WO2016174541A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2016174541A1
WO2016174541A1 PCT/IB2016/052189 IB2016052189W WO2016174541A1 WO 2016174541 A1 WO2016174541 A1 WO 2016174541A1 IB 2016052189 W IB2016052189 W IB 2016052189W WO 2016174541 A1 WO2016174541 A1 WO 2016174541A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
signal
oxide semiconductor
conductor
Prior art date
Application number
PCT/IB2016/052189
Other languages
English (en)
French (fr)
Inventor
山崎舜平
木村肇
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2017515285A priority Critical patent/JP7016697B2/ja
Priority to US15/569,539 priority patent/US20180307451A1/en
Publication of WO2016174541A1 publication Critical patent/WO2016174541A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2352/00Parallel handling of streams of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/16Use of wireless transmission of display information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Definitions

  • One embodiment of the present invention relates to an electronic device that inputs, outputs, or inputs and outputs information.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a lighting device, a power storage device, a memory device, an imaging device, A driving method or a manufacturing method thereof can be given as an example.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are one embodiment of a semiconductor device.
  • a memory device, a display device, an imaging device, and an electronic device may include a semiconductor device.
  • Communication technology and information processing technology have been developed, and high-definition images can be displayed at high speed even in a small portable information terminal.
  • information signal transmission technology wired transmission and wireless transmission are known, and each of them corresponds to next-generation high-speed and large-capacity information transmission.
  • Patent Document 1 discloses a communication system that uses both a wireless transmission line and a power line transmission line.
  • an object of one embodiment of the present invention is to provide an electronic device that can transmit an image signal stably at high speed. Another object is to provide an electronic device having a plurality of image signal transmission paths. Another object is to provide an electronic device that has a plurality of transmission paths for image signals and selects an appropriate transmission path. Another object is to provide an electronic device that outputs image signals to a plurality of transmission paths. Another object is to provide an electronic device that acquires image signals from a plurality of transmission paths. Another object is to provide an electronic device that outputs image signals to a plurality of transmission paths and acquires the image signals from the plurality of transmission paths. Another object is to provide an electronic device or the like including a novel display device. Another object is to provide a new electronic device or the like.
  • One embodiment of the present invention relates to an electronic device including a plurality of image signal transmission paths.
  • One embodiment of the present invention is an electronic device including a signal output device and a display device, and the signal output device has a function of dividing an image signal into a plurality of signals.
  • a plurality of signals having a first signal and a second signal, and the signal output device transmits the first signal to the display device via a wired transmission line;
  • the signal output device is an electronic device having a function capable of transmitting a second signal to a display device via a wireless transmission path.
  • Another embodiment of the present invention is an electronic device including a signal output device and a display device, and the signal output device transmits a first signal to the display device through a wired transmission path.
  • the signal output device has a function capable of transmitting the second signal to the display device via the wireless transmission path, and the signal output device includes the first circuit and the second circuit.
  • a third circuit, a fourth circuit, and a first antenna the first circuit has a function of selecting a transmission path of an image signal, and the second circuit is a first circuit.
  • the image signal transmitted from is divided into a plurality of signals, the plurality of signals includes a first signal and a second signal, and the third circuit is derived from the second circuit.
  • the fourth circuit has a function of converting the transmitted first signal into a modulated signal, and the fourth circuit converts the modulated signal transmitted from the third circuit into
  • the display device has a function of transmitting using the first antenna.
  • the display device includes a fifth circuit, a sixth circuit, a seventh circuit, a second antenna, and a display portion.
  • the sixth circuit has a function of receiving the modulated signal transmitted from the fourth circuit using the second antenna, and the sixth circuit demodulates the modulated signal transmitted from the fifth circuit to generate the first signal.
  • the seventh circuit has a function of converting an image to be displayed on the display unit from the second signal transmitted from the second circuit and the first signal transmitted from the sixth circuit. It is an electronic device characterized by having.
  • the fourth circuit can have a function of transmitting the modulation signal using radio waves in a plurality of frequency bands.
  • the fifth circuit may have a function of receiving the modulated signal transmitted using radio waves in a plurality of frequency bands.
  • a plurality of wired transmission paths can be provided.
  • the signal output device and the display device can include a transistor including an oxide semiconductor in an active layer.
  • the oxide semiconductor preferably includes In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf).
  • an electronic device that can transmit an image signal stably at high speed can be provided.
  • an electronic device having a plurality of image signal transmission paths can be provided.
  • an electronic device that outputs image signals to a plurality of transmission paths can be provided.
  • an electronic device that acquires image signals from a plurality of transmission paths can be provided.
  • an electronic device that outputs an image signal to a plurality of transmission paths and acquires the image signal from the plurality of transmission paths can be provided.
  • a novel electronic device including a display device can be provided.
  • a novel electronic device or the like can be provided.
  • one embodiment of the present invention is not limited to these effects.
  • one embodiment of the present invention may have effects other than these effects depending on circumstances or circumstances.
  • one embodiment of the present invention may not have these effects depending on circumstances or circumstances.
  • FIG. 11 is a block diagram illustrating an electronic device.
  • FIG. 11 is a block diagram illustrating an electronic device.
  • 10 is a flowchart illustrating operation of an electronic device.
  • 10 is a flowchart illustrating operation of an electronic device.
  • FIG. 11 is a block diagram illustrating an electronic device.
  • FIG. 11 is a block diagram illustrating an electronic device. The figure explaining the connection form of a signal output device and a display apparatus.
  • 4A and 4B are a top view and cross-sectional views illustrating a transistor.
  • FIG. 10 is a cross-sectional view illustrating a transistor.
  • 4A and 4B are a top view and cross-sectional views illustrating a transistor.
  • 4A and 4B are a top view and cross-sectional views illustrating a transistor.
  • 4A and 4B are a top view and cross-sectional views illustrating a transistor.
  • FIG. 10 is a cross-sectional view illustrating a circuit included in a semiconductor device.
  • FIG. 10 is a circuit diagram illustrating a circuit included in a semiconductor device.
  • FIG. 10 is a cross-sectional view illustrating a circuit included in a semiconductor device.
  • FIG. 10 is a cross-sectional view illustrating a circuit included in a semiconductor device.
  • 10A and 10B are a cross-sectional view and a circuit diagram illustrating a circuit included in a semiconductor device.
  • FIG. 6 is a circuit diagram, a top view, and a cross-sectional view illustrating a display device.
  • 6A and 6B are a circuit diagram and a cross-sectional view illustrating a display device.
  • 10A and 10B each illustrate an electronic device.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element that enables electrical connection between X and Y for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
  • Element, light emitting element, load, etc. are not connected between X and Y
  • elements for example, switches, transistors, capacitive elements, inductors
  • resistor element for example, a diode, a display element, a light emitting element, a load, or the like.
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
  • the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows.
  • the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.)
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down
  • X and Y are functionally connected.
  • the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.
  • the source (or the first terminal) of the transistor is electrically connected to X through (or not through) Z1, and the drain (or the second terminal or the like) of the transistor is connected to Z2.
  • Y is electrically connected, or the source (or the first terminal, etc.) of the transistor is directly connected to a part of Z1, and another part of Z1 Is directly connected to X, the drain (or second terminal, etc.) of the transistor is directly connected to a part of Z2, and another part of Z2 is directly connected to Y.
  • X and Y, and the source (or the first terminal or the like) of the transistor and the drain (or the second terminal or the like) are electrically connected to each other. Terminal, etc., the drain of the transistor (or the second terminal, etc.) and Y are electrically connected in this order. ” Or “the source (or the first terminal or the like) of the transistor is electrically connected to X, the drain (or the second terminal or the like) of the transistor is electrically connected to Y, and X or the source ( Alternatively, the first terminal and the like, the drain of the transistor (or the second terminal, and the like) and Y are electrically connected in this order.
  • X is electrically connected to Y through the source (or the first terminal or the like) and the drain (or the second terminal or the like) of the transistor, and X is the source of the transistor (or the first terminal or the first terminal). Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
  • Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
  • a source (or a first terminal or the like of a transistor) is electrically connected to X through at least a first connection path, and the first connection path is The second connection path does not have a second connection path, and the second connection path includes a transistor source (or first terminal or the like) and a transistor drain (or second terminal or the like) through the transistor.
  • the first connection path is a path through Z1
  • the drain (or the second terminal, etc.) of the transistor is electrically connected to Y through at least the third connection path.
  • the third connection path is connected and does not have the second connection path, and the third connection path is a path through Z2.
  • the source of the transistor (or the first terminal or the like) is electrically connected to X via Z1 by at least a first connection path, and the first connection path is a second connection path.
  • the second connection path has a connection path through a transistor, and the drain (or the second terminal or the like) of the transistor is at least connected to Z2 by the third connection path.
  • Y, and the third connection path does not have the second connection path.
  • the source of the transistor (or the first terminal or the like) is electrically connected to X through Z1 by at least a first electrical path, and the first electrical path is a second electrical path Does not have an electrical path, and the second electrical path is an electrical path from the source (or first terminal or the like) of the transistor to the drain (or second terminal or the like) of the transistor;
  • the drain (or the second terminal or the like) of the transistor is electrically connected to Y through Z2 by at least a third electrical path, and the third electrical path is a fourth electrical path.
  • the fourth electrical path is an electrical path from the drain (or second terminal or the like) of the transistor to the source (or first terminal or the like) of the transistor.
  • Can By defining the connection path in the circuit configuration using the same expression method as in these examples, the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor are distinguished from each other. The technical scope can be determined.
  • X, Y, Z1, and Z2 are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, and the like).
  • the term “electrically connected” in this specification includes in its category such a case where one conductive film has functions of a plurality of components.
  • film and “layer” can be interchanged with each other depending on the case or circumstances.
  • conductive layer may be changed to the term “conductive film”.
  • insulating film may be changed to the term “insulating layer” in some cases.
  • FIG. 1 is a block diagram illustrating an electronic device of one embodiment of the present invention.
  • the electronic apparatus includes a signal output device 10 and a display device 20.
  • the signal output device 10 includes a signal reading device 1000, a circuit 1100, a circuit 1200, a circuit 1300, a circuit 1400, and an antenna 1500.
  • the display device 20 includes a display unit 2000, a circuit 2100, a circuit 2300, a circuit 2400, and an antenna 2500. Note that this configuration is an example, and a circuit for controlling the above elements may be provided. Further, a memory circuit that temporarily stores data processed by the above elements may be provided. Further, a configuration in which some of the above elements are not provided, a configuration in which other elements are provided, or a configuration in which some of the above elements are integrated may be employed.
  • the signal reading device 1000 has a function of reading an image signal. For example, it can have a function of reading an image signal from a recording medium. Alternatively, a function of receiving radio waves output from a broadcasting station or the like and converting them to image signals can be provided. Alternatively, a function of extracting an image signal distributed from a network such as the Internet can be provided. Alternatively, it can have an imaging function and a function of extracting an image signal.
  • the signal output device 10 having the signal reading device 1000 may take the form of a recording media player, a tuner, a portable information terminal, a computer, a camera, or the like. As shown in FIG. 2, the signal reading device 1000 may not be included in the signal output device 10.
  • the circuit 1100 has a function of selecting a path for transmitting the image signal transmitted from the signal reading device 1000 to the outside of the signal output device 10 efficiently and at high speed.
  • Transmission paths for outputting an image signal from the signal output device 10 to the outside include a wired transmission path and a wireless transmission path, and the transmission path is determined based on the image signal and the environment.
  • an image signal is read by the trust reading device 1000 (S101).
  • the transmission path of the image signal is determined by the circuit 1100 (S102).
  • Monochromatic images and binary images with a small amount of information can be transmitted at high speed on either a wired transmission line or a wireless transmission line. Therefore, a threshold value for determining the amount of information of the image signal is set in advance, and when it is determined that the amount of information is small, it is determined that the transmission is performed on either the wired transmission line or the wireless transmission line.
  • Whether to use a wired transmission path or a wireless transmission path is, for example, a setting that prioritizes wired transmission, a setting that alternates between wired transmission and wireless transmission, and prioritizes wired transmission when the wireless transmission speed is low. It is judged comprehensively from the setting to do.
  • the image signal can be directly transmitted to the display device 20 using the wired transmission path 31.
  • the image signal can be transmitted to the display device 20 by wireless transmission via the path 33. Note that different image signals can be simultaneously transmitted by wired transmission and wireless transmission.
  • the circuit 1100 determines to transmit an image signal to the display device 20 using both wired transmission and wireless transmission (S103). In this case, the image signal is transmitted from the circuit 1100 to the circuit 1200 via the path 32.
  • the circuit 1200 has a function of dividing the transmitted image signal into a plurality of parts.
  • the image signal division is, for example, an example in which the image is divided on the right side and the left side, an example in which the image is divided on the upper side and the lower side, and an example in which the image is divided into an image corresponding to an odd row and an image corresponding to an even row. and so on.
  • segmented signal is not equivalent, and the ratio may differ.
  • the circuit 1200 may have an encoder function of compressing an image signal.
  • the source signal line may be cut at the center of the screen in the display unit 2000 and the signal may be input simultaneously on the upper side and the lower side of the screen. That is, the signal may be input after dividing the screen.
  • luminance signals and color signals can be transmitted through different transmission paths.
  • the image signal can be divided along the time axis. For example, odd frames and even frames can be transmitted through different transmission paths. Further, the ratio of the number of frames to be transmitted may be divided into 2: 1, 3: 1, etc., and the larger ratio may be wired transmission and the smaller ratio may be wireless transmission. Also, a frame with a large amount of information may be transmitted by wire, and a frame with a small amount of information may be transmitted by radio.
  • wired transmission when displaying a moving image, wired transmission may be used, and when displaying a still image, wireless transmission may be used.
  • an oxide semiconductor when used as a transistor included in a pixel of the display device, the off-state current of the transistor can be reduced. Therefore, when a still image is displayed or when the same image is displayed over a period of several frames, the speed at which pixel information is rewritten, the so-called frame frequency can be reduced. In such a case, wireless transmission may be used.
  • an image signal can be transmitted by wire and an audio signal can be transmitted wirelessly.
  • the audio signal can be divided by frequency, and each divided signal can be transmitted through different transmission paths.
  • the audio signal can be divided on the time axis, and each divided signal can be transmitted through different transmission paths.
  • an image signal is transmitted to the circuit 1200 (S201).
  • the image signal is divided by the circuit 1200 (S202).
  • the divided image signals will be described as an image signal 1 and an image signal 2.
  • the image signal 1 is transmitted to the circuit 2100 (S203).
  • the image signal 2 is transmitted to the circuit 1300 (S204).
  • the circuit 1300 has a function of modulating an image signal for wireless transmission. Note that a signal directly transmitted from the circuit 1100 to the circuit 1300 can also be modulated.
  • the circuit 1300 modulates the image signal 2 (S205).
  • the modulation signal will be described as the image signal 3.
  • the image signal 3 is transmitted to the circuit 1400 (S206).
  • the circuit 1400 has a function of transmitting the image signal 3 to the outside using the antenna 1500.
  • the image signal 3 transmitted from the circuit 1400 (S207) is received by the circuit 2400 via the antenna 2500 (S208).
  • the circuit 2400 has a function of receiving a modulated signal using the antenna 2500.
  • the image signal 3 received by the circuit 2400 is transmitted to the circuit 2300 (S209).
  • the circuit 2300 has a function of demodulating the modulation signal.
  • the image signal 2 demodulated by the circuit 2300 (S210) is transmitted to the circuit 2100 (S211).
  • the image signal 1 and the image signal 2 divided into two by the circuit 1200 are combined by the circuit 2300 and reconstructed into the original image signal (S212).
  • the circuit 2100 may have a decoder function of restoring a compressed image signal.
  • the image signal is transmitted to the display unit 2000 (S213), and an image based on the image signal is displayed (S214). Note that a wired transmission path is provided between the circuit 1200 and the circuit 2100.
  • the wireless transmission path takes time not only for the time required for transmission / reception of the radio signal but also for the modulation and demodulation of the signal. For this reason, the wireless transmission path generally has a slower signal transmission speed than the wired transmission path. Therefore, it is effective to provide the circuit 2100 with a temporary storage circuit 2150 for the divided signal transmitted through the wired transmission path.
  • the memory circuit 2150 may be provided as a different element from the circuit 2100. Further, a memory circuit having a similar function may be provided in the circuit 1200.
  • the display device 20 is divided into the display device 21 and the signal input / output device 15 as shown in FIG. It may be.
  • the signal input / output device 15 includes a circuit 2100, a circuit 2300, a circuit 2400, an antenna 2500, and an image signal output path.
  • a versatile device having a display portion can be used as the display device 21.
  • the display device 20 and the display device 21 may take the form of a tablet computer, a television, a computer display, a clock having a display, and the like.
  • the electronic device including the signal output device 10 and the display device 20 illustrated in FIG. 1 can be configured to be installed in one housing.
  • the electronic apparatus including the signal output device 10, the signal input / output device 15, and the display device 21 illustrated in FIG. 5 can be configured to be installed in one housing. That is, the electronic device of one embodiment of the present invention can take the form of a television, a digital signage, a computer having a display, a camera having a display, or the like.
  • the mode in which the circuit 1200 divides the image signal into two has been described, but the image signal may be divided into three or more.
  • a method of sequentially transmitting the divided signals may be used.
  • a signal between the signal output device 10 and the display device 20 can be obtained by transmitting the divided signals in parallel with a plurality of wired transmission paths and wireless transmission paths. Transmission time can be shortened.
  • the path for transmitting the divided signals in parallel is not limited to the combination of the wired transmission path and the wireless transmission path, and may be a combination of a plurality of wired transmission paths. Alternatively, a combination of a plurality of wireless transmission paths may be used.
  • FIG. 6A illustrates a form in which a plurality of wired transmission paths between the circuit 1200 and the circuit 2100 are provided.
  • the solid line connecting the circuit 1200 and the circuit 2100 illustrated in FIG. 6A can be, for example, a cable having a wired transmission path.
  • one cable is described as having one wired transmission path, but one cable may have a plurality of wired transmission paths.
  • FIG. 6A shows a mode in which the circuit 1200 and the circuit 2100 are directly connected by a cable. However, another circuit or wiring between one end (connection terminal) of the cable and the circuit 1200 is shown. Etc. may be provided. The same applies to the area from the other end of the cable to the circuit 2100.
  • standards for the input / output ports provided in the signal output device 10 and the display device 20 include USB, HDMI (registered trademark), D-sub, DVI, LVDS, Thunderbolt (registered trademark), displayport, and the like.
  • a port for optical communication communication using an optical fiber
  • a port for ISDN communication communication using an optical fiber
  • a port for ADSL communication communication using an optical fiber
  • a port for supplying power a dedicated port for transmitting signals, or a port in which they are combined.
  • the signal output device 10 and the display device 20 can supply power from one to the other through a cable connected to the port, or the signal output device 10 and the display device 20 can exchange power. It can also be in the form.
  • a form in which the circuit 1200 and the circuit 2100 are directly connected by a cable may be used.
  • a conductive wire form such as a printed circuit board wiring or an FPC (Flexible printed circuit) form may be used.
  • a terminal or the like that is brought into conduction by contact may be provided between the circuit 1200 and the circuit 2100.
  • FIG. 6B is a diagram illustrating a mode in which a plurality of wireless transmission paths between the circuit 1400 and the circuit 2400 are provided.
  • a mode in which a plurality of frequency bands of radio waves used for radio transmission are used, and a mode in which a plurality of channels are used in the same frequency band.
  • the frequency band a 2.4 GHz band or a 5 GHz band used for Wi-Fi (registered trademark) communication can be used.
  • 20 MHz and 40 MHz are used for the channel width in the 2.4 GHz band.
  • 20 MHz, 40 MHz, 80 MHz, and 160 MHz are used as channel widths in the 5 GHz band.
  • LTE Long Term Evolution
  • TD-LTE Long Term Evolution
  • WiMAX registered trademark
  • AXGP Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • Bluetooth registered trademark
  • FIG. 6B it is effective to use a plurality of antennas 1500 and 2500 so as to correspond to a plurality of frequency bands. Further, in order to support a mode in which a signal is divided and transmitted by the circuit 1400, it is effective to use a plurality of antennas even when used in the same frequency band. For example, one to four antennas corresponding to the 2.4 GHz band can be provided. Alternatively, one to four antennas corresponding to the 5 GHz band can be provided. Alternatively, a total of 2 to 8 antennas corresponding to the 2.4 GHz band and 5 GHz bands can be provided.
  • the radio waves used for wireless transmission may be 2.5 GHz band, 2.1 GHz band, 1.8 GHz band, 1.7 GHz band, 1.5 GHz band, 900 MHz band, 800 MHz band, etc. used for mobile phones and the like. Good.
  • the antenna 1500 may be replaced with a transmission device such as a light emitting diode.
  • the antenna 2500 may be replaced with a receiving device such as a photodiode.
  • FIG. 6A and FIG. 6B may be combined. That is, the wired transmission illustrated in FIG. 6A and the wireless transmission illustrated in FIG. 6B may be combined and transmitted.
  • FIGS. 7A and 7B are diagrams showing specific examples of the signal output device 10, the display device 20, and their connection form. In the signal output device 10 and the display device 20 shown in FIGS. 7A and 7B, the above-described circuit is not shown.
  • the signal output device 10 can have a battery 3000 and an antenna 1500 inside. Further, an input / output terminal 3200 can be provided.
  • the display device 20 can include a display unit 2000, input / output terminals 3100, operation buttons 3300, a camera 3400, and the like.
  • An antenna 2500 can be provided inside.
  • the signal output device 10 and the display device 20 are connected to each other via an input / output port and a cable 3500.
  • the cable 3500 can supply power to the display device 20 from the battery 3000 of the signal output device 10. Further, the above-described signal transmission can be performed between the antenna 1500 and the antenna 2500. Further, charging may be performed wirelessly.
  • the signal output device 10 and the display device 20 are arranged so as to overlap each other.
  • the input / output terminal 3100 and the input / output terminal 3200 are in contact with each other, whereby a wired transmission path can be configured. That is, a configuration in which the cable 3500 is not used can be employed.
  • the antenna 1500 and the antenna 2500 are arranged so as to overlap with each other, extremely high-speed communication can be performed.
  • the cable 3500 may be used to form a plurality of wired transmission paths.
  • Embodiment 2 In this embodiment, transistors that can be used for the structures of the signal output device 10 and the display device 20 formed in Embodiment 1 will be described.
  • a transistor including an oxide semiconductor (hereinafter referred to as an OS transistor) can be used.
  • the OS transistor has extremely low off-state current characteristics. Therefore, for example, in the case where an OS transistor is used as a transistor in a memory circuit included in the signal output device 10 and the display device 20, a period in which charge can be held in the charge storage portion can be extremely long. Therefore, the frequency of refreshing information written in the charge storage portion (FD) can be reduced, and power consumption of the memory circuit can be suppressed.
  • the memory circuit can be used as a substantially nonvolatile memory circuit.
  • the time during which an image signal can be held can be extended.
  • image signal writing is performed at a frequency of 11.6 ⁇ Hz (once per day) or more and less than 0.1 Hz (0.1 per second), preferably 0.28 mHz (once per hour) or more and 1 Hz (1 Images can be retained even with a frequency less than once per second).
  • the frequency of writing image signals can be reduced.
  • the power consumption of the display panel can be reduced.
  • wireless transmission may be performed.
  • FIG. 8A and 8B are a top view and a cross-sectional view of the transistor 100 according to one embodiment of the present invention.
  • 8A is a top view
  • FIG. 8B is a cross-sectional view corresponding to a dashed-dotted line A1-A2 and a dashed-dotted line A3-A4 illustrated in FIG. 8A. Note that in the top view of FIG. 8A, some elements are omitted for clarity.
  • a transistor 100 illustrated in FIGS. 8A and 8B includes a substrate 110, an oxide semiconductor 130, conductors 140 and 150, an insulator 160, and a conductor 170.
  • the substrate 110 a substrate that can withstand heat treatment performed later is used.
  • an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, and a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate).
  • the semiconductor substrate examples include a single semiconductor substrate such as silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide. Furthermore, there is a semiconductor substrate having an insulator region inside the semiconductor substrate, for example, an SOI (Silicon On Insulator) substrate.
  • SOI Silicon On Insulator
  • the conductor substrate examples include a graphite substrate, a metal substrate, and an alloy substrate. Alternatively, there are a substrate having a metal nitride, a substrate having a metal oxide, and the like. Further, there are a substrate in which a conductor or a semiconductor is provided on an insulator substrate, a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like. Alternatively, a substrate in which an element is provided may be used. Examples of the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
  • a flexible substrate may be used as the substrate 110.
  • a method for providing a transistor over a flexible substrate there is a method in which a transistor is manufactured over a non-flexible substrate, and then the transistor is peeled and transferred to the substrate 110 which is a flexible substrate.
  • a separation layer is preferably provided between the non-flexible substrate and the transistor.
  • the substrate 110 may have elasticity. Further, the substrate 110 may have a property of returning to its original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape.
  • the thickness of the substrate 110 is, for example, 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, and more preferably 15 ⁇ m to 300 ⁇ m.
  • the substrate 110 which is a flexible substrate for example, metal, alloy, resin or glass, or fiber thereof can be used.
  • the substrate 110, which is a flexible substrate is preferably as the linear expansion coefficient is lower because deformation due to the environment is suppressed.
  • a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less is used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, acrylic, and polytetrafluoroethylene (PTFE).
  • aramid has a low coefficient of linear expansion, it is suitable for the substrate 110 that is a flexible substrate.
  • an insulator may be provided between the substrate 110 and the oxide semiconductor 130. By providing the insulator, diffusion of impurities from the substrate 110 can be suppressed.
  • an insulator a single layer of an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium or tantalum Or in a stack.
  • aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or tantalum oxide can be used.
  • the oxide semiconductor 130 is an oxide
  • the insulator can serve to supply oxygen to the oxide semiconductor 130. Therefore, the insulator is preferably an insulator containing excess oxygen.
  • the insulator containing excess oxygen is an insulator having a function of releasing oxygen by heat treatment.
  • a silicon oxide layer containing excess oxygen is a silicon oxide layer from which oxygen can be released by heat treatment or the like. Therefore, the insulator is an insulator in which oxygen can move in the film. That is, the insulator may be an insulator having oxygen permeability.
  • the insulator may be an insulator having higher oxygen permeability than a semiconductor.
  • An insulator containing excess oxygen may have a function of reducing oxygen vacancies in the oxide semiconductor 130 in some cases.
  • oxygen vacancies form deep levels and serve as hole-trapping centers. Further, when hydrogen enters an oxygen deficient site, electrons as carriers may be generated. Therefore, stable electric characteristics can be imparted to the transistor by reducing oxygen vacancies in the oxide semiconductor 130.
  • the insulator from which oxygen is released by heat treatment is 1 ⁇ 10 18 atoms / cm 3 or more when the surface temperature of the film is in the range of 100 ° C. to 700 ° C. or 100 ° C. to 500 ° C. in TDS analysis. It is preferable to use one capable of observing oxygen (converted to the number of oxygen atoms) of 1 ⁇ 10 19 atoms / cm 3 or more or 1 ⁇ 10 20 atoms / cm 3 or more.
  • the insulator containing excess oxygen may be oxygen-excess silicon oxide (SiO X (X> 2)).
  • Oxygen-excess silicon oxide (SiO X (X> 2)) contains oxygen atoms more than twice the number of silicon atoms per unit volume.
  • the number of silicon atoms and the number of oxygen atoms per unit volume are values measured by Rutherford Backscattering Spectroscopy (RBS: Rutherford Backscattering Spectrometry).
  • FIG. 8 illustrates the case where the oxide semiconductor 130 is a stacked film in which the oxide semiconductor 130a, the oxide semiconductor 130b, and the oxide semiconductor 130c are stacked in this order.
  • the oxide semiconductor 130 is an oxide semiconductor containing indium, for example.
  • carrier mobility electron mobility
  • the oxide semiconductor 130 preferably contains the element M.
  • the element M is preferably aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, yttrium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, and tungsten.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • the element M is an element having a high binding energy with oxygen, for example.
  • it is an element whose binding energy with oxygen is higher than that of indium.
  • the element M is an element having a function of increasing the energy gap of the oxide semiconductor, for example.
  • the oxide semiconductor 130 preferably contains zinc. An oxide semiconductor may be easily crystallized when it contains zinc.
  • the oxide semiconductor 130 is not limited to the oxide semiconductor containing indium.
  • the oxide semiconductor 130 is an oxide semiconductor containing zinc, an oxide semiconductor containing zinc, an oxide semiconductor containing tin, or the like that does not contain indium, such as zinc tin oxide, gallium tin oxide, and gallium oxide. It doesn't matter.
  • the oxide semiconductor 130a, the oxide semiconductor 130b, and the oxide semiconductor 130c contain indium will be described.
  • the oxide semiconductor 130a is an In-M-Zn oxide and the sum of In and M is 100 atomic%, In is preferably less than 50 atomic%, M is higher than 50 atomic%, and more preferably, In is 25 atomic%. %, M is higher than 75 atomic%.
  • oxide semiconductor 130b is an In-M-Zn oxide and the sum of In and M is 100 atomic%
  • In is preferably higher than 25 atomic%
  • M is lower than 75 atomic%, and more preferably In is 34 atomic%.
  • % And M is less than 66 atomic%.
  • the oxide semiconductor 130c is an In-M-Zn oxide and the sum of In and M is 100 atomic%, In is preferably less than 50 atomic%, M is higher than 50 atomic%, and more preferably, In is 25 atomic%. %, M is higher than 75 atomic%. Note that the oxide semiconductor 130c may be an oxide of the same type as the oxide semiconductor 130a.
  • an oxide having an electron affinity higher than those of the oxide semiconductor 130a and the oxide semiconductor 130c is preferably used.
  • the electron affinity of the oxide semiconductor 130a and the oxide semiconductor 130c is 0.07 eV to 1.3 eV, preferably 0.1 eV to 0.7 eV, and more preferably 0.15 eV to 0.
  • An oxide larger than 4 eV is used. Note that the electron affinity is the difference between the vacuum level and the energy at the bottom of the conduction band.
  • the oxide semiconductor 130c preferably contains indium gallium oxide.
  • the gallium atom ratio [Ga / (In + Ga)] is, for example, 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the oxide semiconductor 130a and / or the oxide semiconductor 130c may be gallium oxide.
  • gallium oxide is used as the oxide semiconductor 130c, leakage current generated between the conductor 140 or the conductor 150 and the conductor 170 can be reduced. That is, the off-state current of the transistor can be reduced.
  • the oxide semiconductor 130b can be said to have a region that functions as a semiconductor, but the oxide semiconductor 130a and the oxide semiconductor 130c can also be said to have a region that functions as an insulator or a semi-insulator.
  • the oxide semiconductor 130c is preferably as thin as possible in order to increase the on-state current of the transistor. For example, a mode having a region of less than 10 nm, preferably 5 nm or less, more preferably 3 nm or less is employed.
  • the oxide semiconductor 130c has a function of blocking elements other than oxygen (hydrogen, silicon, and the like) included in the adjacent insulator from entering the oxide semiconductor 130b in which a channel is formed. Therefore, the oxide semiconductor 130c preferably has a certain thickness.
  • the oxide semiconductor 130c has a region with a thickness of 0.3 nm or more, preferably 1 nm or more, more preferably 2 nm or more.
  • the oxide semiconductor 130c has a property of blocking oxygen in order to suppress outward diffusion of oxygen released from the substrate 110 or an insulator interposed between the substrate 110 and the oxide semiconductor 130. It is preferable.
  • the oxide semiconductor 130a is preferably thick.
  • the oxide semiconductor 130a has a region having a thickness of 10 nm or more, preferably 20 nm or more, more preferably 40 nm or more, more preferably 60 nm or more.
  • the oxide semiconductor 130a has a region with a thickness of 200 nm or less, preferably 120 nm or less, more preferably 80 nm or less.
  • Silicon in the oxide semiconductor may serve as a carrier trap or a carrier generation source. Therefore, the silicon concentration of the oxide semiconductor 130b is preferably as low as possible. For example, in an analysis using secondary ion mass spectrometry (SIMS), a region having a low silicon concentration is preferably provided between the oxide semiconductor 130b and the oxide semiconductor 130c.
  • the silicon concentration is less than 1 ⁇ 10 19 atoms / cm 3 , preferably less than 5 ⁇ 10 18 atoms / cm 3 , more preferably less than 2 ⁇ 10 18 atoms / cm 3 .
  • a region with a low silicon concentration be provided between the oxide semiconductor 130b and the oxide semiconductor 130c.
  • the silicon concentration is less than 1 ⁇ 10 19 atoms / cm 3 , preferably less than 5 ⁇ 10 18 atoms / cm 3 , more preferably less than 2 ⁇ 10 18 atoms / cm 3 .
  • the oxide semiconductor 130b when hydrogen contained as an impurity moves to the semiconductor surface, it may combine with oxygen near the surface and be desorbed as water molecules. At that time, oxygen deficient V O is formed at the position of O desorbed as water molecules. Therefore, it is preferable that the hydrogen concentration of the oxide semiconductor 130b be sufficiently reduced. Therefore, the oxide semiconductor 130b has 1.0 ⁇ 10 21 water molecules / cm observed in the TDS analysis when the film surface temperature is in the range of 100 ° C. to 700 ° C. or 100 ° C. to 500 ° C. 3 (1.0 pieces / nm 3 ) or less, preferably 1.0 ⁇ 10 20 pieces / cm 3 (0.1 pieces / nm 3 ) or less.
  • hydrogen as an impurity in a semiconductor is in a state of a hydrogen atom, a hydrogen ion, a hydrogen molecule, a hydroxy group, a hydroxide ion, or the like and does not always exist as a water molecule.
  • the hydrogen concentration of the oxide semiconductor 130a and the oxide semiconductor 130c water molecules observed in a range where the surface temperature of the film is 100 ° C. to 700 ° C. or 100 ° C. to 500 ° C. are 1.0 ⁇ 10 21 in TDS analysis.
  • Pieces / cm 3 1.0 pieces / nm 3 ) or less, preferably 1.0 ⁇ 10 20 pieces / cm 3 (0.1 pieces / nm 3 ) or less.
  • an oxide semiconductor including a crystal whose hydrogen concentration is sufficiently reduced for a channel formation region of a transistor By using an oxide semiconductor including a crystal whose hydrogen concentration is sufficiently reduced for a channel formation region of a transistor, stable electric characteristics can be imparted. That is, it is possible to suppress fluctuations in electrical characteristics and improve reliability. In addition, a semiconductor device with reduced power consumption can be provided.
  • the copper concentration at the surface or inside of the oxide semiconductor 130b is preferably as low as possible.
  • the oxide semiconductor 130b preferably includes a region where the copper concentration is 1 ⁇ 10 19 atoms / cm 3 or less, 5 ⁇ 10 18 atoms / cm 3 or less, or 1 ⁇ 10 18 atoms / cm 3 or less.
  • the above-described structure in which the oxide semiconductor 130 has three layers is an example.
  • a single layer may be used instead of a stacked structure.
  • a two-layer structure without the oxide semiconductor 130a or the oxide semiconductor 130c may be employed.
  • a four-layer structure including any one of the semiconductors exemplified as the oxide semiconductor 130a, the oxide semiconductor 130b, and the oxide semiconductor 130c above or below the oxide semiconductor 130a or above or below the oxide semiconductor 130c may be employed. I do not care.
  • the oxide semiconductor 130a, the oxide semiconductor 130b, and the oxide semiconductor may be provided at any two or more positions over the oxide semiconductor 130a, under the oxide semiconductor 130a, over the oxide semiconductor 130c, and under the oxide semiconductor 130c.
  • An n-layer structure (n is an integer of 5 or more) having any one of the semiconductors exemplified as 130c may be used.
  • the conductor 140 and the conductor 150 are boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, silver, indium
  • a conductor containing one or more of tin, tantalum, and tungsten may be used in a single layer or a stacked layer.
  • the conductor 140 and the conductor 150 may be an alloy film or a compound film, and include a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, and a conductor containing indium, tin, and oxygen.
  • a body, a conductor containing titanium and nitrogen, or the like may be used.
  • the insulator 160 is a single layer of an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum. Or in a stack.
  • aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or oxide Tantalum may be used as the insulator 160.
  • the conductor 170 is boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, silver, indium, tin, tantalum.
  • a conductor containing one or more of tungsten and a single layer or a stacked layer may be used.
  • the laminated structure of the conductor 171 and the conductor 172 is used, but it may be designed as needed.
  • it may be an alloy film or a compound film, and includes a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, titanium and nitrogen.
  • a conductor or the like may be used.
  • the insulator 160 may be formed using the conductor 170 as a mask as illustrated in FIG. Further, the conductor 170 and the insulator 160 may be formed using the same resist mask. By using the same resist mask, the number of lithography processes can be reduced and the manufacturing cost can be reduced.
  • the transistor according to one embodiment of the present invention may include a conductor 175 between the substrate 110 and the insulator 180 as illustrated in FIG.
  • the conductor 175 functions as a second gate electrode (also referred to as a bottom gate electrode) of the transistor.
  • the same voltage as that of the conductor 170 can be applied to the conductor 175.
  • an electric field can be applied from above and below the oxide semiconductor 130, so that the on-state current of the transistor can be increased.
  • the off-state current of the transistor can be reduced.
  • a voltage lower or higher than that of the source electrode may be applied to the conductor 175 to change the threshold voltage of the transistor in the positive direction or the negative direction.
  • the threshold voltage of the transistor in the positive direction normally-off in which the transistor is turned off (off state) even when the gate voltage is 0 V may be realized.
  • the voltage applied to the conductor 175 may be variable or fixed. When the voltage applied to the conductor 175 is variable, a circuit for controlling the voltage may be electrically connected to the conductor 175.
  • the conductor 175 is, for example, boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, silver, indium, tin
  • a conductor containing one or more of tantalum and tungsten may be used in a single layer or a stacked layer.
  • it may be an alloy film or a compound film, and includes a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, titanium and nitrogen.
  • a conductor or the like may be used.
  • FIGS. 10A and 10B are a top view and a cross-sectional view of the transistor 200.
  • FIG. 10A is a top view
  • FIG. 10B is a cross-sectional view corresponding to a dashed-dotted line B1-B2 and a dashed-dotted line B3-B4 shown in FIG. 10A. Note that in the top view of FIG. 10A, some elements are omitted for clarity.
  • a transistor 200 illustrated in FIGS. 10A and 10B includes a substrate 210, a conductor 275 over the substrate 210, an insulator 260 over the conductor 275, a semiconductor 230 over the insulator 260, and a semiconductor 230, and a conductor 240 and a conductor 250 which are in contact with the upper surface of 230 and are spaced apart from each other.
  • the conductor 275 includes a region overlapping with the semiconductor 230 with the insulator 260 interposed therebetween.
  • an insulator may be interposed between the substrate 210 and the conductor 275.
  • the semiconductor 230 functions as a channel formation region of the transistor 200.
  • the conductor 275 functions as a first gate electrode (also referred to as a front gate electrode) of the transistor 200.
  • the insulator 260 functions as a gate insulator of the transistor 200.
  • the conductor 240 and the conductor 250 function as a source electrode and a drain electrode of the transistor.
  • the insulator 260 is preferably an insulator containing excess oxygen.
  • the description of the substrate 110 can be referred to.
  • the description of the conductor 170 can be referred to.
  • the description of the insulator 260 can be referred to.
  • the description of the oxide semiconductor 130 can be referred to.
  • the conductor 240 and the conductor 250 the description of the conductor 140 and the conductor 150 can be referred to.
  • FIGS. 11A and 11B are a top view and a cross-sectional view of the transistor 300.
  • FIG. 11A is a top view
  • FIG. 11B is a cross-sectional view corresponding to a dashed-dotted line B1-B2 and a dashed-dotted line B3-B4 illustrated in FIG. 11A. Note that in the top view of FIG. 11A, some elements are omitted for clarity.
  • a transistor 300 illustrated in FIGS. 11A and 11B includes a substrate 310, an insulator 380 over the substrate 310, a semiconductor 330 over the insulator 380 (semiconductor 330a, semiconductor 330b, and semiconductor 330c), and a semiconductor 330, a conductor 340 and a conductor 350 which are arranged at intervals, an insulator 360 which is in contact with the semiconductor 330c, and a conductor 370 which is in contact with the insulator 360.
  • the semiconductor 330, the insulator 360, and the conductor 370 are provided in openings that reach the semiconductor 330 a, the semiconductor 330 b, and the insulator 380 provided in the insulator 390 over the transistor 300.
  • the semiconductor 330 functions as a channel formation region of the transistor 300.
  • the conductor 370 functions as a gate electrode of the transistor 300.
  • the insulator 360 functions as a gate insulator of the transistor 300.
  • the conductor 340 and the conductor 350 function as a source electrode and a drain electrode of the transistor.
  • the insulator 360 is preferably an insulator containing excess oxygen.
  • the description of the substrate 110 can be referred to.
  • the description of the conductor 170 can be referred to.
  • the description of the insulator 360 can be referred to.
  • the description of the insulator 160 can be referred to.
  • the semiconductor 330 the description of the oxide semiconductor 130 can be referred to.
  • the conductor 340 and the conductor 350 the description of the conductor 140 and the conductor 150 can be referred to.
  • the structure of the transistor 300 can reduce the parasitic capacitance because the region where the conductor serving as the source or drain electrode overlaps with the conductor serving as the gate electrode is smaller than that of the other transistors described above. Therefore, the transistor 300 is suitable as an element of a circuit that requires high-speed operation for use in an arithmetic device, a memory device, or the like.
  • the top surface of the transistor 300 is preferably planarized using a CMP (Chemical Mechanical Polishing) method or the like as illustrated, but may be configured so as not to be planarized.
  • the present invention can be applied to various types of transistors. In some cases or depending on the situation, for example, a planar type, a FIN (fin) type, a TRI-GATE (trigate) type transistor, or the like can be used. Further, the present invention can also be applied to a transistor having a structure in which a gate electrode electrically surrounds a channel width direction of a semiconductor through a gate insulating film (surrounded channel (s-channel) structure). With the s-channel structure, a transistor with high on-state current can be obtained.
  • any one or more of the transistors 100 to 300 is formed in an active region or an active layer using silicon, germanium, silicon germanium, silicon carbide, gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, an organic semiconductor, or the like. It can also be constituted by a transistor having
  • parallel refers to a state in which two straight lines are arranged at an angle of ⁇ 10 ° to 10 °. Therefore, the case of ⁇ 5 ° to 5 ° is also included.
  • Very refers to a state in which two straight lines are arranged at an angle of 80 ° to 100 °. Therefore, the case of 85 ° to 95 ° is also included.
  • the non-single-crystal oxide semiconductor film refers to a CAAC-OS (C Axis Crystalline Oxide Semiconductor) film, a polycrystalline oxide semiconductor film, a microcrystalline oxide semiconductor film, an amorphous oxide semiconductor film, or the like.
  • CAAC-OS C Axis Crystalline Oxide Semiconductor
  • the CAAC-OS film is one of oxide semiconductor films having a plurality of c-axis aligned crystal parts.
  • Each layer of metal atoms has a shape reflecting unevenness of a surface (also referred to as a formation surface) or an upper surface on which the CAAC-OS film is formed, and is arranged in parallel with the formation surface or the upper surface of the CAAC-OS film. .
  • a peak may appear when the diffraction angle (2 ⁇ ) is around 31 °. Since this peak is attributed to the (009) plane of the InGaZnO 4 crystal, the CAAC-OS film crystal has c-axis orientation, and the c-axis is in a direction substantially perpendicular to the formation surface or the top surface. Can be confirmed.
  • XRD X-ray diffraction
  • CAAC-OS film including an InGaZnO 4 crystal is analyzed by an out-of-plane method, a peak may also appear when 2 ⁇ is around 36 ° in addition to the peak where 2 ⁇ is around 31 °.
  • a peak at 2 ⁇ of around 36 ° indicates that a crystal having no c-axis alignment is included in part of the CAAC-OS film.
  • the CAAC-OS film preferably has a peak at 2 ⁇ of around 31 ° and no peak at 2 ⁇ of around 36 °.
  • the CAAC-OS film is an oxide semiconductor film with a low impurity concentration.
  • the impurity is an element other than the main component of the oxide semiconductor film, such as hydrogen, carbon, silicon, or a transition metal element.
  • an element such as silicon which has a stronger bonding force with oxygen than the metal element included in the oxide semiconductor film, disturbs the atomic arrangement of the oxide semiconductor film by depriving the oxide semiconductor film of oxygen, and has crystallinity. It becomes a factor to reduce.
  • heavy metals such as iron and nickel, argon, carbon dioxide, and the like have large atomic radii (or molecular radii). Therefore, if they are contained inside an oxide semiconductor film, the atomic arrangement of the oxide semiconductor film is disturbed, resulting in crystallinity. It becomes a factor to reduce.
  • the impurity contained in the oxide semiconductor film might serve as a carrier trap or a carrier generation source.
  • the CAAC-OS film is an oxide semiconductor film with a low density of defect states.
  • oxygen vacancies in the oxide semiconductor film can serve as carrier traps or can generate carriers by capturing hydrogen.
  • a low impurity concentration and a low density of defect states is called high purity intrinsic or substantially high purity intrinsic.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has few carrier generation sources, and thus can have a low carrier density. Therefore, a transistor including the oxide semiconductor film is unlikely to have electrical characteristics (also referred to as normally-on) in which the threshold voltage is negative.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has few carrier traps. Therefore, a transistor including the oxide semiconductor film has a small change in electrical characteristics and has high reliability. Note that the charge trapped in the carrier trap of the oxide semiconductor film takes a long time to be released, and may behave as if it were a fixed charge. Therefore, a transistor including an oxide semiconductor film with a high impurity concentration and a high density of defect states may have unstable electrical characteristics.
  • a transistor including a CAAC-OS film has little variation in electrical characteristics due to irradiation with visible light or ultraviolet light.
  • the microcrystalline oxide semiconductor film includes a region where a crystal part can be confirmed and a region where a clear crystal part cannot be confirmed in a high-resolution TEM image.
  • a crystal part included in the microcrystalline oxide semiconductor film has a size of 1 nm to 100 nm, or 1 nm to 10 nm.
  • an oxide semiconductor film including nanocrystals (nc: nanocrystal) that is 1 nm to 10 nm, or 1 nm to 3 nm is referred to as an nc-OS (nanocrystalline Oxide Semiconductor) film.
  • nc-OS nanocrystalline Oxide Semiconductor
  • the nc-OS film has periodicity in atomic arrangement in a very small region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS film does not have regularity in crystal orientation between different crystal parts. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS film may not be distinguished from an amorphous oxide semiconductor film depending on an analysis method. For example, when structural analysis is performed on the nc-OS film using an XRD apparatus using X-rays having a diameter larger than that of the crystal part, a peak indicating a crystal plane is not detected in the analysis by the out-of-plane method.
  • a diffraction pattern such as a halo pattern is observed. Is done.
  • nanobeam electron diffraction is performed on the nc-OS film using an electron beam having a probe diameter that is close to or smaller than the size of the crystal part, spots are observed.
  • a region with high luminance may be observed so as to draw a circle (in a ring shape).
  • a plurality of spots may be observed in the ring-shaped region.
  • the nc-OS film is an oxide semiconductor film that has higher regularity than an amorphous oxide semiconductor film. Therefore, the nc-OS film has a lower density of defect states than the amorphous oxide semiconductor film. Note that the nc-OS film does not have regularity in crystal orientation between different crystal parts. Therefore, the nc-OS film has a higher density of defect states than the CAAC-OS film.
  • An amorphous oxide semiconductor film is an oxide semiconductor film having an irregular atomic arrangement in the film and having no crystal part.
  • An oxide semiconductor film having an amorphous state such as quartz is an example.
  • the oxide semiconductor film may have a structure having physical properties between the nc-OS film and the amorphous oxide semiconductor film.
  • the oxide semiconductor film having such a structure is particularly referred to as an amorphous-like oxide semiconductor (a-like OS: amorphous Semiconductor) film.
  • a void (also referred to as a void) may be observed in a high-resolution TEM image. Moreover, in a high-resolution TEM image, it has the area
  • the a-like OS film may be crystallized by a small amount of electron irradiation as observed by TEM, and a crystal part may be grown.
  • nc-OS film crystallization due to a small amount of electron irradiation comparable to that observed by TEM is hardly observed.
  • the crystal part size of the a-like OS film and the nc-OS film can be measured using high-resolution TEM images.
  • a crystal of InGaZnO 4 has a layered structure, and two Ga—Zn—O layers are provided between In—O layers.
  • the unit cell of InGaZnO 4 crystal has a structure in which a total of nine layers including three In—O layers and six Ga—Zn—O layers are stacked in the c-axis direction. Therefore, the distance between these adjacent layers is approximately the same as the lattice spacing (also referred to as d value) of the (009) plane, and the value is determined to be 0.29 nm from crystal structure analysis.
  • each lattice fringe corresponds to the ab plane of the InGaZnO 4 crystal in a portion where the interval between the lattice fringes is 0.28 nm or more and 0.30 nm or less.
  • the oxide semiconductor film may be a stacked film including two or more of an amorphous oxide semiconductor film, an a-like OS film, a microcrystalline oxide semiconductor film, and a CAAC-OS film, for example. .
  • FIG. 12A is a cross-sectional view of a circuit included in the semiconductor device included in the electronic device of one embodiment of the present invention.
  • the circuit illustrated in FIG. 12A includes a transistor 4200 using a first semiconductor material in a lower portion and a transistor 4100 using a second semiconductor material in an upper portion.
  • the left figure shows a cross section in the channel length direction of the transistor, and the right figure shows a cross section in the channel width direction.
  • the transistor 4100 may have a bottom gate.
  • the first semiconductor material and the second semiconductor material are preferably materials having different energy gaps.
  • the first semiconductor material is a semiconductor material other than an oxide semiconductor (silicon (including strained silicon), germanium, silicon germanium, silicon carbide, gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, an organic semiconductor, etc.)
  • the second semiconductor material can be an oxide semiconductor.
  • a transistor using single crystal silicon or the like as a material other than an oxide semiconductor can easily operate at high speed.
  • a transistor including an oxide semiconductor has low off-state current.
  • the transistor 4200 may be either an n-channel transistor or a p-channel transistor, and an appropriate transistor may be used depending on a circuit.
  • the specific structure of the semiconductor device, such as a material and a structure used, is not necessarily limited to that described here.
  • the transistor 4100 is provided over the transistor 4200 with the insulating film 4201 and the insulating film 4207 provided therebetween.
  • a plurality of wirings 4202 are provided between the transistors 4200 and 4100.
  • wirings and electrodes provided in the upper layer and the lower layer are electrically connected by a plurality of plugs 4203 embedded in various insulating films.
  • An interlayer insulating film 4204 that covers the transistor 4100 is provided.
  • the area occupied by the circuit is reduced, and a plurality of circuits can be arranged at a higher density.
  • hydrogen in the insulating film provided in the vicinity of the semiconductor film of the transistor 4200 terminates a dangling bond of silicon, thereby improving the reliability of the transistor 4200. There is an effect to improve.
  • hydrogen in the insulating film provided in the vicinity of the semiconductor film of the transistor 4100 serves as one factor for generating carriers in the oxide semiconductor. In some cases, the reliability of the transistor 4100 may be reduced.
  • the transistor 4100 using an oxide semiconductor is stacked over the transistor 4200 using a silicon-based semiconductor material, it is particularly preferable to provide the insulating film 4207 having a function of preventing hydrogen diffusion therebetween. It is effective.
  • the reliability of the transistor 4100 can be improved at the same time by suppressing diffusion of hydrogen from the lower layer to the upper layer. it can.
  • the insulating film 4207 for example, aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, yttria-stabilized zirconia (YSZ), or the like can be used.
  • aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, yttria-stabilized zirconia (YSZ), or the like can be used.
  • a block film having a function of preventing entry of hydrogen may be formed over the transistor 4100 so as to cover the transistor 4100 including the oxide semiconductor film.
  • a material similar to that of the insulating film 4207 can be used, and in particular, aluminum oxide is preferably used.
  • the aluminum oxide film has a high blocking effect that prevents the film from permeating both impurities such as hydrogen and moisture and oxygen. Therefore, by using an aluminum oxide film as a block film covering the transistor 4100, oxygen is prevented from being released from the oxide semiconductor film included in the transistor 4100 and water and hydrogen are prevented from being mixed into the oxide semiconductor film. can do.
  • the transistor 4200 can be a transistor of various types as well as a planar transistor.
  • a transistor of FIN (fin) type, TRI-GATE (trigate) type, or the like can be used.
  • An example of a cross-sectional view in that case is shown in FIG.
  • An insulating film 4212 is provided over the semiconductor substrate 4211.
  • the semiconductor substrate 4211 has a convex portion (also referred to as a fin) with a thin tip.
  • an insulating film may be provided on the convex portion.
  • the insulating film functions as a mask for preventing the semiconductor substrate 4211 from being etched when the convex portion is formed.
  • the convex part does not need to have a thin tip, for example, it may be a substantially rectangular parallelepiped convex part or a thick convex part.
  • a gate insulating film 4214 is provided on the convex portion of the semiconductor substrate 4211, and a gate electrode 4213 is provided thereon.
  • the gate electrode 4213 has a single-layer structure; however, the present invention is not limited to this, and a stacked layer of two or more layers may be used.
  • a source region and a drain region 4215 are formed in the semiconductor substrate 4211. Note that although the example in which the semiconductor substrate 4211 includes a convex portion is described here, the semiconductor device according to one embodiment of the present invention is not limited thereto. For example, an SOI substrate may be processed to form a semiconductor region having a convex portion.
  • various circuits can be formed by changing connection structures of the electrodes of the transistor 4100 and the transistor 4200.
  • An example of a circuit configuration that can be realized by using the semiconductor device of one embodiment of the present invention will be described below.
  • FIG. 13A shows a structure of a so-called CMOS circuit in which a p-channel transistor 4200 and an n-channel transistor 4100 are connected in series and gates thereof are connected.
  • circuit diagram illustrated in FIG. 13B illustrates a structure in which the sources and drains of the transistors 4100 and 4200 are connected to each other. With such a configuration, it can function as a so-called analog switch.
  • FIG. 14 is a cross-sectional view of a semiconductor device in the case where a CMOS circuit is formed using the transistor 4200 and the transistor 4300 each including a first semiconductor material as a channel.
  • the transistor 4300 includes an impurity region 4301 functioning as a source region or a drain region, a gate electrode 4303, a gate insulating film 4304, and a sidewall insulating film 4305.
  • an impurity region functioning as an LDD region may be provided under the sidewall insulating film 4305.
  • FIG. 12A The description of FIG. 12A can be referred to for the other components in FIG.
  • the transistor 4200 and the transistor 4300 are preferably transistors having different polarities.
  • the transistor 4300 is preferably an n-channel transistor.
  • the semiconductor device can include a photoelectric conversion element such as a photodiode.
  • the photoelectric conversion element can be formed using a single crystal semiconductor, a polycrystalline semiconductor, or an amorphous semiconductor, and a material may be selected depending on the application.
  • a material for example, as the material, single crystal silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, polycrystalline selenium, amorphous selenium, CIS (copper, indium, selenium compound), CIGS (copper, indium, gallium) , A compound of selenium) and the like.
  • FIG. 15A illustrates a cross-sectional view in the case where the photoelectric conversion element 4400 is provided over the substrate 4001.
  • the substrate 4001 can be a single crystal semiconductor.
  • the photoelectric conversion element 4400 includes a conductive layer 4401 that functions as one of an anode and a cathode, a conductive layer 4402 that functions as the other of an anode and a cathode, and a conductive layer that electrically connects the conductive layer 4402 and the plug 4004.
  • the conductive layers 4401 to 4403 can be manufactured by injecting or diffusing impurities into the substrate 4001.
  • the photoelectric conversion element 4400 is provided so that a current flows in the vertical direction with respect to the substrate 4001, but the photoelectric conversion element 4400 is provided so that a current flows in the horizontal direction with respect to the substrate 4001. Also good.
  • FIG. 15B is a cross-sectional view of the semiconductor device in which the photoelectric conversion element 4500 is provided over the transistor 4100.
  • the photoelectric conversion element 4500 includes a conductive layer 4501 having a function as one of an anode and a cathode, a conductive layer 4502 having a function as the other of the anode and the cathode, and a semiconductor 4503.
  • the photoelectric conversion element 4500 is electrically connected to the transistor 4100 through a plug 4504.
  • a pin-type photoelectric conversion element using i-type amorphous silicon can be used.
  • a photoelectric conversion element using polycrystalline selenium or amorphous selenium may be used.
  • the photoelectric conversion element 4500 may be provided in the same layer as the transistor 4100.
  • the photoelectric conversion element 4500 may be provided in a hierarchy between the transistor 4200 and the transistor 4100.
  • the photoelectric conversion element 4400 and the photoelectric conversion element 4500 may be formed using a material that can absorb radiation and generate charges.
  • materials that can generate charges by absorbing radiation include selenium, lead iodide, mercury iodide, gallium arsenide, CdTe, and CdZn.
  • the semiconductor device can have a structure including a memory circuit.
  • FIG. 16 illustrates an example of a memory circuit in which a transistor including an oxide semiconductor is used and stored data can be stored even when power is not supplied and the number of writing operations is not limited. Note that FIG. 16B is a circuit diagram corresponding to FIG.
  • the memory circuit illustrated in FIGS. 16A and 16B includes a transistor 5200 using a first semiconductor material, a transistor 5300 using a second semiconductor material, and a capacitor 5400. Note that as the transistor 5300, the transistor described in Embodiment 2 can be used.
  • the transistor 5300 is a transistor in which a channel is formed in a semiconductor including an oxide semiconductor. Since the transistor 5300 has low off-state current, stored data can be held for a long time by using the transistor 5300. In other words, since it is possible to obtain a semiconductor memory device that does not require a refresh operation or has a very low frequency of the refresh operation, power consumption can be sufficiently reduced.
  • the first wiring 5001 is electrically connected to the source electrode of the transistor 5200
  • the second wiring 5002 is electrically connected to the drain electrode of the transistor 5200
  • the third wiring 5003 is electrically connected to one of a source electrode and a drain electrode of the transistor 5300
  • the fourth wiring 5004 is electrically connected to a gate electrode of the transistor 5300.
  • the other of the gate electrode of the transistor 5200 and the source and drain electrodes of the transistor 5300 is electrically connected to one of the electrodes of the capacitor 5400
  • the fifth wiring 5005 is electrically connected to the other of the electrodes of the capacitor 5400. Connected.
  • data can be written, held, and read as follows by utilizing the feature that the potential of the gate electrode of the transistor 5200 can be held.
  • the potential of the fourth wiring 5004 is set to a potential at which the transistor 5300 is turned on, so that the transistor 5300 is turned on. Accordingly, the potential of the third wiring 5003 is supplied to the gate electrode of the transistor 5200 and the capacitor 5400. That is, predetermined charge is supplied to the gate of the transistor 5200 (writing).
  • the potential of the fourth wiring 5004 is set to a potential at which the transistor 5300 is turned off, so that the transistor 5300 is turned off, whereby the charge given to the gate of the transistor 5200 is held (held).
  • the fifth wiring 5005 When an appropriate potential (read potential) is applied to the fifth wiring 5005 in a state where a predetermined potential (constant potential) is applied to the first wiring 5001, according to the amount of charge held in the gate of the transistor 5200,
  • the second wiring 5002 has different potentials.
  • the apparent threshold value Vth_H in the case where a high-level charge is applied to the gate electrode of the transistor 5200 is the case where a low-level charge is applied to the gate electrode of the transistor 5200 This is because it becomes lower than the apparent threshold value Vth_L.
  • the apparent threshold voltage refers to the potential of the fifth wiring 5005 which is necessary for turning on the transistor 5200.
  • the charge applied to the gate of the transistor 5200 can be determined by setting the potential of the fifth wiring 5005 to a potential V0 between Vth_H and Vth_L. For example, in the case where a high-level charge is applied in writing, the transistor 5200 is turned on when the potential of the fifth wiring 5005 is V0 (> Vth_H). In the case where the low-level charge is supplied, the transistor 5200 remains in the “off state” even when the potential of the fifth wiring 5005 becomes V0 ( ⁇ Vth_L). Therefore, the stored information can be read by determining the potential of the second wiring 5002.
  • a potential that causes the transistor 5200 to be in the “off state” regardless of the state of the gate that is, a potential lower than Vth_H may be supplied to the fifth wiring 5005.
  • a potential that turns on the transistor 5200 regardless of the state of the gate that is, a potential higher than Vth_L may be supplied to the fifth wiring 5005.
  • the semiconductor device illustrated in FIG. 16C is different from FIG. 16A in that the transistor 5200 is not provided. In this case, information can be written and held by the same operation as described above.
  • the potential of the first terminal of the capacitor 5400 is V
  • the capacitance of the capacitor 5400 is C
  • the capacitance component of the third wiring 5003 is CB
  • the potential of the third wiring 5003 before charge is redistributed Is VB0
  • the potential of the third wiring 5003 after the charge is redistributed is (CB ⁇ VB0 + C ⁇ V) / (CB + C). Therefore, when the potential of the first terminal of the capacitor 5400 assumes two states of V1 and V0 (V1> V0) as the state of the memory cell, the third wiring 5003 in the case where the potential V1 is held.
  • information can be read by comparing the potential of the third wiring 5003 with a predetermined potential.
  • a transistor to which the first semiconductor material is applied is used for a driver circuit for driving the memory cell, and a transistor to which the second semiconductor material is applied is stacked as the transistor 5300 over the driver circuit. And it is sufficient.
  • stored data can be held for an extremely long time by using a transistor with an extremely small off-state current that uses an oxide semiconductor for a channel formation region. That is, the refresh operation is not necessary or the frequency of the refresh operation can be extremely low, so that power consumption can be sufficiently reduced.
  • stored data can be held for a long time even when power is not supplied (note that a potential is preferably fixed).
  • high voltage is not needed for writing data and there is no problem of deterioration of elements.
  • it is not necessary to inject electrons into the floating gate or extract electrons from the floating gate, so that there is no problem of deterioration of the gate insulating film. That is, in the memory circuit according to the disclosed invention, the number of rewritable times that is a problem in the conventional nonvolatile memory is not limited, and the reliability is dramatically improved. Further, since data is written depending on the on / off state of the transistor, high-speed operation can be easily realized.
  • the storage device described in this embodiment can also be applied to LSIs such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a custom LSI, and a PLD (Programmable Logic Device).
  • LSIs such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a custom LSI, and a PLD (Programmable Logic Device).
  • a liquid crystal element also referred to as a liquid crystal display element
  • a light-emitting element also referred to as a light-emitting display element
  • the light-emitting element includes, in its category, an element whose luminance is controlled by current or voltage, and specifically includes inorganic EL (Electroluminescence), organic EL, and the like.
  • a display device using an EL element an EL display device
  • a display device using a liquid crystal element a liquid crystal display device
  • a display device described below includes a panel in which a display element is sealed, and a module in which an IC or the like including a controller is mounted on the panel.
  • the display device described below refers to an image display device or a light source (including a lighting device).
  • the display device includes all connectors, for example, a module to which FPC and TCP are attached, a module having a printed wiring board at the end of TCP, or a module in which an IC (integrated circuit) is directly mounted on a display element by a COG method.
  • FIG. 17 illustrates an example of an EL display device according to one embodiment of the present invention.
  • FIG. 17A shows a circuit diagram of a pixel of an EL display device.
  • FIG. 17B is a top view showing the entire EL display device.
  • FIG. 17C is an MN cross section corresponding to part of the dashed-dotted line MN in FIG.
  • FIG. 17A is an example of a circuit diagram of a pixel used in the EL display device.
  • the EL display device illustrated in FIG. 17A includes a switch element 743, a transistor 741, a capacitor 742, and a light-emitting element 719.
  • FIG. 17A is an example of a circuit configuration, and thus transistors can be added. On the other hand, it is also possible not to add a transistor, a switch, a passive element, or the like at each node in FIG.
  • a gate of the transistor 741 is electrically connected to one end of the switch element 743 and one electrode of the capacitor 742.
  • a source of the transistor 741 is electrically connected to the other electrode of the capacitor 742 and electrically connected to one electrode of the light-emitting element 719.
  • the source of the transistor 741 is supplied with the power supply potential VDD.
  • the other end of the switch element 743 is electrically connected to the signal line 744.
  • a constant potential is applied to the other electrode of the light-emitting element 719. Note that the constant potential is set to the ground potential GND or lower.
  • a transistor is preferably used as the switch element 743.
  • the area of a pixel can be reduced and an EL display device with high resolution can be obtained.
  • the productivity of the EL display device can be increased. Note that as the transistor 741 and / or the switch element 743, for example, the above-described transistor can be used.
  • FIG. 17B is a top view of the EL display device.
  • the EL display device includes a substrate 700, a substrate 750, a sealant 734, a driver circuit 735, a driver circuit 736, a pixel 737, and an FPC 732.
  • the sealant 734 is disposed between the substrate 700 and the substrate 750 so as to surround the pixel 737, the drive circuit 735, and the drive circuit 736. Note that the drive circuit 735 and / or the drive circuit 736 may be disposed outside the sealant 734.
  • FIG. 17C is a cross-sectional view of the EL display device corresponding to part of the dashed-dotted line MN in FIG.
  • the transistor 741 includes a conductor 704a over the substrate 700, an insulator 712a over the conductor 704a, an insulator 712, and a semiconductor 706 that is over the insulator 712 and overlaps with the conductor 704a.
  • a structure including 718c and a conductor 714a over the insulator 718c and overlapping with the semiconductor 706b is illustrated. Note that the structure of the transistor 741 is just an example, and a structure different from the structure illustrated in FIG.
  • the conductor 704a functions as a gate electrode
  • the insulator 712 functions as a gate insulator
  • the conductor 716a functions as a source electrode.
  • the conductor 716b functions as a drain electrode
  • the insulator 718a, the insulator 718b, and the insulator 718c function as a gate insulator
  • the conductor 714a functions as a gate electrode.
  • the electrical characteristics of the semiconductor 706 may fluctuate when exposed to light. Therefore, it is preferable that one or more of the conductor 704a, the conductor 716a, the conductor 716b, and the conductor 714a have a light-blocking property.
  • the interface between the insulator 718a and the insulator 718b is represented by a broken line, this indicates that the boundary between them may not be clear.
  • the two may not be distinguished depending on the observation technique.
  • a single-layer insulator may be provided in a region where the insulator 718a and the insulator 718b are provided.
  • the capacitor 742 includes a conductor 704b over the substrate, an insulator 712 over the conductor 704b, a conductor 716a over the insulator 712 and overlapping the conductor 704b, and a conductor 716a.
  • a structure in which part of the insulator 718a and the insulator 718b is removed in a region where the conductor 714b overlaps is shown.
  • the conductor 704b and the conductor 714b function as one electrode, and the conductor 716a functions as the other electrode.
  • the capacitor 742 can be manufactured using a film in common with the transistor 741.
  • the conductors 704a and 704b are preferably the same kind of conductors. In that case, the conductor 704a and the conductor 704b can be formed through the same process.
  • the conductors 714a and 714b are preferably the same kind of conductors. In that case, the conductor 714a and the conductor 714b can be formed through the same process.
  • a capacitor 742 illustrated in FIG. 17C has a large capacitance per occupied area. Accordingly, FIG. 17C illustrates an EL display device with high display quality. Note that the capacitor 742 illustrated in FIG. 17C has a structure in which part of the insulator 718a and the insulator 718b is removed in order to reduce the overlapping region of the conductor 716a and the conductor 714b.
  • the capacitor according to one embodiment is not limited to this. For example, in order to thin the region where the conductors 716a and 714b overlap with each other, a structure in which part of the insulator 718c is removed may be employed.
  • An insulator 720 is provided over the transistor 741 and the capacitor 742.
  • the insulator 720 may have an opening reaching the conductor 716a functioning as a source electrode of the transistor 741.
  • a conductor 781 is provided over the insulator 720. The conductor 781 may be electrically connected to the transistor 741 through the opening of the insulator 720.
  • a partition 784 having an opening reaching the conductor 781 is provided over the conductor 781.
  • a light-emitting layer 782 that is in contact with the conductor 781 through the opening of the partition 784 is provided over the partition 784.
  • a conductor 783 is provided over the light-emitting layer 782. A region where the conductor 781, the light emitting layer 782, and the conductor 783 overlap with each other serves as the light emitting element 719.
  • FIG. 18A is a circuit diagram illustrating a configuration example of a pixel of a liquid crystal display device.
  • the pixel shown in FIG. 18 includes a transistor 751, a capacitor 752, and an element (liquid crystal element) 753 in which liquid crystal is filled between a pair of electrodes.
  • one of a source and a drain is electrically connected to the signal line 755 and a gate is electrically connected to the scanning line 754.
  • one electrode is electrically connected to the other of the source and the drain of the transistor 751, and the other electrode is electrically connected to a wiring for supplying a common potential.
  • one electrode is electrically connected to the other of the source and the drain of the transistor 751, and the other electrode is electrically connected to a wiring for supplying a common potential.
  • the common potential applied to the wiring to which the other electrode of the capacitor 752 is electrically connected may be different from the common potential applied to the other electrode of the liquid crystal element 753.
  • the top view of the liquid crystal display device is the same as that of the EL display device.
  • a cross-sectional view of the liquid crystal display device corresponding to the dashed-dotted line MN in FIG. 17B is illustrated in FIG.
  • the FPC 732 is connected to a wiring 733 a through a terminal 731.
  • the wiring 733a may be formed using the same kind of conductor or semiconductor as the conductor or semiconductor included in the transistor 751.
  • the description of the transistor 741 is referred to for the transistor 751.
  • the description of the capacitor 742 is referred to.
  • the capacitor 752 illustrated in FIG. 18B has a structure similar to that of the capacitor 742 in FIG. 17C, but is not limited thereto.
  • An insulator 721 is provided over the transistor 751 and the capacitor 752.
  • the insulator 721 has an opening reaching the transistor 751.
  • a conductor 791 is provided over the insulator 721. The conductor 791 is electrically connected to the transistor 751 through the opening of the insulator 721.
  • An insulator 792 functioning as an alignment film is provided over the conductor 791.
  • a liquid crystal layer 793 is provided over the insulator 792.
  • An insulator 794 functioning as an alignment film is provided over the liquid crystal layer 793.
  • a spacer 795 is provided over the insulator 794.
  • a conductor 796 is provided over the spacer 795 and the insulator 794.
  • a substrate 797 is provided over the conductor 796.
  • a display device including a capacitor with a small occupied area can be provided, or a display device with high display quality can be provided.
  • a high-definition display device can be provided.
  • a display element, a display device that is a device including a display element, a light-emitting element, and a light-emitting device that is a device including a light-emitting element have various forms or have various elements. Can do.
  • a display element, a display device, a light emitting element, or a light emitting device is, for example, a light emitting diode (LED: Light Emitting Diode) such as white, red, green, or blue, a transistor (a transistor that emits light in response to current), an electron emitting element, a liquid crystal Element, electronic ink, electrophoretic element, grating light valve (GLV), plasma display (PDP), display element using MEMS (micro electro mechanical system), digital micromirror device (DMD), DMS (digital Micro shutter), IMOD (interference modulation) element, shutter type MEMS display element, optical interference type MEMS display element, electrowetting element, piezoelectric ceramic display, carbon Bruno has at least one such display device using the tube.
  • a display medium in which contrast, luminance, reflectance, transmittance, and the like are changed by an electric or magnetic action may be included.
  • An example of a display device using an EL element is an EL display.
  • a display device using an electron-emitting device there is a field emission display (FED), a SED planar display (SED: Surface-conduction Electron-emitter Display), or the like.
  • FED field emission display
  • SED SED planar display
  • a display device using a liquid crystal element there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like.
  • An example of a display device using electronic ink or an electrophoretic element is electronic paper.
  • part or all of the pixel electrode may have a function as a reflective electrode.
  • part or all of the pixel electrode may have aluminum, silver, or the like.
  • a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
  • Graphene or graphite may be a multilayer film in which a plurality of layers are stacked.
  • a nitride semiconductor such as an n-type GaN semiconductor having a crystal can be easily formed thereon.
  • a p-type GaN semiconductor having a crystal or the like can be provided thereon to form an LED.
  • an AlN layer may be provided between graphene or graphite and an n-type GaN semiconductor having a crystal.
  • the GaN semiconductor included in the LED may be formed by MOCVD. However, by providing graphene, the GaN semiconductor included in the LED can be formed by a sputtering method.
  • An electronic device includes a display device, a personal computer, and an image reproducing device including a recording medium (typically, a display that can reproduce a recording medium such as a DVD: Digital Versatile Disc and display the image. Device).
  • an electronic device includes a mobile phone, a game machine including a portable type, a portable data terminal, an electronic book terminal, a video camera, a camera such as a digital still camera, and a goggle type display (head mounted display).
  • FIGS. 1-10 It can be used as a navigation system, a sound reproducing device (car audio, digital audio player, etc.), a copying machine, a facsimile, a printer, a printer multifunction device, an automatic teller machine (ATM), a vending machine, and the like. Specific examples of these electronic devices are shown in FIGS.
  • FIG. 19A illustrates a portable data terminal, which includes a housing 911, a display portion 912, a camera 919, and the like. Information can be input and output by a touch panel function of the display portion 912.
  • the electronic device of one embodiment of the present invention can be applied to the portable data terminal.
  • FIG. 19B illustrates a television device in which a display portion 922 and a speaker are incorporated in a housing 921. Images can be displayed on the display portion 922.
  • the housing 921 is supported by a stand 923.
  • the electronic device of one embodiment of the present invention can be applied to the television device.
  • FIG. 19C illustrates a laptop personal computer, which includes a housing 931, a display portion 932, a keyboard 933, a pointing device 934, and the like.
  • the electronic device of one embodiment of the present invention can be applied to the laptop personal computer.
  • FIG. 19D illustrates digital signage, which includes a display portion 942 installed on a utility pole 941.
  • the display portion 942 has flexibility.
  • the electronic device of one embodiment of the present invention can be applied to the digital signage.
  • FIG. 19E illustrates a video camera, which includes a first housing 951, a second housing 952, a display portion 953, a switch 954, a lens 955, a connection portion 956, and the like.
  • the switch 954 and the lens 955 are provided in the first housing 951, and the display portion 953 is provided in the second housing 952.
  • the first housing 951 has a battery and can record sound with a microphone.
  • the electronic device of one embodiment of the present invention can be applied to the video camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

高速かつ安定に画像信号を伝送することのできる電子機器を提供する。 信号出力装置と、 表示装置と、 を有する半導体装置であって、 信号出力装置は、 画像信号を複数に分割する機能を有し、 表示装置は、 分割された画像信号を組み合わせる機能を有し、 信号出力装置と画像表示装置との間には、分割された画像信号を伝送する有線伝送路および無線伝送路が設けられている構成とする。

Description

電子機器
本発明の一態様は、情報の入力、出力または入出力を行う電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
通信技術や情報処理技術が発達し、小型の携帯型情報端末においても高精細な画像を高速に表示することが可能となっている。情報信号の伝送技術としては、有線伝送および無線伝送が知られており、それぞれ次世代の高速かつ大容量の情報伝送への対応が図られている。
一方で、無線伝送においては、距離、障害物、同一周波数帯の電波を使用する他の機器との干渉などにより十分な伝送速度が得られないことがある。これらの課題への対応として、例えば特許文献1に、無線伝送路と電力線伝送路を併用する通信システムが開示されている。
特開2008−193305号公報
8K4Kなどの高精細映像規格においては、画像データ量だけでも膨大となるため、通信速度の安定しない環境においては画像の表示に遅延が発生する場合がある。次世代においては情報の大容量化が進むため、さらに高速で安定な伝送技術が望まれる。
したがって、本発明の一態様では、高速かつ安定に画像信号を伝送することのできる電子機器を提供することを目的の一つとする。または、画像信号の伝送経路を複数有する電子機器を提供することを目的の一つとする。または、画像信号の伝送経路を複数有し、適切な伝送経路を選択する電子機器を提供することを目的の一つとする。または、複数の伝送経路に画像信号を出力する電子機器を提供することを目的の一つとする。または、複数の伝送経路から画像信号を取得する電子機器を提供することを目的の一つとする。または、複数の伝送経路に画像信号を出力し、当該複数の伝送経路から画像信号を取得する電子機器を提供することを目的の一つとする。または、新規な表示装置を有する電子機器などを提供することを目的の一つとする。または、新規な電子機器などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、画像信号の伝送経路を複数有する電子機器に関する。
本発明の一態様は、信号出力装置と、表示装置と、を有する電子機器であって、信号出力装置は、画像信号を複数の信号に分割することができる機能を有し、表示装置は、複数の信号を組み合わせる機能を有し、複数の信号は、第1の信号と、第2の信号と、を有し、信号出力装置は、有線伝送路を介して、表示装置に前記第1の信号を伝送することができる機能を有し、信号出力装置は、無線伝送路を介して、表示装置に第2の信号を伝送することができる機能を有することを特徴とする電子機器である。
また、本発明の他の一態様は、信号出力装置と、表示装置と、を有する電子機器であって、信号出力装置は、有線伝送路を介して、表示装置に第1の信号を伝送することができる機能を有し、信号出力装置は、無線伝送路を介して、表示装置に第2の信号を伝送することができる機能を有し、信号出力装置は、第1の回路、第2の回路、第3の回路、第4の回路および第1のアンテナを有し、第1の回路は、画像信号の伝送経路を選択する機能を有し、第2の回路は、第1の回路から伝送された画像信号を複数の信号に分割する機能を有し、複数の信号は、第1の信号と、第2の信号と、を有し、第3の回路は、第2の回路から伝送された第1の信号を変調信号に変換する機能を有し、第4の回路は、第3の回路から伝送された変調信号を前記第1のアンテナを用いて送信する機能を有し、表示装置は、第5の回路、第6の回路、第7の回路、第2のアンテナおよび表示部を有し、第5の回路は、第4の回路から送信された変調信号を前記第2のアンテナを用いて受信する機能を有し、第6の回路は、第5の回路から伝送された変調信号を復調して第1の信号に変換する機能を有し、第7の回路は、第2の回路から伝送された第2の信号および第6の回路から伝送された第1の信号から表示部に表示させる画像を構成する機能を有することを特徴とする電子機器である。
第4の回路は、複数の周波数帯の電波を用いて前記変調信号を送信する機能を有することができる。
また、第5の回路は、複数の周波数帯の電波を用いて送信された前記変調信号を受信する機能を有することができる。
また、有線伝送路は複数設けられている構成とすることができる。
また、信号出力装置および表示装置は、活性層に酸化物半導体を有するトランジスタを有することができる。当該酸化物半導体は、Inと、Znと、M(MはAl、Ti、Ga、Sn、Y、Zr、La、Ce、NdまたはHf)と、を有することが好ましい。
本発明の一態様を用いることで、高速かつ安定に画像信号を伝送することのできる電子機器を提供することができる。または、画像信号の伝送経路を複数有する電子機器を提供することができる。または、画像信号の伝送経路を複数有し、適切な伝送経路を選択する電子機器を提供することができる。または、複数の伝送経路に画像信号を出力する電子機器を提供することができる。または、複数の伝送経路から画像信号を取得する電子機器を提供することができる。または、複数の伝送経路に画像信号を出力し、当該複数の伝送経路から画像信号を取得する電子機器を提供することができる。または、新規な、表示装置を有する電子機器などを提供することができる。または、新規な電子機器などを提供することができる。
なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合もある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果を有さない場合もある。
電子機器を説明するブロック図。 電子機器を説明するブロック図。 電子機器の動作を説明するフローチャート。 電子機器の動作を説明するフローチャート。 電子機器を説明するブロック図。 電子機器を説明するブロック図。 信号出力装置および表示装置の接続形態を説明する図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 半導体装置を構成する回路を説明する断面図。 半導体装置を構成する回路を説明する回路図。 半導体装置を構成する回路を説明する断面図。 半導体装置を構成する回路を説明する断面図。 半導体装置を構成する回路を説明する断面図および回路図。 表示装置を説明する回路図、上面図および断面図。 表示装置を説明する回路図および断面図。 電子機器を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(または第1の端子など)が、Z1を介して(または介さず)、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2を介して(または介さず)、Yと電気的に接続されている場合や、トランジスタのソース(または第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)はYと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(または第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(または第1の端子など)とトランジスタのドレイン(または第2の端子など)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(または第1の端子など)からトランジスタのドレイン(または第2の端子など)への電気的パスであり、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(または第2の端子など)からトランジスタのソース(または第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様である電子機器について、図面を参照して説明する。図1は、本発明の一態様の電子機器を説明するブロック図である。当該電子機器は、信号出力装置10および表示装置20を有する。
信号出力装置10は、信号読み出し装置1000、回路1100、回路1200、回路1300、回路1400、アンテナ1500を有する。また、表示装置20は、表示部2000、回路2100、回路2300、回路2400、アンテナ2500を有する。なお、当該構成は一例であり、上記要素を制御する回路が設けられていてもよい。また、上記要素で処理されるデータを一時的に保存する記憶回路が設けられていてもよい。また、上記要素の一部が設けられない構成、上記以外の要素が設けられる構成、上記要素の一部が統合されている構成であってもよい。
信号読み出し装置1000は、画像信号を読み出す機能を有する。例えば、記録メディアから画像信号を読み出す機能を有することができる。または、放送局などから出力された電波を受信し、画像信号に変換する機能を有することができる。または、インターネットなどのネットワークから配信される画像信号を取り出す機能を有することができる。または、撮像機能を有し、画像信号を取り出す機能を有することができる。つまり、信号読み出し装置1000を有する信号出力装置10は、記録メディアの再生機、チューナー、携帯型情報端末、コンピュータ、またはカメラなどの形態をとりうる。なお、図2に示すように、信号読み出し装置1000が信号出力装置10に含まれない構成であってもよい。
回路1100は、信号読み出し装置1000から伝送された画像信号を効率良く高速に信号出力装置10の外部に伝送する経路を選択する機能を有する。信号出力装置10から画像信号を外部に出力するための伝送経路は、有線伝送路および無線伝送路があり、画像信号や環境によってその伝送経路が判断される。
図3のフローチャートに回路1100による判定の一例を示す。まず、信用読み出し装置1000で画像信号を読み出す(S101)。次に回路1100にて画像信号の伝送経路の判定を行う(S102)。情報量の少ない単色の画像や二値画像などは有線伝送路または無線伝送路のどちらか一方で高速な伝送が可能である。したがって、予め画像信号の情報量の大小を判別するしきい値を設定し、情報量が少ないと判断された場合、有線伝送路または無線伝送路のどちらか一方で伝送すると判断する。
有線伝送路または無線伝送路のどちらを用いるかは、例えば、有線伝送を優先とする設定、有線伝送および無線伝送を交互に行う設定、無線伝送速度が低下している場合は有線伝送を優先とする設定などから総合的に判断される。有線伝送を用いると判断(S104)された場合は、有線伝送路31を用いて直接画像信号を表示装置20に伝送することができる。無線伝送を用いると判断(S105)された場合は、経路33を介して無線伝送で画像信号を表示装置20に伝送することができる。なお、有線伝送および無線伝送でそれぞれ異なる画像信号を同時に伝送することもできる。
また、8K4K、16K8K、またはそれ以上の画像は極めて情報量が多いため、回路1100は、有線伝送および無線伝送の両方を用いて画像信号を表示装置20に伝送する判断を行う(S103)。この場合、画像信号は、回路1100から経路32を介して回路1200に伝送される。
回路1200は、伝送された画像信号を複数に分割する機能を有する。ここでは、一つの画像信号を二つに分割する例を説明する。なお、画像信号の分割とは、例えば画像の右側と左側に分割する例、画像の上側と下側に分割する例、画素の奇数行に対応する画像と偶数行に対応する画像に分割する例などがある。なお、分割された信号の情報量は同等でなく、割合が異なっていてもよい。この場合、情報量の大きい分割信号は伝送速度の速い有線伝送を用い、情報量の小さい分割信号は伝送速度の遅い無線伝送を用いるなどして全体の伝送速度を調整することができる。なお、回路1200は画像信号を圧縮するエンコーダの機能を有していてもよい。
なお、画像の上側と下側に分割する場合、表示部2000においてソース信号線を画面の中心で切断して、画面上側と画面下側とで、同時に信号を入力してもよい。つまり、画面分割をして信号を入力してもよい。これにより、1ゲート選択期間を長くとれるので、ディスプレイが表示しやすくなる。
また、画像信号の一部を抜き出して伝送経路を割り当てることもできる。例えば、輝度信号や色信号を異なる伝送経路で伝送することもできる。
また、動画などの場合は時間軸で画像信号を分割することもできる。例えば、奇数フレームと偶数フレームを異なる伝送経路で伝送することもできる。また、伝送するフレーム数の比を2:1や3:1などに分割し、比率の大きい方を有線伝送、小さい方を無線伝送としてもよい。また、情報量の多いフレームは有線伝送、情報量の少ないフレームは無線伝送としてもよい。
また、動画を表示する場合には、有線伝送を用いて、静止画を表示する場合には、無線伝送としてもよい。特に、表示装置の画素が有するトランジスタとして、酸化物半導体を用いる場合、トランジスタのオフ電流を小さくすることができる。そのため、静止画を表示する場合や、同じ画像を数フレーム期間以上に渡って表示するような場合には、画素の情報を書き換えるスピード、いわゆる、フレーム周波数を小さくすることができる。そのような場合には、無線伝送を用いてもよい。
なお、上記では画像信号を分割する例を説明したが、音声信号を分割の対象としてもよい。例えば、画像信号を有線伝送し、音声信号を無線伝送とすることができる。また、音声信号を周波数で分割して、それぞれの分割信号を異なる伝送経路で伝送することができる。また、音声信号を時間軸で分割し、それぞれの分割信号を異なる伝送経路で伝送することができる。
図4のフローチャートを用いて、分割した画像信号の伝送経路および処理方法の一例を説明する。まず、回路1200に画像信号が伝送される(S201)。次に、回路1200で画像信号が分割される(S202)。ここで、分割した画像信号を画像信号1、画像信号2として説明する。
次に、画像信号1は、回路2100に伝送される(S203)。また、画像信号2は、回路1300に伝送される(S204)。回路1300は、無線伝送を行うため画像信号を変調する機能を有する。なお、回路1100から直接回路1300に伝送された信号も変調するこができる。
回路1300では、画像信号2を変調する(S205)。ここで、当該変調信号は、画像信号3として説明する。次に、画像信号3は、回路1400に伝送される(S206)。回路1400は、画像信号3をアンテナ1500を用いて外部に送信する機能を有する。
回路1400から送信(S207)された画像信号3は、アンテナ2500を介して回路2400で受信される(S208)。回路2400は、変調信号をアンテナ2500を用いて受信する機能を有する。
回路2400で受信された画像信号3は、回路2300に伝送される(S209)。回路2300は、変調信号を復調する機能を有する。
回路2300で復調(S210)された画像信号2は、回路2100に伝送される(S211)。次に、回路1200で二つに分割された画像信号1および画像信号2は、回路2300で組み合わされ、元の画像信号に再構成される(S212)。なお、回路2100は、圧縮された画像信号を復元するデコーダの機能を有していてもよい。
そして、当該画像信号を表示部2000に伝送(S213)し、当該画像信号に基づく画像が表示される(S214)。なお、回路1200と回路2100との間には、有線伝送路が設けられる。
なお、上述した回路1200から回路2100まで伝送経路において、無線伝送路は、無線信号の送受信にかかる時間のみでなく、信号の変調および復調にも時間を要する。そのため、全般的に無線伝送路は、有線伝送路よりも信号の伝送速度が遅い。したがって、回路2100には、有線伝送路で伝送された分割信号の一時的な記憶回路2150を設けることが有効である。なお、記憶回路2150は、回路2100とは異なる要素として設けられていてもよい。また、同様の機能を有する記憶回路を回路1200に設けてもよい。
また、上述した表示装置20は、回路2100、回路2300、回路2400、アンテナ2500を有する形態を説明したが、図5に示すように、表示装置21と、信号入出力装置15に分割された形態であってもよい。信号入出力装置15は、回路2100、回路2300、回路2400、アンテナ2500および画像信号の出力経路を有する。このような形態とすることで、表示部を有する汎用性のある装置を表示装置21として用いることができる。例えば、表示装置20および表示装置21は、タブレット型コンピュータ、テレビ、コンピュータ用ディスプレイ、ディスプレイを有する時計などの形態をとりうる。
また、図1に示す信号出力装置10および表示装置20を有する電子機器は、一つの筐体内に設置される構成とすることができる。また、図5に示す信号出力装置10、信号入出力装置15および表示装置21を有する電子機器は、一つの筐体内に設置される構成とすることができる。すなわち、本発明の一態様の電子機器は、テレビ、デジタルサイネージ、ディスプレイを有するコンピュータ、ディスプレイを有するカメラなどの形態をとりうる。
上述した例においては、回路1200で画像信号を二つに分割する形態を説明したが、画像信号を三つ以上に分割してもよい。この場合、分割信号を順次伝送する方法も用いてもよいが、有線伝送路および無線伝送路をそれぞれ複数とし、並列に分割信号を伝送することで信号出力装置10および表示装置20の間の信号伝送時間を短縮することができる。この場合、並列に分割信号を伝送する経路は、有線伝送路および無線伝送路の組み合わせに限らず、複数の有線伝送路の組み合わせとしてもよい。または、複数の無線伝送路の組み合わせであってもよい。
図6(A)は、回路1200と回路2100の間の有線伝送路を複数とした形態を説明する図である。なお、図6(A)に示す回路1200および回路2100をつなぐ実線は、例えば、有線伝送路を有するケーブルとすることができる。ここでは、一つのケーブルが一つの有線伝送路を有するものとして説明するが、一つのケーブルが複数の有線伝送路を有していてもよい。また、図6(A)では、回路1200と回路2100が直接ケーブルで接続される形態を示しているが、ケーブルの一方の端部(接続端子)から回路1200までの間に他の回路や配線などが設けられていてもよい。また、ケーブルの他方の端部から回路2100までの間も同様である。
回路1200と回路2100との間に設けられるケーブルの数の上限はない。ただし、信号出力装置10および表示装置20の間において専用のケーブルが複数あると取扱いが煩雑となるため、汎用の入出力ポートに接続されるケーブルを有線伝送路として利用することが好ましい。
例えば、信号出力装置10および表示装置20に設けられる上記入出力ポートの規格には、USB、HDMI(登録商標)、D−sub、DVI、LVDS、Thunderbolt(登録商標)、displayportなどがある。また、また、光通信(光ファイバを用いた通信)のためのポート、ISDN通信のためのポート、または、ADSL通信のためのポートなどもある。電力供給するためのポート、信号伝送するための専用のポート、またはそれらが複合化されたポートなどを利用することもできる。なお、電力供給するためのポートを利用する場合は、当該ポートに接続されるケーブルを通じて、信号出力装置10および表示装置20のそれぞれが電力を融通しあう形態、または一方から他方へ電力を供給できる形態とすることもできる。
また、上記のようなポートを介したケーブルの接続形態ではなく、回路1200と回路2100をケーブルで直接接続する形態であってもよい。また、ケーブルの形態ではなく、プリント基板の配線のような導線の形態やFPC(Flexible printed circuits)の形態あってもよい。また、回路1200と回路2100との間には、接触によって導通を得る端子などが設けられていてもよい。
図6(B)は、回路1400と回路2400の間の無線伝送路を複数とした形態を説明する図である。無線伝送路を複数とする場合は、無線伝送に用いる電波の周波数帯を複数とする形態や、同一周波数帯において複数のチャンネルを利用する形態がある。例えば、周波数帯としては、Wi−Fi(登録商標)通信に用いられている2.4GHz帯や5GHz帯を用いることができる。また、2.4GHz帯におけるチャンネル幅は、20MHzおよび40MHzが用いられている。また、5GHz帯におけるチャンネル幅は、20MHz、40MHz、80MHzおよび160MHzが用いられている。その他にも、無線の方式として、LTE(Long Term Evolution)、TD−LTE、WiMAX(登録商標)、AXGP、CDMA、GSM、Bluetooth(登録商標)、などを用いてもよい。
したがって、図6(B)に示すように、複数の周波数帯に対応するようにアンテナ1500およびアンテナ2500を複数とすることが有効である。また、回路1400で信号を分割して送信する形態に対応するために、同一周波数帯での使用においてもアンテナを複数とすることが有効である。例えば、2.4GHz帯に対応するアンテナ数を1乃至4本設けることができる。または、5GHz帯に対応するアンテナ数を1乃至4本設けることができる。または、2.4GHz帯に対応するアンテナ数および5GHz帯に対応するアンテナ数を合計で2乃至8本設けることができる。
また、無線伝送に用いる電波は、携帯電話などに用いられる2.5GHz帯、2.1GHz帯、1.8GHz帯、1.7GHz帯、1.5GHz帯、900MHz帯、800MHz帯などを用いてもよい。
なお、上記は無線伝送に電波を用いる例の説明であるが、無線伝送に赤外光、可視光、紫外光などを用いてもよい。この場合、アンテナ1500を発光ダイオードなどの送信デバイスに置き換えればよい。また、アンテナ2500をフォトダイオードなどの受信デバイスに置き換えればよい。
なお、図6(A)と図6(B)とを組み合わせてもよい。つまり、図6(A)に示す有線伝送と、図6(B)に示す無線伝送とを組み合わせて伝送してもよい。
図7(A)、(B)は、信号出力装置10、表示装置20およびそれらの接続形態の具体的な一例を示す図である。なお、図7(A)、(B)に示す信号出力装置10および表示装置20においては、前述した回路は図示していない。
信号出力装置10は、内部にバッテリー3000およびアンテナ1500を有することができる。また、入出力端子3200を有することができる。
表示装置20は、表示部2000、入出力端子3100、操作ボタン3300、カメラ3400などを有することができる。また、内部にアンテナ2500を有することができる。
図7(A)に示す例では、信号出力装置10および表示装置20は、両者に設けられている入出力ポートおよびケーブル3500を介して接続されている。ケーブル3500によって、前述した信号の伝送を行うほか、信号出力装置10のバッテリー3000から表示装置20に電力を供給することができる。また、アンテナ1500およびアンテナ2500間で前述した信号の伝送を行うことができる。さらに、無線で充電を行ってもよい。
一方、図7(B)に示す例では、信号出力装置10および表示装置20が重なるように配置される例である。この場合は、入出力端子3100および入出力端子3200が接触することによって、有線伝送路を構成することができる。つまり、ケーブル3500を用いない構成とすることができる。また、アンテナ1500とアンテナ2500は重なるように配置されるため、極めて高速な通信を行うことが可能となる。なお、ケーブル3500を用いて、有線伝送路を複数とする形態としてもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、実施の形態1で形成した信号出力装置10および表示装置20の構成に用いることのできるトランジスタについて説明する。
本発明の一態様に用いることのできるトランジスタには、酸化物半導体を用いたトランジスタ(以下、OSトランジスタ)を用いることができる。
OSトランジスタは極めて低いオフ電流特性を有する。したがって、例えば、信号出力装置10および表示装置20が有する記憶回路のトランジスタにOSトランジスタを用いた場合には、電荷蓄積部で電荷を保持できる期間を極めて長くすることができる。そのため、電荷蓄積部(FD)に書き込んだ情報のリフレッシュの頻度を少なくすることができ、記憶回路の消費電力を抑えることができる。または、当該記憶回路を実質的に不揮発性の記憶回路として用いることもできる。
また、表示装置の画素部に用いるトランジスタに、オフ状態においてリークする電流が極めて小さいOSトランジスタを用いると、画像信号を保持することができる時間を長くすることができる。例えば、画像信号の書き込みを11.6μHz(1日に1回)以上0.1Hz(1秒間に0.1回)未満の頻度、好ましくは0.28mHz(1時間に1回)以上1Hz(1秒間に1回)未満の頻度としても画像を保持することができる。これにより、画像信号の書き込みの頻度を低減することができる。その結果、表示パネルの消費電力を削減することができる。また、上記のように画像信号の書き込み回数を削減した動作では、画面のちらつきを防止することができ、目の疲労を抑えることができる。また、このような場合には、無線伝送を行ってもよい。
<トランジスタ構造1の構成要素>
以下では、トランジスタの構成要素の一例について説明する。図8(A)および図8(B)は、本発明の一態様に係るトランジスタ100の上面図および断面図である。図8(A)は上面図であり、図8(B)は、図8(A)に示す一点鎖線A1−A2、および一点鎖線A3−A4に対応する断面図である。なお、図8(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図8(A)および図8(B)に示すトランジスタ100は、基板110と、酸化物半導体130と、導電体140および導電体150と、絶縁体160と、導電体170を有する。
基板110としては、後の加熱処理に耐えられるものを用いる。例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)などがある。
また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムを材料とした化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。
導電体基板としては、黒鉛基板、金属基板、合金基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
また、基板110として、可撓性基板を用いてもよい。なお、可撓性基板上にトランジスタを設ける方法としては、非可撓性の基板上にトランジスタを作製した後、トランジスタを剥離し、可撓性基板である基板110に転置する方法もある。その場合には、非可撓性基板とトランジスタとの間に剥離層を設けるとよい。
なお、基板110として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板110が伸縮性を有してもよい。また、基板110は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板110の厚さは、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下とする。
可撓性基板である基板110としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。可撓性基板である基板110は、線膨張率が低いほど環境による変形が抑制されて好ましい。可撓性基板である基板110としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリル、ポリテトラフルオロエチレン(PTFE)などがある。特に、アラミドは、線膨張率が低いため、可撓性基板である基板110として好適である。
なお、基板110と酸化物半導体130との間に絶縁体を設けてもよい。絶縁体を設けることで、基板110からの不純物の拡散を抑制することができる。絶縁体としては、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを用いることができる。
また、酸化物半導体130が酸化物であるため、絶縁体は、酸化物半導体130に酸素を供給する役割を担うことができる。したがって、絶縁体は過剰酸素を含む絶縁体であると好ましい。
例えば、過剰酸素を含む絶縁体としては、加熱処理によって酸素を放出する機能を有する絶縁体である。例えば、過剰酸素を含む酸化シリコン層は、加熱処理などによって酸素を放出することができる酸化シリコン層である。したがって、絶縁体は膜中を酸素が移動可能な絶縁体である。即ち、絶縁体は酸素透過性を有する絶縁体とすればよい。例えば、絶縁体は、半導体よりも酸素透過性の高い絶縁体とすればよい。
過剰酸素を含む絶縁体は、酸化物半導体130中の酸素欠損を低減させる機能を有する場合がある。酸化物半導体130中で酸素欠損は、深い準位を形成し、正孔捕獲中心などとなる。また、酸素欠損のサイトに水素が入ることによって、キャリアである電子を生成することがある。したがって、酸化物半導体130中の酸素欠損を低減することで、トランジスタに安定した電気特性を付与することができる。
ここで、加熱処理によって酸素を放出する絶縁体は、TDS分析にて、膜の表面温度が100℃以上700℃以下または100℃以上500℃以下の範囲で、1×1018atoms/cm以上、1×1019atoms/cm以上または1×1020atoms/cm以上の酸素(酸素原子数換算)を観測できるものを用いることが好ましい。
または、過剰酸素を含む絶縁体は、酸素が過剰な酸化シリコン(SiO(X>2))であってもよい。酸素が過剰な酸化シリコン(SiO(X>2))は、シリコン原子数の2倍より多い酸素原子を単位体積当たりに含むものである。単位体積当たりのシリコン原子数および酸素原子数は、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)により測定した値である。
酸化物半導体130としては、結晶を有する酸化物半導体を用いることが好ましい。図8には、酸化物半導体130が、酸化物半導体130a、酸化物半導体130bおよび酸化物半導体130cが、この順に積層した積層膜である場合を示す。
酸化物半導体130は、例えば、インジウムを含む酸化物半導体である。酸化物半導体130は、例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、酸化物半導体130は、元素Mを含むと好ましい。元素Mは、好ましくは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、イットリウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステンなどがある。
ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エネルギーがインジウムよりも高い元素である。または、元素Mは、例えば、酸化物半導体のエネルギーギャップを大きくする機能を有する元素である。また、酸化物半導体130は、亜鉛を含むと好ましい。酸化物半導体は、亜鉛を含むと結晶化しやすくなる場合がある。
ただし、酸化物半導体130は、インジウムを含む酸化物半導体に限定されない。酸化物半導体130は、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物、酸化ガリウムなどの、インジウムを含まず、亜鉛を含む酸化物半導体、ガリウムを含む酸化物半導体、スズを含む酸化物半導体などであっても構わない。
酸化物半導体130a、酸化物半導体130bおよび酸化物半導体130cが、インジウムを含む場合について説明する。なお、酸化物半導体130aがIn−M−Zn酸化物であり、InおよびMの和を100atomic%としたとき、好ましくはInを50atomic%未満、Mを50atomic%より高く、さらに好ましくはInを25atomic%未満、Mを75atomic%より高くする。
また、酸化物半導体130bがIn−M−Zn酸化物であり、InおよびMの和を100atomic%としたとき、好ましくはInを25atomic%より高く、Mを75atomic%未満、さらに好ましくはInを34atomic%より高く、Mを66atomic%未満とする。
また、酸化物半導体130cがIn−M−Zn酸化物であり、InおよびMの和を100atomic%としたとき、好ましくはInを50atomic%未満、Mを50atomic%より高く、さらに好ましくはInを25atomic%未満、Mを75atomic%より高くする。なお、酸化物半導体130cは、酸化物半導体130aと同種の酸化物を用いても構わない。
酸化物半導体130bは、酸化物半導体130aおよび酸化物半導体130cよりも電子親和力の大きい酸化物を用いることが好ましい。例えば、酸化物半導体130bとして、酸化物半導体130aおよび酸化物半導体130cよりも電子親和力の0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する。そのため、酸化物半導体130cがインジウムガリウム酸化物を含むと好ましい。ガリウム原子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さらに好ましくは90%以上とする。
ただし、酸化物半導体130aまたは/および酸化物半導体130cが、酸化ガリウムであっても構わない。例えば、酸化物半導体130cとして、酸化ガリウムを用いると導電体140または導電体150と、導電体170との間に生じるリーク電流を低減することができる。すなわち、トランジスタのオフ電流を小さくすることができる。
このとき、ゲート電圧を印加すると、酸化物半導体130a、酸化物半導体130b、酸化物半導体130cのうち、電子親和力の大きい酸化物半導体130bにチャネルが形成される。したがって、酸化物半導体130bは半導体として機能する領域を有するといえるが、酸化物半導体130aおよび酸化物半導体130cは絶縁体または半絶縁体として機能する領域を有するともいえる。
なお、トランジスタのオン電流を高くするためには、酸化物半導体130cの膜厚は薄いほど好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下の領域を有する形態とする。一方、酸化物半導体130cは、チャネルの形成される酸化物半導体130bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンなど)が入り込まないようブロックする機能を有する。そのため、酸化物半導体130cは、ある程度の厚さを有することが好ましい。例えば、酸化物半導体130cは0.3nm以上、好ましくは1nm以上、さらに好ましくは2nm以上の厚さの領域を有する形態とする。また、酸化物半導体130cは、基板110、または基板110と酸化物半導体130との間に介在する絶縁体などから放出される酸素の外方拡散を抑制するために、酸素をブロックする性質を有すると好ましい。
また、信頼性を高くするためには、酸化物半導体130aの膜厚は厚くすることが好ましい。例えば、酸化物半導体130aは10nm以上、好ましくは20nm以上、さらに好ましくは40nm以上、より好ましくは60nm以上の厚さの領域を有する形態とする。酸化物半導体130aの膜厚を厚くすることで、基板110または基板110上に設けた絶縁体とチャネルの形成される酸化物半導体130bまでの距離を離すことができる。ただし、トランジスタを有する半導体装置の生産性が低下する場合があるため、例えば、酸化物半導体130aは200nm以下、好ましくは120nm以下、さらに好ましくは80nm以下の厚さの領域を有する形態とする。
酸化物半導体中のシリコンは、キャリアトラップやキャリア発生源となる場合がある。したがって、酸化物半導体130bのシリコン濃度は低いほど好ましい。例えば、酸化物半導体130bと酸化物半導体130cとの間に、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を用いた分析において、シリコン濃度が低い領域を有することが好ましい。当該シリコン濃度は、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満とする。
また、酸化物半導体130bと酸化物半導体130cとの間にシリコン濃度が低い領域を有することが好ましい。当該シリコン濃度は、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満とする。
酸化物半導体130bにおいて、不純物として含まれる水素は、半導体表面に移動すると、表面近くの酸素と結合し、水分子となって脱離することがある。その際、水分子として脱離したOの位置に酸素欠損Vが形成される。そのため、酸化物半導体130bの水素濃度は十分に低減されていることが望ましい。したがって、酸化物半導体130bは、TDS分析にて、膜の表面温度が100℃以上700℃以下または100℃以上500℃以下の範囲で観測される水分子が、1.0×1021個/cm(1.0個/nm)以下、好ましくは1.0×1020個/cm(0.1個/nm)以下とする。
なお、半導体中の不純物としての水素は、水素原子、水素イオン、水素分子、ヒドロキシ基、水酸化物イオンなどの状態となっており、水分子として存在するとは限らない。
また、酸化物半導体130bの水素濃度を低減するために、酸化物半導体130aおよび酸化物半導体130cの水素濃度も低減すると好ましい。酸化物半導体130aおよび酸化物半導体130cは、TDS分析にて、膜の表面温度が100℃以上700℃以下または100℃以上500℃以下の範囲で観測される水分子が、1.0×1021個/cm(1.0個/nm)以下、好ましくは1.0×1020個/cm(0.1個/nm)以下とする。
水素濃度が十分に低減された結晶を有する酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。つまり、電気特性の変動を抑制すると共に、信頼性を向上させることができる。また、消費電力が低減された半導体装置を提供することができる。
なお、酸化物半導体に銅が混入すると、電子トラップを生成する場合がある。電子トラップは、トランジスタのしきい値電圧をプラス方向へ変動させる場合がある。したがって、酸化物半導体130bの表面または内部における銅濃度は低いほど好ましい。例えば、酸化物半導体130bにおいて、銅濃度が1×1019atoms/cm以下、5×1018atoms/cm以下、または1×1018atoms/cm以下となる領域を有すると好ましい。
なお、上述の酸化物半導体130を3層とする構造は一例である。例えば、図9(A)に示すように、積層構造ではなく単層で用いてもよい。または、酸化物半導体130aまたは酸化物半導体130cのない2層構造としても構わない。または、酸化物半導体130aの上もしくは下、または酸化物半導体130c上もしくは下に、酸化物半導体130a、酸化物半導体130bおよび酸化物半導体130cとして例示した半導体のいずれか一を有する4層構造としても構わない。または、酸化物半導体130aの上、酸化物半導体130aの下、酸化物半導体130cの上、酸化物半導体130cの下のいずれか二箇所以上に、酸化物半導体130a、酸化物半導体130bおよび酸化物半導体130cとして例示した半導体のいずれか一を有するn層構造(nは5以上の整数)としても構わない。
導電体140および導電体150は、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。導電体140および導電体150は、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
絶縁体160は、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体160としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを用いればよい。
導電体170は、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。なお、図では導電体171および導電体172の積層構造としたが、必要に応じて適宜設計すればよい。例えば、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
また、絶縁体160は、図9(A)に示すように、導電体170をマスクとして形成してもよい。また、導電体170と絶縁体160は、同一のレジストマスクを用いて形成してもよい。同一のレジストマスクを用いることで、リソグラフィ工程を減らし、製造コストを削減することができる。
<トランジスタ構造1の変形例>
本発明の一態様に係るトランジスタは、図9(B)に示すように、基板110と絶縁体180との間に導電体175を有しても構わない。導電体175は、トランジスタの第2のゲート電極(ボトムゲート電極ともいう)としての機能を有する。
導電体175には、例えば、導電体170と同じ電圧を印加することができる。こうすることで、酸化物半導体130の上下から電界を印加することが可能となるため、トランジスタのオン電流を大きくすることができる。また、トランジスタのオフ電流を小さくすることができる。または、導電体175には、例えば、ソース電極よりも低い電圧または高い電圧を印加し、トランジスタのしきい値電圧をプラス方向またはマイナス方向へ変動させてもよい。例えば、トランジスタのしきい値電圧をプラス方向に変動させることで、ゲート電圧が0Vであってもトランジスタが非導通状態(オフ状態)となる、ノーマリーオフが実現できる場合がある。なお、導電体175に印加する電圧は、可変であってもよいし、固定であってもよい。導電体175に印加する電圧を可変にする場合、電圧を制御する回路を導電体175と電気的に接続してもよい。
導電体175は、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
<トランジスタ構造2>
また、本発明の一態様に係るトランジスタは、図10(A)および図10(B)に示す構成とすることもできる。図10(A)および図10(B)は、トランジスタ200の上面図および断面図である。図10(A)は上面図であり、図10(B)は、図10(A)に示す一点鎖線B1−B2、および一点鎖線B3−B4に対応する断面図である。なお、図10(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図10(A)および図10(B)に示すトランジスタ200は、基板210と、基板210上の導電体275と、導電体275上の絶縁体260と、絶縁体260上の半導体230と、半導体230の上面と接し、間隔を開けて配置された導電体240および導電体250と、を有する。なお、導電体275は、絶縁体260を介して半導体230と重なる領域を有する。なお、基板210と導電体275の間に絶縁体を介していてもよい。
また、半導体230は、トランジスタ200のチャネル形成領域としての機能を有する。また、導電体275は、トランジスタ200の第1のゲート電極(フロントゲート電極ともいう。)としての機能を有する。また、絶縁体260は、トランジスタ200のゲート絶縁体としての機能を有する。また、導電体240および導電体250は、トランジスタのソース電極およびドレイン電極としての機能を有する。
なお、絶縁体260は過剰酸素を含む絶縁体であると好ましい。
なお、基板210は、基板110についての記載を参照することができる。また、導電体275は、導電体170についての記載を参照することができる。また、絶縁体260は、絶縁体160についての記載を参照することができる。また、半導体230は、酸化物半導体130についての記載を参照することができる。また、導電体240および導電体250は、導電体140および導電体150ついての記載を参照することができる。
<トランジスタ構造3>
また、本発明の一態様に係るトランジスタは、図11(A)および図11(B)に示す構成とすることもできる。図11(A)および図11(B)は、トランジスタ300の上面図および断面図である。図11(A)は上面図であり、図11(B)は、図11(A)に示す一点鎖線B1−B2、および一点鎖線B3−B4に対応する断面図である。なお、図11(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図11(A)および図11(B)に示すトランジスタ300は、基板310と、基板310上の絶縁体380と、絶縁体380上の半導体330(半導体330a、半導体330b、半導体330c)と、半導体330に接し、間隔を開けて配置された導電体340および導電体350と、半導体330cと接する絶縁体360と、絶縁体360と接する導電体370と、を有する。なお、半導体330、絶縁体360および導電体370は、トランジスタ300上の絶縁体390に設けられた半導体330a、半導体330bおよび絶縁体380に達する開口部に設けられている。
また、半導体330は、トランジスタ300のチャネル形成領域としての機能を有する。また、導電体370は、トランジスタ300のゲート電極としての機能を有する。また、絶縁体360は、トランジスタ300のゲート絶縁体としての機能を有する。また、導電体340および導電体350は、トランジスタのソース電極およびドレイン電極としての機能を有する。
なお、絶縁体360は過剰酸素を含む絶縁体であると好ましい。
なお、基板310は、基板110についての記載を参照することができる。また、導電体370は、導電体170についての記載を参照することができる。また、絶縁体360は、絶縁体160についての記載を参照することができる。また、半導体330は、酸化物半導体130についての記載を参照することができる。また、導電体340および導電体350は、導電体140および導電体150ついての記載を参照することができる。
トランジスタ300の構成は、前述したその他のトランジスタの構成と比較して、ソース電極またはドレイン電極となる導電体とゲート電極となる導電体の重なる領域が少ないため、寄生容量を小さくすることができる。したがって、トランジスタ300は、演算装置や記憶装置などに用いる高速動作を必要とする回路の要素として適している。なお、トランジスタ300の上面は、図示するようにCMP(Chemical Mechanical Polishing)法等を用いて平坦化することが好ましいが、平坦化しない構成とすることもできる。
また、本実施の形態において、様々なタイプのトランジスタに適用することができる。場合によっては、または、状況に応じて、例えば、プレーナ型、FIN(フィン)型、TRI−GATE(トライゲート)型などのトランジスタなどとすることができる。また、ゲート電極が、ゲート絶縁膜を介して、半導体のチャネル幅方向を電気的に取り囲む構造(surrounded channel(s−channel)構造)有するトランジスタにも適用することができる。s−channel構造を有することで、オン電流が高いトランジスタを得ることができる。
なお、本実施の形態におけるトランジスタの構成は一例である。したがって、例えば、トランジスタ100乃至トランジスタ300のいずれか一つ以上を活性領域または活性層にシリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウム、または、有機半導体等を有するトランジスタで構成することもできる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態3)
以下では、本発明の一態様に用いることのできる酸化物半導体膜の構造について説明する。
なお、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。
酸化物半導体膜は、非単結晶酸化物半導体膜と単結晶酸化物半導体膜とに大別される。非単結晶酸化物半導体膜とは、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)膜、多結晶酸化物半導体膜、微結晶酸化物半導体膜、非晶質酸化物半導体膜などをいう。
まずは、CAAC−OS膜について説明する。
CAAC−OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OS膜の明視野像および回折パターンの複合解析像(高分解能TEM像ともいう。)を観察することで複数の結晶部を確認することができる。一方、高分解能TEM像によっても明確な結晶部同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を確認することができない。そのため、CAAC−OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
試料面と概略平行な方向から、CAAC−OS膜の断面の高分解能TEM像を観察すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映した形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。
一方、試料面と概略垂直な方向から、CAAC−OS膜の平面の高分解能TEM像を観察すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
CAAC−OS膜に対し、X線回折(XRD:X−Ray Diffraction)装置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC−OS膜のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概略垂直な方向を向いていることが確認できる。
なお、InGaZnOの結晶を有するCAAC−OS膜のout−of−plane法による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性を有さない結晶が含まれることを示している。CAAC−OS膜は、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC−OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC−OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによってキャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって、当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定となる場合がある。
また、CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。
次に、微結晶酸化物半導体膜について説明する。
微結晶酸化物半導体膜は、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc−OS(nanocrystalline Oxide Semiconductor)膜と呼ぶ。また、nc−OS膜は、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。
nc−OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かない場合がある。例えば、nc−OS膜に対し、結晶部よりも大きい径のX線を用いるXRD装置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面を示すピークが検出されない。また、nc−OS膜に対し、結晶部よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、結晶部の大きさと近いか結晶部より小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OS膜に対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、nc−OS膜に対しナノビーム電子回折を行うと、リング状の領域内に複数のスポットが観測される場合がある。
nc−OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。そのため、nc−OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc−OS膜は、CAAC−OS膜と比べて欠陥準位密度が高くなる。
次に、非晶質酸化物半導体膜について説明する。
非晶質酸化物半導体膜は、膜中における原子配列が不規則であり、結晶部を有さない酸化物半導体膜である。石英のような無定形状態を有する酸化物半導体膜が一例である。
非晶質酸化物半導体膜は、高分解能TEM像において結晶部を確認することができない。
非晶質酸化物半導体膜に対し、XRD装置を用いた構造解析を行うと、out−of−plane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半導体膜に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半導体膜に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンが観測される。
なお、酸化物半導体膜は、nc−OS膜と非晶質酸化物半導体膜との間の物性を示す構造を有する場合がある。そのような構造を有する酸化物半導体膜を、特に非晶質ライク酸化物半導体(a−like OS:amorphous−like Oxide Semiconductor)膜と呼ぶ。
a−like OS膜は、高分解能TEM像において鬆(ボイドともいう。)が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。a−like OS膜は、TEMによる観察程度の微量な電子照射によって、結晶化が起こり、結晶部の成長が見られる場合がある。一方、良質なnc−OS膜であれば、TEMによる観察程度の微量な電子照射による結晶化はほとんど見られない。
なお、a−like OS膜およびnc−OS膜の結晶部の大きさの計測は、高分解能TEM像を用いて行うことができる。例えば、InGaZnOの結晶は層状構造を有し、In−O層の間に、Ga−Zn−O層を2層有する。InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有する。よって、これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。そのため、高分解能TEM像における格子縞に着目し、格子縞の間隔が0.28nm以上0.30nm以下である箇所においては、それぞれの格子縞がInGaZnOの結晶のa−b面に対応する。
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、a−like OS膜、微結晶酸化物半導体膜、CAAC−OS膜のうち、二種以上を有する積層膜であってもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器が有する半導体装置を構成する回路の一例について図面を参照して説明する。
図12(A)に、本発明の一態様の電子機器が有する半導体装置を構成する回路の断面図を示す。図12(A)に示す回路は、下部に第1の半導体材料を用いたトランジスタ4200を有し、上部に第2の半導体材料を用いたトランジスタ4100を有している。なお、左図がトランジスタのチャネル長方向の断面、右図がチャネル幅方向の断面を示す。
なお、トランジスタ4100にボトムゲートを設けた構成であってもよい。
第1の半導体材料と第2の半導体材料は異なるエネルギーギャップを持つ材料とすることが好ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウム、有機半導体など)とし、第2の半導体材料を酸化物半導体とすることができる。酸化物半導体以外の材料として単結晶シリコンなどを用いたトランジスタは、高速動作が容易である。一方で、酸化物半導体を用いたトランジスタは、オフ電流が低い。
トランジスタ4200は、nチャネル型のトランジスタまたはpチャネル型のトランジスタのいずれであってもよく、回路によって適切なトランジスタを用いればよい。また、酸化物半導体を用いた本発明の一態様のトランジスタを用いるほかは、用いる材料や構造など、半導体装置の具体的な構成をここで示すものに限定する必要はない。
図12(A)に示す構成では、トランジスタ4200の上部に、絶縁膜4201、絶縁膜4207を介してトランジスタ4100が設けられている。また、トランジスタ4200とトランジスタ4100の間には、複数の配線4202が設けられている。また、各種絶縁膜に埋め込まれた複数のプラグ4203により、上層と下層にそれぞれ設けられた配線や電極が電気的に接続されている。また、トランジスタ4100を覆う層間絶縁膜4204が設けられている。
このように、2種類のトランジスタを積層することにより、回路の占有面積が低減され、より高密度に複数の回路を配置することができる。
ここで、下層に設けられるトランジスタ4200にシリコン系半導体材料を用いた場合、トランジスタ4200の半導体膜の近傍に設けられる絶縁膜中の水素はシリコンのダングリングボンドを終端し、トランジスタ4200の信頼性を向上させる効果がある。一方、上層に設けられるトランジスタ4100に酸化物半導体を用いた場合、トランジスタ4100の半導体膜の近傍に設けられる絶縁膜中の水素は、酸化物半導体中にキャリアを生成する要因の一つとなるため、トランジスタ4100の信頼性を低下させる要因となる場合がある。したがって、シリコン系半導体材料を用いたトランジスタ4200の上層に酸化物半導体を用いたトランジスタ4100を積層して設ける場合、これらの間に水素の拡散を防止する機能を有する絶縁膜4207を設けることは特に効果的である。絶縁膜4207により、下層に水素を閉じ込めることでトランジスタ4200の信頼性が向上することに加え、下層から上層に水素が拡散することが抑制されることでトランジスタ4100の信頼性も同時に向上させることができる。
絶縁膜4207としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
また、酸化物半導体膜を含んで構成されるトランジスタ4100を覆うように、トランジスタ4100上に水素の混入を防止する機能を有するブロック膜を形成してもよい。ブロック膜としては、絶縁膜4207と同様の材料を用いることができ、特に酸化アルミニウムを適用することが好ましい。酸化アルミニウム膜は、水素、水分などの不純物および酸素の双方に対して膜を透過させない遮断(ブロッキング)効果が高い。したがって、トランジスタ4100を覆うブロック膜として酸化アルミニウム膜を用いることで、トランジスタ4100に含まれる酸化物半導体膜からの酸素の脱離を防止するとともに、酸化物半導体膜への水および水素の混入を防止することができる。
なお、トランジスタ4200は、プレーナ型のトランジスタだけでなく、様々なタイプのトランジスタとすることができる。例えば、FIN(フィン)型、TRI−GATE(トライゲート)型などのトランジスタなどとすることができる。その場合の断面図の例を、図12(B)に示す。半導体基板4211の上に、絶縁膜4212が設けられている。半導体基板4211は、先端の細い凸部(フィンともいう)を有する。なお、凸部の上には、絶縁膜が設けられていてもよい。その絶縁膜は、凸部を形成するときに、半導体基板4211がエッチングされないようにするためのマスクとして機能するものである。なお、凸部は、先端が細くなくてもよく、例えば、略直方体の凸部であってもよいし、先端が太い凸部であってもよい。半導体基板4211の凸部の上には、ゲート絶縁膜4214が設けられ、その上には、ゲート電極4213が設けられている。なお、本実施の形態では、ゲート電極4213は1層構造であるがこれに限られず、2層以上の積層でもよい。半導体基板4211には、ソース領域およびドレイン領域4215が形成されている。なお、ここでは、半導体基板4211が、凸部を有する例を示したが、本発明の一態様に係る半導体装置は、これに限定されない。例えば、SOI基板を加工して、凸部を有する半導体領域を形成しても構わない。
上記構成において、トランジスタ4100やトランジスタ4200の電極の接続構成を異ならせることにより、様々な回路を構成することができる。以下では、本発明の一態様の半導体装置を用いることにより実現できる回路構成の例を説明する。
図13(A)に示す回路図は、pチャネル型のトランジスタ4200とnチャネル型のトランジスタ4100を直列に接続し、且つそれぞれのゲートを接続した、いわゆるCMOS回路の構成を示している。
また、図13(B)に示す回路図は、トランジスタ4100とトランジスタ4200のそれぞれのソースとドレインを接続した構成を示している。このような構成とすることで、いわゆるアナログスイッチとして機能させることができる。
また、第1の半導体材料をチャネルにもつトランジスタ4200およびトランジスタ4300で、CMOS回路を構成した場合の半導体装置の断面図を図14に示す。
トランジスタ4300は、ソース領域またはドレイン領域として機能する不純物領域4301と、ゲート電極4303と、ゲート絶縁膜4304と、側壁絶縁膜4305と、を有している。また、トランジスタ4300は、側壁絶縁膜4305の下に、LDD領域として機能する不純物領域を設けてもよい。図14のその他の構成要素については、図12(A)の説明を参照することができる。
トランジスタ4200と、トランジスタ4300とは、互いに異なる極性のトランジスタであることが好ましい。例えば、トランジスタ4200がpチャネル型のトランジスタの場合、トランジスタ4300は、nチャネル型のトランジスタであることが好ましい。
また、半導体装置は、フォトダイオードなどの光電変換素子を有する構成とすることができる。
光電変換素子は、単結晶半導体、多結晶半導体または非晶質半導体を用いて形成することができ、用途に応じて材料を選択すればよい。例えば、当該材料として、単結晶シリコン、多結晶シリコン、微結晶シリコン、非晶質シリコン、多結晶セレン、非晶質セレン、CIS(銅、インジウム、セレンの化合物)、CIGS(銅、インジウム、ガリウム、セレンの化合物)などを用いることができる。
図15(A)は、基板4001に光電変換素子4400を設けた場合の断面図を示している。例えば、基板4001は単結晶半導体とすることができる。光電変換素子4400は、アノードおよびカソードの一方としての機能を有する導電層4401と、アノードおよびカソードの他方としての機能を有する導電層4402と、導電層4402とプラグ4004とを電気的に接続させる導電層4403と、を有する。導電層4401乃至導電層4403は、基板4001に不純物を注入または拡散することで作製することができる。
図15(A)は、基板4001に対して縦方向に電流が流れるように光電変換素子4400を設けているが、基板4001に対して横方向に電流が流れるように光電変換素子4400を設けてもよい。
図15(B)は、トランジスタ4100の上層に光電変換素子4500を設けた場合の半導体装置の断面図である。光電変換素子4500は、アノードおよびカソードの一方としての機能を有する導電層4501と、アノードおよびカソードの他方としての機能を有する導電層4502と、半導体4503と、を有している。また、光電変換素子4500は、プラグ4504を介して、トランジスタ4100と電気的に接続されている。当該構成において、光電変換素子4500には、例えばi型の非晶質シリコンを用いたpin型の光電変換素子を用いることができる。または、多結晶セレンや非晶質セレンを用いた光電変換素子としてもよい。
図15(B)において、光電変換素子4500をトランジスタ4100と同じ階層に設けてもよい。また、光電変換素子4500をトランジスタ4200とトランジスタ4100の間の階層に設けてもよい。
また、光電変換素子4400および光電変換素子4500は、放射線を吸収して電荷を発生させることが可能な材料を用いて形成してもよい。放射線を吸収して電荷を発生させることが可能な材料としては、セレン、ヨウ化鉛、ヨウ化水銀、ガリウムヒ素、CdTe、CdZn等がある。
半導体装置は、記憶回路を有する構成とすることができる。酸化物半導体を有するトランジスタを使用し、電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い記憶回路の一例を図16に示す。なお、図16(B)は、図16(A)に対応する回路図である。
図16(A)、(B)に示す記憶回路は、第1の半導体材料を用いたトランジスタ5200と第2の半導体材料を用いたトランジスタ5300、および容量素子5400を有している。なお、トランジスタ5300としては、実施の形態2で説明したトランジスタを用いることができる。
トランジスタ5300は、酸化物半導体を有する半導体にチャネルが形成されるトランジスタである。トランジスタ5300は、オフ電流が小さいため、これを用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、或いは、リフレッシュ動作の頻度が極めて少ない半導体記憶装置とすることが可能となるため、消費電力を十分に低減することができる。
図16(B)において、第1の配線5001はトランジスタ5200のソース電極と電気的に接続され、第2の配線5002はトランジスタ5200のドレイン電極と電気的に接続されている。また、第3の配線5003はトランジスタ5300のソース電極およびドレイン電極の一方と電気的に接続され、第4の配線5004はトランジスタ5300のゲート電極と電気的に接続されている。そして、トランジスタ5200のゲート電極、およびトランジスタ5300のソース電極およびドレイン電極の他方は、容量素子5400の電極の一方と電気的に接続され、第5の配線5005は容量素子5400の電極の他方と電気的に接続されている。
図16(A)に示す記憶回路では、トランジスタ5200のゲート電極の電位が保持可能という特徴を活かすことで、次のように、情報の書き込み、保持、読み出しが可能である。
情報の書き込みおよび保持について説明する。まず、第4の配線5004の電位を、トランジスタ5300がオン状態となる電位にして、トランジスタ5300をオン状態とする。これにより、第3の配線5003の電位が、トランジスタ5200のゲート電極、および容量素子5400に与えられる。すなわち、トランジスタ5200のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という)のいずれかが与えられるものとする。その後、第4の配線5004の電位を、トランジスタ5300がオフ状態となる電位にして、トランジスタ5300をオフ状態とすることにより、トランジスタ5200のゲートに与えられた電荷が保持される(保持)。
トランジスタ5300のオフ電流は極めて小さいため、トランジスタ5200のゲートの電荷は長時間にわたって保持される。
次に情報の読み出しについて説明する。第1の配線5001に所定の電位(定電位)を与えた状態で、第5の配線5005に適切な電位(読み出し電位)を与えると、トランジスタ5200のゲートに保持された電荷量に応じて、第2の配線5002は異なる電位をとる。一般に、トランジスタ5200をnチャネル型とすると、トランジスタ5200のゲート電極にHighレベル電荷が与えられている場合の見かけのしきい値Vth_Hは、トランジスタ5200のゲート電極にLowレベル電荷が与えられている場合の見かけのしきい値Vth_Lより低くなるためである。ここで、見かけのしきい値電圧とは、トランジスタ5200を「オン状態」とするために必要な第5の配線5005の電位をいうものとする。したがって、第5の配線5005の電位をVth_HとVth_Lの間の電位V0とすることにより、トランジスタ5200のゲートに与えられた電荷を判別できる。例えば、書き込みにおいて、Highレベル電荷が与えられていた場合には、第5の配線5005の電位がV0(>Vth_H)となれば、トランジスタ5200は「オン状態」となる。Lowレベル電荷が与えられていた場合には、第5の配線5005の電位がV0(<Vth_L)となっても、トランジスタ5200は「オフ状態」のままである。このため、第2の配線5002の電位を判別することで、保持されている情報を読み出すことができる。
なお、メモリセルをアレイ状に配置して用いる場合、所望のメモリセルの情報のみを読み出せることが必要になる。このように情報を読み出さない場合には、ゲートの状態にかかわらずトランジスタ5200が「オフ状態」となるような電位、つまり、Vth_Hより小さい電位を第5の配線5005に与えればよい。または、ゲートの状態にかかわらずトランジスタ5200が「オン状態」となるような電位、つまり、Vth_Lより大きい電位を第5の配線5005に与えればよい。
図16(C)に示す半導体装置は、トランジスタ5200を設けていない点で図16(A)と相違している。この場合も上記と同様の動作により情報の書き込みおよび保持動作が可能である。
次に、図16(C)に示す半導体装置の情報の読み出しについて説明する。トランジスタ5300がオン状態となると、浮遊状態である第3の配線5003と容量素子5400とが導通し、第3の配線5003と容量素子5400の間で電荷が再分配される。その結果、第3の配線5003の電位が変化する。第3の配線5003の電位の変化量は、容量素子5400の第1の端子の電位(または容量素子5400に蓄積された電荷)によって、異なる値をとる。
例えば、容量素子5400の第1の端子の電位をV、容量素子5400の容量をC、第3の配線5003が有する容量成分をCB、電荷が再分配される前の第3の配線5003の電位をVB0とすると、電荷が再分配された後の第3の配線5003の電位は、(CB×VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量素子5400の第1の端子の電位がV1とV0(V1>V0)の2状態をとるとすると、電位V1を保持している場合の第3の配線5003の電位(=(CB×VB0+C×V1)/(CB+C))は、電位V0を保持している場合の第3の配線5003の電位(=(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線5003の電位を所定の電位と比較することで、情報を読み出すことができる。
この場合、メモリセルを駆動させるための駆動回路に上記第1の半導体材料が適用されたトランジスタを用い、トランジスタ5300として第2の半導体材料が適用されたトランジスタを駆動回路上に積層して設ける構成とすればよい。
本実施の形態に示す記憶回路では、チャネル形成領域に酸化物半導体を用いたオフ電流の極めて小さいトランジスタを適用することで、極めて長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することができる。また、電力の供給がない場合(ただし、電位は固定されていることが望ましい)であっても、長期にわたって記憶内容を保持することが可能である。
また、本実施の形態に示す記憶回路では、情報の書き込みに高い電圧を必要とせず、素子の劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため、ゲート絶縁膜の劣化といった問題が全く生じない。すなわち、開示する発明に係る記憶回路では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の書き込みが行われるため、高速な動作も容易に実現しうる。
本実施の形態に示す記憶装置は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、カスタムLSI、PLD(Programmable Logic Device)等のLSIにも応用可能である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様の電子機器における表示部に用いることできる表示装置について、図17および図18を用いて説明する。
表示装置に用いられる表示素子としては液晶素子(液晶表示素子ともいう。)、発光素子(発光表示素子ともいう。)などを用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electroluminescence)、有機ELなどを含む。以下では、表示装置の一例としてEL素子を用いた表示装置(EL表示装置)および液晶素子を用いた表示装置(液晶表示装置)について説明する。
なお、以下に示す表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むICなどを実装した状態にあるモジュールとを含む。
また、以下に示す表示装置は画像表示デバイス、または光源(照明装置含む)を指す。また、コネクター、例えばFPC、TCPが取り付けられたモジュール、TCPの先にプリント配線板を有するモジュールまたは表示素子にCOG方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
図17は、本発明の一態様に係るEL表示装置の一例である。図17(A)に、EL表示装置の画素の回路図を示す。図17(B)は、EL表示装置全体を示す上面図である。また、図17(C)は、図17(B)の一点鎖線M−Nの一部に対応するM−N断面である。
図17(A)は、EL表示装置に用いられる画素の回路図の一例である。
図17(A)に示すEL表示装置は、スイッチ素子743と、トランジスタ741と、容量素子742と、発光素子719と、を有する。
なお、図17(A)などは、回路構成の一例であるため、さらに、トランジスタを追加することが可能である。逆に、図17(A)の各ノードにおいて、トランジスタ、スイッチ、受動素子などを追加しないようにすることも可能である。
トランジスタ741のゲートはスイッチ素子743の一端および容量素子742の一方の電極と電気的に接続される。トランジスタ741のソースは容量素子742の他方の電極と電気的に接続され、発光素子719の一方の電極と電気的に接続される。トランジスタ741のソースは電源電位VDDが与えられる。スイッチ素子743の他端は信号線744と電気的に接続される。発光素子719の他方の電極は定電位が与えられる。なお、定電位は接地電位GNDまたはそれより小さい電位とする。
スイッチ素子743としては、トランジスタを用いると好ましい。トランジスタを用いることで、画素の面積を小さくでき、解像度の高いEL表示装置とすることができる。また、スイッチ素子743として、トランジスタ741と同一工程を経て作製されたトランジスタを用いると、EL表示装置の生産性を高めることができる。なお、トランジスタ741または/およびスイッチ素子743としては、例えば、上述したトランジスタを適用することができる。
図17(B)は、EL表示装置の上面図である。EL表示装置は、基板700と、基板750と、シール材734と、駆動回路735と、駆動回路736と、画素737と、FPC732と、を有する。シール材734は、画素737、駆動回路735および駆動回路736を囲むように基板700と基板750との間に配置される。なお、駆動回路735または/および駆動回路736をシール材734の外側に配置しても構わない。
図17(C)は、図17(B)の一点鎖線M−Nの一部に対応するEL表示装置の断面図である。
図17(C)には、トランジスタ741として、基板700上の導電体704aと、導電体704a上の絶縁体712aと、絶縁体712と、絶縁体712上にあり導電体704aと重なる半導体706と、半導体706と接する導電体716aおよび導電体716bと、半導体706上、導電体716a上および導電体716b上の絶縁体718aと、絶縁体718a上の絶縁体718bと、絶縁体718b上の絶縁体718cと、絶縁体718c上にあり半導体706bと重なる導電体714aと、を有する構造を示す。なお、トランジスタ741の構造は一例であり、図17(C)に示す構造と異なる構造であっても構わない。
したがって、図17(C)に示すトランジスタ741において、導電体704aはゲート電極としての機能を有し、絶縁体712はゲート絶縁体としての機能を有し、導電体716aはソース電極としての機能を有し、導電体716bはドレイン電極としての機能を有し、絶縁体718a、絶縁体718bおよび絶縁体718cはゲート絶縁体としての機能を有し、導電体714aはゲート電極としての機能を有する。なお、半導体706は、光が当たることで電気特性が変動する場合がある。したがって、導電体704a、導電体716a、導電体716b、導電体714aのいずれか一以上が遮光性を有すると好ましい。
なお、絶縁体718aおよび絶縁体718bの界面を破線で表したが、これは両者の境界が明確でない場合があることを示す。例えば、絶縁体718aおよび絶縁体718bとして、同種の絶縁体を用いた場合、観察手法によっては両者の区別が付かない場合がある。また、絶縁体718aおよび絶縁体718bを設ける領域に単層の絶縁体が設けられる場合もある。
図17(C)には、容量素子742として、基板上の導電体704bと、導電体704b上の絶縁体712と、絶縁体712上にあり導電体704bと重なる導電体716aと、導電体716a上の絶縁体718aと、絶縁体718a上の絶縁体718bと、絶縁体718b上の絶縁体718cと、絶縁体718c上にあり導電体716aと重なる導電体714bと、を有し、導電体716aおよび導電体714bの重なる領域で、絶縁体718aおよび絶縁体718bの一部が除去されている構造を示す。
容量素子742において、導電体704bおよび導電体714bは一方の電極として機能し、導電体716aは他方の電極として機能する。
したがって、容量素子742は、トランジスタ741と共通する膜を用いて作製することができる。また、導電体704aおよび導電体704bを同種の導電体とすると好ましい。その場合、導電体704aおよび導電体704bは、同一工程を経て形成することができる。また、導電体714aおよび導電体714bを同種の導電体とすると好ましい。その場合、導電体714aおよび導電体714bは、同一工程を経て形成することができる。
図17(C)に示す容量素子742は、占有面積当たりの容量が大きい容量素子である。したがって、図17(C)は表示品位の高いEL表示装置である。なお、図17(C)に示す容量素子742は、導電体716aおよび導電体714bの重なる領域を薄くするため、絶縁体718aおよび絶縁体718bの一部が除去された構造を有するが、本発明の一態様に係る容量素子はこれに限定されるものではない。例えば、導電体716aおよび導電体714bの重なる領域を薄くするため、絶縁体718cの一部が除去された構造を有しても構わない。
トランジスタ741および容量素子742上には、絶縁体720が配置される。ここで、絶縁体720は、トランジスタ741のソース電極として機能する導電体716aに達する開口部を有してもよい。絶縁体720上には、導電体781が配置される。導電体781は、絶縁体720の開口部を介してトランジスタ741と電気的に接続してもよい。
導電体781上には、導電体781に達する開口部を有する隔壁784が配置される。隔壁784上には、隔壁784の開口部で導電体781と接する発光層782が配置される。発光層782上には、導電体783が配置される。導電体781、発光層782および導電体783の重なる領域が、発光素子719となる。
ここまでは、EL表示装置の例について説明した。次に、液晶表示装置の例について説明する。
図18(A)は、液晶表示装置の画素の構成例を示す回路図である。図18に示す画素は、トランジスタ751と、容量素子752と、一対の電極間に液晶の充填された素子(液晶素子)753とを有する。
トランジスタ751では、ソース、ドレインの一方が信号線755に電気的に接続され、ゲートが走査線754に電気的に接続されている。
容量素子752では、一方の電極がトランジスタ751のソース、ドレインの他方に電気的に接続され、他方の電極が共通電位を供給する配線に電気的に接続されている。
液晶素子753では、一方の電極がトランジスタ751のソース、ドレインの他方に電気的に接続され、他方の電極が共通電位を供給する配線に電気的に接続されている。なお、上述した容量素子752の他方の電極が電気的に接続する配線に与えられる共通電位と、液晶素子753の他方の電極に与えられる共通電位とが異なる電位であってもよい。
なお、液晶表示装置も、上面図はEL表示装置と同様として説明する。図17(B)の一点鎖線M−Nに対応する液晶表示装置の断面図を図18(B)に示す。図18(B)において、FPC732は、端子731を介して配線733aと接続される。なお、配線733aは、トランジスタ751を構成する導電体または半導体のいずれかと同種の導電体または半導体を用いてもよい。
トランジスタ751は、トランジスタ741についての記載を参照する。また、容量素子752は、容量素子742についての記載を参照する。なお、図18(B)に示す容量素子752としては、図17(C)の容量素子742と同様の構成を例示したが、これに限定されない。
なお、トランジスタ751の半導体に酸化物半導体を用いた場合、極めてオフ電流の小さいトランジスタとすることができる。したがって、容量素子752に保持された電荷がリークしにくく、長期間に渡って液晶素子753に印加される電圧を維持することができる。そのため、動きの少ない動画や静止画の表示の際に、トランジスタ751をオフ状態とすることで、トランジスタ751の動作のための電力が不要となり、消費電力の小さい液晶表示装置とすることができる。また、容量素子752の占有面積を小さくできるため、開口率の高い液晶表示装置、または高精細化した液晶表示装置を提供することができる。
トランジスタ751および容量素子752上には、絶縁体721が配置される。ここで、絶縁体721は、トランジスタ751に達する開口部を有する。絶縁体721上には、導電体791が配置される。導電体791は、絶縁体721の開口部を介してトランジスタ751と電気的に接続する。
導電体791上には、配向膜として機能する絶縁体792が配置される。絶縁体792上には、液晶層793が配置される。液晶層793上には、配向膜として機能する絶縁体794が配置される。絶縁体794上には、スペーサ795が配置される。スペーサ795および絶縁体794上には、導電体796が配置される。導電体796上には、基板797が配置される。
上述した構造を有することで、占有面積の小さい容量素子を有する表示装置を提供することができる、または、表示品位の高い表示装置を提供することができる。または、高精細の表示装置を提供することができる。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、および発光素子を有する装置である発光装置は、様々な形態を用いること、または様々な素子を有することができる。表示素子、表示装置、発光素子または発光装置は、例えば、白色、赤色、緑色または青色などの発光ダイオード(LED:Light Emitting Diode)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子などの少なくとも一つを有している。これらの他にも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していてもよい。
EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)またはSED方式平面型デイスプレイ(SED:Surface−conduction Electron−emitterDisplay)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、または電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部または全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、LEDを用いる場合、LEDの電極や窒化物半導体の下に、グラフェンやグラファイトを配置してもよい。グラフェンやグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンやグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体などを設けて、LEDを構成することができる。なお、グラフェンやグラファイトと、結晶を有するn型GaN半導体との間に、AlN層を設けてもよい。なお、LEDが有するGaN半導体は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDが有するGaN半導体は、スパッタリング法で成膜することも可能である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
本発明の一態様に係る電子機器は、表示機器、パーソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digital Versatile Disc等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)として用いることができる。その他に、本発明の一態様に係る電子機器は、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などとして用いることができる。これら電子機器の具体例を図19に示す。
図19(A)は携帯型データ端末であり、筐体911、表示部912、カメラ919等を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができる。当該携帯型データ端末には、本発明の一態様の電子機器を適用することができる。
図19(B)はテレビジョン装置であり、筐体921に表示部922およびスピーカが組み込まれている。表示部922により、映像を表示することが可能である。筐体921はスタンド923で支持される。当該テレビジョン装置には、本発明の一態様の電子機器を適用することができる。
図19(C)はノート型パーソナルコンピュータであり、筐体931、表示部932、キーボード933、ポインティングデバイス934等を有する。当該ノート型パーソナルコンピュータには、本発明の一態様の電子機器を適用することができる。
図19(D)はデジタルサイネージであり、電柱941に設置された表示部942を備えている。表示部942は可撓性を有している。当該デジタルサイネージには、本発明の一態様の電子機器を適用することができる。
図19(E)はビデオカメラであり、第1筐体951、第2筐体952、表示部953、スイッチ954、レンズ955、接続部956等を有する。スイッチ954およびレンズ955は第1筐体951に設けられており、表示部953は第2筐体952に設けられている。また、第1筐体951内にはバッテリーを有し、マイクで音声を記録することもできる。当該ビデオカメラには、本発明の一態様の電子機器を適用することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
10  信号出力装置
15  信号入出力装置
20  表示装置
21  表示装置
31  有線伝送路
32  経路
33  経路
100  トランジスタ
110  基板
130  酸化物半導体
130a  酸化物半導体
130b  酸化物半導体
130c  酸化物半導体
140  導電体
150  導電体
160  絶縁体
170  導電体
171  導電体
172  導電体
175  導電体
180  絶縁体
200  トランジスタ
210  基板
230  半導体
240  導電体
250  導電体
260  絶縁体
275  導電体
300  トランジスタ
310  基板
330  半導体
330a  半導体
330b  半導体
330c  半導体
340  導電体
350  導電体
360  絶縁体
370  導電体
380  絶縁体
390  絶縁体
700  基板
704a  導電体
704b  導電体
706  半導体
706b  半導体
712  絶縁体
712a  絶縁体
714a  導電体
714b  導電体
716a  導電体
716b  導電体
718a  絶縁体
718b  絶縁体
718c  絶縁体
719  発光素子
720  絶縁体
721  絶縁体
731  端子
732  FPC
733a  配線
734  シール材
735  駆動回路
736  駆動回路
737  画素
741  トランジスタ
742  容量素子
743  スイッチ素子
744  信号線
750  基板
751  トランジスタ
752  容量素子
753  液晶素子
754  走査線
755  信号線
781  導電体
782  発光層
783  導電体
784  隔壁
791  導電体
792  絶縁体
793  液晶層
794  絶縁体
795  スペーサ
796  導電体
797  基板
911  筐体
912  表示部
919  カメラ
921  筐体
922  表示部
923  スタンド
931  筐体
932  表示部
933  キーボード
934  ポインティングデバイス
941  電柱
942  表示部
951  筐体
952  筐体
953  表示部
954  スイッチ
955  レンズ
956  接続部
1000  装置
1100  回路
1200  回路
1300  回路
1400  回路
1500  アンテナ
2000  表示部
2100  回路
2150  記憶回路
2300  回路
2400  回路
2500  アンテナ
3000  バッテリー
3100  入出力端子
3200  入出力端子
3300  操作ボタン
3400  カメラ
3500  ケーブル
4001  基板
4004  プラグ
4100  トランジスタ
4200  トランジスタ
4201  絶縁膜
4202  配線
4203  プラグ
4204  層間絶縁膜
4207  絶縁膜
4211  半導体基板
4212  絶縁膜
4213  ゲート電極
4214  ゲート絶縁膜
4215  ドレイン領域
4300  トランジスタ
4301  不純物領域
4303  ゲート電極
4304  ゲート絶縁膜
4305  側壁絶縁膜
4400  光電変換素子
4401  導電層
4402  導電層
4403  導電層
4500  光電変換素子
4501  導電層
4502  導電層
4503  半導体
4504  プラグ
5001  配線
5002  配線
5003  配線
5004  配線
5005  配線
5200  トランジスタ
5300  トランジスタ
5400  容量素子

Claims (7)

  1. 信号出力装置と、表示装置と、を有する電子機器であって、
    前記信号出力装置は、画像信号を複数の信号に分割することができる機能を有し、
    前記表示装置は、前記複数の信号を組み合わせる機能を有し、
    前記複数の信号は、第1の信号と、第2の信号と、を有し、
    前記信号出力装置は、有線伝送路を介して、前記表示装置に前記第1の信号を伝送することができる機能を有し、
    前記信号出力装置は、無線伝送路を介して、前記表示装置に前記第2の信号を伝送することができる機能を有する電子機器。
  2. 信号出力装置と、表示装置と、を有する電子機器であって、
    前記信号出力装置は、有線伝送路を介して、前記表示装置に第1の信号を伝送することができる機能を有し、
    前記信号出力装置は、無線伝送路を介して、前記表示装置に第2の信号を伝送することができる機能を有し、
    前記信号出力装置は、第1の回路、第2の回路、第3の回路、第4の回路および第1のアンテナを有し、
    前記第1の回路は、画像信号の伝送経路を選択する機能を有し、
    前記第2の回路は、前記第1の回路から伝送された画像信号を複数の信号に分割する機能を有し、
    前記複数の信号は、前記第1の信号と、前記第2の信号と、を有し、
    前記第3の回路は、前記第2の回路から伝送された前記第1の信号を変調信号に変換する機能を有し、
    前記第4の回路は、前記第3の回路から伝送された前記変調信号を前記第1のアンテナを用いて送信する機能を有し、
    前記表示装置は、第5の回路、第6の回路、第7の回路、第2のアンテナおよび表示部を有し、
    前記第5の回路は、前記第4の回路から送信された前記変調信号を前記第2のアンテナを用いて受信する機能を有し、
    前記第6の回路は、前記第5の回路から伝送された前記変調信号を復調して前記第1の信号に変換する機能を有し、
    前記第7の回路は、前記第2の回路から伝送された第2の信号および前記第6の回路から伝送された前記第1の信号から前記表示部に表示させる画像を構成する機能を有する電子機器。
  3. 請求項2において、
    前記第4の回路は、複数の周波数帯の電波を用いて前記変調信号を送信する機能を有する電子機器。
  4. 請求項2において、
    前記第5の回路は、複数の周波数帯の電波を用いて送信された前記変調信号を受信する機能を有する電子機器。
  5. 請求項2において、
    前記有線伝送路は複数設けられている電子機器。
  6. 請求項1または2において、
    信号出力装置および表示装置は、活性層に酸化物半導体を有するトランジスタを有し、当該酸化物半導体は、Inと、Znと、M(MはAl、Ti、Ga、Sn、Y、Zr、La、Ce、NdまたはHf)と、を有する電子機器。
  7. 請求項1または2に記載の信号出力装置および表示装置と、
    カメラ、バッテリ、スイッチ、マイク、または、スピーカの少なくとも一つと、
    を有する電子機器。
PCT/IB2016/052189 2015-04-30 2016-04-18 電子機器 WO2016174541A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017515285A JP7016697B2 (ja) 2015-04-30 2016-04-18 電子機器
US15/569,539 US20180307451A1 (en) 2015-04-30 2016-04-18 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-093291 2015-04-30
JP2015093291 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016174541A1 true WO2016174541A1 (ja) 2016-11-03

Family

ID=57199316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/052189 WO2016174541A1 (ja) 2015-04-30 2016-04-18 電子機器

Country Status (3)

Country Link
US (1) US20180307451A1 (ja)
JP (1) JP7016697B2 (ja)
WO (1) WO2016174541A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060298A1 (en) * 2003-12-12 2005-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US20100138573A1 (en) * 2008-12-01 2010-06-03 Fujitsu Limited System including transmitter and receiver
JP2014168121A (ja) * 2013-02-28 2014-09-11 Toshiba Corp 情報分割送信装置、情報分割送信方法および情報分割送信処理プログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260454A (ja) * 2003-02-25 2004-09-16 Sony Corp 送受信システム、送信装置
US7391832B2 (en) * 2003-03-17 2008-06-24 Broadcom Corporation System and method for channel bonding in multiple antenna communication systems
JP4013925B2 (ja) * 2004-07-07 2007-11-28 日本電気株式会社 高品位映像伝送システム、高品位映像伝送装置及びそれらに用いる高品位映像伝送方法並びにそのプログラム
WO2008050220A1 (en) * 2006-10-25 2008-05-02 Nokia Corporation Layered coded streaming control for unicast/mbms interaction
EP2075927A1 (en) * 2007-12-21 2009-07-01 Thomson Licensing Method of transmission of at least a data packet by several antennas and corresponding reception method
EP2081373A1 (en) * 2008-01-15 2009-07-22 Hitachi, Ltd. Video/audio reproducing apparatus
TWI475616B (zh) * 2008-12-26 2015-03-01 Semiconductor Energy Lab 半導體裝置及其製造方法
US8176195B2 (en) * 2009-11-13 2012-05-08 Futurewei Technologies, Inc. Media distribution with service continuity
EP2538271A4 (en) * 2010-02-15 2013-08-21 Sharp Kk ACTIVE MATRIX SUBSTRATE, LIQUID CRYSTAL PANEL, LIQUID CRYSTAL DISPLAY DEVICE, TELEVISION RECEIVER
US20120109447A1 (en) * 2010-11-03 2012-05-03 Broadcom Corporation Vehicle black box
KR101595526B1 (ko) * 2010-12-23 2016-02-26 한국전자통신연구원 콘텐츠 동기 전송 시스템 및 방법
US9240956B2 (en) * 2012-03-11 2016-01-19 Broadcom Corporation Communication system using orbital angular momentum
US9029863B2 (en) * 2012-04-20 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9319289B2 (en) * 2013-05-14 2016-04-19 Broadcom Corporation Adaptive bit rate (ABR) streaming with server side adaptation
KR102138369B1 (ko) * 2013-10-10 2020-07-28 삼성전자주식회사 디스플레이 구동 회로, 디스플레이 장치 및 이를 포함하는 휴대용 단말기
US9137285B2 (en) * 2013-10-21 2015-09-15 Broadcom Corporation Adaptive audio video (AV) stream processing
CN106464601B (zh) * 2014-03-28 2020-05-19 维格尔传播公司 信道捆绑

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060298A1 (en) * 2003-12-12 2005-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US20100138573A1 (en) * 2008-12-01 2010-06-03 Fujitsu Limited System including transmitter and receiver
JP2014168121A (ja) * 2013-02-28 2014-09-11 Toshiba Corp 情報分割送信装置、情報分割送信方法および情報分割送信処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKECHI, KAZUSHIGE ET AL.: "Temperature- Dependent Transfer Characteristics of Amorphous InGaZn04 Thin-Film Transistors", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 48, no. 1, pages 011301-1 - 011301-6, XP055325942, ISSN: 1347-4065, Retrieved from the Internet <URL:http://iopscience.iop.org/issue/1347-4065/48/1R> [retrieved on 20160627] *

Also Published As

Publication number Publication date
JPWO2016174541A1 (ja) 2018-04-26
US20180307451A1 (en) 2018-10-25
JP7016697B2 (ja) 2022-02-07

Similar Documents

Publication Publication Date Title
JP7122430B2 (ja) 撮像装置
JP7142120B2 (ja) 撮像装置
JP6688116B2 (ja) 撮像装置および電子機器
JP2020170878A (ja) 撮像装置
KR20200060321A (ko) 반도체 장치
JP6913773B2 (ja) 電子機器及び撮像装置
JP2016197484A (ja) 放送システム
KR102665702B1 (ko) 화상 표시 시스템, 그 동작 방법, 및 전자 기기
KR102527306B1 (ko) 금속 산화물막, 반도체 장치, 및 표시 장치
JP2016213823A (ja) 半導体装置、撮像システム及び電子機器
JP6499006B2 (ja) 撮像装置
KR20160016654A (ko) 반도체 장치
JP2017063420A (ja) 半導体装置
JP2016157938A (ja) 半導体装置、および半導体装置の作成方法
KR20210049900A (ko) 표시 장치의 동작 방법
JP2016105469A (ja) 半導体装置
JP6502597B2 (ja) 撮像装置
JP7016697B2 (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515285

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569539

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786028

Country of ref document: EP

Kind code of ref document: A1