WO2016176906A1 - 能同时吸附氨氮、镉的美人蕉生物炭的制备方法 - Google Patents

能同时吸附氨氮、镉的美人蕉生物炭的制备方法 Download PDF

Info

Publication number
WO2016176906A1
WO2016176906A1 PCT/CN2015/083346 CN2015083346W WO2016176906A1 WO 2016176906 A1 WO2016176906 A1 WO 2016176906A1 CN 2015083346 W CN2015083346 W CN 2015083346W WO 2016176906 A1 WO2016176906 A1 WO 2016176906A1
Authority
WO
WIPO (PCT)
Prior art keywords
canna
biochar
ammonia nitrogen
cadmium
carbonization
Prior art date
Application number
PCT/CN2015/083346
Other languages
English (en)
French (fr)
Inventor
杨肖娥
崔孝强
张长宽
戴曦
杨倩颖
吴飞飞
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2016176906A1 publication Critical patent/WO2016176906A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds

Definitions

  • the invention relates to a preparation of a biochar material, in particular to a biochar material and a preparation method thereof for efficiently adsorbing ammonia nitrogen and cadmium in a water body, and belongs to the field of water treatment.
  • Biochar is a stable, highly aromatized and carbon-rich solid material produced by high temperature pyrolysis of biomass under anoxic conditions. It has a well-developed pore structure and a large specific surface area. Wide range of sources and low cost make it a new type of adsorbent material that has received extensive attention in the environmental field.
  • Canna is a common aquatic plant widely used in the construction of ecological floating islands and constructed wetlands, and is a common plant species for ecological restoration. However, if the mature canna is not properly treated, such as harvesting, it will cause the nitrogen and phosphorus absorbed by it to return to the water body to cause secondary pollution. Due to the lack of corresponding resource utilization technology, most of the harvested canna is burned on the spot or abandoned in the open air, causing great waste of resources and environmental problems.
  • CN104150480A discloses a preparation method for adsorbing activated carbon with ultra-high specific surface area for heavy metals.
  • the method uses the biomass raw material to be dried and pulverized to 60-100 mesh, and then placed in a microwave reactor, and N 2 is introduced to control the microwave power to 1000 W. ⁇ 2000W, carbonization temperature 300 ⁇ 500°C for microwave carbonization; after microwave carbonization, the carbonization material is cooled to room temperature, and the carbonized material and the organic alkoxide activator are ground and mixed at a mass ratio of 1:1 to 10, and then placed in the atmosphere.
  • the furnace is heated to 800-1000 ° C at a rate of 5 to 50 ° C / min and kept at 100 to 300 min, cooled to room temperature, taken out, washed with hydrochloric acid, washed with water until neutral, and dried to obtain activated carbon.
  • the preparation method is also complicated in process and high in cost, and is not suitable for large-area promotion.
  • biochar or activated carbon used as an adsorbent material can only target a single pollutant, and it is difficult to act on two or more types of pollutants, which limits its application.
  • the obtained carbonaceous materials are mostly subjected to chemical pretreatment or chemical activation, and need to be repeatedly washed with acid after activation, which is not only cumbersome in process, high in cost, but also causes certain secondary to the environment. Pollution.
  • chemically modified carbonaceous adsorbent materials can be used in industrial wastewater treatment, but they cannot be applied to the removal of drinking water pollutants in drinking water bodies, reservoirs, etc., and are likely to cause secondary pollution.
  • the technical problem to be solved by the present invention is to provide a preparation method of canna biochar which can simultaneously adsorb ammonia nitrogen and cadmium.
  • the invention overcomes the problems that the existing adsorption technology can only target a single pollutant, and the adsorption efficiency is not high, which is easy to cause secondary pollution and high cost; at the same time, the water body repairing plant waste is rationally utilized to prevent secondary pollution, Moreover, the carbon in plants is stably sealed, which reduces carbon dioxide emissions and has significant ecological benefits.
  • the present invention provides a method for preparing canna biochar which can simultaneously adsorb ammonia nitrogen and cadmium, and includes the following steps:
  • the harvested canna is removed and dried, and then pulverized and dried in sequence;
  • the crushed and dried canna is placed in a carbonization furnace, and then heated at a rate of 4 to 6 ° C / min (preferably 5 ° C / min) to 480 to 520 ° C (preferably 500 ° C) for oxygen barrier carbonization reaction , the heat preservation reaction is 1.8 to 2.2 h (preferably 2 h);
  • the nitrogen gas in the oxygenation and carbonization reaction in the step 2) is maintained at a pressure of 0.04 to 0.06 MPa (preferably 0.05 Mpa) in the chamber of the carbonization furnace.
  • the water content of the canna is air dried after the drying is 15% to 20%, and the % is the mass%;
  • the mixture is pulverized to a sieve of 60 to 100 mesh.
  • the invention also provides the use of canna biochar prepared by the above method: as an adsorbing material for ammonia nitrogen and heavy metal cadmium in water.
  • the air drying time of step 1) is about one week.
  • the carbonization furnace may be, for example, a movable box type resistance atmosphere protection furnace.
  • Canna indica L. alias: small plantain, large perennial perennial herb. It is native to the tropical regions of the Americas, India, and the Malay Peninsula. It is a flower-seeking plant commonly used in subtropical and tropical regions. It is warm and not cold-resistant and has high ornamental value. It is widely used in ecological floating islands and constructed wetlands.
  • the biochar material ie, canna biochar obtained by controlling the cannamel waste through a series of conditions can be directly applied to the process of purifying and removing ammonia nitrogen and cadmium by water body.
  • the prior art adopts the microwave carbonization method, which has high requirements for the preparation of the equipment; and the invention can only be used in the conventional carbonization furnace under the process conditions set by the invention;
  • the prior art operation steps are cumbersome, consume a lot of energy, increase the cost, but the removal efficiency of heavy metals cannot be greatly improved, and the addition of organic alkoxide cannot be used for heavy metal adsorption of drinking water sources;
  • the invention can ensure the high-efficiency and safe adsorption of cadmium in the water body and avoid the use of the organic alkoxide under the process conditions set by the invention; and can realize the high-efficiency and safe adsorption of ammonia nitrogen in the water body.
  • the present invention solves the problem that the conventional adsorbent material can only target a single specific pollutant, and creatively prepares an adsorbent material capable of efficiently adsorbing both ammonia nitrogen and cadmium.
  • the invention solves the problem that the eutrophication of the water body repairs the plant waste, turns waste into treasure, and further utilizes the waste into biochar to effectively prevent secondary pollution.
  • the invention not only solves the problem that secondary activated carbon may be generated in the purified carbon body in the past, but also has easy materials, simple production process and low production cost.
  • the biochar adsorbent prepared by the invention has a large adsorption amount of ammonia nitrogen and cadmium in the water body (up to 7.83 mg/g and 98.8 mg/g, respectively), and the removal efficiency is high (44.5% and 99.2%, respectively). .
  • the present invention not only solves the problem that the adsorbent material can only target a single specific pollutant in the past, but also provides a new idea for the treatment of plant waste by eutrophication of water, turning waste into treasure; and overcoming the past
  • the problem of secondary pollution may occur in activated carbon purification water, which has the advantages of easy material availability, simple production process and low production cost, and has large adsorption capacity for ammonia nitrogen and heavy metals in water, high removal efficiency, and good application. prospect.
  • Figure 1 is a scanning electron micrograph of the ammonia nitrogen and cadmium adsorption material (i.e., Canna biochar) prepared by the present invention.
  • FIG. 2 is a scanning electron micrograph of the ammonia nitrogen and cadmium adsorption material prepared by the present invention (ie, Canna biochar) after adsorbing cadmium.
  • Figure 4 is a comparison of the adsorption amounts of Canna, Reli, Valerian, Vetiver, Reed, and Scallion.
  • Example 1 preparation method of canna biochar:
  • the canna After harvesting the canna in a ventilated environment, it is naturally air-dried for one week (water content is 15% to 20%), chopped, ground into a particle size of ⁇ 10mm, and dried in an oven at 105 ° C for three hours; Then, it was placed in a carbonization furnace and subjected to high-temperature carbonization by nitrogen gas. The temperature was raised to 5 ° C / min, the temperature was raised to 500 ° C, the temperature was maintained for two hours, and the temperature was cooled to room temperature. The pulverized 60-100 mesh sieve was taken out to obtain a biomass carbon powder---- canna biochar.
  • the biomass carbon powder produced by the present embodiment Cannabis Biochar (BC500) has a yield of 39.58%, a specific surface area of 7.034 m 2 /g, a pore volume of 0.0283 cc / g, and a pore diameter of 1.689nm, microporous development is complete, porosity is better; its pH is 10.1, can be used as acidic soil improver; its ash content is 24.32%, cation exchange capacity is 26.37cmol/kg, K content is 122.19mg/kg, can As a soil additive, Cd, Pb and other heavy metal content is almost no, it will not pollute the water body, and it is less harmful to the environment, and can be further used for the adsorption of ammonia nitrogen and heavy metals in the polluted water.
  • the adsorption effect is exemplified by an experiment in which biochar products adsorb ammonia nitrogen and cadmium in water.
  • the biochar sample prepared in the above Example 1 - Cannabis Biochar (BC500) was subjected to an adsorption test, which comprises the following steps: weighing 0.2 g of the above-mentioned dried and screened biochar sample (BC500) into a 100 mL Erlenmeyer flask, 50 mL of ammonium chloride solution containing 20 mg/L of ammonia nitrogen was added; 0.05 g of biochar sample was taken in a 100 mL Erlenmeyer flask, and 50 mL of a cadmium nitrate solution containing 20 mg/L of cadmium was added.
  • the maximum adsorption amount of biochar adsorbent to ammonia nitrogen is 2.21 mg/g, and the removal efficiency is 44.2%; the equilibrium concentration and adsorption amount of cadmium are obtained, and the biochar adsorbing material is cadmium.
  • the maximum adsorption amount was 19.8 mg/g, and the removal efficiency was 99%.
  • the biochar sample prepared in the above Example 1 - Canna biochar (BC500) was subjected to an adsorption test, including the following steps. Step: Weigh 0.2 g of the dried biochar sample (BC500) into a 100 mL Erlenmeyer flask, add 50 mL of ammonium chloride solution containing 50 mg/L of ammonia nitrogen, and take 0.05 g of biochar sample in a 100 mL Erlenmeyer flask. 50 mL of a cadmium nitrate solution containing 50 mg/L of cadmium was added.
  • the maximum adsorption amount of biochar adsorbent to ammonia nitrogen is 5.56 mg/g, and the removal efficiency is 44.5%; the equilibrium concentration and adsorption amount of cadmium are obtained, and the biochar adsorbing material is cadmium.
  • the maximum adsorption amount was 49.6 mg/g, and the removal efficiency was 99.2%.
  • the biochar sample prepared in the above Example 1 - Cannabis Biochar (BC500) was subjected to an adsorption test, which comprises the following steps: weighing 0.2 g of the dried biochar sample (BC500) into a 100 mL Erlenmeyer flask, and adding 50 mL of ammonium chloride solution containing 100 mg/L of ammonia nitrogen; 0.05 g of biochar sample was taken in a 100 mL Erlenmeyer flask, and 50 mL of a cadmium nitrate solution containing 100 mg/L of cadmium was added.
  • the maximum adsorption amount of biochar adsorbent to ammonia nitrogen is 7.83 mg/g, and the removal efficiency is 31.3%; the equilibrium concentration and adsorption amount of cadmium are obtained, and the biochar adsorbing material is cadmium.
  • the maximum adsorption amount was 98.8 mg/g, and the removal efficiency was 98.8%.
  • N 2 is introduced (the pressure in the microwave reactor is controlled to be 0.05 MPa), the microwave power is controlled to be 2000 W, and the carbonization temperature is 500 ° C for microwave carbonization for 2 hours; After carbonization by microwave, it was cooled to room temperature to obtain a carbonized material.
  • Comparative Example 2 The "canna biochar" obtained in Example 1 was uniformly mixed with an organic alkoxide activator at a mass ratio of 1:5 as described in CN 104150480A, and then placed in an atmosphere furnace at a rate of 25 ° C / min. The temperature is raised to 1000 ° C and kept for 300 min, cooled to room temperature, taken out, washed with hydrochloric acid, washed with water until neutral, and dried to obtain activated carbon.
  • Comparative Example 3 The raw material used in the above Example 1 - Canna indica was replaced with reed, vetiver, re-flower, valerian and scallions, respectively, and the rest was equivalent to Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种能同时吸附氨氮、镉的美人蕉生物炭的制备方法,包括以下步骤:1),准备原料:将收割后的美人蕉除杂后风干,然后依次进行粉碎、烘干;2),隔氧炭化:将粉碎烘干后的美人蕉放入炭化炉内,然后以4~6℃/min的速率升温至480~520℃进行隔氧炭化反应,保温反应1.8~2.2h;3),将步骤2)所得的炭化后美人蕉冷却至室温,粉碎过筛,得美人蕉生物炭。该制备方法克服了现有吸附技术只能针对单一污染物,且吸附效率不高、易导致二次污染和成本较高等问题;同时利用水体修复植物废弃物,具有生态效益。

Description

能同时吸附氨氮、镉的美人蕉生物炭的制备方法 技术领域
本发明涉及一种生物炭材料的制备,特别涉及一种高效吸附水体中氨氮和镉的生物炭材料及制备方法,属于水处理领域。
背景技术
随着当今社会人口的增加和工农业的迅速发展,水体安全形势变得愈发严峻,其中尤以水体富营养化和重金属污染因其普遍性和严重性受到人们的广泛的关注。在众多治理水体污染的方法中,吸附法因其高效、低廉和易于操作以及环境扰动小等优点得到广泛应用。生物炭是由生物质在缺氧条件下经过高温热解产生的一种稳定的高度芳香化且富含碳素的固态物质,因具有发育良好的孔隙结构和较大的比表面积,加之制备原料来源广泛且成本低廉,使其成为一种新型吸附材料在环境领域受到广泛关注。
美人蕉是一种常见的水生植物,广泛应用于生态浮岛和人工湿地的构建,是生态修复的常用植物种。但是如果成熟的美人蕉不经收割等合理处理,会使其吸收的氮磷重新返回水体造成二次污染。而由于缺乏相应的资源化利用技术,收割的美人蕉多数被就地焚烧或是露天堆弃,造成了很大的资源浪费和环境问题。
目前,利用废弃植物秸秆制备生物炭作为水处理中污染物吸附材料并不少见。例如CN104150480A公布了一种吸附重金属用超高比表面积活性炭的制备方法,该方法将生物质原料干燥、粉碎至60~100目后放入微波反应器中,通入N2,控制微波功率为1000W~2000W、碳化温度300~500℃进行微波碳化;微波碳化后,冷却至室温得炭化料,取炭化料与有机醇盐活化剂按1:1~10的质量比研磨混合均匀后,放入气氛炉中以5~50℃/min的速率升温至800~1000℃并保温100~300min,冷却至室温取出,经盐酸洗后,再水洗至中性,干燥,即得活性炭。该制备方式同样是工艺复杂,造价高昂,不适于大面积推广。
但是当今用作吸附材料的生物炭或是活性炭大多只能针对单一污染物,难以对两种及以上不同类型的污染物起作用,这使其在推广应用上受到限制。而且为了获得较高的吸附效率,所得炭质材料多采用化学预处理或是化学活化法,且在活化后需要用酸反复清洗,不仅工艺繁琐、成本较高而且会对环境造成一定的次生污染。此外,化学改性的炭质吸附材料虽然可以运用于工业污水处理,但是却不能应用于饮用水体、水库上游等处的饮用水污染物去除,容易造成二次污染。
因此,如何利用废弃植物材料制备一种环保、高效且成本低廉,对水体中氨氮和镉同时具有良好吸附性能的吸附材料显得尤为重要。
发明内容
本发明要解决的技术问题是提供一种能同时吸附氨氮、镉的美人蕉生物炭的制备方法。本发明克服了现有吸附技术只能针对单一污染物,且吸附效率不高、易导致二次污染和成本较高等问题;同时对水体修复植物废弃物进行了合理利用,防止了次生污染,而且对植物中碳素进行了稳定封存,减少了二氧化碳排放,具有显著的生态效益。
为了解决上述技术问题,本发明提供一种能同时吸附氨氮、镉的美人蕉生物炭的制备方法,包括以下步骤:
1)、准备原料:
将收割后的美人蕉除杂后风干,然后依次进行粉碎、烘干;
2)、隔氧炭化:
将粉碎烘干后的美人蕉放入炭化炉内,然后以4~6℃/min(较佳为5℃/min)的速率升温至480~520℃(较佳为500℃)进行隔氧炭化反应,保温反应1.8~2.2h(较佳为2h);
3)、将步骤2)所得的炭化后美人蕉冷却至室温,粉碎过筛,得美人蕉生物炭。
作为本发明的美人蕉生物炭的制备方法的改进:
所述步骤2)的隔氧炭化反应过程中通入氮气使炭化炉腔内压力维持在0.04~0.06MPa(较佳为0.05Mpa)。
作为本发明的美人蕉生物炭的制备方法的进一步改进:
所述步骤1)中:
美人蕉风干后的含水量为15%~20%,此%为质量%;
粉碎至粒径≤10mm;
于90~105℃烘干2.5~3h。
作为本发明的美人蕉生物炭的制备方法的进一步改进:
所述步骤3)中,粉碎至能过60~100目的筛。
本发明还提供了利用上述方法制备而得的美人蕉生物炭的用途:作为水体中氨氮和重金属镉的吸附材料。
备注说明:
步骤1)的风干时间约为一周。
步骤2)中,炭化炉例如可选用可移动的箱式电阻气氛保护炉。
美人蕉(Canna indica L.),别名:小芭蕉,大型多年生宿根草本植物。原产热带美洲、印度、马来半岛等热带地区,是亚热带和热带常用的观花植物,喜温喜热,不耐寒,具有很高的观赏价值,广泛应用于生态浮岛和人工湿地。
本发明利用美人蕉废弃物通过一系列条件的控制所得到的生物炭材料(即,美人蕉生物炭),可直接运用到水体净化去除氨氮和镉的过程中。
本发明相对于上述现有技术具体如下技术优势:
1、现有技术采用的是微波炭化法,对设备的配制要求高;而本发明在本发明所设定的工艺条件下,只需常规的炭化炉即可;
2、现有技术操作步骤繁琐,且耗费了大量能源,增加了成本,但是对重金属的去除效率不可能有很大提升,而且由于添加了有机醇盐并不能用于饮用水源的重金属吸附;而本发明在本发明所设定的工艺条件下,既能保证高效安全吸附水体中镉、又避免了有机醇盐的使用;还能实现高效安全吸附水体中氨氮。
相对于现有的氨氮及镉吸附材料的制备技术,本发明的有益效果在于:
(1)、本发明解决了以往吸附材料只能针对单一特异污染物的问题,创造性地制备了对氨氮和镉都可以高效吸附的吸附材料。
(2)本发明解决了水体富营养化修复植物废弃物处理的问题,变废为宝,将废弃物制成生物炭进行进一步利用,有效地防止了二次污染。
(3)本发明不仅解决了以往活性炭净化水体中可能产生二次污染的问题,而且材料易得,制作工艺简洁,生产成本低廉。
(4)本发明制备得到的生物炭吸附材料对水体中氨氮和镉吸附量大(分别能达到7.83mg/g和98.8mg/g),去除效率很高(分别能达到44.5%和99.2%)。
综上所述,本发明既解决了以往吸附材料只能针对单一特异污染物的问题,又为水体富营养化修复植物废弃物处理提供了新的思路,变废为宝;而且还克服了以往活性炭净化水体中可能产生二次污染的问题,具有材料易得、制作工艺简洁和生产成本低廉的优点,且对水体中氨氮和重金属吸附量都很大,去除效率高,有很好的推广应用前景。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为本发明制备的氨氮和镉吸附材料(即,美人蕉生物炭)的电镜能谱扫描图。
图2为本发明制备的氨氮和镉吸附材料(即,美人蕉生物炭)吸附镉后的电镜能谱扫描图。
图3为本发明制备的氨氮和镉吸附材料(即,美人蕉生物炭)吸附氮前后的红外光谱图。
备注说明:上述图2和图3对应的是实验3(即,含氨氮100mg/L、含镉100mg/L)。
图4为美人蕉、再力花、茭草、香根草、芦苇、水葱的吸附量对比图。
具体实施方式
下面结合实施例对本发明作进一步详细描述,但是有必要指出以下实施实例仅用于说明本发明,但不构成对本发明的限制。
以美人蕉为原料通过控制温度、速率、气体等物理条件为例,制备高效吸附氨氮和镉生物炭。
实施例1、美人蕉生物炭的制备方法:
将收割后的美人蕉置于通风环境下自然风干一周后(含水量为15%~20%),切碎,磨成为粒径≤10mm的粉粒,放入烘箱于105℃烘干三个小时;然后放入炭化炉内通入氮气进行高温炭化,升温速率为5℃/min,升温至500℃,保温两小时,并冷却到室温。取出粉碎过60-100目筛,得到生物质炭粉----美人蕉生物炭。
本实施例生产的生物质炭粉---美人蕉生物炭(BC500)如表1所示,得率为39.58%,其比表面积为7.034m2/g,孔容为0.0283cc/g,孔径为1.689nm,微孔发育完全,孔隙度较好;其pH为10.1,可作为酸性土壤改良剂;其灰分含量为24.32%,阳离子交换量为26.37cmol/kg,K含量为122.19mg/kg,可以作为土壤添加剂,而Cd,Pb等重金属含量几乎没有,不会对水体产生污染,对环境危害较小,可进一步用于受污染水体中氨氮和重金属的吸附。
吸附效果以生物炭产品吸附水体中氨氮和镉的实验为例。
实验1、
将上述实例1所制得生物炭样品---美人蕉生物炭(BC500)进行吸附试验,包括以下步骤:称取上述烘干过筛的生物炭样品(BC500)0.2g于100mL锥形瓶中,加入含氨氮20mg/L的氯化铵溶液50mL;取0.05g生物炭样品于100mL锥形瓶中,加入含镉20mg/L的硝酸镉溶液50mL。试验设置三个重复,然后将锥形瓶封口置于160r/min的恒温摇床上25℃振荡24h,最后经滤膜过滤移取上清液,利用靛酚蓝比色法测定平衡液中剩余氨氮浓度,利用ICP-MS测定平衡液中剩余镉浓度,对其吸附量进行分析计算。经分析,得到氨氮的平衡浓度和吸附量,生物炭吸附材料对氨氮的最大吸附量为2.21mg/g,去除效率为44.2%;得到镉的平衡浓度和吸附量,生物炭吸附材料对镉的最大吸附量为19.8mg/g,去除效率为99%。
实验2、
将上述实例1所制得生物炭样品---美人蕉生物炭(BC500)进行吸附试验,包括以下步 骤:称取烘干过筛的生物炭样品(BC500)0.2g于100mL锥形瓶中,加入含氨氮50mg/L的氯化铵溶液50mL;取0.05g生物炭样品于100mL锥形瓶中,加入含镉50mg/L的硝酸镉溶液50mL。试验设置三个重复,然后将锥形瓶封口置于160r/min的恒温摇床上25℃振荡24h,最后经滤膜过滤移取上清液,利用靛酚蓝比色法测定平衡液中剩余氨氮浓度,利用ICP-MS测定平衡液中剩余镉浓度,对其吸附量进行分析计算。经分析,得到氨氮的平衡浓度和吸附量,生物炭吸附材料对氨氮的最大吸附量为5.56mg/g,去除效率为44.5%;得到镉的平衡浓度和吸附量,生物炭吸附材料对镉的最大吸附量为49.6mg/g,去除效率为99.2%。
实验3、
将上述实例1所制得生物炭样品---美人蕉生物炭(BC500)进行吸附试验,包括以下步骤:称取烘干过筛的生物炭样品(BC500)0.2g于100mL锥形瓶中,加入含氨氮100mg/L的氯化铵溶液50mL;取0.05g生物炭样品于100mL锥形瓶中,加入含镉100mg/L的硝酸镉溶液50mL。试验设置三个重复,然后将锥形瓶封口置于160r/min的恒温摇床上25℃振荡24h,最后经滤膜过滤移取上清液,利用靛酚蓝比色法测定平衡液中剩余氨氮浓度,利用ICP-MS测定平衡液中剩余镉浓度,对其吸附量进行分析计算。经分析,得到氨氮的平衡浓度和吸附量,生物炭吸附材料对氨氮的最大吸附量为7.83mg/g,去除效率为31.3%;得到镉的平衡浓度和吸附量,生物炭吸附材料对镉的最大吸附量为98.8mg/g,去除效率为98.8%。
对比例1、
将收割后的美人蕉置于通风环境下自然风干一周后,然后如同CN 104150480A所述进行如下操作:
粉碎至60~100目后放入微波反应器中,通入N2(控制微波反应器中的压力为0.05MPa),控制微波功率为2000W、碳化温度500℃进行微波碳化,时间为2小时;微波碳化后,冷却至室温,得炭化料。
对比例2、将实施例1所得的“美人蕉生物炭”如同CN 104150480A所述与有机醇盐活化剂按1:5的质量比研磨混合均匀后,放入气氛炉中以25℃/min的速率升温至1000℃并保温300min,冷却至室温取出,经盐酸洗后,再水洗至中性,干燥,即得活性炭。
对比例3、将上述实施例1中所用原料--美人蕉分别换成芦苇、香根草、再力花、茭草和水葱,其余内容等同于实施例1。
将上述对比例1-3所得物按照上述实验3所述方法进行检测,所得结果如表1和图4所示:
表1
Figure PCTCN2015083346-appb-000001
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (5)

  1. 能同时吸附氨氮、镉的美人蕉生物炭的制备方法,其特征在于包括以下步骤:
    1)、准备原料:
    将收割后的美人蕉除杂后风干,然后依次进行粉碎、烘干;
    2)、隔氧炭化:
    将粉碎烘干后的美人蕉放入炭化炉内,然后以4~6℃/min的速率升温至480~520℃进行隔氧炭化反应,保温反应1.8~2.2h;
    3)、将步骤2)所得的炭化后美人蕉冷却至室温,粉碎过筛,得美人蕉生物炭。
  2. 根据权利要求1所述的美人蕉生物炭的制备方法,其特征在于:
    所述步骤2)的隔氧炭化反应过程中通入氮气使炭化炉腔内压力维持在0.04~0.06MPa。
  3. 根据权利要求1或2所述的美人蕉生物炭的制备方法,其特征在于:
    所述步骤1)中:
    美人蕉风干后的含水量为15%~20%,此%为质量%;
    粉碎至粒径≤10mm;
    于90~105℃烘干2.5~3h。
  4. 根据权利要求3所述的美人蕉生物炭的制备方法,其特征在于:
    所述步骤3)中,粉碎至能过60~100目的筛。
  5. 如权利要求1~4任一所述方法制备而得的美人蕉生物炭的用途,其特征是:作为水体中氨氮和重金属镉的吸附材料。
PCT/CN2015/083346 2015-05-07 2015-07-05 能同时吸附氨氮、镉的美人蕉生物炭的制备方法 WO2016176906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510229405.7 2015-05-07
CN201510229405.7A CN104923153A (zh) 2015-05-07 2015-05-07 能同时吸附氨氮、镉的美人蕉生物炭的制备方法

Publications (1)

Publication Number Publication Date
WO2016176906A1 true WO2016176906A1 (zh) 2016-11-10

Family

ID=54110770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083346 WO2016176906A1 (zh) 2015-05-07 2015-07-05 能同时吸附氨氮、镉的美人蕉生物炭的制备方法

Country Status (2)

Country Link
CN (1) CN104923153A (zh)
WO (1) WO2016176906A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410237A (zh) * 2020-05-09 2020-07-14 中南林业科技大学 一种废弃污染生物质资源化利用的方法
CN111974348A (zh) * 2020-07-23 2020-11-24 江苏大学 铜铝双金属氧化物改性竹炭纤维复合材料的制备及其去除水中氨氮的应用
CN112063397A (zh) * 2020-09-23 2020-12-11 栾运宇 一种多级控温控压控氧且便于回收可燃气体的生物炭制备工艺
CN112569900A (zh) * 2020-11-05 2021-03-30 仲恺农业工程学院 一种新型市政污泥生物炭的制备方法及其应用
CN113559822A (zh) * 2021-07-28 2021-10-29 中国冶金地质总局中南地质调查院 一种茶籽壳生物炭的制备方法及其应用
CN113856622A (zh) * 2021-09-09 2021-12-31 桂林理工大学 一种高锰酸钾改性桉木生物炭吸附剂的制备方法及应用
CN113856623A (zh) * 2021-09-09 2021-12-31 桂林理工大学 一种氯化镁改性桉木生物炭吸附剂的制备方法及应用
CN113893823A (zh) * 2021-11-10 2022-01-07 福州大学 一种百香果基生物质炭材料及其制备方法与应用
CN114210309A (zh) * 2021-12-14 2022-03-22 浙江省海洋水产研究所 一种生物炭修复剂及其在海洋重金属污染中的应用
CN115213220A (zh) * 2022-06-10 2022-10-21 怀化学院 一种含镉苎麻废料的资源化利用方法
CN115304050A (zh) * 2022-08-12 2022-11-08 云南师范大学 一种柑橘皮生物炭的制备方法及其在废水处理方面的应用
CN115814757A (zh) * 2023-02-09 2023-03-21 四川省农业科学院生物技术核技术研究所 一种高效吸附抗生素的菜籽粕生物炭的制备方法和应用
CN115925125A (zh) * 2022-01-24 2023-04-07 重庆交通大学 景观水体修复处理生态浮床装置
CN117147253A (zh) * 2023-08-25 2023-12-01 广东省农业科学院农业质量标准与监测技术研究所 一种美人蕉湿地系统中高氯酸盐降解的研究方法
CN117160405A (zh) * 2023-09-11 2023-12-05 山东建筑大学 一种氯化钙活化的吸附-催化氧气氧化特性生物炭、制备方法及应用
CN117185489A (zh) * 2023-08-15 2023-12-08 长江生态环保集团有限公司 一种人工湿地脱氮除磷填料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175072A (zh) * 2017-06-16 2017-09-19 中国环境科学研究院 一种生物炭基材料的制备及其在去除水环境中典型有机氯农药中的应用
CN109529783A (zh) * 2019-01-08 2019-03-29 滨州学院 氨基改性生物炭制备方法
CN109499540A (zh) * 2019-01-09 2019-03-22 中南林业科技大学 一种基于美人蕉生物炭的废水处理材料、制备方法和应用
CN110563486A (zh) * 2019-08-08 2019-12-13 天津大学 一种利用水体修复植物聚草制备富磷水热炭及制备方法
CN111229165B (zh) * 2020-03-09 2021-07-23 中国矿业大学(北京) 净化富营养化水体的方法、活化荞麦壳生物炭及制备方法
CN111821947A (zh) * 2020-07-15 2020-10-27 四川大学 一种蚕蛹生物炭及其制备方法和应用
CN112122334A (zh) * 2020-09-08 2020-12-25 浙江省冶金研究院有限公司 一种化学氧化耦合生物炭强化微生物修复有机-重金属复合污染土壤的方法
CN113145636A (zh) * 2021-04-02 2021-07-23 中国科学院水生生物研究所 用于固定化土壤重金属镉的生物炭材料及其修复重金属污染土壤的方法
CN116351390A (zh) * 2021-12-21 2023-06-30 天津大学 一种基于镉吸附水热炭热解提质再生的生物炭及其制备方法和应用
CN114853298B (zh) * 2022-05-05 2023-06-23 同济大学 一种利用高碳氮比生物质碳促进高氨氮生境下污泥厌氧消化产甲烷的方法
CN115818639B (zh) * 2022-11-16 2023-08-04 珠江水利委员会珠江水利科学研究院 一种生物质体相炭材料及其制备和在环境修复领域的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857225A (zh) * 2010-06-30 2010-10-13 福建师范大学 一种利用废弃芭蕉芋渣制备活性炭的方法
US20110008317A1 (en) * 2007-08-02 2011-01-13 The Forestry Commission Charcoals
WO2014077714A1 (en) * 2012-11-16 2014-05-22 Politechnika Poznańska Production of activated carbon from tobacco leaves by simultaneous carbonization and self-activation and the activated carbon thus obtained
CN104087323A (zh) * 2014-07-08 2014-10-08 浙江大学 一种利用食用菌废料制备生物炭的方法及应用
CN104511272A (zh) * 2014-10-22 2015-04-15 王欣 一种去除废水中镉的吸附剂制备及应用方法
CN104549154A (zh) * 2015-01-23 2015-04-29 浙江大学 能安全吸附水体中镉的生物炭的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110008317A1 (en) * 2007-08-02 2011-01-13 The Forestry Commission Charcoals
CN101857225A (zh) * 2010-06-30 2010-10-13 福建师范大学 一种利用废弃芭蕉芋渣制备活性炭的方法
WO2014077714A1 (en) * 2012-11-16 2014-05-22 Politechnika Poznańska Production of activated carbon from tobacco leaves by simultaneous carbonization and self-activation and the activated carbon thus obtained
CN104087323A (zh) * 2014-07-08 2014-10-08 浙江大学 一种利用食用菌废料制备生物炭的方法及应用
CN104511272A (zh) * 2014-10-22 2015-04-15 王欣 一种去除废水中镉的吸附剂制备及应用方法
CN104549154A (zh) * 2015-01-23 2015-04-29 浙江大学 能安全吸附水体中镉的生物炭的制备方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410237A (zh) * 2020-05-09 2020-07-14 中南林业科技大学 一种废弃污染生物质资源化利用的方法
CN111410237B (zh) * 2020-05-09 2023-07-14 中南林业科技大学 一种废弃污染生物质资源化利用的方法
CN111974348A (zh) * 2020-07-23 2020-11-24 江苏大学 铜铝双金属氧化物改性竹炭纤维复合材料的制备及其去除水中氨氮的应用
CN112063397A (zh) * 2020-09-23 2020-12-11 栾运宇 一种多级控温控压控氧且便于回收可燃气体的生物炭制备工艺
CN112569900A (zh) * 2020-11-05 2021-03-30 仲恺农业工程学院 一种新型市政污泥生物炭的制备方法及其应用
CN113559822A (zh) * 2021-07-28 2021-10-29 中国冶金地质总局中南地质调查院 一种茶籽壳生物炭的制备方法及其应用
CN113856623A (zh) * 2021-09-09 2021-12-31 桂林理工大学 一种氯化镁改性桉木生物炭吸附剂的制备方法及应用
CN113856622A (zh) * 2021-09-09 2021-12-31 桂林理工大学 一种高锰酸钾改性桉木生物炭吸附剂的制备方法及应用
CN113893823A (zh) * 2021-11-10 2022-01-07 福州大学 一种百香果基生物质炭材料及其制备方法与应用
CN114210309A (zh) * 2021-12-14 2022-03-22 浙江省海洋水产研究所 一种生物炭修复剂及其在海洋重金属污染中的应用
CN114210309B (zh) * 2021-12-14 2023-06-16 浙江省海洋水产研究所 一种生物炭修复剂及其在海洋重金属污染中的应用
CN115925125A (zh) * 2022-01-24 2023-04-07 重庆交通大学 景观水体修复处理生态浮床装置
CN115213220A (zh) * 2022-06-10 2022-10-21 怀化学院 一种含镉苎麻废料的资源化利用方法
CN115304050A (zh) * 2022-08-12 2022-11-08 云南师范大学 一种柑橘皮生物炭的制备方法及其在废水处理方面的应用
CN115304050B (zh) * 2022-08-12 2024-01-23 云南师范大学 一种柑橘皮生物炭的制备方法及其在废水处理方面的应用
CN115814757A (zh) * 2023-02-09 2023-03-21 四川省农业科学院生物技术核技术研究所 一种高效吸附抗生素的菜籽粕生物炭的制备方法和应用
CN115814757B (zh) * 2023-02-09 2024-05-24 四川省农业科学院生物技术核技术研究所 一种高效吸附抗生素的菜籽粕生物炭的制备方法和应用
CN117185489A (zh) * 2023-08-15 2023-12-08 长江生态环保集团有限公司 一种人工湿地脱氮除磷填料及其制备方法
CN117147253A (zh) * 2023-08-25 2023-12-01 广东省农业科学院农业质量标准与监测技术研究所 一种美人蕉湿地系统中高氯酸盐降解的研究方法
CN117147253B (zh) * 2023-08-25 2024-06-04 广东省农业科学院农业质量标准与监测技术研究所 一种美人蕉湿地系统中高氯酸盐浓度的测定方法
CN117160405A (zh) * 2023-09-11 2023-12-05 山东建筑大学 一种氯化钙活化的吸附-催化氧气氧化特性生物炭、制备方法及应用

Also Published As

Publication number Publication date
CN104923153A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2016176906A1 (zh) 能同时吸附氨氮、镉的美人蕉生物炭的制备方法
Zhang et al. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars
Wang et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge
Shao et al. The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge
CN112387269A (zh) 剩余污泥和榛子壳共热解制备生物炭及其光催化改性方法
CN105731752A (zh) 一种利用剩余污泥和榛子壳共热解制备生物炭的方法
CN102107872A (zh) 一种化工污泥添加果壳制备活性炭的工艺
CN103464101A (zh) 一种修复过重金属污染土壤的植物芦竹资源化利用的方法
CN110813239A (zh) 一种生物炭负载镧掺杂铁氧化物的制备方法
CN104549154B (zh) 能安全吸附水体中镉的生物炭的制备方法
CN105712733A (zh) 一种由垃圾焚烧飞灰和生物质热解气化残渣制备的多孔生物陶粒及其制备方法
CN102120575A (zh) 一种化工污泥制备活性炭的工艺
CN102530941A (zh) 污泥基活性炭及其制备方法
CN111533125A (zh) 一种氮掺杂多级孔碳材料的制备方法
CN116474720B (zh) 一种基于赤泥增强磁性秸秆生物炭材料的制备方法与应用
CN110564433A (zh) 一种超富集植物基生物炭及其制备方法与应用
CN104511272A (zh) 一种去除废水中镉的吸附剂制备及应用方法
CN105502390A (zh) 一种利用稻壳和污水厂污泥制备活性炭的方法
CN102600799A (zh) 利用互花米草基生物炭治理含铜废水的方法
CN105753608A (zh) 一种新型铁基生物炭的制备方法及其应用
CN103480330B (zh) 一种吸附焦化废水的生物质改性吸附剂及其制备方法和应用
CN105195092A (zh) 一种污泥基生物炭及其制备方法
Januševičius et al. The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods
CN113318738A (zh) 一种固废基生物炭材料及其制备方法和作为改善污泥脱水性能的添加材料应用
CN113651588B (zh) 一种高效除磷免烧陶粒及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891157

Country of ref document: EP

Kind code of ref document: A1