WO2016176867A1 - 一种高效全功能土壤修复剂及其制备方法 - Google Patents

一种高效全功能土壤修复剂及其制备方法 Download PDF

Info

Publication number
WO2016176867A1
WO2016176867A1 PCT/CN2015/078755 CN2015078755W WO2016176867A1 WO 2016176867 A1 WO2016176867 A1 WO 2016176867A1 CN 2015078755 W CN2015078755 W CN 2015078755W WO 2016176867 A1 WO2016176867 A1 WO 2016176867A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
efficiency
soil remediation
remediation agent
full
Prior art date
Application number
PCT/CN2015/078755
Other languages
English (en)
French (fr)
Inventor
朱作霖
Original Assignee
宁波市雨辰环保科技有限公司
明·发漫地公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波市雨辰环保科技有限公司, 明·发漫地公司 filed Critical 宁波市雨辰环保科技有限公司
Publication of WO2016176867A1 publication Critical patent/WO2016176867A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds

Definitions

  • the invention belongs to the technical field of environmental protection, and particularly relates to a full-function soil repairing agent, which can effectively remove various organic pollutants in the soil, does not damage the organic matter in the soil, and removes heavy metals in the soil, and It can treat soil acidification, increase effective organic matter in soil, and effectively promote biodegradation of silk-ring aromatics in soil.
  • the degraded area of cultivated land accounts for more than 40% of the total area of cultivated land. “The weather is hard and hard, and the rain does not ooze soup”, and soil acidification is seriously polluted.
  • the results of national cultivated land quality monitoring showed that in the black soil region of Northeast China, the organic matter content of cultivated soil decreased sharply, the average content per kilogram was 26.7 grams, which was 31% lower than that of 30 years ago.
  • the black soil layer has decreased from 80 cm to 100 cm in the early stage of reclamation. To 20 cm - 30 cm, loess has been exposed in many places.
  • Soil pollution mainly pollutants are alkane compounds and heavy metals.
  • Alkane compounds are derived from the oil production, transportation, refining, transportation, storage, use and other aspects of petroleum products; a variety of chemical plants including paper mill sewage and waste gas and solid waste treatment; coal During the combustion of burning and petrochemical products, the production of silk-ring aromatics, heavy metal dust, and the degradation of plastics, rubber and other products in the garbage. They directly enter the soil causing pollution or entering the soil through contaminated water.
  • Heavy metals in the soil including chromium, cadmium, mercury, lead, nickel, copper, etc., mining, ore refining, preparation and production, and the use of pesticides, paints, batteries and industrial waste, are the cause of heavy metals The root cause of the soil.
  • Known methods of soil remediation include biological, chemical, and physical methods.
  • Biological methods include microbial degradation methods and plant treatment methods.
  • soil remediation methods are effective soil remediation methods, these two methods are only suitable for the repair of contaminated soils with mild to moderately low levels. For heavily polluted soils, These two methods have no effect; for moderately contaminated soils, these two methods have little effect.
  • Alkanes in the soil the rate of natural degradation is extremely slow, because these compounds generally do not contain digestive points that common bacteria can digest, they need to be first converted into substances containing heteroatoms, and the existing flora in the soil can effectively They degrade.
  • the biodegradation method is to add artificially cultivated special flora to the soil, which can directly digest the alkane compounds or convert the alkane compounds into organic matter containing digestive points, and convert them into common bacteria in the soil. Organic matter.
  • the advantage of this soil remediation method is low cost ($50-$90/m3 soil) and thorough repair because the final degradation products are carbon dioxide and water.
  • the disadvantage of this repair method is that the repair takes a long time. Generally, the soil pollutants that can be treated are only about 1%. At the same time, the heavy metal pollution in the soil can not be serious. Serious heavy metal pollution will inhibit these bacteria. Active, even killing these flora. Plant therapy is used on contaminated land to plant specific plants and absorb heavy metals from the soil. Heavyly polluted soils cannot grow plants, moderately polluted soils, and plants are difficult to grow normally.
  • the complexing agent is used to treat heavy metal pollution, and the synthesized ligand and heavy metal complex are water-soluble complexes, so that the heavy metal can be washed out by water or gradually washed into the soil by rainwater and gradually solidified. In the ore.
  • this method is extremely costly, except that metals such as uranium, which are extracted from the soil, are generally not used.
  • Heavy metals in the soil can also be solidified by precipitation.
  • probiotics can work normally;
  • heavy metals are converted into precipitates that are difficult to dissolve in water, and plants do not absorb By these heavy metals, they will not enter the food chain and damage human health.
  • Precipitation can generally fix 82%-95% heavy metals, and the repair cost is generally between $15-35/tonne soil. This is a relatively inexpensive method of reducing heavy metal pollution, but there is a danger of heavy metal being released slowly, requiring long-term monitoring, and adding precipitant at any time, and the long-term accumulation cost is high.
  • PCBs and PAHs are strong carcinogens and have a strong damage to the human body. At the same time, these substances severely inhibit the activity of probiotics in the soil and are extremely difficult to be naturally degraded.
  • Methods for removing these contaminants from the soil generally use a critical extractant extraction method.
  • Commonly used critical liquids are carbon dioxide, propane and butane, and in some cases methanol or ethanol is used. These compound solvents are converted to critical liquids at high pressures and temperatures. The critical liquid is fully contacted with the soil in a special extraction vessel to extract these PCBs and PAHs from the soil, and the extraction rate can generally reach 90%-98%.
  • the cost of this method is high, and the on-site operating system typically requires $20-$1 million plus additional extractant and operating costs.
  • Oxidation is a widely used soil remediation method, which mainly includes three: chlorine dioxide and hydrogen peroxide, photolysis, and reductive dechlorination. .
  • Chlorine dioxide and hydrogen peroxide are easy to use and they are easily dispersed into the soil. These two oxidants both oxidize organic pollutants and oxidize inorganic pollutants.
  • the oxidation process can seriously damage the soil organic matter while removing organic pollutants from the soil.
  • for silk aromatics and PCBs they are basically ineffective.
  • Photolysis deals specifically with aromatic contaminants because aromatic contaminants are effective in absorbing UV photons, including PCBs and PAHs, often in combination with hydrogen peroxide, which is costly to use.
  • the reductive dechlorination method is mainly for the chlorine-containing organic pollutants in the soil.
  • the chlorine is removed from the organic molecules, and the original chlorinated organic pollutants are degraded into microbial degradation. substance.
  • This processing cost is typically $130-390 for a cubic meter of contaminated soil.
  • In-situ catalytic peroxidation mainly for the organic pollutants contained in the soil that are too difficult to degrade, such as nitrate Nitrobenzene, trichloroethylene (TCE), and the like.
  • the catalytic system includes a catalyst and hydrogen peroxide, which is costly.
  • Physical soil remediation methods include earth moving and high temperature calcination.
  • the earthmoving method only transfers pollution, and the original soil is still unusable.
  • the calcination temperature is generally between 870 and 1200 degrees Celsius.
  • organic pollutants in the soil can be removed by more than 99.9%.
  • High-temperature calcination cannot solve heavy metal pollutants in soil.
  • the disadvantage of this method is that the cost is very high, and the calcination cost per ton of soil is $165-555.
  • Defect 2 calcination not only destroys all organic matter in the soil, but also kills All soil probiotics. This method is generally only used for commercial soils that are urgently needed for development.
  • the invention provides an efficient full-featured soil repairing agent and a preparation method thereof, so as to solve the technical problems of low efficiency and high cost of repairing soil by the existing biological, chemical and physical methods.
  • the technical solution adopted by the present invention is:
  • the soil remediation agent is a mixture of calcium salts of a plurality of phenolic compounds
  • the soil remediation agent is a brownish gray solid at normal temperature
  • the phenolic compound contains 1-10 a benzene ring and a phenol having a molecular weight of between 170 and 1150 and containing 2 to 10 benzene rings, the benzene ring being a single present and being a non-silk aromatic hydrocarbon, the benzene ring passing between 0 and 2 carbons
  • the atomic phase is connected, wherein the monobasic ring has a phenolic weight content of between 0.1% and 3%, and the monophenyl ring phenols include phenol, methylphenol, methoxyphenol And 2,6-dimethoxyphenol.
  • a method for preparing an efficient full-featured soil repairing agent comprising the steps of:
  • the catalyst is prepared from woody biomass including hardwood and softwood, and the woody biomass includes pine, cypress, poplar, willow, mahogany, pear, and apple wood. , eucalyptus, jujube, birch, orange trees, fig wood, eucalyptus, mulberry and paulownia wood.
  • the hydrolysis reaction temperature is greater than 180 ° C and does not exceed 260 ° C, and the pressure is greater than 10 Atmospheric pressure.
  • the auxiliary agent in the step (1) is quicklime or slaked lime.
  • the catalyst weight ratio in the step (1) is 5% of the crop straw.
  • the weight ratio of the dry weight of the crop straw to the water in the step (1) is 1:7.
  • the hydrolysis reaction in the step (2) takes a time of 50 to 80 minutes.
  • the solid product after drying in the step (3) has a water content of less than 10%.
  • the invention discloses an efficient full-featured soil repairing agent, which can effectively remove all organic pollutants such as alkanes, silk-ring aromatics, chlorinated organic substances, nitroaromatic hydrocarbons, etc. in contaminated soil, and At the same time, cadmium, lead, chromium, nickel, copper, zinc, mercury, arsenic, and other heavy metals and toxic elements in contaminated soil are removed.
  • the invention discloses an efficient full-featured soil repairing agent, which absorbs one mole of these organic pollutants from contaminated soil, and the amount of new substances required is between 350-600 grams; the ability to remove heavy metals absorbs one mole For heavy metals, the amount of new material required is between 0.9 and 2.3 kg.
  • the novel high-efficiency full-function soil repairing agent disclosed by the invention has simple and cheap preparation process, easy catalyst preparation, cheap and easy to obtain crop straw as raw material, and the preparation process is simple catalytic hydrolysis reaction, preparation cost and use cost of new substance. Low, easy to use and have broad market application prospects.
  • FIG. 1 is a flow chart of preparation of an efficient full-featured soil repairing agent of the present invention
  • Figure 3 is a liquid mass spectrum (LCMS) of acidified in an efficient full-featured soil repairing agent of the present invention.
  • the present invention provides a new high-efficiency full-featured soil remediation agent, which can effectively remove organic pollutants such as alkanes, silk-ring aromatic hydrocarbons, chlorinated organic compounds and nitroaromatic hydrocarbons in contaminated soil.
  • organic pollutants such as alkanes, silk-ring aromatic hydrocarbons, chlorinated organic compounds and nitroaromatic hydrocarbons in contaminated soil.
  • heavy metals and toxic elements such as cadmium, lead, chromium, nickel, copper, zinc, mercury and arsenic in contaminated soil are removed.
  • This new high-efficiency and full-function soil repairing agent has low manufacturing and use cost.
  • the new high-efficiency and full-featured soil remediation agent disclosed by the invention is prepared from agricultural residues which are very easy to obtain.
  • the crops include all crops, such as: wheat, corn, millet, cotton, rice, sorghum, rape, reed, peanut, bulrush, pepper, sesame, various beans, tomatoes, potatoes, melons, weeds in farmland. Wait. They can be used alone or in combination.
  • the crop straw selected as the raw material is selected as a hydrolysis reaction using water as a solvent, so that the crop straw as a raw material does not need to be dried.
  • the catalyst for the hydrolysis of crop straw is prepared from woody biomass.
  • Woody biomass includes all hardwoods and softwoods, including but not limited to pine, cypress, poplar, willow, mahogany, pear, apple, elm, jujube, birch, orange, fig, elm, mulberry , Paulownia wood, etc., preferably pine.
  • the catalyst in the step (1) has a weight ratio of wood biomass to water of 1:7 (solid: water), using anthracene (Anthraquinone) having a wood biomass weight of about 1% as a catalyst, and 35% woody biomass.
  • the weight of quicklime is reacted at a temperature of 250 ° C under a pressure of 5 MPa for 50 minutes and cooled to below 90 ° C.
  • the reaction mixture is placed under the protection of an inert gas to prevent a decrease in the catalytic performance of the catalyst; for the solid-liquid separation operation, the temperature of the reaction mixture is controlled to be greater than 60 °C.
  • the solid catalyst obtained after solid-liquid separation needs to be vacuum dried at a relatively low temperature, preferably at a temperature lower than 60 ° C to prevent degradation of the catalyst, and after vacuum drying, an off-white solid catalyst is obtained.
  • the reaction temperature needs to be greater than 180 ° C, the pressure is greater than 10 atmospheres; at the same time to prevent carbonization and gasification of organic matter in crop straw during the hydrolysis reaction
  • the yield of the target product is lowered, the temperature of the hydrolysis reaction does not exceed 260 ° C, and the pressure of the corresponding reaction system is greater than the saturated vapor pressure of water at the temperature.
  • the corresponding reaction pressure is controlled to 50 atm or more.
  • the auxiliary agent for the hydrolysis of crop straw uses quicklime or slaked lime, preferably quicklime.
  • quicklime slaked lime
  • the price of quicklime is lower and the dosage is less.
  • the preparation of a new high-efficiency full-featured soil remediation agent the condition of the hydrolysis reaction of the crop straw, preferably the catalyst (weight ratio) amount of 5 percent of the weight of the crop straw.
  • the amount of the catalyst used is less than 5%, the hydrolysis reaction proceeds normally, but the rate is slightly slower; the amount is higher than 5%, and the hydrolysis reaction is not significantly accelerated, so that the amount of the catalyst is more than 5% by weight.
  • the temperature of the hydrolysis reaction of the crop straw preferably 180-260 ° C, the temperature is lower than 180 ° C, the reaction time is longer, not preferred; the reaction temperature is higher than 260 °, the yield of the target product It is not preferable.
  • the pressure of the hydrolysis reaction is to prevent the gasification of water at the reaction temperature, and the energy consumption of the hydrolysis reaction is greatly increased. Therefore, the pressure of the hydrolysis reaction may be slightly higher than the saturated vapor pressure of the water at the temperature. For example, at a reaction temperature of 250 ° C, the pressure used is 50 atm.
  • a new high-efficiency and full-featured soil remediation agent is prepared, and the weight ratio between the dry weight of the straw and the water of the crop straw is 1:7. Below this ratio, the content of the product in the hydrolysis reaction mixture is low, which is not preferable; higher than this ratio During continuous hydrolysis, there is a problem with continuous feeding, which is not preferable.
  • reaction time is generally 50-80 minutes.
  • the separation of the target product is selected by a pressure filtration method, although other solid-liquid separation methods can also separate the target product from the liquid, for example, the centrifugal separation method can also be very Good product separation is accomplished, but at a higher cost, which is not preferred.
  • the temperature of the hydrolysis reaction mixture is maintained above 60 °C.
  • the solid product obtained by pressure filtration separation is a target product, which is dried to a water content of less than 10% by vacuum drying, and then pulverized into a fine powder.
  • the new high-efficiency and full-featured soil remediation agent provided by the invention can be deepened with the filtration time if solid-liquid separation, such as pressure filtration, is carried out in an environment exposed to air.
  • solid-liquid separation such as pressure filtration
  • the novel high-efficiency full-featured soil repairing agent provided by the invention is identified as a mixture by elemental analysis, nuclear magnetic resonance NMR, molecular weight liquid chromatography mass spectrometry, atomic absorption spectroscopy, and is a calcium salt of various phenols (Calcium Salts of Phenolic) Chemicals) is a brownish gray solid at room temperature.
  • the phenolic compound refers to a phenol having 1-10 benzene rings and a molecular weight of between 170-1150 and containing 2-10 benzene rings in the molecule, and these benzene rings are single present and non-woven rings.
  • the benzene content of the monophenyl ring in the mixture is between 0.1% and 3% by weight, and the phenols of the monophenyl ring include phenol, methylphenol, methoxyphenol, 2,6-dimethoxyphenol and the like.
  • the novel high-efficiency full-featured soil remediation agent of the present invention which removes organic contaminants from soil, is different from all known soil remediation methods.
  • This new high-efficiency and full-featured soil remediation agent removes organic pollutants from the soil, mainly through chemical reaction absorption, that is, organic pollutants in the soil, combined with chemical bonds and new high-efficiency full-featured soil remediation agents to remove contaminants.
  • This newly formed organic matter can be used by probiotics in the soil.
  • the soil used to test the function of the new high-efficiency full-featured soil remediation agent of the present invention, its composition and various pollutant contents are: clay 39%, loam 41%, sand 20%, heavy metal (mg/kg), cadmium (Cd) 125, chromium (Cr) 157, lead (Pb) 211, nickel (Ni) 226, copper (Cu) 308, zinc (Zn) 273, mercury (Hg) 192.
  • Organic pollutants (mg/kg): silk-ring aromatic hydrocarbons (PAHs) 393, polychlorinated biphenyls (PCBs) 77, toluene 123, xylene 105, nitrobenzene 57, furans 57, thiophenes 33.
  • PAHs silk-ring aromatic hydrocarbons
  • PCBs polychlorinated biphenyls
  • the soil that assists the soil biotherapy function is soil without heavy metals and organic pollutants, and its composition content is: clay 38%, loam 40%, sand 19%, organic matter. 3%; after UV sterilization, 100 mg/kg of silk an aromatic hydrocarbons were added, including Acenaphthene, Phenothrene, Fluoranthene, Chrysene and Benzo(a)pyrene.
  • the heavy metal content in the soil was determined by aqua regia method, dissolved in pure water, and determined by inductively coupled plasma mass spectrometry (ICP-MS).
  • the organic matter in the soil is determined by the combustion method.
  • the dried soil sample was pulverized and burned at 900 ° C.
  • the carbon dioxide produced by the combustion was absorbed with an aqueous solution of potassium hydroxide, and then the excess potassium hydroxide was measured by a back titration method.
  • the organic pollutants in the soil were extracted by a Soxhlet Extraction method with 10 g of soil, 100 ml of acetone/n-hexane (1:1 volume ratio), and refluxed for 48 hours.
  • GCMS Agilent 7890GC/Agilent 5975C MS; capillary column: Restek Rtx-5MS, 30m x 0.25mm x 0.25 ⁇ m; Injector: 10:1split, 250°C
  • Carrier gas helium (helium) flow rate 1.5ml / min; temperature curve: 40 ° C start, hold 5min, ramp 1,3 ° C / min to 250 ° C; constant temperature for 20min, a total of 95min.
  • Mass spectrometer detector setup Agilent 5975C; transfer line temperature 280 ° C; ion source temperature 230 ° C; quadruple temperature 150 ° C; mass range 40-500 u; ionization potential 70 ev; injection volume 0.2 ⁇ .
  • LCMS liquid mass spectrometry
  • Vacuum drying to a water content of less than 1%, to obtain an off-white solid product is a catalyst for hydrolysis of crop straw, and stored under nitrogen protection for use.
  • the obtained target solid product was subjected to elemental analysis, and the average molecular weight was 450-600 containing one calcium.
  • the sample was suspended in methanol, sulfuric acid was adjusted to pH 4, and the solids were removed by filtration. The liquid was used to test the GCMS spectrum and LCMS spectrum of the product. Samples for NMR testing, suspended in deuterated methanol, slowly passing carbon dioxide gas Enter until the turbidity is no longer aggravated, and the solid is filtered off. Based on these data analyses, the target product is a very complex mixture of components, Calcium Salts of Phenolic Chemicals, which is a brownish gray solid at room temperature.
  • the phenolic compound refers to a phenol having 1-10 benzene rings in the molecule, and these benzene rings are all present in a single, non-silk aromatic hydrocarbon, and each benzene ring is connected via 0-2 carbon atoms. .
  • the benzene content of the monophenyl ring is between 0.1 and 3%, and the phenols of the monophenyl ring include phenol, methyl phenol, methoxy phenol, 2,6-dimethoxy phenol and the like.
  • This experiment used a comparative method, and the comparative extractant was sodium citrate and pure water. 10 g of contaminated soil in an open container, respectively placed in 250 ml of pure water, 250 ml of 5% by weight, volume ratio of citric acid solution, 250 ml of 5% weight / volume ratio of the soil repair agent solution of the invention, mechanical stirring 48 After an hour, centrifugation, the extracted soil aqua regia is dissolved to determine the heavy metal content, and then the extraction rate (%) of heavy metals from the soil is calculated.
  • each data is at least the average of three test data:
  • the amount of the soil repairing agent and citric acid of the present invention was changed, and the results showed that the extraction of an equimolar amount of heavy metal required a repairing agent amount of about 450 g; and the amount of sodium citrate was 4.5 times.
  • Molar equivalent to extract 30-50% of heavy metals that is, 450 grams of the repair agent of the present invention, better than 9
  • the price of industrial grade sodium citrate is ⁇ 4000RMB/ton, and the soil repairing agent of the present invention has a value of only ⁇ 20640RMB/ton for heavy metals.
  • the extract of the soil repairing agent disclosed in the invention is added with an equal volume of methanol, and after mixing uniformly, the solid is filtered out, and the obtained liquid is detected by GCMS and LCMS. In these solutions, no obvious organic pollutants are detected, and the result is not detected. It is shown that the method for removing soil organic pollutants by the soil remediation agent disclosed by the present invention may be a new substance which forms a stable chemical bond.
  • the soil remediation agent of the present invention has the ability to remove the paraffin aromatic contaminants in the soil at a dose of half the weight of the hydrogen peroxide (the hydrogen peroxide concentration is 10%, and the soil remediation concentration disclosed in the present invention is 5%). It is 15 times that of hydrogen peroxide.
  • the soil remediation agent disclosed in the present invention has the ability to remove the paraffin aromatic pollutants in the soil 30 times that of hydrogen peroxide.
  • the price of 27.5% concentration hydrogen peroxide is ⁇ 680/ton (the price converted to 100% is ⁇ 2472/ton), and the soil remediation agent disclosed in the present invention removes the value of the paraffin aromatics in the soil. When it is ⁇ 74160 yuan / ton.
  • the invention discloses a soil remediation agent and an ability to assist in biodegrading paraffin aromatic contaminants in soil.
  • white rot fungi were used as the strain for degrading the silk-ring aromatic hydrocarbons, and the inoculum concentration was 10 mg/kg.
  • the sample one is a blank control, and nothing is added; the sample 2 is 100 kg of the soil repairing agent of the present invention, and the mixture is uniformly mixed; the sample three is 1 kg of the soil, and 100 g of the soil repairing agent of the present invention is added.
  • evenly mixed, inoculated with white rot fungus sample 4 is 1 kg to prepare soil, inoculated with white rot fungus; sample 5 is 1 kg of prepared soil, 100 g of kitchen waste compost is added and mixed evenly; sample 6 is added to 1 kg of prepared soil.
  • the soil repairing agent disclosed by the invention can greatly increase the speed of microbial degradation of the silk-ring aromatics, and after the addition of the repairing agent, the silk-ring aromatic hydrocarbon can be removed by 90% or more within 30 days.
  • New high-efficiency, full-featured soil remediation agent removes organic pollutants from the soil while increasing organic matter
  • This experiment uses a comparative approach to compare the most common oxidation methods on the market today.
  • the organic pollutant in the soil is treated by 100 g of contaminated soil, and hydrogen peroxide or an equal amount of pure water or the repairing agent of the present invention is added, and the concentration of the hydrogen peroxide and the repairing agent of the present invention is 5%.
  • the three samples were mixed with air for 3 days, and the soil solids were extracted by Soxhlet Extraction to determine the content of organic pollutants in the soil: 10 g soil, 100 ml acetone/n-hexane (1:1 volume). Ratio), reflux for 48 hours.
  • the obtained liquid extract is refluxed, GCMS and LCMS are detected, the residual contaminant content in the soil is calculated, and finally the amount of organic contaminants removed from the soil is obtained.
  • the organic matter in the soil is determined by the combustion potassium hydroxide absorption method.
  • the use of hydrogen peroxide can remove some organic pollutants, but the original organic matter in the soil is destroyed by 60%.
  • the product disclosed by the invention substantially increases the organic matter in the soil while substantially removing organic pollutants from the soil.
  • the invention discloses a new high-efficiency and full-function soil repairing agent, which can effectively remove heavy metals and various organic pollutants in contaminated soil at the same time, and greatly improve the ability of biodegrading organic pollutants in soil. Because it is directly bonded to organic pollutants in the soil by chemical bonds, it can increase the effective organic matter in the soil while reducing organic pollutants in the soil.
  • the soil remediation agent of the present invention has the ability to remove the paraffin aromatic contaminants in the soil, and the value of the soil remediation agent for removing the paraffin aromatic contaminants in the soil is equivalent to ⁇ 74160 yuan/ton.
  • the soil remediation agent disclosed in the present invention has the ability to remove heavy metal contaminants in soil, and the value is only ⁇ 20640RMB/for heavy soil such as soil contaminants. Ton.
  • the invention discloses a novel high-efficiency and full-function soil repairing agent with simple preparation process, and the crop straw is cheap and easy to obtain as a raw material, and the preparation process is a simple catalytic hydrolysis reaction, and the preparation cost and the use cost of the new high-efficiency full-function soil repairing agent. Low, easy to use and have broad market application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种高效全功能土壤修复剂,所述土壤修复剂为多个酚类化合物的钙盐混合物。高效全功能土壤修复剂去除有机污染物的方法是通过化学键结合,从而让这些污染物能够被微生物降解,并增加了土壤中的有机质。土壤修复剂能够大幅增加微生物对土壤中稠环芳烃的降解速度。高效全功能土壤修复剂的制备工艺简单,以废弃的农作物秸秆作为原材料便宜易得,而且制备过程是简单的催化水解反应,生产成本和应用成本大幅降低,使用方便,具有广阔的市场应用前景。

Description

一种高效全功能土壤修复剂及其制备方法 技术领域
本发明属于环境保护技术领域,具体涉及一种全功能土壤修复剂,全功能土壤修复剂能够有效去除土壤中的各种有机污染物、不损害土壤中的有机质,同时清除土壤中的重金属,而且能够治疗土壤酸化、增加土壤中的有效有机质、有效促进土壤中绸环芳烃的生物降解。
背景技术
当前,由于工业和交通运输业的发展,如页岩油气的开发,石油和煤炭的开采利用,各种化工厂的建厂生产,土壤污染困扰着发达国家和高速发展的发展中国家和地区,土壤修复成为这些地区必须解决的挑战。对于环保先进的国家,土壤修复产业占环保产业总额的30%-50%,而中国当前基本上是空白,市场需求缺口极大。
对于中国,人口压力导致耕地退化严重,而且超过20%的土地污染严重。这种情况威胁中国的粮食安全,损害食用者的身体健康。2014年,中国农业部在江苏扬州召开全国耕地质量建设现场会,会上透露,黄淮海平原次生盐渍化严重,东北黑土地地力衰减,土壤有机质下降迅速,西北地区由土壤侵蚀导致的农田土壤退化、中南红壤贫瘠、酸化以及土壤重金属污染严重,新增耕地质量低下。目前耕地退化面积占耕地总面积的40%以上,“晴天硬邦邦,雨天不渗汤”,土壤酸化污染严重。全国耕地质量监测结果显示,在东北黑土区,耕地土壤有机质含量大幅下降,每公斤平均含量26.7克,与30年前相比降幅达31%,黑土层已由开垦初期的80厘米-100厘米下降到20厘米-30厘米,很多地方已露出黄土。为了确保未来中国粮食安全,国家已经明确提出控制耕地面积不少于18亿亩的“红线”,但这仅仅是个数量概念是远远不够的。中国在确保耕地数量的同时,需要大力加强耕地质量建设,守住耕地质量“底线”。另外,据统计,中国耕地面积不到全世界一成,却使用了全世界近四成的化肥。目前,中国农药使用量已达130万吨,是世界平均水平的2.5倍。从科学角度来说,粮食产量70%至80%靠基础地力,20%至30%靠水肥投入,而中国耕地基础地力对粮食产量的 贡献率仅为50%。工业废物污染、化肥农药污染和种子产品污染所造成的土地退化现象严重。为推进耕地质量保护与提升,此次全国耕地质量建设现场会上提出,未来要全面提高田间设施水平和耕地基础地力,改善耕地质量环境,确保到2020年建成8亿亩集中连片、旱涝保收的高标准农田,让土壤有机质含量提高0.5个百分点。总而言之,中国的土地要解决耕地中难以降解的烷烃类化合物,大幅减少土壤中的重金属污染物,提高土壤中的有机质和增加土壤中的益生菌。
因此,鉴于当前中国的土地质量现状,需要尽快发明出高效、低成本、全面的土壤修复技术,用来确保耕地质量。
土壤污染,污染物主要是烷烃类化合物和重金属。烷烃类化合物来自于石油的采油、运输、炼制,石油产品的运输、储存、使用等一系列过程中的跑冒滴漏;各种化工厂包括造纸厂的污水和废气及固体废物的处理;煤炭燃烧和石化产品燃烧过程中,产生的绸环芳烃、重金属粉尘,以及垃圾中的塑料、橡胶等产品的降解。它们直接进入土壤导致污染或者经过污染水进入土壤。土壤中的重金属,包括铬、镉、汞、铅、镍、铜、等,采各种矿、矿石炼制、制备和生产以及使用杀虫剂、油漆、蓄电池和工业废弃物,是导致重金属进入土壤的根本原因。
已知的土壤修复方法,包括生物法、化学法和物理方法。生物法包括微生物降解法和植物治疗法,虽然这类土壤修复方法是效果明显的土壤修复方法,但是这两种方法只适合于轻度到中度偏低的污染土壤修复,对于重度污染土壤,这两个方法没有作用;对于中度污染土壤,这两种方法的作用很小。土壤中烷烃类化合物,自然降解的速度极慢,因为这些化合物一般不含有常见细菌能够消化的消化点,它们需要首先被转化为含有杂原子的物质,土壤中已经存在的菌群才能有效的将它们降解。生物降解法是向土壤中加入人工培育的特殊菌群,这种菌群能够直接消化烷烃类化合物或者能够将烷烃类化合物转化为含有消化点的有机物,将它们转化为土壤中常见菌群可以利用的有机物。这种土壤修复方法的优势是成本低($50-90美元/立方米土壤)并且修复彻底,因为最终的降解产物是二氧化碳和水。这种修复方法的缺点是,修复需要的时间很长,一般能够处理的土壤污染物只在1%的含量左右,同时,土壤中的重金属污染不能严重,严重的重金属污染会抑制这些菌群的活性、甚至杀死这些菌群。植物治疗法使用在污染土地上,种植特定的植物,吸收土壤中的重金属。重度污染的土壤不能种植植物,中度污染的土壤,植物难以正常生长。
已知的化学修复方法有很多,包括络合法、沉淀固定法、临界萃取剂萃取法、氧 化法、就地催化过氧化法和光降解法等。
络合剂络合法用来处理重金属污染,合成的配体和重金属络合为水溶性的络合物,这样重金属可以被水洗出来,也可以被雨水逐步冲入土壤深处,并逐步被固化在矿石中。但是这种方法成本极其高昂,除了从土壤中提取价格很高的金属,例如铀等金属,一般不会使用。
土壤中的重金属也可以通过沉淀法进行固化,首先,重金属不再影响土壤中益生菌的生长,益生菌可以正常的工作;其次,重金属被转化为难以溶解在水中的沉淀后,植物不会吸收到这些重金属,它们就不会进入食物链而损害人体健康。沉淀法一般可以固定82%-95%的重金属,修复成本一般介于$15-35美元/吨土壤。这是一个相对比较便宜的降低重金属污染的方法,但是重金属存在被缓慢释放的危险,需要进行长期的监控,并随时补加沉淀剂,长期累加成本很高。
如果土壤中出现较为大量的多氯联苯(PCBs)和绸环芳烃(PAHs),它们是强的致癌物,对人体的损害能力很强。同时,这些物质严重抑制土壤中益生菌的活性,且极难被自然降解。清除土壤中这些污染物的方法,一般使用临界萃取剂萃取法。常用的临界液体是二氧化碳、丙烷和丁烷,个别情况下会使用甲醇或乙醇。这些化合物溶剂,在高压和一定的温度下,被转化为临界液体。临界液体在特制的萃取容器内和土壤充分接触,从而将这些PCBs和PAHs从土壤中萃取出来,萃取率一般可以达到90%-98%。这种方法的成本高,现场操作的系统,一般需要$20-100万美元,还要另外加上萃取剂和运行成本。
氧化法是应用较为广泛的土壤修复方法,主要包括三个:二氧化氯和双氧水氧化法(chlorine dioxide and hydrogen peroxide additives)、光解氧化法(photolysis)、和还原脱氯氧化法(reductive dechlorination)。二氧化氯和双氧水易于使用,它们很容易得被分散到土壤中。这两种氧化剂,既可以氧化有机污染物,又可以氧化无机污染物。但是,氧化法在清除土壤中有机污染物的同时,会严重破坏土壤有机质。另外,对于绸环芳烃和PCBs,它们基本无效。光解法专门对付芳烃污染物,因为芳烃污染物能够有效吸收紫外光子,包括PCBs和PAHs,常常和双氧水结合使用,这种方法的使用成本很高。还原脱氯法主要针对土壤中的含氯有机污染物,通过和高浓度强碱性的氢氧化钠反应,将氯从有机物分子上拿走,原氯化有机物污染物被降解为易于微生物降解的物质。这种处理成本,一般为处理一立方米的污染土壤费用为$130-390美元。
就地催化过氧化法,主要针对土壤中含有的太多地难以降解的有机污染物,如硝 基苯(nitrobenzene)、三氯乙烯(trichloroethylene,TCE)等。催化体系包括催化剂和双氧水,成本较高。
物理土壤修复法包括移土法和高温煅烧法。移土法只是转移污染,原土壤仍然无法使用。高温煅烧法,煅烧温度一般在870-1200摄氏度。通过高温煅烧,土壤中的有机污染物能够被清除99.9%以上。高温煅烧法无法解决土壤中的重金属污染物,这种方法的缺陷是成本极高,每吨土壤的煅烧费用$165-555美元;缺陷二:煅烧不仅会破坏掉土壤中所有的有机质,同时杀死所有的土壤益生菌群。这种方法,一般只用于急需开发的商业化土壤。
当前,亟需发明出能够同时治理中高浓度土壤污染的方法,可以同时清除土壤中的各种有机污染物和各种重金属污染物,并且不损害土壤中的有机质,且土壤修复的成本低、易于使用。
发明内容
本发明提供一种高效全功能土壤修复剂及其制备方法,以解决现有生物法、化学法和物理方法修复土壤效率低、成本高的技术问题。
为了解决以上技术问题,本发明采取的技术方案是:
一种高效全功能土壤修复剂,所述土壤修复剂为多个酚类化合物的钙盐混合物,所述土壤修复剂在常温下为棕灰色固体,所述酚类化合物的分子中含有1-10个苯环和分子量介于170-1150之间且含有2-10个苯环的酚类,所述苯环为单个存在并且为非绸环芳烃,所述苯环之间经由0-2个碳原子相连接,所述钙盐混合物中,所述单苯环的酚类重量含量介于0.1%-3%之间,所述单苯环的酚类包括苯酚、甲基苯酚、甲氧基苯酚和2,6-二甲氧基苯酚。
一种高效全功能土壤修复剂的制备方法,所述方法包括以下步骤:
(1)将农作物秸秆与水作为溶剂混合,并添加催化剂和辅剂;
(2)将反应混合物置于高压反应釜内进行水解反应;
(3)将采用压滤方法分离得到的固体产物干燥并粉碎为细的粉末。
优选为,所述步骤(1)中催化剂以木质生物质为原料制备,所述木质生物质包括硬木和软木,所述木质生物质包括松木、柏木、杨木、柳木、桃木、梨木、苹果木、榉木、枣木、桦木、桔子树木、无花果木、椿木、桑木和泡桐木等。
优选为,所述步骤(2)中水解反应温度大于180℃且不超过260℃,压力大于10 个大气压。
优选为,所述步骤(1)中辅剂为生石灰或熟石灰。
优选为,所述步骤(1)中催化剂重量比例用量为所述农作物秸秆的5%。
优选为,所述步骤(1)中农作物秸秆的干重与水之间的重量比为1:7。
优选为,所述步骤(2)中水解反应的时间为50-80分钟。
优选为,所述步骤(3)中干燥后的固体产物的含水量低于10%。
在采用上述技术方案后,本发明公开了一种高效全功能土壤修复剂,可以有效去除污染土壤中的烷烃类、绸环芳烃了、氯代有机物、硝基芳香烃等所有有机污染物,并同时去除污染土壤中的镉、铅、铬、镍、铜、锌、汞、砷、等重金属及毒元素。
本发明公开的一种高效全功能土壤修复剂,从污染的土壤中吸收一摩尔的这些有机污染物质,需要的新物质的量介于350-600克之间;去除重金属的能力,吸收一摩尔的重金属,需要的新物质的量介于0.9-2.3公斤之间。
本发明揭示的全新的高效全功能土壤修复剂,制备工艺简单便宜,催化剂易于制取,以农作物秸秆作为原材料便宜易得,而且制备过程是简单的催化水解反应,新物质的制备成本和使用成本低,使用方便且具有广阔的市场应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明高效全功能土壤修复剂的制备流程图;
图2是本发明高效全功能土壤修复剂中单苯环酚类的HPLC谱图;
图3是本发明高效全功能土壤修复剂中被酸化后的液质谱图(LCMS)。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明 保护的范围。
如图1至图3所示,本发明提供一种全新的高效全功能土壤修复剂,可以有效去除污染土壤中的烷烃类、绸环芳烃、氯代有机物、硝基芳香烃等有机污染物,并同时去除污染土壤中的镉、铅、铬、镍、铜、锌、汞、砷等重金属及毒元素,这种新高效全功能土壤修复剂的制造和使用成本低。
本发明揭示的全新高效全功能土壤修复剂以非常易于得到的农作物秸秆(Agricultural Residues)为原材料制备。
其中农作物包括所有的农作物,例如:麦子、玉米、小米、棉花、稻子、高粱、油菜、芦苇、花生、蒲草、辣椒、芝麻、各种豆类、番茄、薯类、瓜类、农田里的野草等。它们可以单独使用,也可以混合使用。
为了确保全新高效全功能土壤修复剂制备成本尽可能低,选为原材料的农作物秸秆,制备生产工艺选为以水为溶剂的水解反应,这样作为原材料的农作物秸秆就不需要干燥。
为了进一步降低全新高效全功能土壤修复剂的生产成本,农作物秸秆水解的催化剂以木质生物质为原料制备。木质生物质包括所有的硬木和软木,木质生物质包括但不限于松木、柏木、杨木、柳木、桃木、梨木、苹果木、榉木、枣木、桦木、桔子树木、无花果木、椿木、桑木、泡桐木等,优选松木。
所述步骤(1)中的催化剂,木质生物质和水的重量比例为1:7(固体:水),使用木质生物质重量约1%的蒽醌(Anthraquinone)为催化剂,35%木质生物质重量的生石灰,250℃温度,5MPa的压力下反应50分钟,冷却到90℃以下。反应混合物要置于惰性气体的保护下,以防止催化剂的催化性能下降;固液分离的操作,要控制反应混合物的温度大于60℃。固液分离后得到的固体催化剂,需要在较低温度下真空干燥,最好温度低于60℃,防止催化剂降解,真空干燥后,得灰白色固体催化剂。
制备全新高效全功能土壤修复剂,为确保农作物秸秆水解反应的速度较快,反应温度需要大于180℃、压力大于10个大气压;同时要防止在水解反应过程中,农作物秸秆中有机物的碳化和气化导致目标产物产率的降低,水解反应的温度不超过260℃,对应的反应体系的压力要大于该温度下的水的饱和蒸汽压。例如当水解反应的温度是250℃时,对应的反应压力要控制在50个大气压或以上。
制备全新高效全功能土壤修复剂,农作物秸秆水解反应的辅剂使用生石灰或熟石灰,优选生石灰,生石灰的价格更低,用量更少。
制备全新高效全功能土壤修复剂,农作物秸秆水解反应的条件,优选农作物秸秆重量的百分之五的催化剂(重量比例)用量。催化剂的用量低于百分之五,水解反应正常进行,只是速度稍慢;用量高于百分之五,水解反应没有明显加快,所以,也不优选高于5%重量比的催化剂用量。
制备全新高效全功能土壤修复剂,农作物秸秆水解反应的温度,优选温度180-260℃,温度低于180℃摄氏度,反应时间较长,不优选;反应温度高于260度,目标产物的产率有所下降,不优选。水解反应的压力,目的是防止水在此反应温度下的气化,导致水解反应的能耗大幅上升,所以水解反应的压力,只要稍高于该温度下水的饱和蒸汽压即可。例如,在反应温度为250℃时,使用的压力为50个大气压。
制备全新高效全功能土壤修复剂,农作物秸秆水解反应的干重与水之间的重量比选用为1:7,低于这个比例,水解反应混合物中的产物含量低,不优选;高于这个比例,连续化水解反应过程中,连续输料会出现问题,不优选。
制备全新高效全功能土壤修复剂,农作物秸秆的水解反应,反应时间一般为50-80分钟。
制备全新高效全功能土壤修复剂,农作物秸秆水解反应结束后,目标产物的分离选择压滤方法,虽然其它固液分离的方法也可以将目标产物从液体中分离出来,例如离心分离法也可以很好的完成产物分离,但是成本较高,不优选。目标产物分离时,水解反应混合物的温度维持在60℃以上。
压滤分离得到的固体产物是目标产品,通过真空干燥的方法,干燥到含水量低于10%以下后,粉碎为细的粉末。
本发明提供的全新高效全功能土壤修复剂,如果在暴露于空气的环境下进行固液分离,例如压滤,固体的颜色会随着过滤时间而加深。始终处于氮气保护下时,固体产物是棕灰色,真空干燥后的产品颜色,也是棕灰色。
本发明提供的全新高效全功能土壤修复剂,通过元素分析、核磁共振谱NMR、分子量液相质谱、原子吸收光谱,被鉴定为一种混合物,是各种酚类的钙盐(Calcium Salts of Phenolic Chemicals),常温下是一种棕灰色固体。所述的酚类化合物,是指分子中含有1-10个苯环和分子量介于170-1150之间且含有2-10个苯环的酚类,这些苯环都是单个存在并且是非绸环芳烃,每个苯环之间经由0-2个碳原子相连接。混合物中单苯环的酚类重量含量介于0.1%-3%之间,单苯环的酚类包括苯酚、甲基苯酚、甲氧基苯酚、2,6-二甲氧基苯酚等。
本发明的全新高效全功能土壤修复剂,它清除土壤中的有机污染物的方法,不同于所有已知的土壤修复方法。这种全新高效全功能土壤修复剂,清除土壤中有机污染物,主要是通过化学反应吸收,即土壤中的有机污染物,通过化学键和全新高效全功能土壤修复剂结合在一起,在去除污染物的同时,增加土壤中的有效有机质。这种新生成的有机质,能够被土壤中的益生菌利用。
用于测试本发明的全新高效全功能土壤修复剂功能的土壤,其组成及各种污染物含量为:黏土39%、壤土41%、沙20%、重金属(mg/kg)、镉(Cd)125、铬(Cr)157、铅(Pb)211、镍(Ni)226、铜(Cu)308、锌(Zn)273、汞(Hg)192。有机污染物(mg/kg):绸环芳烃(PAHs)393、多氯联苯(PCBs)77、甲苯123、二甲苯105、硝基苯57、呋喃类57、噻吩类33。
用于测试本发明揭示的全新高效全功能土壤修复剂,助力土壤生物疗法功能的土壤是没有重金属和有机污染物的土壤,其组成含量为:黏土38%、壤土40%、沙19%、有机质3%;紫外杀菌后,上载绸环芳烃各100mg/kg,包括苊(Acenaphthene)、菲(Phenanthrene)、荧蒽(Fluoranthene)、屈(Chrysene)和苯并芘[Benzo(a)pyrene]。
土壤中的重金属含量使用王水(Aqua)溶解法,溶解后纯水稀释,电感耦合等离子体质谱(ICP-MS,Inductively Coupled Plasma)法测定。
土壤中的有机质,采用燃烧法测定。粉碎干燥的土壤样品,900℃燃烧,燃烧产生的二氧化碳用氢氧化钾水溶液吸收,然后,多余的氢氧化钾采用反滴定法测定。
土壤中的有机污染物,采用索氏萃取(Soxhlet Extraction)法萃取10g土壤、100ml丙酮/正己烷(1:1体积比),回流48小时。气质(GC-MS)检测法检测,八氟萘(octafluoronaphtalene)为内标。气质联用仪(GCMS):安捷伦(Agilent)7890GC/Agilent 5975C MS;毛细柱(Column):Restek Rtx-5MS,30m x 0.25mm x 0.25μm;进样器(Injector):10:1split,250℃;载气(Carrier gas):氦(helium)流速1.5ml/min;温度曲线:40℃始,保持5min,ramp 1,3℃/min到250℃;恒温维持20min,共95min。质谱检测器设置:Agilent 5975C;transfer line temperature 280℃;ion source temperature 230℃;quadruple temperature 150℃;质量区间(mass range)40-500u;电离电位(ionization voltage)70ev;进样量(Injection volume)0.2μ。
没有挥发性有机物质的分析使用液质谱(LCMS)测定:Source Type:APCI,APCI Vaporizer Temp(℃):500.00,Sheath Gas Flow(arb):50.00,Aux Gas Flow(arb):10.00, Sweep Gas Flow(arb):5.00,Capillary Temp(℃):350.00,I Spray voltage(kv):3.5,Capillary voltage(v):-31,Tube lens(V):-90。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将通过实施例作简单地介绍,显而易见地,下面描述本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些实施例获得其它的实施例。
实施例1
制备催化剂
在1升的带有搅拌功能的高压反应釜内,加入735ml的水,112g(干重)松木锯末(含量:43%木质素,53%的纤维素和半纤维素,4%的其它组分),32g生石灰,1.0g的蒽醌。反应釜密封后,用氮气置换3次,然后加入氮气,反应釜内保持一定的氮气正压,防止空气进入。搅拌下,加热到250℃度摄氏度,保持在此温度下搅拌反应50-60分钟。冷却到90℃度以下后,缓慢释压,然后保持温度大于60℃,压滤得到73克,水分含量为26%的固体产品。
真空干燥到含水量低于1%,得到灰白色固体产物是农作物秸秆水解反应的催化剂,氮气保护下存放备用。
实施例2
制备全新高效全功能土壤修复剂
在1升的带有搅拌功能的高压反应釜内,加入725ml的水,120g(干重)的麦秸粉(2mm粒径,40%的纤维素,26%的半纤维素,22%的木质素,12%的其它组分),42g的生石灰,6g的实施例1制备的催化剂。反应釜密封后,用氮气置换3次,然后加入氮气,釜内保持一定的氮气正压防止空气进入。搅拌下,加热到235℃,在此温度下搅拌反应70-80分钟。冷却到90℃度以下后,缓慢释压,然后保持温度大于50℃,压滤得到50克,水分含量28%的固体产品。
在温度约50-60℃之间的条件下真空干燥,然后粉碎为粉末,过80目筛,密封在玻璃瓶内备用。
得到的目标固体产物,进行元素分析,平均分子量为450-600含有一个钙。取样悬浮在甲醇中,硫酸调节pH到4,过滤除去固体物,液体用来测试产品的GCMS谱图和LCMS谱图。用于NMR测试的样品,悬浮在氘代甲醇中,缓慢通二氧化碳气体 进入,直到不再浑浊加重,滤去固体,即可。综合这些数据分析,目标产物是种组分非常复杂的混合物,是各种酚类的钙盐(Calcium Salts of Phenolic Chemicals),常温下是一种棕灰色固体。所述的酚类化合物,是指分子中含有1-10个苯环的酚类,这些苯环都是单个存在,非绸环芳烃,每个苯环之间经由0-2个碳原子相连接。单苯环的酚类含量介于0.1-3%之间,单苯环的酚类包括苯酚、甲基苯酚、甲氧基苯酚、2,6-二甲氧基苯酚等。含有2-10苯环的酚类,分子量介于170-1150之间。
实施例3
全新高效全功能土壤修复剂萃取土壤中重金属能力
这个实验采用对比的方法,对比萃取剂为柠檬酸钠和纯水。敞口容器内10克的污染土壤,分别置于250ml的纯水、250ml的5%重量,体积比的柠檬酸溶液、250ml的5%重量/体积比的本发明土壤修复剂溶液,机械搅拌48小时,离心分离,萃取后的土壤王水溶解测定其中的重金属含量,然后计算出重金属从土壤中的被萃取率(%)。
下表数据是重金属被萃取率(去除率),每个数据至少是三次试验数据的平均值:
污染物 原始浓度(mg/kg) 纯水 柠檬酸钠 本发明
Cd 125 1% 38% 95%
Cr 157 0% 29% 83%
Pb 211 0% 32% 87%
Ni 226 2% 45% 96%
Cu 308 0% 51% >99%
Zn 273 3% 44% 91%
192 0% 27% 92%
结果显示,本发明提供的全新高效全功能土壤修复剂,从土壤中萃取重金属的能力很强,萃取较为彻底,远远高于已知最好的重金属萃取剂。
实施例4
全新高效全功能土壤修复剂萃取土壤中重金属能力
使用实施例3中描述的方法,改变本发明土壤修复剂和柠檬酸的用量,结果显示,萃取等摩尔的重金属,需要修复剂的量约为450克;而柠檬酸钠的用量,4.5倍的摩尔当量,才能萃取出30-50%的重金属,即450克的本发明修复剂的萃取效果,优于9 摩尔柠檬酸钠的效果(2322克)。工业级柠檬酸钠的价格为¥4000RMB/吨,本发明的土壤修复剂,仅对重金属来说,其价值为¥20640RMB/吨。
实施例5:
全新高效全功能土壤修复剂清除土壤中有机污染物的能力
这个实验采用对比的方法,对比现在市场上最常用的氧化法。土壤中的有机污染物,处理方法为20克的污染土壤,在60ml的10%的浓度的双氧水、或者60ml的纯水、或者60ml的5%的本发明修复剂,在暴露于空气的条件下,机械搅拌48小时,然后,离心分离,倾倒出液体,固体加入20ml纯水,搅拌均匀后再离心。离心得到的固体,采用索氏萃取(Soxhlet Extraction)法萃取:10g土壤、100ml丙酮/正己烷(1:1体积比),回流48小时。回流得到的液体萃取物,检测GCMS和LCMS,计算出土壤中残留的污染物含量,最后得到土壤中被清除的有机污染物的量。下表中每个数据至少是三次试验数据的平均值:
污染物 原始浓度(mg/kg) 纯水 双氧水 本发明
PAHs 393 0% 6% 91%
PCBs 77 0% 2% 81%
甲苯 123 1% 21% 99%
二甲苯 105 2% 25% 99%
硝基苯 57 0% 11% 78%
呋喃类 57 1% 38% 91%
噻吩类 33 1% 55% 88%
本发明揭示的土壤修复剂的萃取液加入等体积的甲醇,混合均匀后,滤出其中的固体,得到的液体检测GCMS和LCMS,这些溶液中,没有检测出明显的土壤有机污染物,这个结果显示,本发明揭示的土壤修复剂清除土壤有机污染物的方法,可能是形成了稳定的化学键结合的新物质。
对比当前最常用的双氧水清除办法,本发明土壤修复剂清除土壤中绸环芳烃污染物的能力,用量为双氧水重量的一半时(双氧水浓度10%,本发明揭示的土壤修复剂浓度为5%)是双氧水的15倍,本发明揭示的土壤修复剂清除土壤中绸环芳烃污染物的能力是双氧水的30倍。当前27.5%浓度双氧水价格为¥680/吨(折算为100%的价格为¥2472/吨),本发明揭示的土壤修复剂清除土壤中绸环芳烃污染物的价值,相 当于¥74160元RMB/吨。
实施例6:
本发明揭示的土壤修复剂、助力生物降解土壤中绸环芳烃污染物的能力。
对比实验使用白腐菌作为降解绸环芳烃的菌种,接种浓度为10mg/kg样品。样品一为空白对照,没有外加任何东西;样品二为1公斤制备土壤中加入100克的本发明土壤修复剂,混合均匀;样品三为1公斤制备土壤中加入100克的本发明的土壤修复剂,混合均匀,接种白腐菌;样品四为1公斤制备土壤,接种白腐菌;样品五为1公斤制备土壤中加入100克的厨房垃圾堆肥,混合均匀;样品六为1公斤制备土壤中加入100克的厨房垃圾堆肥,混合均匀,接种白腐菌。这些样品分别放在震荡培养箱内,缓慢摇摆,箱内温度37度,自然通风(确保氧气供应),分别在5、10、20、30天取样检测土壤中的绸环芳烃含量,然后计算出绸环芳烃的去除率,取样时,手动混合均匀后再取样。下表数据是污染物去除率随时间的变化值,每个数据至少是三次试验数据的平均值:
Figure PCTCN2015078755-appb-000001
Figure PCTCN2015078755-appb-000002
结果显示,本发明揭示的土壤修复剂,可以大幅提高微生物降解绸环芳烃的速度,在添加修复剂后,绸环芳烃在30天内,可以去除90%或以上。
这个实验结果还显示,虽然绸环芳烃和土壤的结合非常紧密,水很难洗走它们,但是它们具有一定的挥发性会对接触土壤的人员产生危害。
同时,结果还显示,家庭生活垃圾堆肥中,含有较高量的白腐菌。
实施例7:
全新高效全功能土壤修复剂清除土壤中有机污染物、同时增加有机质
这个实验采用对比的方法,对比现在市场上最常用的氧化法。土壤中的有机污染物,处理方法为100克的污染土壤,分别加入双氧水或者等量的纯水、或者本发明修复剂,双氧水和本发明的修复剂浓度都是5%。这三种样品在暴露到空气的条件下,振动混合3天后,土壤固体采用索氏萃取(Soxhlet Extraction)法萃取测定土壤中有机污染物含量:10g土壤、100ml丙酮/正己烷(1:1体积比),回流48小时。回流得到的液体萃取物,检测GCMS和LCMS,计算出土壤中残留的污染物含量,最后得到土壤中被清除的有机污染物的量。土壤中的有机质采用燃烧氢氧化钾吸收法测定,下表中每个数据至少是三次试验数据的平均值:
污染物 原始浓度(mg/kg) 纯水 双氧水 本发明
PAHs 393 0% 5% 83%
PCBs 77 0% 2% 72%
甲苯 123 5% 29% 91%
二甲苯 105 3% 20% 90%
硝基苯 57 2% 9% 58%
呋喃类 57 2% 37% 79%
噻吩类 33 1% 51% 86%
有机质 3.0% 3.0% 1.2% 7.1%
结果显示本发明揭示的全新高效全功能土壤修复剂和传统的双氧水作用机制完全不同,使用双氧水,虽然能够去除一部分土壤有机污染物,但是土壤中原有的有机质被破坏掉60%。而本发明公开的产品,在大幅清除土壤中有机污染物的同时,大幅增加土壤中的有机质。
本发明公开了一种全新高效全功能土壤修复剂,它能够同时有效去除污染土壤中的重金属和各种有机污染物,并大幅提高生物降解土壤中有机污染物的能力。由于它直接和土壤中的有机污染物通过化学键结合在一起,这可以在减少土壤中有机污染物的同时,增加土壤中的有效有机质。
对比当前最常用的双氧水清除办法,本发明土壤修复剂清除土壤中绸环芳烃污染物的能力,本发明土壤修复剂清除土壤中绸环芳烃污染物的价值相当于¥74160元RMB/吨。对比当前最常用的柠檬酸络合萃取清除土壤中重金属的办法,本发明揭示的土壤修复剂清除土壤中重金属污染物的能力,仅对重金属这种土壤污染物来说,其价值为¥20640RMB/吨。
本发明公开的一种全新高效全功能土壤修复剂的制备工艺简单,并且农作物秸秆作为原材料便宜易得,而且制备过程为简单的催化水解反应,全新高效全功能土壤修复剂的制备成本和使用成本低,使用方便且具有广阔的市场应用前景。
最后应说明的是:以上实施例仅说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种高效全功能土壤修复剂,其特征在于,所述土壤修复剂为多个酚类化合物的钙盐混合物,所述土壤修复剂在常温下为棕灰色固体,所述酚类化合物的分子中含有1-10个苯环和分子量介于170-1150之间且含有2-10个苯环的酚类,所述苯环为单个存在并且为非绸环芳烃,所述苯环之间经由0-2个碳原子相连接,所述钙盐混合物中,所述单苯环的酚类重量含量介于0.1%-3%之间,所述单苯环的酚类包括苯酚、甲基苯酚、甲氧基苯酚和2,6-二甲氧基苯酚。
  2. 如权利要求1所述高效全功能土壤修复剂的制备方法,所述方法包括以下步骤:
    (1)将农作物秸秆与水作为溶剂混合,并添加催化剂和辅剂;
    (2)将反应混合物置于高压反应釜内进行水解反应;
    (3)将采用压滤方法分离得到的固体产物干燥并粉碎为细的粉末。
  3. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(1)中催化剂以木质生物质为原料制备,所述木质生物质包括硬木和软木,所述木质生物质包括松木、柏木、杨木、柳木、桃木、梨木、苹果木、榉木、枣木、桦木、桔子树木、无花果木、椿木、桑木和泡桐木等。
  4. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(2)中水解反应温度大于180℃且不超过260℃,压力大于10个大气压。
  5. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(1)中辅剂为生石灰或熟石灰。
  6. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(1)中催化剂重量比例用量为所述农作物秸秆的5%。
  7. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(1)中农作物秸秆的干重与水之间的重量比为1:7。
  8. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(2)中水解反应的时间为50-80分钟。
  9. 根据权利要求2所述高效全功能土壤修复剂的制备方法,其特征在于,所述步骤(3)中干燥后的固体产物的含水量低于10%。
PCT/CN2015/078755 2015-05-05 2015-05-12 一种高效全功能土壤修复剂及其制备方法 WO2016176867A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510223286.4A CN104858229B (zh) 2015-05-05 2015-05-05 一种土壤修复剂及其制备方法
CN201510223286.4 2015-05-05

Publications (1)

Publication Number Publication Date
WO2016176867A1 true WO2016176867A1 (zh) 2016-11-10

Family

ID=53904647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078755 WO2016176867A1 (zh) 2015-05-05 2015-05-12 一种高效全功能土壤修复剂及其制备方法

Country Status (2)

Country Link
CN (1) CN104858229B (zh)
WO (1) WO2016176867A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134355A (zh) * 2021-04-29 2021-07-20 国网山东省电力公司电力科学研究院 一种钴离子污染土壤基催化剂及其制备方法与应用
CN113856452A (zh) * 2021-09-03 2021-12-31 煜环环境科技有限公司 一种污染土壤的气味抑制剂及其制备方法和应用
CN113979434A (zh) * 2021-12-08 2022-01-28 吉林大学 一种生物质基碳电极材料及其制备方法和应用
CN114888061A (zh) * 2022-05-17 2022-08-12 上海市园林科学规划研究院 重金属污染场地树木密植修复方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576748B (zh) * 2016-09-29 2019-07-12 宁波大学 一种应用超声辅助-顶空-固相微萃取技术测定土壤中七种多氯联苯的方法
CN108794711B (zh) * 2017-04-27 2021-03-12 东北林业大学 多酚木质素低交联聚合物对有机农药土壤污染的修复技术
CN108723077B (zh) * 2018-06-06 2019-10-15 青岛阿蒂特兰环保科技有限公司 全功能生物基土壤修复剂及其制备方法和应用
CN109201727B (zh) * 2018-09-03 2020-12-11 杭州鸿明市政工程有限公司 一种土壤淋洗液、使用方法和设备
CN111234829A (zh) * 2020-03-10 2020-06-05 浙江农林大学 一种提高土壤pH值的活性化合物乳油制剂和水溶性制剂及用途
CN113637484A (zh) * 2021-08-13 2021-11-12 史丹利农业集团股份有限公司 一种多功效土壤修复剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274824A (zh) * 2000-06-20 2000-11-29 华东理工大学 焚烧-催化水解联合快速处理城市垃圾的工艺
CN101372015A (zh) * 2008-10-20 2009-02-25 浙江大学 一种土壤有机污染物的吸附-锁定材料的制备方法
CN101619227A (zh) * 2008-06-30 2010-01-06 淮北中润生物能源技术开发有限公司 纤维素生物质的直接液化方法
CN103468269A (zh) * 2013-08-21 2013-12-25 太仓碧奇新材料研发有限公司 一种重金属污染土壤修复材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265436A (ja) * 2005-03-25 2006-10-05 Dai Ichi Kogyo Seiyaku Co Ltd 土質などの安定化用注入薬液組成物およびそれを用いた安定強化止水工法
CN102977890A (zh) * 2011-09-06 2013-03-20 安徽明亮农康生物工程科技有限公司界首分公司 一种土壤改良剂的制备方法
KR20140095310A (ko) * 2013-01-24 2014-08-01 한국원자력연구원 산화제와 전자빔을 이용한 토양 및 퇴적토의 난분해성 유기오염물질 처리방법
CN103436268B (zh) * 2013-08-21 2015-07-01 太仓碧奇新材料研发有限公司 一种苯酚污染土壤修复材料的制备方法
CN103484127B (zh) * 2013-09-22 2015-08-19 清华大学 一种治理污染土壤的泡沫及其治理方法
CN104438301B (zh) * 2014-10-23 2016-08-24 江苏盖亚环境工程有限公司 一种苯酚污染土壤的修复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274824A (zh) * 2000-06-20 2000-11-29 华东理工大学 焚烧-催化水解联合快速处理城市垃圾的工艺
CN101619227A (zh) * 2008-06-30 2010-01-06 淮北中润生物能源技术开发有限公司 纤维素生物质的直接液化方法
CN101372015A (zh) * 2008-10-20 2009-02-25 浙江大学 一种土壤有机污染物的吸附-锁定材料的制备方法
CN103468269A (zh) * 2013-08-21 2013-12-25 太仓碧奇新材料研发有限公司 一种重金属污染土壤修复材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BO, YONGKE ET AL.: "The Research about the Corn Stover Hydrolysis Versus the Metal Salt Catalyst with Dilute Acid", CHINESE AGRICULTURAL SCIENCE BULLETIN, vol. 24, 5 September 2008 (2008-09-05) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134355A (zh) * 2021-04-29 2021-07-20 国网山东省电力公司电力科学研究院 一种钴离子污染土壤基催化剂及其制备方法与应用
CN113134355B (zh) * 2021-04-29 2022-12-20 国网山东省电力公司电力科学研究院 一种钴离子污染土壤基催化剂及其制备方法与应用
CN113856452A (zh) * 2021-09-03 2021-12-31 煜环环境科技有限公司 一种污染土壤的气味抑制剂及其制备方法和应用
CN113979434A (zh) * 2021-12-08 2022-01-28 吉林大学 一种生物质基碳电极材料及其制备方法和应用
CN114888061A (zh) * 2022-05-17 2022-08-12 上海市园林科学规划研究院 重金属污染场地树木密植修复方法
CN114888061B (zh) * 2022-05-17 2023-06-23 上海市园林科学规划研究院 重金属污染场地树木密植修复方法

Also Published As

Publication number Publication date
CN104858229B (zh) 2017-09-19
CN104858229A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2016176867A1 (zh) 一种高效全功能土壤修复剂及其制备方法
Wang et al. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar
Wang et al. Characterization and influence of biochars on nitrous oxide emission from agricultural soil
Xu et al. Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil
He et al. Two years of aging influences the distribution and lability of metal (loid) s in a contaminated soil amended with different biochars
Vithanage et al. Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks
Rao et al. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls
Choppala et al. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils
Suksabye et al. Mechanism of Cr (VI) adsorption by coir pith studied by ESR and adsorption kinetic
Van Nguyen et al. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil
Kumar et al. Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica
Matos et al. Using magnetized (Fe 3 O 4/biochar nanocomposites) and activated biochar as adsorbents to remove two neuro-active pesticides from waters
Shen et al. A comprehensive assessment on bioavailability, leaching characteristics and potential risk of polycyclic aromatic hydrocarbons in biochars produced by a continuous pyrolysis system
CA2599660A1 (en) Remediation and reclamation of heavy metals from aqueous liquid
CN109013693A (zh) 有机污染土壤的绿色修复方法
Xu et al. Red mud based passivator reduced Cd accumulation in edible amaranth by influencing root organic matter metabolism and soil aggregate distribution
Karimi et al. Using industrial sewage sludge-derived biochar to immobilize selected heavy metals in a contaminated calcareous soil
CN108838204A (zh) 一种有机污染土壤的修复方法
Ore et al. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects
Ogunkunle et al. Short‐term aging of pod‐derived biochar reduces soil cadmium mobility and ameliorates cadmium toxicity to soil enzymes and tomato
Antón‐Herrero et al. Synergistic effects of biochar and biostimulants on nutrient and toxic element uptake by pepper in contaminated soils
Pei et al. Effect of lead on the sorption of 2, 4, 6-trichlorophenol on soil and peat
Wu et al. Sorption mechanism of zinc on reed, lignin, and reed-and lignin-derived biochars: Kinetics, equilibrium, and spectroscopic studies
Ramírez et al. Reactions, characterization and uptake of ammoxidized kraft lignin labeled with 15N
CN111392846A (zh) 水中有机污染物的绿色降解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891119

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15891119

Country of ref document: EP

Kind code of ref document: A1