WO2016172935A1 - 用自产污泥炭进行污水处理的方法及污泥制炭系统 - Google Patents

用自产污泥炭进行污水处理的方法及污泥制炭系统 Download PDF

Info

Publication number
WO2016172935A1
WO2016172935A1 PCT/CN2015/078012 CN2015078012W WO2016172935A1 WO 2016172935 A1 WO2016172935 A1 WO 2016172935A1 CN 2015078012 W CN2015078012 W CN 2015078012W WO 2016172935 A1 WO2016172935 A1 WO 2016172935A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
filter
housing
chamber
filter press
Prior art date
Application number
PCT/CN2015/078012
Other languages
English (en)
French (fr)
Inventor
吴植仁
周群龙
朱延军
Original Assignee
吴植仁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴植仁 filed Critical 吴植仁
Priority to PCT/CN2015/078012 priority Critical patent/WO2016172935A1/zh
Publication of WO2016172935A1 publication Critical patent/WO2016172935A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating

Definitions

  • the invention relates to the field of sewage treatment, in particular to a method for sewage treatment using self-produced sludge carbon and a sludge carbonization system.
  • the known sewage treatment methods can be divided into physical method, biological method and chemical method.
  • the chemical method is mainly used for industrial wastewater treatment with high heavy metal content, such as: neutralization, redox, ion exchange, electrolysis; rarely used for complex components.
  • urban sewage treatment is divided into primary treatment, secondary treatment and tertiary treatment.
  • the primary treatment is mainly for suspended substances in water, and physical methods are often used.
  • the suspended solids can be removed by about 40%, the organic matter attached to the suspended matter can be removed by about 30%, and the removal rate of BOD5 is about 25%.
  • secondary treatment mainly removes organic pollutants in colloid and dissolved state in the sewage.
  • the commonly used methods are activated sludge method and biofilm method.
  • the third-stage treatment is to treat the eutrophicated organic substances in the eutrophication of the eutrophic organic matter after the primary treatment and the secondary treatment, in order to further improve the water quality and meet the relevant national emission standards.
  • the methods used in the tertiary treatment include biological nitrogen and phosphorus removal, coagulation sedimentation (clarification, air flotation), activated carbon adsorption, filtration, and the like.
  • Activated sludge method is the leading process of secondary treatment of urban sewage. It is the continuous mixing and cultivation of various microbial populations in sewage.
  • the biological action of activated sludge is used under aerobic, anoxic and anaerobic conditions. Decompose and remove organic pollutants from the sewage, and then separate the sludge from the water. Most of the sludge is returned to the aeration tank as a bioreactor, and the excess is discharged as an excess sludge to the activated sludge system; the activated sludge is bioflocculated.
  • the body which inhabits and lives a large number of microorganisms, uses the dissolved organic matter as a food material to obtain energy and continuously grow, thereby purifying the sewage.
  • the activated sludge process is complicated in process, long in reaction time, large in floor space and equipment investment, high in energy consumption and operating cost, and the exhaust gas emitted from the aeration tank has an odor, pollutes the atmospheric environment, and adapts to changes in sewage volume and water quality. Poor property, weak adaptability to impact load, large sludge production, complex composition, contains a large amount of organic matter, and contains harmful heavy metals, pathogenic microorganisms, etc., high processing and disposal costs, off Nitrogen removal by phosphorus is only 20-30%, the effect is poor, and the produced water needs to be treated in three stages to meet the relevant national emission standards.
  • Activated carbon has good adsorption performance and chemical stability, as well as outstanding advantages such as water immersion resistance, high temperature resistance and high pressure resistance. It can effectively adsorb organic matter and microorganisms in wastewater and achieve the purpose of advanced treatment. It has been proved that activated carbon is difficult to handle conventional treatment methods. The compounds in the toxic and difficult to degrade wastewater also have a good treatment effect.
  • the US Environmental Protection Agency pointed out that activated carbon adsorption is one of the best techniques for removing volatile organic compounds. Powdered activated carbon purification technology has been used to treat water for more than 70 years. Its purification effect has been approved by many countries, but activated carbon. It becomes waste after adsorption saturation, and the cost for treating sewage is too high and economically unreasonable.
  • Chinese Patent ZL201310335118.5 discloses "a method for preparing a carbon material from sludge".
  • the core technology is to thermally hydrolyze sludge with a water content of about 85% under high temperature rolling (160-300 ° C, 1.5-9.5 MPa), in order to destroy the colloidal structure and cell wall of the sludge and improve the pollution.
  • the dewatering performance of the mud is then dehydrated, dried and charred. Since the sludge contains sand and solid particles, the life of the discharge valve is very short, and the price of each is up to 20,000 or more, and the operation and maintenance costs are too high.
  • the thermal hydrolysis reactor is a pressure vessel to be supervised. In addition to the high cost, there are still safety hazards and it has not been put into commercial operation.
  • the technical problem to be solved by the present invention is to provide a sludge carbon-making system for treating sewage by activated carbon, which can solve the problem that the cost of the activated carbon treatment sewage is too high and economically unreasonable, resulting in the feasibility of not having industrial scale application.
  • a method for sewage treatment using self-produced sludge charcoal comprising the following steps:
  • the activated carbon is added and mixed and settled to obtain the wet sludge according to the denaturing mixing ratio of the sludge;
  • step b Replace the activated carbon used in step b with self-produced sludge carbon, and repeat steps a to f.
  • the sludge wall degeneration mixing ratio in the step b is a ratio of the minimum mass of the activated carbon capable of denaturation of the sludge to the dry matter mass in the sewage, and the value is 0.5 to 1.5.
  • a further aspect of the invention also includes the step h of recovering the gas and bio-oil from the pyrolysis product.
  • the sludge carbonization system for the above sewage treatment method comprises a disc type filter press device, a dual heat source sludge dryer, a biomass pellet forming machine and an internal combustion type biomass pellet drying, carbonization and activation. Furnace.
  • the disc type filter press device is composed of a press tank and a filter press, and a bottom end of the grout tank housing is in communication with a top end of the filter press housing;
  • the cavity is provided with an agitator extending toward the filter press;
  • the rotary shaft of the filter press horizontally penetrates the filter press housing, the rotary shaft is a hollow structure, one end of which communicates with the filter press filtrate interface, and is located in the filter press housing
  • a plurality of disc filter elements communicating with the cavity are coaxially mounted on the rotary shaft of the body cavity, and a fixed scraper fixed to the filter press housing is disposed between the adjacent disc filter elements, the filter press
  • a filter press auger is arranged in the lower part of the inner cavity of the casing.
  • the inner wall of the press tank housing is connected to the grout tank filter medium through the pressure tank support pressure column, and the grout tank is formed between the grout tank filter medium and the inner wall of the grout tank shell.
  • a filtrate chamber wherein the pressure tank housing is provided with a filtrate outlet of a pressure tank connected to a filtrate chamber of the pressure tank; and a filter press housing is arranged between the filter press auger and the bottom of the filter press housing.
  • a filter chamber is formed between the filter medium of the filter press housing and the bottom of the filter press housing, and the bottom of the filter press housing is provided with a filter press that communicates the filtrate chamber of the filter press housing a filter outlet of the casing of the casing; a filter medium for connecting the head through the head pressure column is respectively provided at the two ends of the inner chamber of the filter press, and a filtrate chamber is formed between the filter medium and the head
  • the head of the filter press housing is provided with a head filtrate outlet that communicates with the filtrate chamber of the head.
  • a top of the slurry tank housing is provided with a slurry inlet, an exhaust port and a compressed air inlet, and a bottom end of the grout tank housing communicates with a top end of the filter press housing through a transition tube;
  • the agitator shaft of the agitator vertically penetrates the pad tank housing, and a stirring paddle is connected to a lower portion of the inner chamber of the pad tank, and a bottom end of the transition tube is connected with a vertical auger.
  • the cutter shaft of the filter press auger is disposed parallel to the rotary shaft and disposed at a lower portion of the filter press housing, one end of which passes through the filter press housing, and the other end faces the filter press
  • a filter cake outlet is provided on the casing, and the filter cake outlet is sealed by a blind plate.
  • the dual heat source sludge dryer includes a casing of a dryer, wherein the casing inner cavity is arranged with a plurality of heat exchange disks, and the heat exchange disk is provided with a heat exchange cavity.
  • Heat exchange plate The upper and lower ends of the sheet are respectively connected to the steam inlet manifold and the hydrophobic manifold through a pipe connecting the heat exchange chambers; and a main shaft horizontally penetrating the casing, and a plurality of scrapers are arranged on the main shaft of the casing inner cavity, and the shell is located at one end of the main shaft
  • the top is provided with a wet sludge inlet
  • the bottom of the shell at the other end of the main shaft is provided with a dry sludge outlet
  • the casing is also connected to the hot flue gas inlet main pipe, and is provided with a wet exhaust gas outlet.
  • the heat exchange disk is a semicircular hollow structure.
  • the plurality of squeegees are inclined toward the same side and are spirally distributed and mounted on the main shaft.
  • the biomass pellet forming machine comprises a feeding chamber, a forming mold disposed at the bottom of the feeding chamber, a rotating shaft driven by the power mechanism through the forming mold, and a radial extending from the rotating shaft outside the feeding chamber.
  • the molding die is provided with a forming hole on a circumference of the pressing roller that revolves with the rotating shaft, and the forming die is further provided with a concentric arc on a circumference of the pressing roller that revolves with the rotating shaft a groove, the forming hole is located in the arc groove, the diameter of which is smaller than the groove width of the arc groove, and the edge of the pressure roller contacting the molding die is a convex arc surface, and the axial length thereof is smaller than the diameter of the molding hole.
  • the arcuate radius of the convex curved surface of the pressing roller edge is smaller than the arcing radius of the arcuate groove, and a plurality of forming holes are evenly arranged in each of the arcuate grooves, and the adjacent forming holes are spaced apart. Less than 5mm.
  • At least two transmission rods are connected to the rotating shaft, and each of the transmission rods is respectively rotatably connected with an equal number of corresponding pressure rollers.
  • the internal combustion type biomass pellet drying, carbonization and activation integrated furnace comprises a vertical furnace body, a top of the furnace body is equipped with a loader, and a bottom is equipped with a discharge machine, the furnace
  • the body is provided with a drying section, a material sealing section, a carbonization section, an activation section, a steam generating section and a cooling section from the top to the bottom, and the side wall of the drying section is provided with a wet flue gas outlet pipe connecting the inner cavity thereof, and the carbonization section
  • An upper pipe box is arranged, an internal combustion chamber is arranged in the activation section, and a lower pipe box is connected to the upper part of the internal combustion chamber, and the lower pipe box and the upper pipe box are connected by a heat exchange tube, and the upper pipe box passes
  • the rising tobacco pipe passing through the material sealing section is connected to the wet flue gas outlet pipe, and the internal combustion chamber is in communication with a sleeve extending outside the furnace body, and the outer port of the s
  • the inner combustion chamber and the lower header are connected by a sand sealing groove; the top of the water cooling chamber is connected to the bottom of the internal combustion chamber; and the internal combustion chamber is further connected with a view extending to the outside of the furnace Check the window and temperature measurement port.
  • the upper pipe of the rising pipe extends to a lower portion of the drying section, and a venting bell is installed at the port, the internal port of the wet flue gas outlet pipe is located at an upper portion of the drying section, and is installed at the port There is a gas collecting bell; the rising flue pipe is also connected with a cold air inlet pipe extending to the outside of the furnace.
  • Activated carbon or sludge charcoal is also a filter aid for colloidal organic matter, which can greatly improve the dewatering efficiency of the filter, and is also an adsorbent for the solid content in the sewage, which can greatly improve the sedimentation performance of the sludge, or is it dirty. Mud deodorant can significantly improve the environment for subsequent treatment;
  • the subsequent treatment will use the self-produced sludge charcoal instead of activated carbon to effectively reduce the sewage treatment cost;
  • the disc type filter press device uses the original slurry pump and the fluid medium to pressurize, which can reduce the specification requirements of the slurry pump and avoid the high failure rate of the slurry pump under high load, while improving the dewatering effect. , effectively reducing energy consumption;
  • Double heat source sludge dryer adopts steam or hot water to increase hot flue gas as the second heat source, and double heat source to improve drying efficiency and reduce energy consumption;
  • the biomass pellet forming machine reduces energy consumption by reducing the ineffective friction without affecting the grain compaction
  • the heat energy of the internal combustion type biomass pellet drying, carbonization and activation integrated furnace is directly generated in the furnace, and there is almost no heat energy loss.
  • the heat of the heat exchanger tube is used to reduce the amount of pyrolysis gas generated and the self-heating is improved.
  • the calorific value of the gas produced reduces the load on the cooling recovery system and saves energy;
  • the filter medium is installed in the grout tank of the disc type filter press device and the bottom and both ends of the filter press housing to speed up the filter press speed and improve the working efficiency;
  • the heat exchange disc is semi-circular, which is convenient for guiding the non-condensable gas in the inner cavity, ensuring that the temperature in the heat exchange disc is not affected, improving the drying strength and efficiency, and further reducing the cost;
  • the activator is water vapor generated when the high temperature carbon is extinguished in the cooling section, and does not need external steam supply, which is simple and energy-saving, and effectively reduces the manufacturing cost of the target product;
  • Figure 1 is a schematic view showing the structure of a disc type filter press device.
  • FIG. 2 is a schematic view showing the structure of a disc filter.
  • Figure 3 is a schematic view showing the structure of a dual heat source sludge dryer.
  • Fig. 4 is a cross-sectional view taken along line A in Fig. 3;
  • Figure 5 is a schematic view showing the structure of a biomass pellet molding machine.
  • Figure 6 is a B-direction view of Figure 5 .
  • Fig. 7 is a schematic view showing the structure of an internal combustion type biomass pellet drying, carbonization and activation integrated furnace.
  • Fig. 8 is a cross-sectional view taken along line C of Fig. 7;
  • a method for sewage treatment using self-produced sludge charcoal comprising the following steps:
  • the raw material sewage is first filtered by a coarse grid with a slit width of 18 to 22 mm, and then a secondary grid with a slit width of 0.8 to 1.2 mm is used for secondary filtration, and then sent to a grit chamber for grit to remove Mud sand
  • the activated carbon is added and mixed according to the denaturing mixing ratio of the sludge, and the mixture is sent to the second settling tank.
  • the sludge settles at the bottom of the second settling tank and is pumped out through the sludge pump.
  • the dewatering machine can be used for mechanical dehydration to obtain wet sludge with a water content of about 80%.
  • the sludge degeneration ratio refers to the minimum mass of activated carbon which can decompose the sludge and the quality of dry matter in the sewage.
  • the ratio is 1.5 when dealing with urban sewage in economically developed areas, and 1.0 when dealing with urban sewage in economically underdeveloped areas.
  • the value is 0.5 when dealing with industrial wastewater containing almost no protein in printing, dyeing and electroplating industries;
  • the biomass sludge forming machine is used to granulate the dry sludge to obtain sludge particles.
  • a part of the sludge particles is used as boiler fuel to produce steam or hot water, together with the flue gas as the heat source of the dual heat source sludge dryer, and the rest is carried out.
  • step b Replace some of the activated carbon used in step b with the activated carbon used in step b, repeat steps a to f, and export the surplus to make the sewage treatment a profit without the need of government subsidies and joint production of sludge charcoal, gas and bio-oil. industry.
  • the disc type filter press device used in step c is composed of a press tank and a filter press as shown in FIG. 1.
  • the bottom end of the grout tank housing 118 communicates with the top end of the filter press housing 121 through a transition tube 13;
  • the inner chamber of the canister housing 118 is provided with an agitator 1111 extending toward the filter press, and the agitating shaft 114 of the agitator 1111 vertically penetrates the pad tank housing 118, which is located in the inner chamber of the pad tank housing 118.
  • a stirring paddle is connected to the lower portion, and a bottom end of the transition tube 13 is connected with a vertically disposed auger; the rotating shaft 124 of the filter press horizontally penetrates the filter housing 121, and the rotating shaft 124 is a hollow structure.
  • One end of the filter press filtrate interface 1216 is connected to the rotary shaft 124 of the inner chamber of the filter press housing 121, and a plurality of disc filter elements 1213 communicating with the cavity thereof are coaxially mounted, and adjacent disc filter elements 1213
  • a fixed scraper 1212 is disposed between the press filter housing 121 and a filter press auger 129 is disposed at a lower portion of the inner chamber of the filter housing 121.
  • the inner wall of the grout tank housing 118 is connected with a grout tank filter medium 119 through a press tank pressure column 1110, and a grout tank filtrate chamber is formed between the grout tank filter medium 119 and the inner wall of the grout tank housing 118.
  • the grout tank housing 118 is provided with a grout tank filtrate outlet 1113 that communicates with the press tank filtrate chamber; the top of the grout tank housing 118 is provided with a slurry inlet 111, an exhaust port 115 and a compressed air inlet. 116.
  • a rotary squeegee 123 is further disposed on the rotary shaft 124 on both sides of the disc filter 1213.
  • the disc filter element 1213 includes two coaxial circular perforated plates connected by pressure-bearing columns, and the sides of the two circular perforated plates are sealed and connected, each of which is circular.
  • the surface of the perforated plate is coated with a filter cloth.
  • the auger shaft 126 of the filter press auger 129 is disposed in parallel with the rotary shaft 124 at a lower portion of the filter housing 121, one end of which passes through the filter housing 121, and the other end faces the filter press housing A filter cake outlet 1214 is provided on the 121, and the filter cake outlet 1214 is blocked by a blind plate 1215.
  • a filter housing filter medium 1211 is disposed between the filter press auger 129 and the bottom of the filter press housing 121, and the filter press housing filter medium 1211 is formed between the press filter housing 1211 and the bottom of the filter press housing 121.
  • Filter press The casing filtrate chamber 128 is provided with a filter housing casing filtrate outlet 1210 that communicates with the filter housing casing filtrate chamber 128 at the bottom of the filter press housing 121.
  • Two ends of the inner chamber of the filter press housing 121 are respectively provided with a head filter medium 1218 which is connected to the head by a head pressure receiving column 1219, and a head filtrate chamber is formed between the head filter medium 1218 and the head.
  • the head of the filter press housing 121 is provided with a head filtrate outlet 1222 that communicates with the head filtrate chamber.
  • the press tank filter medium 119, the filter press housing filter medium 1211 and the head filter media 1218 are all filter cloths.
  • the pressure filter is divided into two stages: low pressure ( ⁇ 1.0MPa) filtration and high pressure (1.2 ⁇ 4MPa) filtration.
  • the prime mover of low pressure filtration is a centrifugal pump with an outlet pressure of 1.0MP.
  • the high pressure filtration has a multi-stage centrifugal pump and capsule hydraulic pressure. Accumulator or compressed air, preferably compressed air, because compressed air can also function to blow off the residual liquid in the filter cake.
  • the exhaust port 115 is closed, the slurry tank filtrate outlet 1113 is opened, and the blind plate 1215 is closed.
  • the slurry sent by the low-pressure centrifugal pump is filled with the slurry inlet and the filter press by the slurry inlet 111, and the centrifugal pump outlet is maintained.
  • the filtrate is separated from the solid by the filter tank filter medium 119, the filter press housing filter medium 1211, the head filter medium 1218 and the disc filter element 1213, respectively, from the press tank filtrate outlet 1113, pressure
  • the filter housing filtrate outlet 1210, the head filtrate outlet 1222, and the filter press filtrate port 1216 are vented until the outer filtrate is less, and the low pressure filter is finished.
  • the slurry inlet 111 and the slurry tank filtrate outlet 1113 are closed, the compressed air inlet 116 is opened, the compressed air pressure is gradually increased to a prescribed value, and high pressure filtration is performed.
  • the pressure is the extreme pressure of the high pressure filtration. The value is determined by the nature of the filter cake.
  • the exhaust port 115 is opened, the compressed air in the pressure tank is drained, the blind plate 1215 is unloaded, the filter press auger 129 is started, the filter cake is discharged, the discharge space is vacated, and then the rotary shaft is started.
  • the filter cake between the disc filter elements 1213 and the inner chamber of the filter press is placed in the outer row of the filter press auger 129 by the rotary plate 123 and the fixed scraper 1212, and the agitator 1111 of the press tank is pressed.
  • the slurry tank and the filter cake in the transition tube 13 are discharged into the filter press, and then fall into the outer row of the filter press auger 129, and the whole process of the pressure filtration is completed.
  • the dual heat source sludge dryer used in step d includes a casing 24 of the dryer, and a plurality of semicircular hollow structure heat exchange disks 25 are arranged in the inner cavity of the casing 24.
  • a heat exchange chamber is disposed in the heat exchange disc 25, and the upper and lower ends of the heat exchange disc 25 are respectively connected by a pipeline connecting the heat exchange chambers.
  • the steam inlet manifold 210 and the hydrophobic manifold 28 further include a main shaft 21 horizontally penetrating the housing 24.
  • the main shaft 21 of the inner chamber of the housing 24 is mounted with a plurality of inclined, spirally distributed scrapers 27 on the same side.
  • the top of the casing 24 at one end is provided with a wet sludge inlet 22, and the bottom of the casing 24 at the other end of the main shaft is provided with a dry sludge outlet 26; the casing 24 is also connected to the hot flue gas inlet manifold 211 and is provided with a wet Exhaust gas outlet 23.
  • the biomass pellet molding machine used in the step e includes a feeding chamber 333, a molding die 31 disposed at the bottom of the charging chamber 33, a rotating shaft 34 driven by the power mechanism through the molding die 31, and from the rotating shaft 34.
  • At least two transmission rods 36 extending radially from the outer feeding chamber are rotatably connected to the corresponding number of pressing rollers 35 of each of the transmission rods 36, and the forming mold 31 is on the circumference of the pressing roller 35 revolving with the rotating shaft 34.
  • a concentric arcuate groove 37 is further provided, and each of the arcuate grooves 37 is uniformly arranged with a plurality of forming holes 32 on the circumference of the pressing roller 35 revolving with the rotating shaft 34, and the adjacent forming holes 32 are spaced apart by less than 5 mm, and the interval is The smaller the length of the hole bridge is within the allowable range, the shorter the effective frictional force between the pressing roller 35 and the forming die 31 is, the less energy is consumed; the diameter of the forming hole 32 is smaller than the notch of the curved groove 37.
  • the edge of the pressing roller 35 contacting the forming die 31 is a convex curved surface, the arcuate radius of the convex curved surface is smaller than the arcing radius of the curved groove 37, and the axial direction of the pressing roller 35 The length is smaller than the diameter of the molding hole 32.
  • the forming hole is arranged in the arc groove, the diameter of the forming hole is smaller than the width of the groove of the arc groove, and the axial length of the pressing roller is smaller than the diameter of the forming hole, and when the pressing roller passes through the forming hole, there is a relationship between the two sides and the forming hole Gap, but because it is in the arc groove, the wall of the arc groove plays a role of gathering the dry sludge, so that the dry sludge entering the forming hole is not easy to overflow, and basically does not affect the compaction of the pressed sludge particles.
  • the axial length of the pressure roller is reduced, and the contact area with the dry sludge is reduced, thereby reducing the energy loss caused by the ineffective friction between the sludge; the edge of the pressure roller contacting the molding die is convex
  • the arc surface, the arc radius of the convex arc surface is smaller than the arc radius of the arc groove, so that the line contact between the pressure roller and the arc groove greatly reduces the invalidity between the pressure roller and the molding die at the hole bridge.
  • Friction which greatly reduces the energy loss caused by the ineffective friction between the forming die; the line contact between the press roller and the curved groove, without the sludge being compacted to increase the friction, continuous operation Will not affect the service life of the power mechanism; Low power consumption does not exceed 40 kWh / ton pellets.
  • the internal combustion type biomass pellet drying, carbonization and activation integrated furnace used in step f is as shown in Fig. 7 and Fig. 8, and comprises a vertical furnace body, the top of the furnace body is equipped with a loader 41, and the bottom is equipped with a discharge machine. 427.
  • the furnace body is provided with a drying section, a material sealing section, a carbonization section, an activation section, a steam generating section and a cold from top to bottom.
  • the side wall of the drying section is provided with a wet flue gas outlet pipe 43 communicating with the inner cavity thereof, and an upper pipe box 46 is disposed in the carbonization section, and the wall of the carbonization section is provided with an upper heat connecting the inner cavity thereof.
  • the degassing outlet manifold 48 and the lower pyrolysis gas outlet manifold 412 are provided with a plurality of inspection holes 411 communicating with the inner cavity, and an inner combustion chamber 415 is disposed in the activation section.
  • the internal combustion chamber 415 is provided in the activation section.
  • the lower portion communicates with the lower tube box 413 through the sand sealing groove 414.
  • the lower tube box 413 and the upper tube box 46 communicate with each other through the heat exchange tube 410.
  • the cross section of the heat exchange tube 410 is preferably oblate.
  • the upper header 46 communicates with the riser pipe 45 passing through the seal section, the upper port of the riser pipe 45 extends to the lower portion of the drying section, and a venting bell 428 is installed at the port, the wet flue gas outlet pipe 43
  • the internal port is located at the upper part of the drying section, and a gas collecting bell 42 is installed at the port, and the rising tobacco pipe 45 is also connected with a cold air inlet pipe 44 extending to the outside of the furnace; the internal combustion chamber 415 extends to the outside of the furnace
  • the sleeve 421 is in communication, and the outer port of the sleeve 421 is provided with a communication air inlet manifold 416 and a gas pipe 418.
  • a combustion nozzle 420 the inner combustion chamber 415 is further connected with two observation windows extending to the outside of the furnace and a temperature measuring port 429, respectively measuring the flame temperature of the two burners 420 for adjusting the air excess coefficient;
  • a water cooling chamber 422 having a bottom is a water spray orifice 426 and a top portion connected to the bottom of the internal combustion chamber 415.
  • the outer wall of the cooling section is provided with a cooling coil 424, and the water cooling chamber 422 is connected to the cooling tray through the water cooling loop 423. Tube 424.
  • the material of the upper tube box 46 and the wet flue gas outlet tube 43 is preferably 304 stainless steel, and the material of the lower tube box 413, the sand sealing groove 414, the internal combustion chamber 415 and the heat exchange tube 410 is preferably 310 s stainless steel.
  • the sludge particles are loaded by the hoist and loaded by the loader 41.
  • the loader 41 is preferably a rotary lock air locker, which is clothed by the gas collecting material bell 42 and passes through the drying section and the material sealing section from the top to the bottom by the own weight.
  • the carbonization section, the activation section, the steam generation section, and the cooling section, after a series of physical-chemical changes occur, are discharged from the bottom unloader 427, and the discharger is preferably a rotary locker.
  • the function of the drying section is to remove the water-containing sludge particles, and in the drying section, the sludge particles are directly heated by the mixture gas (temperature ⁇ 200 ° C) rising from the gas discharge bell 428, the mixture gas is
  • the high-temperature flue gas from the heat exchange tube 410 is tempered by the cold air sent from the cold air inlet pipe 44, and after heat and mass exchange with the sludge particles, the gas collecting bell 42 and the wet flue gas are obtained.
  • the outlet pipe 43 is arranged outside.
  • the function of the material seal is to prevent the pyrolysis gas generated in the carbonization section from being strung to the drying section.
  • the carbonization section is the main process section, and its function is to pyrolyze the sludge particles.
  • the sludge particles are heated by the high temperature flue gas in the heat exchange tube 410, and the temperature is continuously increased until the final temperature of carbonization is about 500 °C.
  • the self-produced gas can be sent from the upper pyrolysis gas outlet pipe 48 to the condensing recovery system; when it is desired to produce less material oil and more gas, The self-produced gas is sent from the lower pyrolysis gas outlet manifold 412 to the condensate recovery system.
  • the combustion gas and the combustion air generate high-temperature flue gas in the internal combustion chamber 415 through the combustion nozzle 420 and the sleeve 421 for drying, carbonization, and activation processes, and the warm flue gas enters the heat exchange tube 410 through the lower header 413. Heat is transferred to the sludge particles through the partition walls.
  • the sludge into the furnace can significantly improve the processing strength of the furnace, which is beneficial to the cloth and the cloth, improve the uniformity of the process, reduce the gas resistance in the furnace, and reduce the dust.
  • the internal combustion type makes the structure compact and the furnace is in the furnace. The temperature gradient in the vertical direction is reasonable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种用自产污泥炭进行污水处理的方法,包括以下步骤:a.对原料污水进行过滤,然后送入沉砂池进行沉砂;b.在沉砂后的污水上清液中按不低于污泥破壁变性混合比加入活性炭并混合、沉降得到湿污泥;c.将湿污泥压滤得到滤饼;d将滤饼干燥得到干污泥;e将干污泥造粒得到污泥颗粒;f.将污泥颗粒进行炭化、活化得到污泥炭和热解产物;g用污泥炭代替步骤b所用的活性炭,重复步骤。还公开了一种污泥制炭系统。采用该方法不需要进行热水解即可使污泥破壁变性,降低污泥制炭成本。

Description

用自产污泥炭进行污水处理的方法及污泥制炭系统 技术领域
本发明涉及污水处理领域,具体涉及用自产污泥炭进行污水处理的方法及污泥制炭系统。
背景技术
公知的污水处理方法可分为物理法、生物法和化学法,化学法主要用于重金属含量高的工业废水处理,如:中和、氧化还原、离子交换、电解;很少用于成分复杂的城市污水处理。
按处理程度,城市污水处理分为一级处理、二级处理和三级处理。一级处理主要针对水中悬浮物质,常采用物理方法,经过一级处理后,污水悬浮物去除可达40%左右,附着于悬浮物的有机物也可去除30%左右,BOD5的去除率约25%~30%;二级处理主要去除污水中呈胶体和溶解状态的有机污染物质,通常采用的方法有活性污泥法和生物膜法,经过二级处理后,BOD5去除率可达90%以上;三级处理是在一级处理、二级处理之后,进一步处理难降解的有机物即可导致水体富营养化的氮、磷等可溶性无机物等,以进一步改善水质和达到国家有关排放标准为目的,三级处理使用的方法有生物脱氮除磷、混凝沉淀(澄清、气浮)、活性炭吸附、过滤等。
活性污泥法是目前城市污水二级处理的主导工艺,是对污水中的各种微生物群体进行连续混合和培养,利用活性污泥的生物作用,在好氧、缺氧、厌氧条件下,分解去除污水中的有机污染物,然后使污泥与水分离,大部分污泥回流到作为生物反应器的曝气池,多余部分作为剩余污泥排出活性污泥系统;活性污泥就是生物絮凝体,其上栖息、生活着大量的微生物,它们以溶解型有机物为食料获得能量、不断生长,从而使污水得到净化。
但是活性污泥法的工艺复杂、反应时间长、占地面积和设备投资大、能耗和运行成本高,而且曝气池排放的废气有异味,污染大气环境,对污水水量、水质变化的适应性较差,对冲击负荷的适应性较弱,污泥产量大,成分复杂,既含有大量的有机物,又含有害的重金属、病原微生物等,处理和处置费用高,脱 氮除磷只有20-30%,效果差,所产中水需经三级处理才能达到国家有关排放标准。
活性炭具有良好的吸附性能和化学稳定性,以及耐水浸、耐高温、耐高压等突出优点,能有效吸附废水中的有机物、微生物,达到深度处理的目的;实践证明,活性炭对常规处理方法难以处理的有毒难降解废水中的化合物也具有良好的处理效果。美国环境保护署指出,活性炭吸附是去除挥发性有机化合物的最佳技术之一,粉状活性炭净化技术对水进行处理的历史已逾70年之久,其净化效果已得到众多国家首肯,但是活性炭在吸附饱和后成为废品,用于处理污水的成本过高,经济上不合理。
中国专利ZL201310335118.5公开了“一种污泥制备炭材料的方法”。其核心技术是在高温髙压(160-300℃,1.5-9.5MPa)条件下使含水量为85%左右的污泥进行热水解,目的是破坏污泥的胶体结构及细胞膜壁,提高污泥的脱水性能,再将污泥脱水、干燥后进行炭化。由于污泥含有砂子和固态颗粒,卸料阀的寿命很短,而每只的价格高达2万以上,运行维修费用过高。此外,热水解反应釜属于需监管的压力容器,除了造价高昂外,还存在安全隐患,迄今未能投入商业运营。
发明内容
本发明要解决的技术问题是提供一种活性炭处理污水的污泥制炭系统,可以解决目前活性炭处理污水的成本过高,经济上不合理,导致不具有工业规模应用可行性的问题。
本发明通过以下技术方案实现:
用自产污泥炭进行污水处理的方法,包括以下步骤:
a.对原料污水进行过滤,然后送入沉砂池进行沉砂;
b.在沉砂后的污水上清液中按不低于污泥破壁变性混合比加入活性炭并混合、沉降得到湿污泥;
c.将湿污泥压滤得到滤饼;
d.将滤饼干燥得到干污泥;
e.将干污泥造粒得到污泥颗粒;
f.将污泥颗粒进行炭化、活化得到自产污泥炭和热解产物;
g.用自产污泥炭代替步骤b所用的活性炭,重复步骤a~f。
本发明的进一步方案是,步骤b中污泥破壁变性混合比是指能使污泥破壁变性的活性炭最小质量与污水中干物质质量之比,其值为0.5~1.5。
本发明的进一步方案是,还包括步骤h:从热解产物中回收燃气和生物油。
用于上述污水处理的方法的污泥制炭系统,包括依次设置的圆盘式压滤装置、双热源污泥干燥机、生物质颗粒成型机和内燃式生物质颗粒料干燥、炭化、活化一体化炉。
本发明的进一步方案是,所述圆盘式压滤装置由压浆罐和压滤机组成,所述压浆罐壳体底端与压滤机壳体顶端连通;所述压浆罐壳体内腔设有向压滤机延伸的搅拌器;所述压滤机的回转轴水平贯穿压滤机壳体,所述回转轴为中空结构,其一端连通压滤机滤液接口,位于压滤机壳体内腔的回转轴上同轴安装有多个连通其空腔的圆盘式滤芯,相邻的圆盘式滤芯之间设有与压滤机壳体相对固定的固定刮板,所述压滤机壳体内腔下部设有压滤机绞龙。
本发明的进一步方案是,所述压浆罐壳体内壁通过压浆罐承压柱连接有压浆罐过滤介质,所述压浆罐过滤介质与压浆罐壳体内壁之间形成压浆罐滤液腔,所述压浆罐壳体上设有连通压浆罐滤液腔的压浆罐滤液出口;所述压滤机绞龙与压滤机壳体底部之间设有压滤机壳体过滤介质,所述压滤机壳体过滤介质与压滤机壳体底部之间形成压滤机壳体滤液腔,所述压滤机壳体底部设有连通压滤机壳体滤液腔的压滤机壳体滤液出口;所述压滤机壳体内腔两端分别设有通过封头承压柱连接封头的封头过滤介质,所述封头过滤介质与封头之间形成封头滤液腔,所述压滤机壳体的封头上设有连通封头滤液腔的封头滤液出口。
本发明的进一步方案是,所述压浆罐壳体顶部设有浆料进口、排气口和压缩空气进口,所述压浆罐壳体底端通过过渡管连通压滤机壳体顶端;所述搅拌器的搅拌轴竖直贯穿压浆罐壳体,其位于压浆罐壳体内腔的下部连接有搅拌桨,其插入过渡管中的底端连接有竖直设置的绞龙。
本发明的进一步方案是,所述压滤机绞龙的绞龙轴与回转轴平行的设置于压滤机壳体下部,其一端穿出压滤机壳体,另一端所朝向的压滤机壳体上设有滤饼出口,所述滤饼出口通过盲板封堵。
本发明的进一步方案是,所述双热源污泥干燥机包括干燥机的壳体,所述壳体内腔排列设置有多个换热盘片,所述换热盘片内设有换热腔,所述换热盘 片上、下两端分别通过连通换热腔的管道连接蒸汽进口总管和疏水总管;还包括水平贯穿壳体的主轴,位于壳体内腔的主轴上安装有多个刮板,位于主轴一端的壳体顶部设有湿污泥进口,位于主轴另一端的壳体底部设有干污泥出口;所述壳体上还连通热烟气进口总管,并设有湿废气出口。
本发明的进一步方案是,所述换热盘片为半圆形中空结构。
本发明的进一步方案是,所述多个刮板向同一侧倾斜,呈螺旋状分布安装在主轴上。
本发明的进一步方案是,所述生物质颗粒成型机包括加料室、设置于加料室底部的成型模、贯穿成型模的由动力机构驱动的转轴、从转轴向外沿加料室径向延伸的传动杆、转动连接于传动杆的压辊,所述成型模在压辊随转轴公转的圆周上设有成型孔,所述成型模在压辊随转轴公转的圆周上还设有同心的弧形槽,所述成型孔位于弧形槽中,其直径小于弧形槽的槽口宽度,所述压辊与成型模接触的边部为外凸的弧面,其轴向长度小于成型孔的直径。
本发明的进一步方案是,所述压辊边部外凸弧面的弧形半径小于弧形槽的弧形半径,每条弧形槽中均匀布置有多个成型孔,相邻的成型孔间隔小于5mm。
本发明的进一步方案是,所述转轴上至少连接有两根传动杆,每根传动杆上分别转动连接有数量相等、位置相对应的压辊。
本发明的进一步方案是,所述内燃式生物质颗粒料干燥、炭化、活化一体化炉包括竖式炉体,所述炉体顶部安装有装料器,底部安装有卸料机,所述炉体从上向下依次设有干燥段、料封段、炭化段、活化段、蒸汽发生段和冷却段,所述干燥段的侧壁设有连通其内腔的湿烟气出口管,炭化段中设有上管箱,活化段中设有内燃室,所述内燃室上部连通有下管箱,所述下管箱与上管箱之间通过换热列管连通,所述上管箱通过穿过料封段的上升烟管连通湿烟气出口管,所述内燃室与延伸至炉体外的套筒连通,所述套筒的外端口设有连通燃烧空气进口总管和煤气管的燃烧嘴;所述蒸汽发生段中设有底部为喷水孔板的水冷室,所述冷却段外壁设有冷却盘管,所述水冷室通过水冷环管连通冷却盘管。
本发明的进一步方案是,所述内燃室与下管箱之间通过砂封槽连接;所述水冷室的顶部连接于内燃室的底部;所述内燃室上还连接有延伸至炉体外的观 察窗和温度测量口。
本发明的进一步方案是,所述上升烟管上端口延伸至干燥段下部,且在该端口安装有放气料钟,所述湿烟气出口管内部端口位于干燥段上部,且在该端口安装有集气料钟;所述上升烟管中还连通有延伸至炉体外的冷空气进口管。
本发明与现有技术相比的优点在于:
一、当活性炭或污泥炭的加入量不低于污泥破壁变性混合比时,将成为污泥凝胶聚合物(EPS)的有效破壁变性剂,破坏污泥的胶体结构及细胞膜壁,提高污泥的脱水性能,还不需要进行热水解,降低污泥制炭的成本;
二、活性炭或污泥炭又是胶粘态有机物的助滤剂,能极大提高过滤机的脱水效率,也是污水中固含物的吸附剂,能极大地改善污泥的沉降性能,还是污泥的除臭剂,能显著改善后续处理的环境;
三、除首次处理需使用活性炭,后续处理将使用自产污泥炭代替活性炭,有效降低污水处理成本;
四、圆盘式压滤装置先后采用原浆泵和流体介质加压,能降低对送浆泵的规格要求,也避免送浆泵在高负荷下产生的高故障率,在提高脱水效果的同时,有效降低能耗;
五、双热源污泥干燥机在采用蒸汽或热水的同时,增加热烟气作为第二热源,通过双热源来提高干燥效率,降低能耗;
六、生物质颗粒成型机在不影响颗粒紧实度的前提下通过降低无效摩擦来降低能耗;
七、内燃式生物质颗粒料干燥、炭化、活化一体化炉的热能直接在炉膛中产生,几乎不存在热能损失,采用换热列管外热,减少了热解气的生成量,提高了自产燃气的热值,降低了冷却回收系统的负荷,节约能耗;
八、圆盘式压滤装置的压浆罐、压滤机壳体底部及两端分别设置过滤介质,加快压滤速度,提高工作效率;
九、换热盘片为半圆形,便于导出其内腔的不凝气,确保不影响换热盘片中的温度,提高干燥强度和效率,有利于进一步降低成本;
十、活化剂为冷却段熄灭高温炭时所产生的水蒸汽,不需要外供蒸汽,简便、节能,有效降低目标产物的制造成本低;
十一、具有工艺条件温和、对配套设施要求不苛刻、能耗较低,在常温常压下能破坏污泥的胶体结构及细胞膜壁,工艺简单,反应时间短、占地面积小,设备投资少,能耗和运行成本低,无需外供热源,不消耗絮凝剂,无臭气排放,耐冲击性能强,所产中水能达到国家有关排放标准;
十二、降低污泥制炭每一环节的能耗,降低成本,实现经济上的合理性,在污泥制炭技术方面是一次重大的突破,具有重要的意义,有利于推广。
附图说明
图1为圆盘式压滤装置的结构示意图。
图2为圆盘式滤芯结构示意图。
图3为双热源污泥干燥机的结构示意图。
图4为图3的A向剖视图。
图5为生物质颗粒成型机的结构示意图。
图6为图5的B向视图。
图7为内燃式生物质颗粒料干燥、炭化、活化一体化炉结构示意图。
图8为图7的C向剖视图。
具体实施方式
用自产污泥炭进行污水处理的方法,包括以下步骤:
a.原料污水先采用缝隙宽度为18~22mm的粗格栅进行一次过滤,再采用缝隙宽度为0.8~1.2mm的细格栅进行二次过滤,然后送入沉砂池进行沉砂,以去除泥砂;
b.在沉砂后的污水上清液中按不低于污泥破壁变性混合比加入活性炭并混合、沉降送往二沉池,污泥沉降在二沉池底部,通过污泥泵抽出,为提高脱水效率,可先经脱水机进行机械脱水得到含水量80%左右的湿污泥,污泥破壁变性混合比是指能使污泥破壁变性的活性炭最小质量与污水中干物质质量之比,处理经济发达地区的城市污水时该值为1.5,处理经济欠发达地区的城市污水时该值为1.0,处理印染、电镀等行业几乎不含蛋白质的工业废水时该值为0.5;
c.采用圆盘式压滤装置将湿污泥压滤得到含水量35%左右的滤饼;
d.采用双热源污泥干燥机将滤饼干燥得到含水量25%左右的干污泥;
e.采用生物质颗粒成型机将干污泥造粒得到污泥颗粒,污泥颗粒一部分作为锅炉燃料生产蒸汽或热水,联同烟气作为双热源污泥干燥机的热源,其余部分进行 炭化;
f.采用内燃式生物质颗粒料干燥、炭化、活化一体化炉将污泥颗粒进行炭化、活化得到对干基炭化原料重量40%的自产污泥炭和热解产物,从热解产物中可回收到对干基炭化原料重量20%的燃气和10%的生物油;
g.用一部份自产污泥炭代替步骤b所用的活性炭,重复步骤a~f,富余部分外销,使污水处理成为一个无需政府补贴并且还联产污泥炭、燃气和生物油的盈利行业。
步骤c所用圆盘式压滤装置如图1所示,由压浆罐和压滤机组成,所述压浆罐壳体118底端通过过渡管13连通压滤机壳体121顶端;所述压浆罐壳体118内腔设有向压滤机延伸的搅拌器1111,所述搅拌器1111的搅拌轴114竖直贯穿压浆罐壳体118,其位于压浆罐壳体118内腔的下部连接有搅拌桨,其插入过渡管13中的底端连接有竖直设置的绞龙;所述压滤机的回转轴124水平贯穿压滤机壳体121,所述回转轴124为中空结构,其一端连通压滤机滤液接口1216,位于压滤机壳体121内腔的回转轴124上同轴安装有多个连通其空腔的圆盘式滤芯1213,相邻的圆盘式滤芯1213之间设有与压滤机壳体121相对固定的固定刮板1212,所述压滤机壳体121内腔下部设有压滤机绞龙129。
所述压浆罐壳体118内壁通过压浆罐承压柱1110连接有压浆罐过滤介质119,所述压浆罐过滤介质119与压浆罐壳体118内壁之间形成压浆罐滤液腔,所述压浆罐壳体118上设有连通压浆罐滤液腔的压浆罐滤液出口1113;所述压浆罐壳体118顶部设有浆料进口111、排气口115和压缩空气进口116。
所述圆盘式滤芯1213两侧的回转轴124上还设有回转刮板123。
所述圆盘式滤芯1213如图2所示,包括两块同轴的通过承压柱连接的圆形多孔板,所述两块圆形多孔板的边部之间密封连接,每块圆形多孔板的表面包覆有滤布。
所述压滤机绞龙129的绞龙轴126与回转轴124平行的设置于压滤机壳体121下部,其一端穿出压滤机壳体121,另一端所朝向的压滤机壳体121上设有滤饼出口1214,所述滤饼出口1214通过盲板1215封堵。
所述压滤机绞龙129与压滤机壳体121底部之间设有压滤机壳体过滤介质1211,所述压滤机壳体过滤介质1211与压滤机壳体121底部之间形成压滤机 壳体滤液腔128,所述压滤机壳体121底部设有连通压滤机壳体滤液腔128的压滤机壳体滤液出口1210。
所述压滤机壳体121内腔两端分别设有通过封头承压柱1219连接封头的封头过滤介质1218,所述封头过滤介质1218与封头之间形成封头滤液腔,所述压滤机壳体121的封头上设有连通封头滤液腔的封头滤液出口1222。
所述压浆罐过滤介质119、压滤机壳体过滤介质1211和封头过滤介质1218均为滤布。
压滤分低压(<1.0MPa)过滤和高压(1.2~4MPa)过滤两个阶段,低压过滤的原动力是出口压力为1.0MP的离心泵,高压过滤的原动力有多级髙压离心泵、胶囊液压蓄能器或压缩空气,优选压缩空气,因为压缩空气还可兼备吹脱滤饼中残液的功能。
关闭排气口115,打开压浆罐滤液出口1113,合上盲板1215,由低压离心泵送来的浆料由浆料进口111先后注满压浆罐和压滤机,在维持离心泵出口压力1.0MP的低压下,滤液通过压浆罐过滤介质119、压滤机壳体过滤介质1211、封头过滤介质1218和圆盘式滤芯1213与固体分离,分别由压浆罐滤液出口1113、压滤机壳体滤液出口1210、封头滤液出口1222和压滤机滤液接口1216外排,直到外排的滤液较少时,结束低压压滤。
关闭浆料进口111和压浆罐滤液出口1113,打开压缩空气进口116,逐步提升压缩空气压力至规定值,进行高压过滤,当滤饼出现龟裂时的压力为高压过滤的极值压力,其值由滤饼的性质决定。
高压过滤结束后,打开排气口115,排尽压浆罐中的压缩空气,卸开盲板1215,启动压滤机绞龙129,排出滤饼,腾出卸料空间后,再启动回转轴124,圆盘式滤芯1213之间以及压滤机内腔中的滤饼在回转括板123和固定刮板1212作用下落入压滤机绞龙129中外排,压浆罐的搅拌器1111将压浆罐以及过渡管13中的滤饼下排到压滤机中,进而落入压滤机绞龙129中外排,完成了压滤全过程。
步骤d所用双热源污泥干燥机如图3和图4所示,包括干燥机的壳体24,所述壳体24内腔排列设置有多个半圆形中空结构的换热盘片25,所述换热盘片25内设有换热腔,所述换热盘片25上、下两端分别通过连通换热腔的管道连接 蒸汽进口总管210和疏水总管28;还包括水平贯穿壳体24的主轴21,位于壳体24内腔的主轴21上安装有多个同一侧倾斜、呈螺旋状分布的刮板27,位于主轴21一端的壳体24顶部设有湿污泥进口22,位于主轴另一端的壳体24底部设有干污泥出口26;所述壳体24上还连通热烟气进口总管211,并设有湿废气出口23。
步骤e所用生物质颗粒成型机如图5和图6所示,包括加料室333、设置于加料室33底部的成型模31、贯穿成型模31的由动力机构驱动的转轴34、从转轴34向外沿加料室径向延伸的至少两根传动杆36、转动连接于每根传动杆36的数量相当、位置对应的压辊35,所述成型模31在压辊35随转轴34公转的圆周上还设有同心的弧形槽37,每条弧形槽37中均匀布置有多个位于压辊35随转轴34公转的圆周上的成型孔32,相邻的成型孔32间隔小于5mm,间隔即孔桥,其长度在允许范围内越小,压辊35与成型模31之间的无效摩擦力作用距离越短,消耗的能量越少;所述成型孔32直径小于弧形槽37的槽口宽度,所述压辊35与成型模31接触的边部为外凸的弧面,所述外凸弧面的弧形半径小于弧形槽37的弧形半径,所述压辊35的轴向长度小于成型孔32的直径。
成型孔设置在弧形槽中,成型孔直径小于弧形槽的槽口宽度,压辊轴向长度小于成型孔的直径,当压辊经过成型孔时,其两侧与成型孔之间虽然有间隙,但是由于是在弧形槽中,弧形槽的壁对干污泥起到聚拢的作用,使得进入成型孔的干污泥不容易溢出,基本不影响压制出的污泥颗粒紧实度;压辊的轴向长度减小,缩小了与干污泥的接触面积,从而减小了与污泥之间的无效摩擦力导致的能量损耗;压辊与成型模接触的边部为外凸的弧面,外凸弧面的弧形半径小于弧形槽的弧形半径,使得压辊与弧形槽之间为线接触,大幅度降低压辊在孔桥处与成型模之间的无效摩擦力,从而大幅降低与成型模之间的无效摩擦力导致的能量损耗;压辊与弧形槽之间为线接触,不会出现污泥被压实以致增大摩擦力的情况,连续运行也不会影响动力机构使用寿命;综合能耗低,耗电量不超过40度/吨颗粒料。
步骤f所用内燃式生物质颗粒料干燥、炭化、活化一体化炉如图7和图8所示,包括竖式炉体,所述炉体顶部安装有装料器41,底部安装有卸料机427,所述炉体从上向下依次设有干燥段、料封段、炭化段、活化段、蒸汽发生段和冷 却段,所述干燥段的侧壁设有连通其内腔的湿烟气出口管43,炭化段中设有上管箱46,所述炭化段的壁上设有连通其内腔的上部热解气导出总管48和下部热解气导出总管412,所述炭化段和活化段的壁上设有多个连通内腔的检查孔411,活化段中设有内燃室415,所述内燃室415上部通过砂封槽414连通有下管箱413,所述下管箱413与上管箱46之间通过换热列管410连通,所述换热列管410的截面优选扁圆形,所述上管箱46连通穿过料封段的上升烟管45,所述上升烟管45上端口延伸至干燥段下部,且在该端口安装有放气料钟428,所述湿烟气出口管43内部端口位于干燥段上部,且在该端口安装有集气料钟42,所述上升烟管45中还连通有延伸至炉体外的冷空气进口管44;所述内燃室415与延伸至炉体外的套筒421连通,所述套筒421的外端口设有连通燃烧空气进口总管416和煤气管418的燃烧嘴420,所述内燃室415上还连接有两个延伸至炉体外的观察窗和温度测量口429,分别测量对应两只燃烧嘴420的火焰温度,用以调节空气过剩系数;所述蒸汽发生段中设有底部为喷水孔板426、顶部连接于内燃室415底部的水冷室422,所述冷却段外壁设有冷却盘管424,所述水冷室422通过水冷环管423连通冷却盘管424。
上管箱46和湿烟气出口管43材质优选304不锈钢,下管箱413、砂封槽414、内燃室415和换热列管410材质优选310s不锈钢。
污泥颗粒由提升机提升经装料器41装炉,所述装料器41优选回转式锁气机,经集气料钟42布料,靠自重由上而下依次经干燥段、料封段、炭化段、活化段、蒸汽发生段、冷却段,发生一系列物理-化学变化后,由底部的卸料机427外排,所述卸料机优选回转式锁气机。
其中,干燥段的作用是将含水的污泥颗粒脱除水分,在干燥段,污泥颗粒被从放气料钟428上升的混合气(温度<200℃)直接加热,所述混合气是由换热列管410来的高温烟气与由冷空气进口管44送入的冷空气调温后而成,与污泥颗粒料进行热、质交换后,经集气料钟42、湿烟气出口管43外排。
料封段的作用是防止炭化段产生的热解气上串到干燥段。
炭化段是主要工艺段,其作用是使污泥颗粒进行热解,在这一段内,污泥颗粒被换热列管410内的高温烟气加热,温度不断升高直至炭化终温500℃左右,生成污泥炭、生物油、木醋液和燃气,其中生物油、木醋液和燃气热解产物 由热解气导出总管导出,当想多产生物质油少产燃气时,可将自产燃气从上部热解气导出总管48送往冷凝回收系统;当想少产生物质油多产燃气时,可将自产燃气从下部热解气导出总管412送往冷凝回收系统。
燃烧煤气和燃烧空气经燃烧嘴420、套筒421在内燃室415中产生高温烟气,供干燥、炭化、活化过程所需,髙温烟气经下管箱413进入到换热列管410,通过间壁将热传给污泥颗粒。
将入炉污泥制成颗粒料,能显著提高炉子的处理强度,有利于布料、布气,提高过程的均匀性,降低炉内气体阻力,减少粉尘;采用内燃式,使结构紧凑,炉内垂直方向的温度梯度合理。

Claims (17)

  1. 用自产污泥炭进行污水处理的方法,其特征在于包括以下步骤:
    a.对原料污水进行过滤,然后送入沉砂池进行沉砂;
    b.在沉砂后的污水上清液中按不低于污泥破壁变性混合比加入活性炭并混合、沉降得到湿污泥;
    c.将湿污泥压滤得到滤饼;
    d.将滤饼干燥得到干污泥;
    e.将干污泥造粒得到污泥颗粒;
    f.将污泥颗粒进行炭化、活化得到污泥炭和热解产物;
    g.用污泥炭代替步骤b所用的活性炭,重复步骤a~f。
  2. 如权1所述的用自产污泥炭进行污水处理的方法,其特征在于:步骤b中污泥破壁变性混合比是指能使污泥破壁变性的活性炭最小质量与污水中干物质质量之比,其值为0.5~1.5。
  3. 如权1所述的用自产污泥炭进行污水处理的方法,其特征在于:还包括步骤h:从热解产物中回收燃气和生物油。
  4. 用于权1~3所述污水处理的方法的污泥制炭系统,其特征在于:包括依次设置的圆盘式压滤装置、双热源污泥干燥机、生物质颗粒成型机和内燃式生物质颗粒料干燥、炭化、活化一体化炉。
  5. 如权4所述的污泥制炭系统,其特征在于:所述圆盘式压滤装置由压浆罐和压滤机组成,所述压浆罐壳体(118)底端与压滤机壳体(121)顶端连通;所述压浆罐壳体(118)内腔设有向压滤机延伸的搅拌器(1111);所述压滤机的回转轴(124)水平贯穿压滤机壳体(121),所述回转轴(124)为中空结构,其一端连通压滤机滤液接口(1216),位于压滤机壳体(121)内腔的回转轴(124)上同轴安装有多个连通其空腔的圆盘式滤芯(1213),相邻的圆盘式滤芯(1213)之间设有与压滤机壳体(121)相对固定的固定刮板(1212),所述压滤机壳体(121)内腔下部设有压滤机绞龙(129)。
  6. 如权5所述的污泥制炭系统,其特征在于:所述压浆罐壳体(118)内壁通过压浆罐承压柱(1110)连接有压浆罐过滤介质(119),所述压浆罐过滤介质(119)与压浆罐壳体(118)内壁之间形成压浆罐滤液腔,所述压浆罐壳体(118)上设 有连通压浆罐滤液腔的压浆罐滤液出口(1113);所述压滤机绞龙(129)与压滤机壳体(121)底部之间设有压滤机壳体过滤介质(1211),所述压滤机壳体过滤介质(1211)与压滤机壳体(121)底部之间形成压滤机壳体滤液腔(128),所述压滤机壳体(121)底部设有连通压滤机壳体滤液腔(128)的压滤机壳体滤液出口(1210);所述压滤机壳体(121)内腔两端分别设有通过封头承压柱(1219)连接封头的封头过滤介质(1218),所述封头过滤介质(1218)与封头之间形成封头滤液腔,所述压滤机壳体(121)的封头上设有连通封头滤液腔的封头滤液出口(1222)。
  7. 如权5所述的污泥制炭系统,其特征在于:所述压浆罐壳体(118)顶部设有浆料进口(111)、排气口(115)和压缩空气进口(116),所述压浆罐壳体(118)底端通过过渡管(13)连通压滤机壳体(121)顶端;所述搅拌器(1111)的搅拌轴(114)竖直贯穿压浆罐壳体(118),其位于压浆罐壳体(118)内腔的下部连接有搅拌桨,其插入过渡管(13)中的底端连接有竖直设置的绞龙。
  8. 如权5所述的污泥制炭系统,其特征在于:所述压滤机绞龙(129)的绞龙轴(126)与回转轴(124)平行的设置于压滤机壳体(121)下部,其一端穿出压滤机壳体(121),另一端所朝向的压滤机壳体(121)上设有滤饼出口(1214),所述滤饼出口(1214)通过盲板(1215)封堵。
  9. 如权4所述的污泥制炭系统,其特征在于:所述双热源污泥干燥机包括干燥机的壳体(24),所述壳体(24)内腔排列设置有多个换热盘片(25),所述换热盘片(25)内设有换热腔,所述换热盘片(25)上、下两端分别通过连通换热腔的管道连接蒸汽进口总管(210)和疏水总管(28);还包括水平贯穿壳体(24)的主轴(21),位于壳体(24)内腔的主轴(21)上安装有多个刮板(27),位于主轴(21)一端的壳体(24)顶部设有湿污泥进口(22),位于主轴另一端的壳体(24)底部设有干污泥出口(26);所述壳体(24)上还连通热烟气进口总管(211),并设有湿废气出口(23)。
  10. 如权9所述的污泥制炭系统,其特征在于:所述换热盘片(25)为半圆形中空结构。
  11. 如权9所述的用自产污泥炭进行污水处理的方法,其特征在于:所述多个刮板(27)向同一侧倾斜,呈螺旋状分布安装在主轴(21)上。
  12. 如权4所述的污泥制炭系统,其特征在于:所述生物质颗粒成型机包括加料室(33)、设置于加料室(33)底部的成型模(31)、贯穿成型模(31)的由动力机构驱动的转轴(34)、从转轴(34)向外沿加料室径向延伸的传动杆(36)、转动连接于传动杆(36)的压辊(35),所述成型模(31)在压辊(35)随转轴(34)公转的圆周上设有成型孔(32),所述成型模(31)在压辊(35)随转轴(34)公转的圆周上还设有同心的弧形槽(37),所述成型孔(32)位于弧形槽(37)中,其直径小于弧形槽(37)的槽口宽度,所述压辊(35)与成型模(31)接触的边部为外凸的弧面,其轴向长度小于成型孔(32)的直径。
  13. 如权12所述的污泥制炭系统,其特征在于:所述压辊(35)边部外凸弧面的弧形半径小于弧形槽(37)的弧形半径,每条弧形槽(37)中均匀布置有多个成型孔(32),相邻的成型孔(32)间隔小于5mm。
  14. 如权12所述的污泥制炭系统,其特征在于:所述转轴(34)上至少连接有两根传动杆(36),每根传动杆(36)上分别转动连接有数量相等、位置相对应的压辊(35)。
  15. 如权4所述的污泥制炭系统,其特征在于:所述内燃式生物质颗粒料干燥、炭化、活化一体化炉包括竖式炉体,所述炉体顶部安装有装料器(41),底部安装有卸料机(427),所述炉体从上向下依次设有干燥段、料封段、炭化段、活化段、蒸汽发生段和冷却段,所述干燥段的侧壁设有连通其内腔的湿烟气出口管(43),炭化段中设有上管箱(46),活化段中设有内燃室(415),所述内燃室(415)上部连通有下管箱(413),所述下管箱(413)与上管箱(46)之间通过换热列管(410)连通,所述上管箱(46)通过穿过料封段的上升烟管(45)连通湿烟气出口管(43),所述内燃室(415)与延伸至炉体外的套筒(421)连通,所述套筒(421)的外端口设有连通燃烧空气进口总管(416)和煤气管(418)的燃烧嘴(420);所述蒸汽发生段中设有底部为喷水孔板(426)的水冷室(422),所述冷却段外壁设有冷却盘管(424),所述水冷室(422)通过水冷环管(423)连通冷却盘管(424)。
  16. 如权15所述的污泥制炭系统,其特征在于:所述内燃室(415)与下管箱(413)之间通过砂封槽(414)连接;所述水冷室(422)的顶部连接于内燃室(415)的底部;所述内燃室(415)上还连接有延伸至炉体外的观察窗和温度测量口 (428)。
  17. 如权15所述的污泥制炭系统,其特征在于:所述上升烟管(45)上端口延伸至干燥段下部,且在该端口安装有放气料钟(428),所述湿烟气出口管(43)内部端口位于干燥段上部,且在该端口安装有集气料钟(42);所述上升烟管(45)中还连通有延伸至炉体外的冷空气进口管(44)。
PCT/CN2015/078012 2015-04-30 2015-04-30 用自产污泥炭进行污水处理的方法及污泥制炭系统 WO2016172935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078012 WO2016172935A1 (zh) 2015-04-30 2015-04-30 用自产污泥炭进行污水处理的方法及污泥制炭系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078012 WO2016172935A1 (zh) 2015-04-30 2015-04-30 用自产污泥炭进行污水处理的方法及污泥制炭系统

Publications (1)

Publication Number Publication Date
WO2016172935A1 true WO2016172935A1 (zh) 2016-11-03

Family

ID=57198006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078012 WO2016172935A1 (zh) 2015-04-30 2015-04-30 用自产污泥炭进行污水处理的方法及污泥制炭系统

Country Status (1)

Country Link
WO (1) WO2016172935A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056012A (zh) * 2017-05-18 2017-08-18 中冶华天工程技术有限公司 一种铸坯缓冷过程干燥酸洗污泥的方法及系统
CN107311423A (zh) * 2017-08-29 2017-11-03 湖南省环境保护科学研究院 污泥干化炭化装置以及污泥处理系统
CN107699259A (zh) * 2017-10-30 2018-02-16 青岛裕盛源橡胶有限公司 生活垃圾污泥炭化后制备生物质能源颗粒的热裂解设备
CN107930201A (zh) * 2017-12-29 2018-04-20 天津远新环保科技有限公司 一种强制卸料的压滤机
CN108528470A (zh) * 2018-04-03 2018-09-14 芜湖超科机电设备有限公司 一种城市轨道车辆专用逃生窗户装置
CN108862456A (zh) * 2018-07-12 2018-11-23 宋海英 一种生活污水处理设备
WO2018223320A1 (zh) * 2017-06-07 2018-12-13 东莞市裕证工业设备有限公司 连续式炭化系统
CN109020145A (zh) * 2018-09-03 2018-12-18 嘉兴德达资源循环利用有限公司 一种含磷污泥的处理装置
CN112520910A (zh) * 2021-02-08 2021-03-19 东营同博石油电子仪器有限公司 一种化工用污水处理设备
CN112852456A (zh) * 2021-02-26 2021-05-28 夏雨 一种废铁炼化用的焦化炉
CN112979111A (zh) * 2021-01-30 2021-06-18 杭州国泰环保科技股份有限公司 一种污泥低温干化用污泥成型机
CN113754131A (zh) * 2021-10-09 2021-12-07 袁颖敏 一种智慧农业用废水循环利用装置
CN113880386A (zh) * 2021-10-09 2022-01-04 南京大学 一种基于复合胞外聚合物的污泥生物质炭制备方法
CN114133126A (zh) * 2021-12-17 2022-03-04 天津壹新环保工程有限公司 一种污泥炭化处理系统及方法
CN114368897A (zh) * 2022-01-05 2022-04-19 天津滨港电镀企业管理有限公司 一种电镀园区高推动力的污泥干化装置
CN114593572A (zh) * 2022-05-10 2022-06-07 山东海普欧环保设备科技有限公司 一种污泥制造活性炭成品快速干燥装置
CN114772891A (zh) * 2022-06-21 2022-07-22 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种高效污泥碳化单元处理系统
CN114871441A (zh) * 2022-05-24 2022-08-09 天津宝兴威科技股份有限公司 一种新型纳米银线的合成方法和装置
CN114890652A (zh) * 2022-06-09 2022-08-12 华亭煤业集团有限责任公司 一种用于煤矿井下掘进作业的废水循环利用装置
CN114890647A (zh) * 2022-05-06 2022-08-12 常熟市标准件厂有限公司 一种螺栓镀锌污泥的快速烘干方法及装置
CN115282926A (zh) * 2022-08-02 2022-11-04 湖南中森环境科技有限公司 一种用于矿井酸性废水治理的碱性缓释材料制备装置
WO2023123167A1 (zh) * 2021-12-30 2023-07-06 天津大学 电动法联合热解法制备污泥炭肥及方法
CN116675370A (zh) * 2023-06-02 2023-09-01 凌志环保股份有限公司 一种农村简易化污水处理装置及其污水处理方法
CN117298744A (zh) * 2023-11-29 2023-12-29 泰州市江洲数控机床制造有限公司 一种砂线切割机用砂浆回流装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2279949Y (zh) * 1996-07-10 1998-04-29 中南工业大学 动态过滤机
JP2001322808A (ja) * 2000-05-10 2001-11-20 Kawasaki City 汚泥からの活性炭製造方法
JP3638134B2 (ja) * 2001-11-22 2005-04-13 株式会社石垣 炭化汚泥を利用した脱水方法並びにその脱水装置
CN202152278U (zh) * 2011-06-29 2012-02-29 张立军 一种新型一体活化炉
CN102616922A (zh) * 2012-04-23 2012-08-01 重庆康达环保产业(集团)有限公司 一种可再生循环利用粉末活性炭处理难生物降解废水的pact新工艺
CN203159415U (zh) * 2013-04-02 2013-08-28 湖北博实城乡环境能源工程有限公司 污泥高温碳化系统
CN103396815A (zh) * 2013-08-05 2013-11-20 中国科学院城市环境研究所 一种污泥制备炭材料的方法
CN103691170A (zh) * 2013-12-29 2014-04-02 无锡科技职业学院 一种锥型弧叶式动态压滤机
CN104818036A (zh) * 2015-04-30 2015-08-05 吴植仁 用自产污泥炭进行污水处理的方法及污泥制炭系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2279949Y (zh) * 1996-07-10 1998-04-29 中南工业大学 动态过滤机
JP2001322808A (ja) * 2000-05-10 2001-11-20 Kawasaki City 汚泥からの活性炭製造方法
JP3638134B2 (ja) * 2001-11-22 2005-04-13 株式会社石垣 炭化汚泥を利用した脱水方法並びにその脱水装置
CN202152278U (zh) * 2011-06-29 2012-02-29 张立军 一种新型一体活化炉
CN102616922A (zh) * 2012-04-23 2012-08-01 重庆康达环保产业(集团)有限公司 一种可再生循环利用粉末活性炭处理难生物降解废水的pact新工艺
CN203159415U (zh) * 2013-04-02 2013-08-28 湖北博实城乡环境能源工程有限公司 污泥高温碳化系统
CN103396815A (zh) * 2013-08-05 2013-11-20 中国科学院城市环境研究所 一种污泥制备炭材料的方法
CN103691170A (zh) * 2013-12-29 2014-04-02 无锡科技职业学院 一种锥型弧叶式动态压滤机
CN104818036A (zh) * 2015-04-30 2015-08-05 吴植仁 用自产污泥炭进行污水处理的方法及污泥制炭系统

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056012A (zh) * 2017-05-18 2017-08-18 中冶华天工程技术有限公司 一种铸坯缓冷过程干燥酸洗污泥的方法及系统
WO2018223320A1 (zh) * 2017-06-07 2018-12-13 东莞市裕证工业设备有限公司 连续式炭化系统
CN107311423A (zh) * 2017-08-29 2017-11-03 湖南省环境保护科学研究院 污泥干化炭化装置以及污泥处理系统
CN107699259A (zh) * 2017-10-30 2018-02-16 青岛裕盛源橡胶有限公司 生活垃圾污泥炭化后制备生物质能源颗粒的热裂解设备
CN107699259B (zh) * 2017-10-30 2023-11-07 青岛裕盛源橡胶有限公司 生活垃圾污泥炭化后制备生物质能源颗粒的热裂解设备
CN107930201A (zh) * 2017-12-29 2018-04-20 天津远新环保科技有限公司 一种强制卸料的压滤机
CN108528470A (zh) * 2018-04-03 2018-09-14 芜湖超科机电设备有限公司 一种城市轨道车辆专用逃生窗户装置
CN108862456A (zh) * 2018-07-12 2018-11-23 宋海英 一种生活污水处理设备
CN108862456B (zh) * 2018-07-12 2021-06-29 孟涛 一种生活污水处理设备
CN109020145A (zh) * 2018-09-03 2018-12-18 嘉兴德达资源循环利用有限公司 一种含磷污泥的处理装置
CN109020145B (zh) * 2018-09-03 2024-05-14 嘉兴德达资源循环利用有限公司 一种含磷污泥的处理装置
CN112979111A (zh) * 2021-01-30 2021-06-18 杭州国泰环保科技股份有限公司 一种污泥低温干化用污泥成型机
CN112979111B (zh) * 2021-01-30 2022-11-08 杭州国泰环保科技股份有限公司 一种污泥低温干化用污泥成型机
CN112520910A (zh) * 2021-02-08 2021-03-19 东营同博石油电子仪器有限公司 一种化工用污水处理设备
CN112852456A (zh) * 2021-02-26 2021-05-28 夏雨 一种废铁炼化用的焦化炉
CN113880386A (zh) * 2021-10-09 2022-01-04 南京大学 一种基于复合胞外聚合物的污泥生物质炭制备方法
CN113880386B (zh) * 2021-10-09 2022-07-12 南京大学 一种基于复合胞外聚合物的污泥生物质炭制备方法
CN113754131A (zh) * 2021-10-09 2021-12-07 袁颖敏 一种智慧农业用废水循环利用装置
CN114133126A (zh) * 2021-12-17 2022-03-04 天津壹新环保工程有限公司 一种污泥炭化处理系统及方法
WO2023123167A1 (zh) * 2021-12-30 2023-07-06 天津大学 电动法联合热解法制备污泥炭肥及方法
CN114368897A (zh) * 2022-01-05 2022-04-19 天津滨港电镀企业管理有限公司 一种电镀园区高推动力的污泥干化装置
CN114890647A (zh) * 2022-05-06 2022-08-12 常熟市标准件厂有限公司 一种螺栓镀锌污泥的快速烘干方法及装置
CN114890647B (zh) * 2022-05-06 2023-07-25 常熟市标准件厂有限公司 一种螺栓镀锌污泥的快速烘干方法及装置
CN114593572A (zh) * 2022-05-10 2022-06-07 山东海普欧环保设备科技有限公司 一种污泥制造活性炭成品快速干燥装置
CN114871441A (zh) * 2022-05-24 2022-08-09 天津宝兴威科技股份有限公司 一种新型纳米银线的合成方法和装置
CN114871441B (zh) * 2022-05-24 2024-04-19 天津宝兴威科技股份有限公司 一种新型纳米银线的合成方法和装置
CN114890652B (zh) * 2022-06-09 2023-04-07 华亭煤业集团有限责任公司 一种用于煤矿井下掘进作业的废水循环利用装置
CN114890652A (zh) * 2022-06-09 2022-08-12 华亭煤业集团有限责任公司 一种用于煤矿井下掘进作业的废水循环利用装置
CN114772891B (zh) * 2022-06-21 2022-09-09 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种高效污泥碳化单元处理系统
CN114772891A (zh) * 2022-06-21 2022-07-22 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种高效污泥碳化单元处理系统
CN115282926A (zh) * 2022-08-02 2022-11-04 湖南中森环境科技有限公司 一种用于矿井酸性废水治理的碱性缓释材料制备装置
CN115282926B (zh) * 2022-08-02 2023-07-25 湖南中森环境科技有限公司 一种用于矿井酸性废水治理的碱性缓释材料制备装置
CN116675370A (zh) * 2023-06-02 2023-09-01 凌志环保股份有限公司 一种农村简易化污水处理装置及其污水处理方法
CN117298744A (zh) * 2023-11-29 2023-12-29 泰州市江洲数控机床制造有限公司 一种砂线切割机用砂浆回流装置
CN117298744B (zh) * 2023-11-29 2024-01-26 泰州市江洲数控机床制造有限公司 一种砂线切割机用砂浆回流装置

Similar Documents

Publication Publication Date Title
WO2016172935A1 (zh) 用自产污泥炭进行污水处理的方法及污泥制炭系统
CN104818036B (zh) 用自产污泥炭进行污水处理的方法及污泥制炭系统
CN105859105B (zh) 一种污泥处理及资源化方法
US7678738B2 (en) Method for treating saturated activated coke
CN101391766A (zh) 制浆造纸厂污泥制备活性炭的方法
CN103396815A (zh) 一种污泥制备炭材料的方法
CN107188386A (zh) 一种利用污水厂剩余污泥制备生物炭的方法
CN102660347B (zh) 高钠煤除钠工艺及其系统
CN108947200A (zh) 一种污泥调理改性深度脱水及干化炭化处理工艺
CN105217915A (zh) 一种污泥废弃物能源综合利用工艺及其工艺系统
CN106675589A (zh) 一种污泥还原气化制生物炭的废气及余热回收工艺
CN111847820A (zh) 一种基于水热法的污泥脱水方法
CN203295333U (zh) 外热式污泥炭化窑
CN109337727A (zh) 基于碳基骨架辅助热水解的污泥衍生燃料制备方法及产品
CN110330988A (zh) 一种全粒径煤炭裂解分质利用生产工艺
CN109626784A (zh) 一种防堵塞的污泥连续热水解系统
CN108911466A (zh) 一种工业污泥水热反应的高效脱水处理系统及方法
CN209098477U (zh) 一种印染危废污泥处理系统
JP3577223B2 (ja) 汚泥による活性炭製造方法
CN207632686U (zh) 一种高效节能污泥资源化利用系统
CN207659255U (zh) 高盐废水一体化处理装置
CN202346983U (zh) 一种生物质气化焦油的干式过滤和微波再生回收装置
CN215250360U (zh) 污泥组合干化处理系统
CN213388312U (zh) 一种综合污泥处理系统
WO2008022562A1 (fr) Procédé de régénération destiné à un matériau filtrant et adsorbant utilisé dans le traitement des eaux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890315

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/06/2018)