 100 (wt).
  • Residual oil conversion rate 96.3%, liquid yield 92%, and coke yield 3.7%.
  • This embodiment is an example of direct coal liquefaction.
  • the reactor used is the same as in the first embodiment, and the catalyst is the same as in the first embodiment.
  • the direct coal liquefaction test is carried out, and the coal powder for the test is used.
  • the properties of the pilot slurry bed are shown in Table 2.
  • the basic process parameters of the pilot slurry bed are as follows:
  • Airspeed 0.35 ⁇ 0.50h -1 ;
  • Circulating amount / feeding amount 6.0;
  • Oil/coal feed/cycle solvent mass ratio 10:10:1;
  • Catalyst/feed coal 1.2/100 (wt);
  • Vulcanizing agent/feed coal 2.5/100 (wt);
  • Coal conversion rate 88.2%, liquid yield of 58.3%, and coke yield of 11.8%.
  • Example 2 This example is an example of oil-oil mixing
  • the reactor structure is the same as in Example 1
  • the catalyst is the same as in Example 1
  • the test residue has the same properties as in Example 1
  • the coal powder has the same properties as in Example 2.
  • the basic process parameters of the test slurry bed in this embodiment are as follows:
  • Airspeed 0.40-0.50h -1 ;
  • Circulating amount / feed amount 5.0;
  • Oil / coal feed / refining wax oil mass ratio 9:10:2;
  • Vulcanizing agent/feed oil coal slurry 2.5/100 (wt);
  • the total conversion rate of oil coal was 91.2%, the liquid yield was 71.3%, and the coke yield was 8.8%.
  • a comparative example of the residue hydrogenation, the reaction materials and process parameters were the same as in Example 1, the residue conversion was 94.1%, the liquid yield was 88%, and the coke yield was 4.5%.
  • Example 3 In the comparative example of oil-coal mixing, the reaction materials and process parameters are the same as in Example 3. The total conversion of oil coal is 87.2%, the liquid yield is 63.3%, and the coke yield is 12.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种多重优化的浆态床加氢反应器及其设计方法和用途,加氢反应器具有内循环结构和进料分布器,进料口位于反应器塔体的下部,出料口位于塔体顶部,内循环结构包括循环泡罩、循环管和循环泵,循环泡罩位于所述塔体内上部,为倒置的圆台状空心杯,下端连接循环管其通向反应器塔体底部连接位于塔体外部的循环泵;进料分布器包括入口进料分布器和循环进料分布器,位于塔体内下部塔体内壁与循环管之间,进料口包括入口进料口和循环进料口,反应物料通过入料进料口后再通过入口进料分布器进入塔体,内循环结构回收的循环物料通过循环泵进入循环进料口后再通过循环进料分布器进入塔体。增强了反应物的返混程度,提高了原料转化率和轻油收率。

Description

一种多重优化的浆态床加氢反应器及其设计方法和用途 技术领域
本发明涉及一种浆态床加氢反应器及与其配套的相关工艺,属于石油化工和煤化工领域。
背景技术
近年来,随着原油开采量的不断增加和常规原油储量的不断减少,原油劣质化趋势越来越严重,原油直接蒸馏得到的中间馏分油及焦化、催化裂化等二次加工得到的中间馏分中的S、N含量也相应增加。而市场对轻质油的需求不断增加,人们环保意识的不断增强,环保法律法规对发动机尾气排放要求更加严格,各种燃油标准要求S、N的含量也更加苛刻。因此,如何降低中间馏分中的硫、氮等杂质含量以满足环保要求是各炼厂所面临的重要问题。
在此现实环境下,重/渣油轻质化越来越受到重视。在重油加氢、煤直接液化和煤混炼工艺中,浆态床加氢具有操作灵活和原料适应性强以及可以处理高金属、高沥青质含量的重、劣质原料油及油煤混合物等特点而成为重要的研究方向。浆态床加氢过程为:首先将烃原料与催化剂混合均匀,然后与氢气混合以上流式从反应器底部进入反应器,进行加氢裂化、加氢脱硫、脱氮、脱金属反应。
浆态床加氢通常采用空筒式或有简单内构件的反应器,催化剂通常为固体微粒催化剂,以烃原料为载体连续进出反应器。反应器中没有固定的催化剂床层,催化剂加入量很少,通常占原料量的百分之几至万分之几。因此在此反应条件下,原料与催化剂的接触不紧密,不利于原料与氢气和催化剂之间的传质传热反应。特别是劣质重/油以及煤原料中固体含量较多,反应速度较慢,又由于比重较大,经常会发生未充分反应的固体物料堆积于反应器塔体底部的情况,既导致转化率的降低也严重影响反应器内进一步反应的进行。
国外相关专利提出一种增设内循环式反应器结构,将沸腾床反应器使用的内循环结构用于悬浮床反应器,以增强反应器内的返混效果,强化烃原料与催化剂及氢气之间的传质和传热过程,提高加氢转化效果。其缺点在于其将整个反应器形成一个循环区,新鲜进料与转化后物流进行充分返回,使得单个反应器的转化率低,反应器串联个数多;其催化剂需要在线加入和回收,占地面积大,建设成本和操作费用高。
发明内容
本发明提供一种多重优化的浆态床加氢反应器,增设强制内循环结构,增强了反应物的返混程度,提高了原料转化率和轻油收率,同时还解决了结焦、堵塞及飞温问题。
本发明的技术方案:
一种多重优化的浆态床加氢反应器,具有反应器塔体、进料口和出料口,所述进料口位于所述反应器塔体的下部,所述出料口位于塔体顶部,其特征在于还包括内循环结构和进料分布器,
所述内循环结构包括循环泡罩、循环管和循环泵,所述循环泡罩和循环管位于反应器塔体内,所述循环泡罩为上部开口的上底面大于下底面的台状空心杯,下端连通所述循环管的上端,所述循环管的下端通向所述反应器塔体底部并连通位于塔体外部的循环泵;所述进料口包括入口进料口和循环进料口,所述进料分布器包括入口进料分布器和循环进料分布器,位于所述塔体内下部塔体内壁与循环管之间并分别对应入口进料口和循环进料口,反应物料通过入料进料口后再通过所述入口进料分布器进入塔体,所述内循环结构回收的循环物料通过循环泵进入循环进料口后再通过所述循环进料分布器进入塔体。
所述反应塔体竖直布置,所述循环管的高度为反应塔体高度的20-95%。
优选的所述循环管高度为反应塔体高度的70-92%,所述循环管直径为塔体内径的30-50%。
优选的所述塔体高度为3500mm,内径为200mm;所述循环管高度为3200mm,直径为80mm。
包括多个冷氢入口,沿所述塔体的圆周侧壁均匀分布。
包括冲洗油进口,设置在反应器上部和下部各1-6个,沿所述塔体的圆周侧壁均匀分布。
所述反应器塔体内壁具有含钛合金的复合材料的涂层。
包括紧急泄压口,位于所述塔体外部,所述循环管和循环泵之间或所述循环泵和循环进料口之间。
所述反应器串联使用,串联数量为2-3个。
上述的一种多重优化的浆态床加氢反应器的用途,用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺,所述重油为重质原油、渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合,所述煤为褐煤、烟煤、不粘煤中的一种或者多种组合,油煤混炼中油与煤的比例范围为97:3-40:60。
还包括对于以上浆态床加氢反应器的设计方法。
本发明的有益技术效果:
本发明的一种多重优化的浆态床加氢反应器,在反应器内下部进料处增设进料分布器,使得进料不会积存于反应器底部形成死区,有利于烃原料和催化剂与氢气的传质传热,加快反应速率。反应器内设置强制型内循环结构,未反应的重质物料通过循环泡罩回收,循环管引流,循环泵传递重新进料,并通过循环进料分布器分散再次进入反应区,强制循环量为进料量的1-7倍,有效增加了返混程度和反应时间,深化反应程度,特别适合用于反应物料中固体重质物料含量较多的重质原油、劣质渣油加氢或油煤混炼或煤直接液化工艺中,可显著提高烃原料转化率和轻油收率;同时也避免了为增加固体物料的转化率导致反应器塔体过长,降低了成本。循环管与塔体的尺寸比例可根据反应物料的固体量进行选择,使得反应器整体的尺寸在保证转化率和轻油收率、且解决了结焦与堵塞等问题的情况下能在一个合理的范围内。
反应器圆周壁上设置的冷氢进口用于调节反应温度和紧急降温。所述冷氢进口的数量可根据反应器大小和反应器热力学模型确定。
沿圆周均匀分布的冲洗油进口用于冲洗反应器内壁上的沉积物和结焦物。
所述涂层耐高温、高压的前提下使内壁光滑,减小摩擦力,使反应物不易沉积或堆积在侧壁上。
反应器设置紧急泄压措施,以处理飞温工况。
附图说明
图1为本发明实施例的反应器简图,图中各标号列示如下:
1-进料口;2-入口进料分布器;3-出料口;4-冷氢进口;5-冲洗油进口;6-反应器内循环泡罩;7-反应器循环管;8-反应器循环泵;9-循环进料分布器;10-紧急泄压口。
具体实施方式
为进一步阐述本发明的具体特征,将结合图1加以说明。
本发明的多重优化的浆态床加氢反应器包括反应器塔体,塔体底部具有进料口1,顶部具有出料口3,内部具有强制循环装置。所述循环装置包括反应器内循环泡罩6、反应器循环管7以及反应器循环泵8。反应器内循环泡罩6位于塔体上部、出料口3下方,为倒置的圆台状空心杯。反应器循环管7与反应器内循环泡罩6的下杯底连接,且竖直通向塔体底部伸向塔体外部与塔体外部的反应器循环泵8连接。
反应器塔体内底部具有分布器,包括入口进料分布器2和循环进料分布器8,分别位于所述反应器循环管7两侧,在反应器循环管7和反应器塔体之间倾斜分布,其中入口进料分布器2与进料口2连接接收并均匀分散烃原料;循环进料分布器8与反应器循环泵8的另一端连接,接收并均匀分散循环原料。
所述反应器塔体侧壁上还具有冷氢入口4和冲洗油进口5,均匀分布在所述塔体圆周壁,上下交替分布。
所述反应器还包括紧急泄压口10,可位于所述反应器循环泵8的前后,即位于所述循环管和循环泵之间或所述循环泵和循环进料口之间。
本发明的多重优化的浆态床加氢反应器的工作原理如下:
混有催化剂的油煤混合烃原料与氢气混合以上流式经进料口1从反应器底部进入反应器塔体内部,经入口进料分布器2的分布均匀分散,在塔体内高温高压的作用逐渐上升、进入塔体上部,并同时进行催化加氢、脱硫、脱氮、脱重金属反应,至塔体顶部反应生成的轻质产物油自出料口3离开反应器塔体,未反应的重质渣油或煤粉被重力落入反应器内循环泡罩6中,沿反应器循环管7流出塔体外部,被反应器循环泵8泵入位于塔体内反应器循环管7另一侧的循环进料分布器8,再次进入反应塔体内,进行催化加氢等反应,重复循环此过程。
当反应器塔体内温度过高时,自冷氢入口4通入冷氢进行降温。当反应器一端时间,塔体内壁具有沉积物时打开冲洗油进口进行冲洗。当反应器塔体内气压过高时,打开紧急泄压口10进行泄压。
实施例1
本实施例为渣油加氢实例,反应器结构参数如下:反应器壳体的内径为200mm,反应器壳体的高度为3500mm,反应器循环管直径为80mm,高度为3200mm。采用FeOOH铁系催化剂和上述浆态床加氢反应器,在具有以下基本参数的浆态床工艺条件下,进行重油加氢试验,试验用的渣油性质见表1。
中试浆态床的基本工艺参数:
温度:440-460℃;
实验压力:17-19Mpa;
氢油比:900:1-1000:1;
空速:0.5h-1
循环量/进料量:4.0;
催化剂/进料渣油:1/100(wt);
硫化剂/进料渣油:2.5/100(wt)。
试验的结果如下:
渣油转化率:96.3%,液体收率92%,生焦率3.7%。
表1.试验用渣油性质表
项目 混合进料
比重(20℃)g/cm3 1.044
运动粘度(100℃)mm2/s 2658.7
凝点℃ 45
残炭wt% 24.89
灰分wt% 0.13
酸值mg KOH/g 1.81
组分分析wt%  
C 86.79
H 10.34
C/H摩尔比 1.39
S wt% 2.39
N wt% 0.83
四组分分析wt%、  
饱和分 23.24
芳香分 39.5
胶质 24.61
沥青质 12.59
重金属μg/g  
Ni 108.2
V 402
Na 33.1
Fe 14.2
Cu 0.25
实施例2
本实施例为煤直接液化实例,采用的反应器通实施例1,催化剂同实施例1,在具有以下基本参数的中试浆态床工艺条件下,进行煤直接液化试验,试验用的煤粉的性质见表2,中试浆态床的基本工艺参数如下:
温度:440-465℃;
实验压力:17-20Mpa;
氢油比:1200:1~1600:1;
空速:0.35~0.50h-1
循环量/进料量:6.0;
油/煤进料/循环溶剂质量比:10:10:1;
催化剂/进料煤:1.2/100(wt);
硫化剂/进料煤:2.5/100(wt);
浆态床化学耗氢量(氢气/进料):5/100(wt)。
试验的结果如下:
煤转化率:88.2%,液体收率58.3%,生焦率11.8%。
表2.煤的性质表
项目 单位 数值
工业分析  
空气干燥基水分 Mad 19.56
收到基灰分 Aar 11.22
干基灰分 Ad 17.03
干基挥发分 Vd 36.07
干燥无灰基挥发分 Vdaf 43.47
干基固定炭 FCd 46.93
发热量 MJ/Kg  
干基低位发热量 Qgr,d 21.8
干燥无灰基低位发热量 Qgr,daf 26.3
空气干燥基低位发热量 Qnet,ad 17.9
收到基低位发热量 Qnet,ar 14.4
元素分析  
碳含量 Car 39.71
  Cd 60.26
  Cdaf 72.62
氢含量 Har 2.59
  Hd 3.93
  Hdaf 4.74
氮含量 Nar 0.62
  Nd 0.94
  Ndaf 1.13
硫含量 St,ar 1
  Sd 1.52
  Sdaf  
氧含量 Oar 10.79
  Od 16.37
  Odaf  
可磨性 HGI 50
实施例3
本实施例为油煤混炼实例,反应器结构同实例1,催化剂同实施例1,试验用的渣油性质同实例1,煤粉性质同实例2。本实施例中试浆态床的基本工艺参数如下:
温度:440-460℃;
实验压力:17-20Mpa;
氢油比:1000:1-1400:1;
空速:0.40-0.50h-1
循环量/进料量:5.0;
油/煤进料/回炼蜡油质量比:9:10:2;
催化剂/进料油煤浆:1/100(wt);
硫化剂/进料油煤浆:2.5/100(wt);
浆态床化学耗氢量(氢气/进料):4.5/100(wt)。
试验的结果如下:
油煤总转化率:91.2%,液体收率71.3%,生焦率8.8%。
对比实例1
渣油加氢的对比实例,反应物料和工艺参数与实施例1相同,渣油转化率为94.1%,液体收率为88%,生焦率为4.5%。
对比实例2
煤直接液化的对比实例,反应物料和工艺参数与实施例2相同,煤转化率:78.1%,液体收率43.3%,生焦率17.9%。
对比实例3
油煤混炼的对比实例,反应物料和工艺参数与实施例3相同,油煤总转化率:87.2%,液体收率63.3%,生焦率12.8%。
以上对比例为在采用不包括本发明特征的现有技术的设备中反应。
结论:
从实施例1-3及与对比例1-3的对比可以看出,本发明的多重优化的浆态床加氢反应器在渣油浆态床加氢、煤直接液化和油煤混炼中,都实现了很高的转化率和液体收率,很低的结焦率,可以显著地提高效益,可以为国家缓解原有紧张和节能降耗做出巨大的贡献。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

  1. 一种多重优化的浆态床加氢反应器,具有反应器塔体、进料口和出料口,所述进料口位于所述反应器塔体的下部,所述出料口位于塔体顶部,其特征在于还包括内循环结构和进料分布器,
    所述内循环结构包括循环泡罩、循环管和循环泵,所述循环泡罩和循环管位于反应器塔体内,所述循环泡罩为上部开口的上底面大于下底面的台状空心杯,下端连通所述循环管的上端,所述循环管的下端通向所述反应器塔体底部并连通位于塔体外部的循环泵;所述进料口包括入口进料口和循环进料口,所述进料分布器包括入口进料分布器和循环进料分布器,位于所述塔体内下部塔体内壁与循环管之间并分别对应入口进料口和循环进料口,反应物料通过入料进料口后再通过所述入口进料分布器进入塔体,所述内循环结构回收的循环物料通过循环泵进入循环进料口后再通过所述循环进料分布器进入塔体。
  2. 根据权利要求1所述的一种多重优化的浆态床加氢反应器,其特征在于所述反应塔体竖直布置,所述循环管的高度为反应塔体高度的20-95%。
  3. 根据权利要求2所述的一种多重优化的浆态床加氢反应器,其特征在于所述循环管高度为反应塔体高度的70-92%,所述循环管直径为塔体内径的30-50%。
  4. 根据权利要求1所述的一种多重优化的浆态床加氢反应器,其特征在于包括冷氢入口,沿所述塔体的圆周侧壁均匀分布。
  5. 根据权利要求1所述的一种多重优化的浆态床加氢反应器,其特征在于包括冲洗油进口,设置在反应器上部和下部各1-6个,沿所述塔体的圆周侧壁均匀分布。
  6. 根据权利要求1所述的一种多重优化的浆态床加氢反应器,其特征在于所述反应器塔体内壁具有含钛合金的复合材料的涂层。
  7. 根据权利要求1所述的一种多重优化的浆态床加氢反应器,其特征在于包括紧急泄压口,位于所述塔体外部,所述循环管和循环泵之间或所述循环泵和循环进料口之间。
  8. 根据权利要求1-7任一所述的一种多重优化的浆态床加氢反应器,其特征在于所述反应器串联使用,串联数量为2-3个。
  9. 权利要求1-8所述的一种多重优化的浆态床加氢反应器的用途,其特征在于用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺;所述重油为重质原油、渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合,所述煤为褐煤、烟煤、不粘煤中的一种或者多种组合,所述油煤混炼工艺中油与煤的比例范围为97:3-40:60。
  10. 一种多重优化的浆态床加氢反应器的设计方法,其特征在于设计一种多重优化的浆态床加氢反应器,用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺,具有反应器塔体、进料口和出料口,所述进料口位于所述反应器塔体的下部,所述出料口位于塔体顶部,还包括内循环结构和进料分布器,
    所述内循环结构包括循环泡罩、循环管和循环泵,所述循环泡罩位于所述塔体内上部,为倒置的圆台状空心杯,下端连接所述循环管其通向所述反应器塔体底部连接位于塔体外部的循环泵;所述进料分布器包括入口进料分布器和循环进料分布器,位于所述塔体内下部塔体内壁与循环管之间,所述进料口包括入口进料口和循环进料口,反应物料通过入料进料口后再通过所述入口进料分布器进入塔体,所述内循环结构回收的循环物料通过循环泵进入循环进料口后再通过所述循环进料分布器进入塔体。
PCT/CN2015/089948 2015-05-07 2015-09-18 一种多重优化的浆态床加氢反应器及其设计方法和用途 WO2016176948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510229628.3 2015-05-07
CN201510229628.3A CN104818050A (zh) 2015-05-07 2015-05-07 一种多重优化的浆态床加氢反应器及其用途与设计方法

Publications (1)

Publication Number Publication Date
WO2016176948A1 true WO2016176948A1 (zh) 2016-11-10

Family

ID=53728536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089948 WO2016176948A1 (zh) 2015-05-07 2015-09-18 一种多重优化的浆态床加氢反应器及其设计方法和用途

Country Status (2)

Country Link
CN (1) CN104818050A (zh)
WO (1) WO2016176948A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818050A (zh) * 2015-05-07 2015-08-05 北京中科诚毅科技发展有限公司 一种多重优化的浆态床加氢反应器及其用途与设计方法
CN105273747B (zh) * 2015-11-18 2017-05-03 北京中科诚毅科技发展有限公司 一种浆态床加氢反应器的控温措施及其设计方法和用途
CN107805520B (zh) * 2016-09-09 2020-06-09 北京华石联合能源科技发展有限公司 一种悬浮床加氢泄放工艺
CN107805519B (zh) * 2016-09-09 2020-10-16 北京华石联合能源科技发展有限公司 一种悬浮床加氢泄放系统
EP3342842A1 (en) * 2017-01-03 2018-07-04 Total Marketing Services Dewaxing and dearomating process of hydrocarbon in a slurry reactor
CN108970544A (zh) * 2017-06-02 2018-12-11 何巨堂 一种气液料上流加氢反应器的液相产物回流动力增加方法
CN109482109A (zh) * 2017-09-13 2019-03-19 何巨堂 碳氢料上流式加氢反应器顶部集液杯的防沉积物堆积方法
CN107694483B (zh) * 2017-09-22 2018-12-21 北京中科诚毅科技发展有限公司 一种加氢反应器及其设计方法与用途
CN107790073A (zh) * 2017-09-28 2018-03-13 北京中科诚毅科技发展有限公司 一种反应器新型内部结构及其设计方法和用途
CN107661735B (zh) * 2017-09-30 2019-01-18 北京中科诚毅科技发展有限公司 一种加氢反应器进料分布器及其进料工艺、设计方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129586A1 (en) * 2002-08-22 2005-06-16 Hydrocarbon Technologies Inc. Apparatus for hydrocracking and /or hydrogenating fossil fuels
US20050241991A1 (en) * 2004-04-28 2005-11-03 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system
US20090159499A1 (en) * 2007-12-19 2009-06-25 Chevron U.S.A. Inc. Process and apparatus for separating gas from a multi-phase mixture being recycled in a reactor
CN103977746A (zh) * 2013-02-08 2014-08-13 上海碧科清洁能源技术有限公司 浆态床反应器及其使用方法
CN104818050A (zh) * 2015-05-07 2015-08-05 北京中科诚毅科技发展有限公司 一种多重优化的浆态床加氢反应器及其用途与设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2111848A (en) * 1981-12-21 1983-07-13 Hydrocarbon Research Inc Coal hydrogenation process and apparatus having increased solids retention in ebullated bed reactor
CN202621141U (zh) * 2012-02-24 2012-12-26 刘小可 气体分布器及气-液-固三相反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129586A1 (en) * 2002-08-22 2005-06-16 Hydrocarbon Technologies Inc. Apparatus for hydrocracking and /or hydrogenating fossil fuels
US20050241991A1 (en) * 2004-04-28 2005-11-03 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system
US20090159499A1 (en) * 2007-12-19 2009-06-25 Chevron U.S.A. Inc. Process and apparatus for separating gas from a multi-phase mixture being recycled in a reactor
CN103977746A (zh) * 2013-02-08 2014-08-13 上海碧科清洁能源技术有限公司 浆态床反应器及其使用方法
CN104818050A (zh) * 2015-05-07 2015-08-05 北京中科诚毅科技发展有限公司 一种多重优化的浆态床加氢反应器及其用途与设计方法

Also Published As

Publication number Publication date
CN104818050A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2016176948A1 (zh) 一种多重优化的浆态床加氢反应器及其设计方法和用途
CA2778125C (en) Fluidized-bed reactor and hydrogenation method thereof
WO2016124148A1 (zh) 一种油煤混合加氢炼制技术及设备
BR112013026816B1 (pt) método para hidropirolisar uma matéria-prima orgânica oxigenada
CN106635157B (zh) 一种劣质原料油的轻质化方法
CN102031135A (zh) 重油综合加工利用方法
CN106635152B (zh) 一种煤焦油全馏分油的加工方法
CN108659882B (zh) 一种重油加氢方法及其加氢系统
US11230678B2 (en) Integrated method and integrated device for heavy oil contact lightening and coke gasification
CN108251136A (zh) 一种碳氢粉料流化床热解煤气中焦油的分类回收方法
CN206204233U (zh) 一种高固含量煤焦油的沸腾床加氢系统
CN106635153B (zh) 一种中低温煤焦油全馏分的加工方法
CN104560098B (zh) 一种煤直接液化方法
CN112538367B (zh) 一种重油裂解-气化耦合反应装置
CN105586078B (zh) 一种重油焦化方法
CN104513670B (zh) 一种催化裂化方法与装置
CN106701159B (zh) 一种高固含量煤焦油的沸腾床加氢系统及方法
CN105885938B (zh) 一种流化催化裂化装置
CN112538381A (zh) 一种重油轻质化与合成气联产的方法和装置
CN105586066B (zh) 一种催化裂化再生烟气的处理方法
US9527054B2 (en) Apparatuses and methods for cracking hydrocarbons
CN105400546B (zh) 一种催化裂化方法
CN104342197A (zh) 一种双提升管催化裂化方法及其装置
CN213078417U (zh) 一种渣油加氢反应设备
CN208933282U (zh) 一种劣质重油加氢处理反应器及反应器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891199

Country of ref document: EP

Kind code of ref document: A1