WO2016173131A1 - 一种测距方法、自动调焦方法及装置 - Google Patents

一种测距方法、自动调焦方法及装置 Download PDF

Info

Publication number
WO2016173131A1
WO2016173131A1 PCT/CN2015/084708 CN2015084708W WO2016173131A1 WO 2016173131 A1 WO2016173131 A1 WO 2016173131A1 CN 2015084708 W CN2015084708 W CN 2015084708W WO 2016173131 A1 WO2016173131 A1 WO 2016173131A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
pixels
object distance
camera
range
Prior art date
Application number
PCT/CN2015/084708
Other languages
English (en)
French (fr)
Inventor
江锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/569,889 priority Critical patent/US10698308B2/en
Priority to EP15890508.3A priority patent/EP3291004A4/en
Publication of WO2016173131A1 publication Critical patent/WO2016173131A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/53Means for automatic focusing, e.g. to compensate thermal effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • G03B17/54Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus with projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3188Scale or resolution adjustment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback

Definitions

  • This paper relates to projector technology, especially a distance measuring method, automatic focusing method and device.
  • the projector body projects the projection image onto the screen or wall through the projection lens.
  • the projection focusing device needs to be adjusted to focus the projection lens.
  • the intelligent terminal with projection function adjusts the projection focal length by means of automatic focusing.
  • One way is that the image is projected onto the screen, and the image capture chip re-transforms the acquired image into a digital image signal for image processing; the position of the moving motor is scanned, and images of different positions are calculated.
  • the resolution evaluation value is the position at which the image sharpness evaluation value is the highest.
  • each time the motor is moved it is necessary to wait for the motor to stabilize, wait for the image synchronization signal, and then take the image for image processing.
  • only one image can be taken per frame, and the focusing speed is slower due to the need to scan. In extreme cases, it is even necessary to scan the entire motor range (the motor is at the apex of one end and the best position is at the apex of the other end).
  • the image has a certain probability of unclearness.
  • Another way is to use an additional distance measuring device to measure the distance between the screen and the projection, drive the motor according to the distance and the focal length, and move the projection lens to the specified position.
  • the invention provides a distance measuring method, an automatic focusing method and a device, which can realize ranging; in automatic focusing, the projection focusing can be realized simply and reliably, and the focusing speed and the clarity of the imaging of the projector are improved.
  • a ranging method includes: obtaining a relationship coefficient between a number of pixels in a distance range between a camera and a projection lens and an object distance based on a preset calibration object distance;
  • the actual object distance is calculated based on the obtained relationship coefficient.
  • the acquiring the relationship coefficient comprises: based on the preset calibration object distance, the projected image is on the screen, the image is taken by the camera, and the projected image is recognized;
  • the preset calibrated object distance includes two or more; the method further includes:
  • the calculating the actual object distance according to the obtained relationship coefficient includes:
  • the image projected on the screen is a special projection picture, or a special light source, or the left and right sides of the projection picture are recognized.
  • An automatic focusing method includes: obtaining a relationship coefficient between a number of pixels in a distance range between a camera and a projection lens and an object distance based on a preset calibration object distance;
  • the actual object distance is calculated according to the obtained relationship coefficient
  • the motor position is obtained based on the actual object distance obtained, and the focus is adjusted within a preset range of the motor position.
  • the acquiring the relationship coefficient comprises: based on the preset calibration object distance, the projected image is on the screen, the image is taken by the camera, and the projected image is recognized;
  • the preset calibrated object distance includes two or more; the method further includes:
  • the calculating the actual object distance according to the obtained relationship coefficient includes:
  • the obtaining the motor position according to the obtained actual object distance comprises:
  • the motor position is directly calculated based on the actual object distance obtained.
  • the distance h between the projection lens and the camera is within the allowable range of the mechanical structure.
  • An automatic focusing method comprises: obtaining a relationship coefficient between a number of pixels in a distance range between a camera and a projection lens and an object distance based on a preset calibration object distance; a correspondence relationship between the object distance and the motor position, and the relationship Coefficient, the correspondence between the number of pixels in the distance between the camera and the projection lens and the position of the motor;
  • the motor position is obtained according to the corresponding relationship between the number of pixels in the distance range between the obtained camera and the projection lens and the motor position, and the number of pixels in the range of the distance between the camera and the projection lens, and the focus is adjusted within a preset range of the motor position.
  • calculating the number of pixels within a distance between the camera and the projection lens includes:
  • the projected image is on the screen, imaged by the camera, and the projected image is recognized; and the number of pixels N pix occupied by the distance h between the camera and the projection lens is calculated according to the horizontal center position of the projected image.
  • the obtaining the motor position according to the obtained number of pixels in the range of the distance between the camera and the projection lens comprises:
  • the corresponding motor position is obtained according to the obtained number of pixels N pix in the range of the distance h between the camera and the projection lens.
  • the distance h between the projection lens and the camera is within the allowable range of the mechanical structure.
  • a distance measuring device includes a first detecting module and a first processing module; wherein
  • the first detecting module is configured to: acquire the camera and the projection lens based on the preset calibration object distance a coefficient of relationship between the number of pixels in the distance h range and the object distance;
  • the first processing module is configured to: calculate the actual object distance according to the obtained relationship coefficient.
  • the first detecting module is configured to: according to the preset calibration object distance, project the image on the screen, take an image through the camera, and recognize the projected image; calculate a horizontal center position of the projected image, and the distance h
  • the number of pixels N pix occupied in the range, and the relationship coefficient between the object distance d and the number of pixels N pix is obtained according to the calculated horizontal center position and the number of pixels N pix occupied in the range of the distance h.
  • the first processing module is configured to: project a image on the screen, take an image through the camera, and identify the projected image; according to the relationship coefficient, a horizontal center position of the projected image, and the distance h The number of pixels N pix is taken to obtain the actual object distance.
  • An automatic focusing device includes a first detecting module, a first processing module, and a first execution module; wherein
  • the first detecting module is configured to: obtain a relationship coefficient between the number of pixels in the range of the distance h between the camera and the projection lens and the object distance based on the preset calibration object distance;
  • the first processing module is configured to calculate the actual object distance according to the obtained relationship coefficient in the automatic focusing process
  • the first execution module obtains the motor position according to the obtained actual object distance, and performs focusing within a preset range of the motor position.
  • the first detecting module is configured to: according to the preset calibration object distance, project the image on the screen, take an image through the camera, and recognize the projected image; calculate a horizontal center position of the projected image, and the distance h
  • the number of pixels N pix occupied in the range, and the relationship coefficient between the object distance d and the number of pixels N pix is obtained according to the calculated horizontal center position and the number of pixels N pix occupied in the range of the distance h.
  • the first processing module is configured to: project a image on the screen, take an image through the camera, and identify the projected image; according to the relationship coefficient, a horizontal center position of the projected image, and the distance h The number of pixels N pix is taken to obtain the actual object distance.
  • the first execution module is configured to: preset a correspondence relationship between the object distance and the motor position; and find a corresponding motor position in the corresponding relationship according to the obtained actual object distance Set and adjust the focus within the preset range of the motor position; or,
  • the motor position is directly calculated, and the focus is adjusted within a preset range of the motor position.
  • An automatic focusing device includes a second detecting module, a second processing module, and a second executing module; wherein
  • the second detecting module is configured to: obtain a relationship coefficient between the number of pixels in the distance between the camera and the projection lens and the object distance based on the preset calibration object distance; according to the correspondence between the object distance and the motor position, and the relationship coefficient , obtaining the correspondence between the number of pixels in the distance between the camera and the projection lens and the position of the motor;
  • the second processing module is configured to: calculate the number of pixels within a distance between the camera and the projection lens during the auto-focusing process;
  • the second execution module is configured to: obtain a motor position according to the corresponding relationship between the number of pixels in the distance between the obtained camera and the projection lens and the position of the motor, and the number of pixels in the distance between the camera and the projection lens, and preset at the motor position Focusing within the range.
  • the technical solution of the present application includes acquiring a relationship coefficient between the number of pixels in the distance range between the camera and the projection lens and the object distance based on the preset calibration object distance; in the automatic focusing process, according to the obtained relationship coefficient , calculate the actual object distance.
  • the ranging is achieved by the technical solution provided by the embodiment of the present invention.
  • the technical solution of the automatic focusing includes acquiring a relationship coefficient between the number of pixels in the distance range between the camera and the projection lens and the object distance based on the preset calibration object distance; in the automatic focusing process, according to The obtained relationship coefficient is used to calculate the actual object distance; the motor position is obtained according to the obtained actual object distance, and the focus is adjusted within a preset range of the motor position.
  • the movement range of the motor during focusing is limited by the obtained motor position, that is, when focusing, the motor only needs to search near the obtained motor position to obtain the optimal position, which is simple.
  • the projection focus is reliably achieved, and the focusing speed is improved.
  • the method for detecting the sharpness of the image in the method of the embodiment of the invention also improves the clarity of the image of the projector.
  • FIG. 1 is a schematic diagram of an implementation principle of automatic focus adjustment according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for ranging according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a distance measuring device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an automatic focusing device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another automatic focusing device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an implementation principle of automatic focus adjustment according to an embodiment of the present invention.
  • the inventor finds that the distance h between the camera and the projection lens is fixed, and along with the screen and the projector The object distance d is different, and the number of pixels N pix in the distance h range is different, that is, the focus can be focused by the distance according to this principle.
  • the inventors have found that the object distance d can be measured by measuring the number of pixels occupied by the distance h.
  • the position of the motor that drives the movement of the projection lens has a corresponding relationship with the focal length of the projection lens.
  • the focal length of the projection lens has a corresponding relationship with the object distance d. That is to say, the position of the motor has a corresponding relationship with the object distance d. This relationship can be obtained by theoretical calculation for a specific product or by experimental data. I won't go into details here.
  • FIG. 2 is a flowchart of a method for ranging according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 200 Obtain a relationship coefficient between the number of pixels in the distance between the camera and the projection lens and the object distance based on the preset calibration object distance.
  • This step includes:
  • the projected image is on the screen, the image is taken by the camera, and the projected image is recognized; the horizontal center position of the projected image is calculated, and the number of pixels occupied by the distance h range N pix is calculated according to the calculated horizontal center the number of pixels occupied by the N pix range position and distance h, obtaining the relationship between the coefficient and the number of pixels the object distance d N pix.
  • the horizontal center position of the projected image is a vertical line. Calculating the horizontal center position of the projected image is also calculating the horizontal position of the vertical line including:
  • the identified vertical line should be at the 819th pixel.
  • multiple correlation coefficients obtained multiple times can be further processed, such as calculating the average value, etc., so that the imaging sharpness is better ensured, that is, the individual is better eliminated. There is an error between them.
  • Step 201 Calculate the actual object distance according to the obtained relationship coefficient.
  • step 200 The implementation of this step is consistent with step 200, including:
  • the projected image is on the screen, the image is taken by the camera, and the projected image is recognized; according to the relationship coefficient, the horizontal center position of the projected image and the number of pixels occupied by the range N pix in the range of the distance h are calculated to obtain the actual object distance. Only at this time is the relationship coefficient between the number of pixels in the distance between the known camera and the projection lens and the object distance, and it can be substituted into the above formula for calculating the number of pixels N pix and the horizontal position of the vertical line in the range of the distance h. The actual object distance is obtained.
  • the method further includes:
  • Step 202 In the auto-focusing process, the motor position is obtained according to the obtained actual object distance, and the focus is adjusted within a preset range of the motor position.
  • the acquisition motor position implementation of this step may include:
  • Corresponding relationship between the object distance and the motor position is set in advance; after the actual object distance is obtained, the corresponding motor position can be found in the corresponding relationship.
  • the acquisition motor position implementation of this step can also be:
  • the motor position is directly calculated by using a known theoretical calculation method. can.
  • the preset range of the motor position is the vicinity of the motor position, which is a significantly smaller range from one segment to the other of the motor.
  • the preset range may be 5 steps before and after the motor position, and may be determined according to actual conditions, so that the projected image after focusing can be sufficiently clear, which is not limited herein.
  • the position of the motor obtained by this step defines the range of movement of the motor during focusing, that is, when focusing, the motor only needs to search near the obtained motor position to get the best position, which is simple and reliable.
  • the projection focus is achieved and the focusing speed is increased.
  • the method for detecting the sharpness of the image in the method of the embodiment of the invention also improves the clarity of the image of the projector.
  • the image projected on the screen in the embodiment of the present invention may be a special projection picture, or a special light source such as a laser, or may be the left and right sides of the recognized projection picture (ie, by the left and right sides of the recognized projection picture) Calculate the horizontal center position of the projected image) and so on.
  • the step 200 may further include: obtaining a correspondence between the number of pixels in the distance between the camera and the projection lens and the motor position according to the correspondence between the object distance and the motor position, and the relationship coefficient.
  • the method of the step 201 may be: the projected image is on the screen, the image is taken by the camera, and the projected image is recognized; and the number of pixels N pix occupied by the distance h is calculated according to the calculation formula of the horizontal center position of the projected image. That is, after calculating the number of pixels N pix in the range of the distance h in step 201, the actual object distance is no longer calculated.
  • step 202 the correspondence between the number of pixels N pix and the motor position in the range of the distance h is directly determined. Find the current motor position.
  • FIG. 3 is a schematic structural diagram of a distance measuring device according to an embodiment of the present invention. As shown in FIG. 3, the first detecting module 31 and the first processing module 32 are included.
  • the first detecting module 31 is configured to: obtain a relationship coefficient between the number of pixels in the distance between the camera and the projection lens and the object distance based on the preset calibration object distance;
  • the first processing module 32 is configured to calculate the actual object distance according to the obtained relationship coefficient.
  • the first detecting module 31 is configured to: according to the preset calibration object distance, project the image on the screen, take the image through the camera, and recognize the projected image; calculate the horizontal center position of the projected image, and the number of pixels in the distance h range N PIX, and according to the number of pixels occupied by N pix horizontal distance h and the range of the center position calculated, obtaining the relationship between the coefficient and the number of pixels the object distance d N pix.
  • the first processing module 32 is configured to: project a image on the screen, take an image through the camera, and recognize the projected image; calculate a horizontal center position of the projected image according to the relationship coefficient, and a formula of the number of pixels N pix in the range of the distance h, Get the actual object distance.
  • the embodiment of the present invention further provides an automatic focusing device, including the first detecting module 31 and the first processing module 32, and further includes The first execution module 33 is configured to: in the auto-focusing process, obtain the motor position according to the obtained actual object distance, and perform focusing within a preset range of the motor position.
  • the first execution module 33 is configured to: preset a correspondence relationship between the object distance and the motor position; according to the obtained actual object distance, find a corresponding motor position in the corresponding relationship, and perform the preset position within the motor position. Focusing; or,
  • the motor position is directly calculated by a known theoretical calculation method, and the focus is adjusted within a preset range of the motor position.
  • the embodiment of the present invention further provides an automatic focusing device, including a second detecting module 34, and a second processing module 35 and a second. Execution module 36.
  • the second detecting module 34 is configured to: obtain a relationship coefficient between the number of pixels in the distance between the camera and the projection lens and the object distance based on the preset calibration object distance; according to the correspondence between the object distance and the motor position, The relationship coefficient is obtained, and the correspondence between the number of pixels in the distance between the camera and the projection lens and the motor position is obtained;
  • the second processing module 34 is configured to: calculate the camera and the projection mirror during the auto-focusing process The number of pixels in the range of the head distance.
  • the second execution module 35 is configured to: obtain a motor position according to the corresponding relationship between the number of pixels in the distance between the obtained camera and the projection lens and the position of the motor, and the number of pixels in the distance between the camera and the projection lens, and pre-position at the motor position Set the focus within the range.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the ranging is achieved by the technical solution provided by the embodiment of the present invention.
  • the embodiment of the present invention acquires the motor position according to the obtained actual object distance, and performs focusing within a preset range of the motor position.
  • the movement range of the motor during focusing is limited by the obtained motor position, that is, when focusing, the motor only needs to search near the obtained motor position to obtain the optimal position, which is simple.
  • the projection focus is reliably achieved, and the focusing speed is improved.
  • the method for detecting the sharpness of the image in the method of the embodiment of the invention also improves the clarity of the image of the projector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Projection Apparatus (AREA)

Abstract

一种测距方法、自动调焦方法及装置,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;根据获得的关系系数,计算实际物距。

Description

一种测距方法、自动调焦方法及装置 技术领域
本文涉及投影机技术,尤指一种测距方法、自动调焦方法及装置。
背景技术
随着投影机应用的智能化发展,对投影机的成像的清晰程度要求越来越高。投影机主体通过投影镜头将投影画面投射到屏幕或墙面上,当投影距离变化时,需要调整投影调焦装置以对投影镜头进行调焦。
目前,带投影功能的智能终端采用自动调焦的方式对投影焦距进行调整。其中,一种方式是,图像投影到屏幕上,经摄像头取像、图像采集芯片重新将采集到的图像转换成数字图像信号,进行图像处理;移动马达位置进行扫描,并计算出不同位置的图像清晰度评价值,取图像清晰度评价值最高的位置为最佳位置。这种方式每移动一次马达,需要等待马达稳定,再等待图像同步信号,然后取像,进行图像处理。这样,每帧只能取一幅图像,而且由于需要扫描,调焦速度较慢。极端情况下,甚至需要扫描整个马达范围(马达位于一端的顶点,而最佳位置在另一端顶点)。而且在调焦之后,图像还有一定概率的不清晰。
另一种方式是,采用额外的测距装置,测量屏幕与投影之间的距离后,根据距离与焦距的关系驱动马达,移动投影镜头到指定位置。这种方式虽然简单,但是没有成像清晰度的检测装置,无法解决个体之间存在的误差。
发明内容
本文提供一种测距方法、自动调焦方法及装置,能够实现测距;应用在自动调焦中,能够简单、可靠地实现投影聚焦,并提高调焦速度和投影机的成像的清晰程度。
一种测距方法,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;
根据获得的关系系数,计算实际物距。
可选地,所述获取关系系数包括:基于所述预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;
计算该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
可选地,所述预设校准物距包括两个或两个以上;该方法还包括:
对每次获得的所述关系系数计算平均值,得到最终的关系系数。
可选地,所述根据获得的关系系数,计算实际物距包括:
投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述获得的关系系数,该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,获取所述实际物距。
可选地,所述投影在屏幕上的图像为特殊的投影画面,或者特殊的光源、或者是识别出投影画面的左右两边。
一种自动调焦方法,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;
在自动调焦过程中,根据获得的关系系数,计算实际物距;
根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。
可选地,所述获取关系系数包括:基于所述预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;
计算该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
可选地,所述预设校准物距包括两个或两个以上;该方法还包括:
对每次获得的所述关系系数计算平均值,得到最终的关系系数。
可选地,所述根据获得的关系系数,计算实际物距包括:
投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述获得的关系系数,该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,获取所述实际物距。
可选地,所述根据得到的实际物距获取马达位置包括:
预先设置所述物距与马达位置的对应关系;根据所述获得的实际物距,在对应关系中查找出与之对应的所述马达位置;
或者,根据所述获得的实际物距,直接计算出所述马达位置。
可选地,所述投影镜头与摄像头之间的距离h在机械结构允许范围内。
一种自动调焦方法,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;根据物距与马达位置的对应关系,以及所述关系系数,得到摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系;
在自动调焦过程中,计算摄像头与投影镜头距离范围内的像素数量;
根据得到的摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系,以及摄像头与投影镜头距离范围内的像素数量获取马达位置,并在马达位置的预设范围内进行调焦。
可选地,计算摄像头与投影镜头距离范围内的像素数量包括:
投影图像在屏幕上,经摄像头取像,并识别投影图像;根据该投影图像的水平中心位置,计算所述摄像头与投影镜头之间的距离h范围内所占像素数量Npix
可选地,所述根据得到的摄像头与投影镜头距离范围内的像素数量获取马达位置包括:
根据所述获得的所述摄像头与投影镜头之间的距离h范围内所占像素数量Npix查找获得对应的所述马达位置。
可选地,所述投影镜头与摄像头之间的距离h在机械结构允许范围内。
一种测距装置,包括第一检测模块和第一处理模块;其中,
第一检测模块,设置为:基于预设校准物距,获取摄像头与投影镜头之 间的距离h范围内的像素数量与物距之间的关系系数;
第一处理模块,设置为:根据获得的关系系数,计算实际物距。
可选地,所述第一检测模块是设置为:基于预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;计算投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和所述距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
可选地,所述第一处理模块是设置为:投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述关系系数,投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,获取所述实际物距。
一种自动调焦装置,包括第一检测模块、第一处理模块和第一执行模块;其中,
第一检测模块,设置为:基于预设校准物距,获取摄像头与投影镜头之间的距离h范围内的像素数量与物距之间的关系系数;
第一处理模块,设置为:在自动调焦过程中,根据获得的关系系数,计算实际物距;
第一执行模块,根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。
可选地,所述第一检测模块是设置为:基于预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;计算投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和所述距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
可选地,所述第一处理模块是设置为:投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述关系系数,投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,获取所述实际物距。
可选地,所述第一执行模块是设置为:预先设置物距与马达位置的对应关系;根据所述获得的实际物距,在对应关系中查找出与之对应的马达位 置,并在马达位置的预设范围内进行调焦;或者,
根据所述获得的实际物距,直接计算出马达位置,并在马达位置的预设范围内进行调焦。
一种自动调焦装置,包括第二检测模块、第二处理模块和第二执行模块;其中,
第二检测模块,设置为:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;根据物距与马达位置的对应关系,以及所述关系系数,得到摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系;
第二处理模块,设置为:在自动调焦过程中,计算摄像头与投影镜头距离范围内的像素数量;
第二执行模块,设置为:根据得到的摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系,以及摄像头与投影镜头距离范围内的像素数量获取马达位置,并在马达位置的预设范围内进行调焦。
与相关技术相比,本申请技术方案包括基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;在自动调焦过程中,根据获得的关系系数,计算实际物距。通过本发明实施例提供的技术方案实现了测距。
另外,本发明实施例提供的自动调焦的技术方案包括基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;在自动调焦过程中,根据获得的关系系数,计算实际物距;根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。本发明实施例通过获得的马达位置,对调焦时马达的移动范围进行了限定,也就是说,调焦时,马达只需在获得的马达位置附近进行搜索以得到最佳的位置,这样简单、可靠地实现了投影聚焦,并提高了调焦速度。而且本发明实施例方法中通过对成像清晰度的检测,同时也提高了投影机的成像的清晰程度。
附图概述
图1为本发明实施例自动调焦的实现原理分析示意图;
图2为本发明实施例测距方法的流程图;
图3为本发明实施例测距装置的组成结构示意图;
图4为本发明实施例的一种自动调焦装置组成结构示意图;
图5为本发明实施例的另一种自动调焦装置组成结构示意图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
在实际应用过程中,图1为本发明实施例自动调焦的实现原理分析示意图,如图1所示,发明人发现:摄像头与投影镜头的距离h是固定的,而随着屏幕与投影仪之间的物距d不同,距离h范围内所占像素数量Npix不同,也就是说,可以根据这个原理,通过测距来进行对焦。
取像范围y与物距d之间是线性关系,也就是取像范围y=k×d,k是常量;在选定摄像头后,取像画面的水平方向和垂直方向的像素值是固定的,因此每个像素的宽度与物距d之间也是线性关系。以300万像素摄像头、4:3的画面为例,分辨率为2048*1536,也就是水平方向有2048个像素,则,像素宽度ypix=y/2048=(k×d)/2048;
投影画面的投影水平中心与取像画面的取像水平中心之间的距离,也就是投影镜头与摄像头之间的距离h是固定的,距离h范围内所占的像素数量Npix=h/ypix=(h×2048)/(k×d),其中,h和k是常量,也就是说,距离h范围内所占的像素数量Npix与物距d之间是反比关系。
因此,发明人得出,测量出距离h所占的像素数量,就能够测量出物距d。而本领域技术人员知道,一方面,驱动投影镜头移动的马达的位置与投影镜头的焦距有对应关系,另一方面,由光学知识可知,投影镜头的焦距与物距d也是有对应关系的。也就是说,马达的位置与物距d有对应关系,这个关系,对于特定产品,可以通过理论计算得到,也可以通过实验数据得到, 这里不再赘述。
图2为本发明实施例测距方法的流程图,如图2所示,包括:
步骤200:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数。
本步骤包括:
基于预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;计算投影图像的水平中心位置,以及距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
举例来看:
假设k=0.5,那么取像范围y=0.5d;距离h=5厘米(cm)=0.05米(m);校准物距d校准=1m=100cm;假设摄像头为300万像素,分辨率为2048*1536。
投影图像的水平中心位置为一条垂直线,计算投影图像的水平中心位置也就是计算这条垂直线水平位置包括:
首先,像素宽度ypix=y/2048=(k×d)/2048=(1×0.5)/2048=0.5/2048;
垂直线水平位置=(y/2-h)/ypix=[(1×0.5)/2-0.05]/ypix
=0.2/ypix=(0.2×2048)/0.5≈819;
此时物距d为校准物距d校准=1m。
从上述计算得知,识别到的垂直线应该位于第819像素处。
接着,计算距离h范围内占的像素数量Npix=1024-819=205;
然后,d×Npix=100×205=20500,即d≈20500/Npix,单位是cm;也就是说,物距d与像素数量Npix之间的关系系数c为20500。
通过本步骤的校准过程,实现了对成像清晰度的检测,获得了摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数。
预设校准物距可以包括两个或两个以上,以更好地保证成像清晰度,即更好地消除个体之间存在的误差。举例来看,假设在上述校准物距d校准=1m的基础上,再根据预设另一校准物距为3m进行校准,大致过程如下:
在校准物距d校准=3m=300cm时,理想情况下,识别到的垂直线水平位 置=(y/2-h)/ypix=[(3×0.5)/2–0.05]/ypix≈956;此时物距d为校准物距d校准=3m。
此时,识别到的垂直线应该位于第956像素处。那么,距离h范围内占的像素数量Npix=1024-956=68;
这样,在校准物距d校准=3m时,d×Npix=300×68=20400,即d≈20400/Npix,单位是cm。也就是说,物距d与像素数量Npix之间的关系系数c为20400。
当采用两次或两次以上校准过程时,可以对多次获得的多个关系系数进行进一步处理,如计算平均值等,这样,更好地保证了成像清晰度,即更好地消除了个体之间存在的误差。
步骤201:根据获得的关系系数,计算实际物距。
本步骤的实现与步骤200是一致的,包括:
投影图像在屏幕上,经摄像头取像,并识别投影图像;根据关系系数,计算投影图像的水平中心位置,以及距离h范围内所占像素数量Npix公式,获取实际物距。只是此时是已知摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数,将其代入上述计算距离h范围内占的像素数量Npix及垂直线水平位置的公式,即可得出实际物距。
将本发明实施例的测距方法应用到自动调焦过程中时,还包括:
步骤202:在自动调焦过程中,根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。
由于马达的位置与物距d有对应关系,这个关系,对于特定产品,可以通过理论计算得到,也可以通过实验数据得到。
因此,本步骤的获取马达位置实现可以包括:
预先设置物距与马达位置的对应关系;当获得实际物距后,在对应关系中查找出与之对应的马达位置即可。
或者,本步骤的获取马达位置实现也可以是:
根据获得的实际物距,利用已知的理论计算方法直接计算出马达位置即 可。
本步骤中,马达位置的预设范围内就是马达位置的附近,是一个比马达的一段到另一端明显小的范围。其中,预设范围可以是马达位置的前后5步等,可以根据实际情况确定,以能满足调焦后投影图像足够清晰即可,这里并不做限定。
通过本步骤获得的马达位置,对调焦时马达的移动范围进行了限定,也就是说,调焦时,马达只需在获得的马达位置附近进行搜索以得到最佳的位置,这样简单、可靠地实现了投影聚焦,并提高了调焦速度。而且本发明实施例方法中通过对成像清晰度的检测,同时也提高了投影机的成像的清晰程度。
从本发明实施例计算距离h范围内占的像素数量Npix的方法来看,因为垂直线水平位置可能会出现需要取整,是一个约等于的值,那么,如果距离h更大些,距离h范围内占的像素数量Npix会更多些,而这个取整的过程会使得结果更准确一些,因此,本发明实施例中的投影镜头与摄像头之间的距离可以适当放宽些,在机械结构允许范围内,距离越大,误差越小。
本发明实施例中投影在屏幕上的图像可以是特殊的投影画面,或者是特殊的光源如激光、或者还可以是识别出的投影画面的左右两边(即通过识别出的投影画面的左右两边来计算投影图像的水平中心位置)等。
对于应用到自动调焦过程中时,步骤200还可以包括:根据物距与马达位置的对应关系,以及所述关系系数,得到摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系。步骤201的实现方法还可以是:投影图像在屏幕上,经摄像头取像,并识别投影图像;根据投影图像的水平中心位置的计算公式,计算距离h范围内所占像素数量Npix。即在步骤201中计算出距离h范围内所占像素数量Npix后,不再计算实际物距,在步骤202中,直接根据距离h范围内所占像素数Npix与马达位置的对应关系,查找获得当前的马达位置。
图3为本发明实施例测距装置的组成结构示意图,如图3所示,包括第一检测模块31和第一处理模块32;其中,
第一检测模块31,设置为:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;
第一处理模块32,设置为:根据获得的关系系数,计算实际物距。
其中,
第一检测模块31是设置为:基于预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;计算投影图像的水平中心位置,以及距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
第一处理模块32是设置为:投影图像在屏幕上,经摄像头取像,并识别投影图像;根据关系系数,计算投影图像的水平中心位置,以及距离h范围内所占像素数量Npix公式,获取实际物距。
当本发明实施例测距方法应用到自动调焦时,如图4所示,本发明实施例还提供一种自动调焦装置,包括上述第一检测模块31和第一处理模块32,还包括第一执行模块33,设置为:在自动调焦过程中,根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。
第一执行模块33是设置为:预先设置物距与马达位置的对应关系;根据获得的实际物距,在对应关系中查找出与之对应的马达位置,并在马达位置的预设范围内进行调焦;或者,
根据获得的实际物距,利用已知的理论计算方法直接计算出马达位置,并在马达位置的预设范围内进行调焦。
当本发明实施例测距方法应用到自动调焦时,如图5所示,本发明实施例还提供一种自动调焦装置,包括第二检测模块34,以及第二处理模块35和第二执行模块36。
其中,第二检测模块34,设置为:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;根据物距与马达位置的对应关系,以及所述关系系数,得到摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系;
第二处理模块34是设置为:在自动调焦过程中,计算摄像头与投影镜 头距离范围内的像素数量。
第二执行模块35是设置为:根据得到的摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系,以及摄像头与投影镜头距离范围内的像素数量获取马达位置,并在马达位置的预设范围内进行调焦。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
通过本发明实施例提供的技术方案实现了测距。另外,本发明实施例根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。本发明实施例通过获得的马达位置,对调焦时马达的移动范围进行了限定,也就是说,调焦时,马达只需在获得的马达位置附近进行搜索以得到最佳的位置,这样简单、可靠地实现了投影聚焦,并提高了调焦速度。而且本发明实施例方法中通过对成像清晰度的检测,同时也提高了投影机的成像的清晰程度。

Claims (20)

  1. 一种测距方法,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;
    根据获得的关系系数,计算实际物距。
  2. 根据权利要求1所述的测距方法,其中,所述获取关系系数包括:基于所述预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;
    计算该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
  3. 根据权利要求2所述的测距方法,其中,所述预设校准物距包括两个或两个以上;该方法还包括:
    对每次获得的所述关系系数计算平均值,得到最终的关系系数。
  4. 根据权利要求1所述的测距方法,其中,所述根据获得的关系系数,计算实际物距包括:
    投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述获得的关系系数,该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,获取所述实际物距。
  5. 根据权利要求2或4所述的测距方法,其中,所述投影在屏幕上的图像为特殊的投影画面,或者特殊的光源、或者是识别出投影画面的左右两边。
  6. 一种自动调焦方法,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;
    在自动调焦过程中,根据获得的关系系数,计算实际物距;
    根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。
  7. 根据权利要求6所述的自动调焦方法,其中,所述获取关系系数包 括:基于所述预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;
    计算该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数。
  8. 根据权利要求7所述的自动调焦方法,其中,所述预设校准物距包括两个或两个以上;该方法还包括:
    对每次获得的所述关系系数计算平均值,得到最终的关系系数。
  9. 根据权利要求6所述的自动调焦方法,其中,所述根据获得的关系系数,计算实际物距包括:
    投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述获得的关系系数,该投影图像的水平中心位置,以及所述投影镜头与摄像头之间的距离h范围内所占像素数量Npix,获取所述实际物距。
  10. 根据权利要求6所述的自动调焦方法,其中,所述根据得到的实际物距获取马达位置包括:
    预先设置所述物距与马达位置的对应关系;根据所述获得的实际物距,在对应关系中查找出与之对应的所述马达位置;
    或者,根据所述获得的实际物距,直接计算出所述马达位置。
  11. 一种自动调焦方法,包括:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;根据物距与马达位置的对应关系,以及所述关系系数,得到摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系;
    在自动调焦过程中,计算摄像头与投影镜头距离范围内的像素数量;
    根据得到的摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系,以及摄像头与投影镜头距离范围内的像素数量获取马达位置,并在马达位置的预设范围内进行调焦。
  12. 根据权利要求11所述的方法,其中,计算摄像头与投影镜头距离范围内的像素数量包括:
    投影图像在屏幕上,经摄像头取像,并识别投影图像;根据该投影图像的水平中心位置,计算所述摄像头与投影镜头之间的距离h范围内所占像素数量Npix
  13. 根据权利要求11所述的方法,其中,所述根据得到的摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系,以及,摄像头与投影镜头距离范围内的像素数量获取马达位置包括:
    根据所述获得的所述摄像头与投影镜头之间的距离h范围内所占像素数量Npix查找获得对应的所述马达位置。
  14. 一种测距装置,包括第一检测模块和第一处理模块;其中,
    第一检测模块,设置为:基于预设校准物距,获取摄像头与投影镜头之间的距离h范围内的像素数量与物距之间的关系系数;
    第一处理模块,设置为:根据获得的关系系数,计算实际物距。
  15. 根据权利要求14所述的测距装置,其中,
    所述第一检测模块是设置为:基于预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;计算投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和所述距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数;
    所述第一处理模块是设置为:投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述关系系数,投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,获取所述实际物距。
  16. 一种自动调焦装置,包括第一检测模块、第一处理模块和第一执行模块;其中,
    第一检测模块,设置为:基于预设校准物距,获取摄像头与投影镜头之间的距离h范围内的像素数量与物距之间的关系系数;
    第一处理模块,设置为:在自动调焦过程中,根据获得的关系系数,计算实际物距;
    第一执行模块,根据得到的实际物距获取马达位置,并在马达位置的预设范围内进行调焦。
  17. 根据权利要求17所述的自动调焦装置,其中,
    所述第一检测模块是设置为:基于预设校准物距,投影图像在屏幕上,经摄像头取像,并识别投影图像;计算投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,并根据计算得到的水平中心位置和所述距离h范围内所占像素数量Npix,获取物距d与像素数量Npix之间的关系系数;
    所述第一处理模块是设置为:投影图像在屏幕上,经摄像头取像,并识别投影图像;根据所述关系系数,投影图像的水平中心位置,以及所述距离h范围内所占像素数量Npix,获取所述实际物距。
  18. 根据权利要求17所述的自动调焦装置,其中,所述第一执行模块是设置为:预先设置物距与马达位置的对应关系;根据所述获得的实际物距,在对应关系中查找出与之对应的马达位置,并在马达位置的预设范围内进行调焦;或者,
    根据所述获得的实际物距,直接计算出马达位置,并在马达位置的预设范围内进行调焦。
  19. 一种自动调焦装置,包括第二检测模块、第二处理模块和第二执行模块;其中,
    第二检测模块,设置为:基于预设校准物距,获取摄像头与投影镜头距离范围内的像素数量与物距之间的关系系数;根据物距与马达位置的对应关系,以及所述关系系数,得到摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系;
    第二处理模块,设置为:在自动调焦过程中,计算摄像头与投影镜头距离范围内的像素数量;
    第二执行模块,设置为:根据得到的摄像头与投影镜头距离范围内的像素数量与马达位置的对应关系,以及摄像头与投影镜头距离范围内的像素数量获取马达位置,并在马达位置的预设范围内进行调焦。
  20. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-13任一项的方法。
PCT/CN2015/084708 2015-04-27 2015-07-21 一种测距方法、自动调焦方法及装置 WO2016173131A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/569,889 US10698308B2 (en) 2015-04-27 2015-07-21 Ranging method, automatic focusing method and device
EP15890508.3A EP3291004A4 (en) 2015-04-27 2015-07-21 Ranging method, automatic focusing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510205794.XA CN106154721B (zh) 2015-04-27 2015-04-27 一种测距方法、自动调焦方法及装置
CN201510205794.X 2015-04-27

Publications (1)

Publication Number Publication Date
WO2016173131A1 true WO2016173131A1 (zh) 2016-11-03

Family

ID=57198944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084708 WO2016173131A1 (zh) 2015-04-27 2015-07-21 一种测距方法、自动调焦方法及装置

Country Status (4)

Country Link
US (1) US10698308B2 (zh)
EP (1) EP3291004A4 (zh)
CN (1) CN106154721B (zh)
WO (1) WO2016173131A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970500A (zh) * 2020-08-13 2020-11-20 峰米(北京)科技有限公司 用于投影设备的自动距步校准方法及系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124145A (zh) * 2016-11-30 2018-06-05 中兴通讯股份有限公司 一种用于投影设备的方法及装置
CN106713883B (zh) * 2017-01-13 2019-02-22 湖南理工学院 一种智能旋转式投影仪及其自动校正方法
WO2018167999A1 (ja) * 2017-03-17 2018-09-20 パナソニックIpマネジメント株式会社 プロジェクタ及びプロジェクタシステム
CN108731723A (zh) * 2017-04-18 2018-11-02 中兴通讯股份有限公司 一种接近传感器的校准方法及装置
US10387477B2 (en) * 2017-05-30 2019-08-20 Qualcomm Incorporated Calibration for phase detection auto focus (PDAF) camera systems
CN107155097A (zh) * 2017-06-15 2017-09-12 上海青橙实业有限公司 投影终端的调焦方法、调焦装置以及投影终端
CN109426060A (zh) * 2017-08-21 2019-03-05 深圳光峰科技股份有限公司 投影仪自动调焦方法及投影仪
CN108931191A (zh) * 2018-06-01 2018-12-04 普联技术有限公司 测距方法、尺寸测量方法及终端
CN109151326A (zh) * 2018-10-26 2019-01-04 深圳鳍源科技有限公司 一种运动相机对焦方法、装置、运动相机及存储介质
CN110049300A (zh) * 2019-04-19 2019-07-23 深圳市当智科技有限公司 基于变步长运动控制的投影仪镜头聚焦方法
CN111856846B (zh) * 2019-04-29 2021-12-14 无锡视美乐激光显示科技有限公司 投影系统及其设计方法
CN110087049A (zh) * 2019-05-27 2019-08-02 广州市讯码通讯科技有限公司 自动调焦系统、方法以及投影仪
CN111050151B (zh) * 2019-12-26 2021-08-17 成都极米科技股份有限公司 投影对焦的方法、装置、投影仪和可读存储介质
CN110996085A (zh) * 2019-12-26 2020-04-10 成都极米科技股份有限公司 一种投影仪调焦方法、投影仪调焦装置和投影仪
CN113341635A (zh) * 2020-02-18 2021-09-03 苏州佳世达光电有限公司 投影装置的测距调焦方法
CN113364968B (zh) * 2020-03-05 2023-06-20 浙江宇视科技有限公司 一种对焦方法、装置、摄像机和可读存储介质
CN114390261B (zh) * 2020-10-20 2023-10-24 深圳海翼智新科技有限公司 投影系统及其梯形校正方法、具有存储功能的装置
CN112925158A (zh) * 2021-01-25 2021-06-08 四川长虹电器股份有限公司 一种投影设备调焦方法、计算机设备及存储介质
CN113766139B (zh) * 2021-09-29 2023-07-18 广东朝歌智慧互联科技有限公司 一种调焦的装置和方法
CN114812439B (zh) * 2022-04-14 2024-05-17 深圳市菲森科技有限公司 结构光三维测量系统的投影成像镜头组调焦方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113975A1 (en) * 1999-05-10 2002-08-22 Metso Paper Automation Oy Method and measuring arrangement for measuring paper surface
JP2006023400A (ja) * 2004-07-06 2006-01-26 Sharp Corp プロジェクタ装置及びプロジェクタ装置の焦点調整方法
CN102375316A (zh) * 2010-08-27 2012-03-14 鸿富锦精密工业(深圳)有限公司 投影仪及其自动对焦方法
CN102494610A (zh) * 2011-10-05 2012-06-13 友达光电股份有限公司 投影式图像辨识装置及其图像辨识方法
US20140002706A1 (en) * 2011-03-29 2014-01-02 Canon Kabushiki Kaisha Lens driving control apparatus and lens apparatus
CN103686134A (zh) * 2012-09-12 2014-03-26 佳能株式会社 图像拾取装置、系统和控制方法以及图像处理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412469A (en) * 2003-01-02 2004-07-16 Lite On Technology Corp Automatically focusing method for projector and projector using this method
JP4398702B2 (ja) * 2003-11-06 2010-01-13 フジノン株式会社 プロジェクタ
JP2005249905A (ja) * 2004-03-02 2005-09-15 Canon Inc 投射型表示装置
CN101281289A (zh) 2007-12-29 2008-10-08 青岛海信电器股份有限公司 自动聚焦方法
US8152313B2 (en) * 2008-05-09 2012-04-10 Sanyo Electric Co., Ltd. Projection display device that displaces an optical position of an imager in conjunction with a focus adjustment
US8773529B2 (en) * 2009-06-04 2014-07-08 Sypro Optics Gmbh Projector with automatic focusing and illustration procedure
JPWO2011089684A1 (ja) * 2010-01-19 2013-05-20 Necディスプレイソリューションズ株式会社 映像表示装置およびその制御方法
CN202771144U (zh) * 2012-06-28 2013-03-06 李黄雨 一种自动调焦的投影仪
CN203178660U (zh) * 2013-04-19 2013-09-04 无锡市崇安区科技创业服务中心 一种投影仪
CN104536249B (zh) * 2015-01-16 2016-08-24 努比亚技术有限公司 调节投影仪焦距的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113975A1 (en) * 1999-05-10 2002-08-22 Metso Paper Automation Oy Method and measuring arrangement for measuring paper surface
JP2006023400A (ja) * 2004-07-06 2006-01-26 Sharp Corp プロジェクタ装置及びプロジェクタ装置の焦点調整方法
CN102375316A (zh) * 2010-08-27 2012-03-14 鸿富锦精密工业(深圳)有限公司 投影仪及其自动对焦方法
US20140002706A1 (en) * 2011-03-29 2014-01-02 Canon Kabushiki Kaisha Lens driving control apparatus and lens apparatus
CN102494610A (zh) * 2011-10-05 2012-06-13 友达光电股份有限公司 投影式图像辨识装置及其图像辨识方法
CN103686134A (zh) * 2012-09-12 2014-03-26 佳能株式会社 图像拾取装置、系统和控制方法以及图像处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291004A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970500A (zh) * 2020-08-13 2020-11-20 峰米(北京)科技有限公司 用于投影设备的自动距步校准方法及系统

Also Published As

Publication number Publication date
EP3291004A4 (en) 2018-06-13
CN106154721A (zh) 2016-11-23
US10698308B2 (en) 2020-06-30
CN106154721B (zh) 2021-01-01
US20180120687A1 (en) 2018-05-03
EP3291004A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
WO2016173131A1 (zh) 一种测距方法、自动调焦方法及装置
KR102143456B1 (ko) 심도 정보 취득 방법 및 장치, 그리고 이미지 수집 디바이스
US20170163876A1 (en) Image processing apparatus, image processing method, image processing program, and image pickup apparatus acquiring a focusing distance from a plurality of images
WO2015180510A1 (zh) 一种图像获取终端和图像获取方法
US8773529B2 (en) Projector with automatic focusing and illustration procedure
JP5618712B2 (ja) 自動焦点調節装置および撮像装置
JP2015194706A5 (zh)
US11022858B2 (en) Multiple camera apparatus and method for synchronized autofocus
US20160234424A1 (en) Imaging apparatus, imaging method, and non-transitory storage medium storing imaging program
TWI587060B (zh) 多鏡頭攝像裝置
JP6014452B2 (ja) 焦点検出装置及びそれを有するレンズ装置及び撮像装置
US9900493B2 (en) Focus detecting apparatus, and method of prediction for the same
US9247124B2 (en) Imaging apparatus, semiconductor integrated circuit, and imaging method
CN108260360B (zh) 场景深度计算方法、装置及终端
US11095798B2 (en) Image capturing system, image capturing apparatus, and control method of the same
WO2014073590A1 (ja) 3次元計測装置および3次元計測方法
WO2013069279A1 (ja) 撮像装置
US8179431B2 (en) Compound eye photographing apparatus, control method therefor, and program
US9578230B2 (en) Image capturing apparatus that performs shading correction and control method therefor
US20170270688A1 (en) Positional shift amount calculation apparatus and imaging apparatus
JP5023750B2 (ja) 測距装置および撮像装置
US9854150B2 (en) Auto-focus control in a camera to prevent oscillation
JP6611687B2 (ja) 画像補正装置および画像補正方法
KR20200077447A (ko) 3차원 정보 계산 장치, 3차원 계측 장치, 3차원 정보 계산 방법 및 3차원 정보 계산 프로그램
JP2017220867A (ja) 画像補正装置および画像補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15569889

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015890508

Country of ref document: EP