WO2016171589A1 - Способ получения сплава алюминий -скандий и реактор для осуществления способа - Google Patents

Способ получения сплава алюминий -скандий и реактор для осуществления способа Download PDF

Info

Publication number
WO2016171589A1
WO2016171589A1 PCT/RU2016/000226 RU2016000226W WO2016171589A1 WO 2016171589 A1 WO2016171589 A1 WO 2016171589A1 RU 2016000226 W RU2016000226 W RU 2016000226W WO 2016171589 A1 WO2016171589 A1 WO 2016171589A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
aluminum
alloy
oxide
mixture
Prior art date
Application number
PCT/RU2016/000226
Other languages
English (en)
French (fr)
Inventor
Виктор Христьянович МАНН
Виталий Валерьевич ПИНГИН
Дмитрий Анатольевич ВИНОГРАДОВ
Денис Сергеевич ХРАМОВ
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2015115260/02A external-priority patent/RU2593246C1/ru
Priority claimed from RU2015153433A external-priority patent/RU2621207C1/ru
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to BR112017022497-6A priority Critical patent/BR112017022497A2/pt
Priority to EP16783484.5A priority patent/EP3287548B8/en
Priority to CN201680022769.0A priority patent/CN107532317B/zh
Priority to US15/566,131 priority patent/US11186897B2/en
Priority to ES16783484T priority patent/ES2774075T3/es
Priority to AU2016253069A priority patent/AU2016253069A1/en
Priority to CA2983108A priority patent/CA2983108C/en
Publication of WO2016171589A1 publication Critical patent/WO2016171589A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/02Obtaining aluminium with reducing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/18Electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of metallurgy of non-ferrous metals, and can be used for the production of aluminum-scandium alloy from 0.41 to 4 May. % scandium in the conditions of industrial production of aluminum.
  • Aluminum scandium alloys are known to be widely demanded in the automotive, aerospace, and aerospace industries, while the demand for such alloys is growing every year.
  • a known method of producing aluminum-scandium ligatures including the preparation of two portions of aluminum (for example, in vacuum furnaces), in one of which is introduced a mixture containing scandium fluoride, magnesium fluoride and potassium chloride. After that, mixing both portions of the metal with the simultaneous supply of inert gas (Application RU N ° 2009134930, ⁇ 22 ⁇ 1/03, publ. 03/27/2011 1).
  • the disadvantages of this method include its technological complexity, the need for portioning aluminum, the use of vacuum or inert atmosphere.
  • a known method of producing an aluminum alloy containing 0.20 - 0.50 may. % scandium during electrolysis of the NaF-AlF 3 -Al 2 0 3 -LiF melt with the addition of scandium oxide (Proc. 3 rd International Symposium on High-Temperature Metallurgical Processing, 2012, pp. 243-250).
  • scandium oxide Proc. 3 rd International Symposium on High-Temperature Metallurgical Processing, 2012, pp. 243-250.
  • aluminum and scandium are cathodically deposited on aluminum at a cathodic current density of up to 1 A / cm and a temperature of 950 ° C.
  • the disadvantages of this method include the use of expensive salt - lithium fluoride in the amount of 5% of the total mass of the melt.
  • an aluminum-scandium alloy including melting and holding in contact with liquid aluminum a mixture containing potassium chloride, sodium fluorides, aluminum chiolite - (Na 5 [Al 3 Fi 4 ]) and scandium oxide (Degtyar V. A., Polyak EN, “Reduction of scandium oxide from KCl-NaF-AlF 3 -Sc 2 0 3 melt” Russian Scientific and Technical Conference “New Materials and Technologies”, “Metallic Materials, Methods of Their Processing” / Abstract. - M: 1994, p. 102).
  • the disadvantages of this method include the relatively high process temperature (about 1000 ° C), the consumption of additional electricity for cathodic deposition of scandium, the relatively large losses of the alloying component, the inability to organize a continuous process for obtaining the ligature, since During the aluminothermic reaction, alumina will accumulate in the melt, trashing the melt and aluminum.
  • the prior art device for producing an aluminum-strontium alloy containing a bath with a hearth, anode, cathode and
  • the cathode is made of liquid aluminum
  • the cathode current supply has a coating of material that does not interact with the ligature
  • the anode is made with channels for the output of anode gases
  • the bathtub at the bottom is made with a hole for drinking ligatures (patent RU N ° 2010893, ⁇ 25 ⁇ / 36, publ. 04/15/1994).
  • This device is selected by the authors as a prototype.
  • a disadvantage of the known device is the impossibility of obtaining an aluminum-scandium alloy in it and the complexity of the design.
  • An object of the present invention is to provide a continuous, waste-free process for producing an aluminum-scandium alloy, providing high purity of the final product with a high level of scandium extraction, and also to provide a device that will allow for efficient, continuous, waste-free production.
  • the present invention provides a method for producing an aluminum-scandium alloy from 0.41 to 4 May. % scandium, which includes the following stages: a) aluminum is melted and a mixture of salts containing sodium, potassium and aluminum fluorides;
  • the claimed method provides for the regeneration of an oxide-halide melt, including a mixture of fluorides and scandium oxide, by electrolytic decomposition of aluminum oxide formed during the reaction.
  • the proposed method ensures the achievement of a technical result, which consists in lowering the temperature and energy consumption of the whole process while at the same time ensuring the possibility of obtaining an alloy of high purity with a given composition and achieving a high level of scandium extraction.
  • the scandium content in the aluminum-scandium alloy obtained by the proposed method can be from 0.41 to 4% by weight, scandium, preferably from 0.5 to 3.5% by weight, scandium, preferably from 1 to 3% by weight, scandium, preferably from 1.5 to 2.5% of the mass, scandium.
  • the concentration of scandium oxide in the molten mixture of salts is maintained from 1 to 8 mass. %, preferably from 2 to 7 mass. %, preferably from 3 to 6 mass. %, preferably from 4 to 5 mass. %
  • the prepared molten mixture of salts can be used in at least four cycles of obtaining aluminum-scandium alloy.
  • the content of sodium fluoride in the molten mixture of salts may be May 1 - 15. %
  • the alloy production process is preferably carried out at a temperature of 800-950 ° C, and the cryolite ratio (KO) of the molten salt mixture, defined as the molar ratio of the sum of potassium fluorides (KF) and sodium (NaF) to aluminum fluoride (A1F 3 ), is preferably maintained 1, 3 - 1.7.
  • the electrolytic decomposition of alumina is carried out at a maintained temperature of 800 - 950 ° C, anodic and cathodic current density of 0.3-2 A / cm and 0.4-1, 8 A / cm, respectively.
  • the duration of the process of obtaining an aluminum-scandium alloy can vary from 0.5 to 5 hours.
  • the present invention also provides a reactor for producing an aluminum-scandium alloy by the aforementioned method, which comprises a housing lined inside with a refractory material, with a lid, at least one anode, a cathode and a current lead, which is a graphite block with a bloom installed in it, a graphite crucible is installed on the graphite block, on the outside of which there are heating elements, and a dispenser for continuous supply of scandium oxide and an opening for loading aluminum and Ruzki alloy.
  • the reactor can be represented by special cases of its structural implementation:
  • the reactor may contain a drain hole for removal of the melt located in the lower part of the housing.
  • the reactor vessel is made of steel, and the refractory material for lining the steel vessel is a refractory brick.
  • FIG. 1 is a schematic view of the inventive reactor for producing an aluminum-scandium alloy.
  • FIG. 1 A general view of the reactor for producing an aluminum-scandium alloy is shown in Figure 1.
  • the device consists of a steel body 1 lined inside with refractory material 2, a graphite crucible 3 mounted on a graphite hearth block 4, with blues 5 installed in it, which serves as a current lead to cathode metal 6.
  • a graphite anode 8 is installed through the cover 7, and a hole 9 is provided in the cover 7 for loading aluminum and unloading the alloy.
  • the reactor is additionally equipped with heating elements 10.
  • the reactor contains a dispenser 1 1.
  • the reactor contains an emergency drain hole 12 for safe removal of the melt in case of breakage of the crucible 3.
  • the essence of the proposed method is as follows. Upon contact of an oxide-halide melt containing potassium, sodium and aluminum fluorides, as well as scandium oxide in an amount of 1-8 wt.%, Aluminothermic reduction of scandium oxide occurs, resulting in the formation of an aluminum-scandium alloy with a scandium content of 0.41-4 wt. .%. At the same time, a decrease in the concentration of scandium oxide and an increase in the concentration of alumina (alumina) occur in the melt. b The limitation of the content of scandium oxide in the oxide-halide melt is due to the fact that the solubility of Sc 2 0 3 in molten KF-NaF-AlF 3 mixtures has values close to 8 mass. %
  • the total chemical (aluminothermic) reaction of the process has the following form:
  • the amount of scandium formed in aluminum is determined by the amount of scandium oxide (Sc 2 0 3 ) in the oxide-halide melt, the contact time of the aluminum melt with the oxide-halide melt, and the reaction rate constant (1).
  • an aluminum-scandium alloy To organize a continuous process for producing an aluminum-scandium alloy, part of the obtained aluminum-scandium alloy is periodically unloaded, then aluminum is added to the melt, in particular, a portion of molten aluminum equal to the mass of the unloaded aluminum-scandium alloy is poured.
  • scandium oxide is continuously fed, maintaining the concentration of scandium oxide in the oxide – halide melt at a level of 1–8%, and the aluminum oxide formed in the melt is subjected to electrolytic decomposition (electrolysis). The electrolysis is carried out at a temperature of 800 - 950 ° C, anodic and cathodic current density of 0.3-2 A / cm 2 and 0.4-1.8 A / cm 2, respectively.
  • the duration of the process for producing an aluminum-scandium alloy (from the beginning of the melting of loaded pure aluminum and a mixture of salts to the discharge of the obtained alloy) can vary from 0.5 to 5 hours, depending on the requirements for the content of scandium in the obtained aluminum-scandium alloy.
  • the required amperage in the reactor is determined based on the amount of alumina formed as a result of the aluminothermic reaction.
  • the amount of alumina formed in turn depends from the selected feed rate of scandium oxide and from the discharge speed of the resulting alloy.
  • A1 2 0 3 + 2C 2A1 + CO + C0 2 (2)
  • the method allows to obtain an aluminum-scandium alloy at low temperatures (800-950 ° C), while the alloy can be repeatedly obtained from the same melt periodically replacing it aluminum, which leads to a simplification of technology, reducing energy costs to maintain the process temperature.
  • the decrease in process temperature in the present method also leads to an increase in the degree of extraction of scandium.
  • the proposed method can be implemented in the proposed reactor as follows.
  • Aluminum and a pre-prepared salt mixture containing potassium fluorides, sodium and aluminum fluorides are loaded into the graphite crucible 3 of the reactor, the heating elements 10 are turned on and the aluminum and the salt mixture are melted, due to the difference in the densities of the liquid aluminum and the molten salt mixture, aluminum is collected at the bottom of the crucible, when the melt temperature reaches 800 - 950 ° ⁇ , the dispenser 1 1 is turned on, with the help of which scandium oxide is automatically continuously fed into the melt, at the same time an electric current is passed for regeneration of oxy of the halide melt by electrolytic decomposition of aluminum oxide formed during the aluminothermic reaction.
  • a portion of the obtained aluminum-scandium alloy is removed from the crucible 3 through an opening for loading aluminum and discharging the alloy 9, then aluminum, preferably molten aluminum, is added, and continue to conduct the alloy production process by continuously supplying scandium oxide and passing an electric current.
  • the current was turned off and part of the obtained alloy was extracted from the crucible of the reactor.
  • the resulting alloy was analyzed for scandium and impurities.
  • the resulting alloy contained May 2.1. % scandium, the total content of impurities did not exceed 0.18 wt.%.
  • the current was turned off and part of the obtained aluminum-scandium alloy was extracted from the crucible of the reactor.
  • the resulting alloy was analyzed for scandium and impurities.
  • the resulting alloy contained 3 wt.% Scandium, the total impurity content did not exceed 0.21 wt.%.
  • pure aluminum was charged into the crucible of the reactor, the melt temperature was brought to a temperature of 810 ° C and the production process was continued, supplying scandium oxide and maintaining its concentration in the molten salt at a level of 6 wt.% And passing an electric current to decompose the resulting aluminum oxide (alumina).
  • the current was turned off and part of the obtained aluminum-scandium alloy was extracted from the crucible of the reactor.
  • the resulting alloy was analyzed for scandium and impurities. Yu
  • the resulting alloy contained 1, 13 wt.% Scandium, the total content of impurities did not exceed 0.17 wt.%.
  • pure aluminum was loaded into the crucible of the reactor, the melt temperature was brought to a temperature of 880 ° C, and the production process was continued by feeding scandium oxide and maintaining its concentration in the molten salt at 2.8 May. % and passing an electric current to decompose the resulting aluminum oxide (alumina).
  • the concentration of scandium oxide in the melt was maintained at the level of 5 wt.% (Calculated on the total weight of scandium oxide and molten salts). Electrolysis was carried out at the anodic and cathodic current densities, which were 1.8 A / cm 2 and 1.6 A / cm 2, respectively. The electrolysis time was 5 hours. The temperature in the reactor was additionally maintained using heating elements.
  • the resulting alloy was analyzed for scandium and impurities.
  • the resulting alloy contained 2 wt.% Scandium; the total impurity content did not exceed May 0.21. %
  • the concentration of scandium oxide in the molten salt was maintained at the level of 3 wt.% (Calculated on the total mass of scandium oxide and molten salts). Electrolysis was carried out at the anodic and cathodic current densities, which were 1.8 A / cm and 1.6 A / cm, respectively. The electrolysis time was 4.4 hours. The temperature in the reactor was additionally maintained using heating elements.
  • the current was turned off and part of the obtained aluminum-scandium alloy was removed from the crucible of the reactor.
  • the resulting alloy was analyzed for scandium and impurities.
  • the resulting alloy contained 1.6 wt.% Scandium, the total impurity content did not exceed 0.15 wt.%.
  • pure aluminum was loaded into the crucible of the reactor, the melt temperature was brought to a temperature of 920 ° C and the production process was continued, supplying scandium oxide and maintaining its concentration in the molten salt at a level of 3 wt.% And passing an electric current to decompose the resulting aluminum oxide (alumina).
  • the resulting alloy contained 4 wt.% Scandium, the total impurity content did not exceed 0.24 wt.%.
  • pure aluminum was charged into the crucible of the reactor, the melt temperature was brought to a temperature of 920 ° C, and the process of producing the alloy was continued, supplying scandium oxide and maintaining its concentration in the molten salt at the level of 8 wt% and passing an electric current to decompose the resulting oxide aluminum (alumina).
  • the concentration of scandium oxide in the molten salt was maintained at a level
  • Electrolysis was carried out at the anodic and cathodic current densities, which were 1.8 A / cm and 1.6 A / cm, respectively. The electrolysis time was 1 hour. The temperature in the reactor was additionally maintained using heating elements.
  • the resulting alloy was analyzed for scandium and impurities.
  • the resulting alloy contained 0.41 wt.% Scandium, the total content of impurities did not exceed 0.20 wt.%.
  • pure aluminum was charged into the crucible of the reactor, and the melt temperature was adjusted to temperatures of 850 ° C and continued to carry out the production process, feeding scandium oxide and maintaining its concentration in the molten salt at the level of 1 wt.% and passing an electric current to decompose the resulting aluminum oxide (alumina).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии цветных металлов, и может быть использовано для получения сплава алюминий-скандий, содержащего 0,41-4 масс. % скандия, в условиях промышленного производства. При осуществлении предлагаемого способа алюминий и смесь солей, содержащей фториды натрия, калия и алюминия, расплавляют, и затем осуществляют, при непрерывной подачи оксида скандия, одновременное алюмотермическое восстановление скандия из его оксида и электролитическое разложение образующегося глинозема, при этом концентрацию оксида скандия в расплавленной смеси солей поддерживают от 1 до 8 масс. %. По меньшей мере часть полученного сплава периодически извлекают, а затем загружают алюминий и продолжают вести процесс получения сплава, подавая оксид скандия. Предлагается также реактор для получения сплава алюминий-скандий раскрытым способом. Способ позволяет получать сплав алюминий-скандий с заданным составом, обеспечивает высокую чистоту конечного продукта и высокий уровень извлечения скандия при снижении температуры процесса получения и энергозатрат.

Description

СПОСОБ ПОЛУЧЕНИЯ СПЛАВА АЛЮМИНИЙ-СКАНДИЙ И РЕАКТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА. ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области металлургии цветных металлов, и может быть использовано для производства алюминий-скандиевого сплава с 0.41 - 4 мае. % скандия в условиях промышленного производства алюминия. Алюминий скандиевые сплавы, как известно, являются широко востребованными в области автомобилестроения, авиастроения, и аэрокосмической отрасли, при этом спрос на такие сплавы растет с каждым годом.
УРОВЕНЬ ТЕХНИКИ
Известен способ получения алюминий-скандиевой лигатуры, включающий приготовление двух порций алюминия (например, в вакуумных печах), в одну из которых вводится шихта, содержащая фторид скандия, фторид магния и хлорид калия. После этого производится смешивание обеих порций металла с одновременной подачей инертного газа (Заявка RU N°2009134930, С22С 1/03, опубл. 27.03.201 1).
К недостаткам данного способа можно отнести его технологическую сложность, необходимость порционирования алюминия, использование вакуума или инертной атмосферы.
Известен способ получения алюминиевого сплава, содержащего 0.20 - 0.50 мае. % скандия при электролизе расплава NaF-AlF3-Al203-LiF с добавкой оксида скандия (Proc. 3rd International Symposium on High- Temperature Metallurgical Processing, 2012, pp. 243-250). В ходе электролиза алюминий и скандий катодно осаждаются на алюминии при катодной плотности тока до 1 А/см и температуре 950 °С. К недостаткам данного способа можно отнести использование дорогостоящей соли - фторида лития в размере 5 % от общей массы расплава.
Известен способ получения лигатуры алюминий-скандий, включающий расплавление и выдержку в контакте с жидким алюминием шихты, содержащей хлорид калия, фториды натрия, алюминия хиолит - (Na5[Al3Fi4]) и оксид скандия (Дегтярь В.А., Поляк Е.Н., «Восстановление оксида скандия из расплава KCl-NaF-AlF3-Sc203» Российская научно- техническая конференция «Новые материалы и - технологии», «Металлические материалы, методы их обработки»/ Тез. Докл. - М: 1994 г., с. 102).
Недостатками известного способа является значительное образование нерастворимых соединений скандия - оксифторидов (ScOF), переходящих в шлак, что приводит к потерям скандия и невысокому выходу годного продукта (около 60 %).
Наиболее близким к предлагаемому способу является способ получения сплавов и лигатур алюминий-скандий с содержанием скандия 0,4 мае. % (Цветные металлы, 1998, Ν°7, С. 43-46) при электролизе криолит-глиноземного расплава (NaF-AlF3-Al203) с добавками оксида скандия.
Общими признаками известного и заявляемого способа являются ведение электролиза расплава, содержащего фторид натрия, фторид алюминия и оксид скандия, и алюмотермическое восстановление скандия.
К недостаткам известного способа можно отнести относительно высокую температуру процесса (около 1000 °С), расход дополнительной электроэнергии на катодное осаждение скандия, относительно большие потери легирующего компонента, невозможность организовать непрерывный процесс получения лигатуры, поскольку образующийся в ходе алюмотермической реакции оксид алюминия будет накапливаться в расплаве, зашламляя сам расплав и алюминий.
Из уровня техники известно устройство для получения лигатуры алюминий-стронций, содержащее ванну с подиной, анод, катод и
5 токоподводы, средство перемешивания и дополнительные электроды с покрытием из материала, не взаимодействующего с электролитом, катод выполнен из жидкого алюминия, катодный токоподвод имеет покрытие из материала, не взаимодействующего с лигатурой, анод выполнен с каналами для вывода анодных газов, а ванна у подины выполнена с ю отверстием для выпивки лигатуры (патент RU N° 2010893, С25СЗ/36, опубл. 15.04.1994).
Это устройство выбрано авторами в качестве прототипа. Недостатком известного устройства является невозможность получения в нем сплава алюминий-скандий и сложность конструкции.
15 Таким образом, понятно, что различные подходы к получению сплава алюминий-скандий не лишены недостатков. Поэтому остается необходимость в усовершенствованном способе получения сплава алюминий-скандий, который решал бы одну или несколько проблем предшествующего уровня техники.
20 Задачей настоящего изобретения является создание непрерывного безотходного способа получения сплава алюминий-скандий, обеспечивающего высокую чистоту конечного продукта с высоким уровнем извлечения скандия, а также создание устройства, которое позволит эффективно осуществлять непрерывное безотходное получение
25 сплава алюминий-скандий и будет иметь простую в эксплуатации конструкцию.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагается способ получения алюминий-скандиевого сплава с 0.41 - 4 мае. % скандия, который зо включает следующие стадии: a) расплавляют алюминий и смесь солей, содержащую фториды натрия, калия и алюминия;
b) осуществляют, при непрерывной подаче оксида скандия в расплавленную смесь солей, одновременное алюмотермическое восстановление скандия из его оксида и электролитическое разложение образующегося оксида алюминия, при этом концентрацию оксида скандия в расплавленной смеси солей поддерживают от 1 до 8 масс. %, c) извлекают по меньшей мере часть полученного сплава алюминий-скандий;
d) добавляют алюминий и осуществляют повторение стадий Ь)- с).
Заявленный способ обеспечивает регенерацию оксидно- галогенидного расплава, включающего смесь фторидов и оксид скандия, путем электролитического разложения образующегося в ходе реакции оксида алюминия.
Предлагаемый способ обеспечивает достижение технического результата, заключающегося в снижении температуры и энергозатрат всего процесса при одновременном обеспечении возможности получения сплава высокой чистоты с заданным составом и достижения высокого уровня извлечения скандия.
Содержание скандия в сплаве алюминий-скандий, полученном предлагаемым способом может составлять от 0,41 до 4% масс, скандия, предпочтительно от 0,5 до 3,5% масс, скандия, предпочтительно от 1 до 3% масс, скандия, предпочтительно от 1,5 до 2,5% масс, скандия.
Согласно предложенным вариантам осуществления заявляемого способа концентрацию оксида скандия в расплавленной смеси солей поддерживают от 1 до 8 масс. %, предпочтительно от 2 до 7 масс. %, предпочтительно от 3 до 6 масс. %, предпочтительно от 4 до 5 масс. %. Согласно предлагаемому способу, приготовленную расплавленную смесь солей могут использовать, по меньшей мере, в четырех циклах получения алюминий-скандиевого сплава.
Содержание фторида натрия в расплавленной смеси солей может составлять 1 - 15 мае. %. Процесс получения сплава предпочтительно ведут при температуре 800-950 °С, а криолитовое отношение (КО) расплавленной смеси солей, определяемое как мольное отношение суммы фторидов калия (KF) и натрия (NaF) к фториду алюминия (A1F3), предпочтительно поддерживают 1,3 - 1,7.
Согласно настоящему изобретнию, электролитическое разложение оксида алюминия проводят при поддерживаемой температуре 800 - 950 °С, анодной и катодной плотности тока 0,3-2 А/см и 0,4-1 ,8 А/см соответственно. Длительность процесса получения алюминий- скандиевого сплава (от загрузки и начала расплавления чистого алюминия и смеси солей до выгрузки полученного сплава) может варьироваться от 0,5 до 5 часов.
В настоящем изобретении также предлагается реактор для получения сплава алюминий-скандий вышеупомянутым способом, который содержит корпус, футерованный внутри огнеупорным материалом, с крышкой, по меньшей мере, один анод, катод и токоподвод, представляющий собой графитовый блок с установленным в него блюмсом, при этом на графитовом блоке установлен графитовый тигель, с внешней стороны которого размещены нагревательные элементы, а в крышке установлены дозатор для непрерывной подачи оксида скандия и отверстие для загрузки алюминия и выгрузки сплава.
Реактор может быть представлен частными случаями его конструктивного выполнения:
Реактор может содержать сливное отверстие для отвода расплава, расположенное в нижней части корпуса. Согласно одному из вариантов осуществления заявленного реактора, корпус реактора выполнен из стали, а огнеупорный материал для футеровки стального корпуса представляет собой огнеупорный кирпич.
В дальнейшем настоящее изобретение поясняется конкретными примерами его выполнения со ссылками на материалы чертежей.
На фиг. 1 представлен схематический вид заявленного реактора для получения сплава алюминий-скандий.
ПОДРОБНОЕ РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Общий вид реактора для получения сплава алюминий-скандий представлен на фигуре 1. Устройство состоит из стального корпуса 1, футерованного внутри огнеупорным материалом 2, графитового тигля 3, установленного на подовый графитовый блок 4, с установленными в него блюмсами 5, который служит токопод водом к катодному металлу 6. Внутрь реактора через крышку 7 устанавливается графитовый анод 8, так же в крышке 7 предусмотрено отверстие 9 для загрузки алюминия и выгрузки сплава. Для поддержания требуемой температуры процесса реактор дополнительно снабжен нагревательными элементами 10. Для непрерывной подачи оксида скандия в расплав реактор содержит дозатор 1 1. Так же реактор содержит аварийное сливное отверстие 12 для безопасного отвода расплава в случае поломки тигля 3.
Сущность предлагаемого способа заключается в следующем. При контакте оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксида скандия в количестве 1-8 мас.% происходит алюмотермическое восстановление оксида скандия, в результате которого образуется сплав алюминий-скандий с содержанием скандия 0,41— 4 мас.%. При этом в расплаве происходит уменьшение концентрации оксида скандия и увеличение концентрации оксида алюминия (глинозема). б Ограничение содержания оксида скандия в оксидно-галогенидном расплаве, обусловлено тем, что растворимость Sc203 в расплавленных смесях KF-NaF-AlF3 имеет значения близкие к 8 масс. %.
Суммарная химическая (алюмотермическая) реакция процесса имеет следующий вид:
2А1 + Sc203 = 2Sc + А1203
(1)
Количество образовавшегося в алюминии скандия определяется количеством оксида скандия (Sc203) в оксидно-галогенидном расплаве, временем контакта расплава алюминия с оксидно-галогенидным расплавом и константой скорости реакции (1).
Для организации непрерывного процесса получения сплава алюминий-скандий периодически выгружают часть полученного сплава алюминий-скандий, после этого в расплав добавляют алюминий, в частности, заливают порцию расплавленного алюминия равную массе выгруженного алюминий-скандиевого сплава. Для получения алюминий- скандиевого сплава непрерывно подают оксид скандия, поддерживая концентрацию оксида скандия в оксидно-галогенидном расплаве на уровне 1 - 8 %, а образующийся в расплаве оксид алюминия подвергают электролитическому разложению (электролизу). Электролиз проводят при температуре 800 - 950 °С, анодной и катодной плотности тока 0,3-2 А/см2 и 0,4-1,8 А/см2 соответственно. Длительность процесса получения алюминий-скандиевого сплава (от начала расплавления загруженных чистого алюминия и смеси солей до выгрузки полученного сплава) может варьироваться от 0,5 до 5 часов, в зависимости от требования к содержанию скандия в полученном алюминий-скандиевом сплаве.
Необходимую силу тока в реакторе определяют исходя из количества образующегося глинозема в результате алюмотермической реакции. Количество образующегося глинозема в свою очередь зависит от выбранной скорости подачи оксида скандия и от скорости выгрузки полученного сплава.
Суммарная реакция электролитического разложения оксида алюминия с использованием графитового анода и алюминиевого катода выглядит следующим образом:
А1203 + 2С = 2А1 + СО + С02 (2) Способ позволяет получать алюминий-скандиевый сплав при пониженных температурах (800-950 °С), при этом сплав можно многократно получать из одного и того же расплава периодически заменяя в нем алюминий, что ведет к упрощению технологии, снижению энергозатрат на поддержание температуры процесса. Снижение температуры процесса в заявляемом способе также приводит к увеличению степени извлечения скандия.
Предлагаемый способ может быть осуществлен в предлагаемом реакторе следующим образом. Алюминий и заранее приготовленную смесь солей, содержащую фториды калия, фториды натрия и алюминия загружают в графитовый тигель 3 реактора, включают нагревательные элементы 10 и расплавляют алюминий и смесь солей, при этом вследствие разности плотностей жидкого алюминия и расплавленной смеси солей алюминий собирается на дне тигля, при достижении температуры расплава 800 - 950 °С включают дозатор 1 1, при помощи которого в расплав автоматически непрерывно подается оксид скандия, одновременно пропускают электрический ток для регенерации оксидно- галогенидного расплава путем электролитического разложения образующегося в ходе алюмотермической реакции оксида алюминия. Часть полученного алюминий-скандиевого сплава извлекают из тигля 3 через отверстие для загрузки алюминия и выгрузки сплава 9, после этого добавляют алюминий, предпочтительно расплавленный алюминий, и продолжают вести процесс получения сплава, непрерывно подавая оксид скандия и пропуская электрический ток.
Реализация предлагаемого способа подтверждается следующими примерами.
5 Пример 1. Смесь солей KF-NaF-AlF3 с КО = 1 ,43 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 850 °С в расплав добавляли оксид скандия. Концентрацию оксида скандия в расплаве солей поддерживали на уровне ю 4,2 мас.% в расчете на суммарную массу оксида скандия и расплава солей (массу оксидно-галогенидного расплава). Электролиз вели при анодной и катодной плотности тока, которые составляли 1 ,6 А/см 2 и 1,4 А/см 2 соответственно. Время электролиза составило 4 часа. Температуру в реакторе дополнительно поддерживали при помощи нагревательных 15 элементов.
После 4 часов электролиза ток отключали и из тигля реактора извлекали часть полученного сплава. Полученный сплав анализировался на содержание скандия и примесей. Полученный сплав содержал 2,1 мае. % скандия, суммарное содержание примесей не превысило 0,18 мас.%.
20 Для организации непрерывного процесса в тигель реактора загружали чистый алюминий, доводили температуру расплава до температуры 850 °С и продолжали вести процесс получения сплава, поддерживая концентрацию оксида скандия в расплаве солей на уровне 4,2 мас.% и пропуская электрический ток для разложения образующегося
25 оксида алюминия (глинозема).
Пример 2. Смесь солей KF-NaF-AlF3 с КО = 1,33 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 810 °С в расплав добавляли оксид скандия. зо Концентрацию оксида скандия в расплаве солей поддерживали на уровне 6 мас.% (в расчете на суммарную массу оксида скандия и расплава солей). Электролиз вели при анодной и катодной плотности тока, которые составляли 2 А/см и 1 ,8 А/см соответственно. Время электролиза составило 5 часов. Температуру в реакторе дополнительно поддерживали при помощи нагревательных элементов.
После 5 часов электролиза ток отключали и из тигля реактора извлекали часть полученного алюминий-скандиевого сплава. Полученный сплав анализировался на содержание скандия и примесей. Полученный сплав содержал 3 мас.% скандия, суммарное содержание примесей не превысило 0,21 мас.%.
Для организации непрерывного процесса в тигель реактора загружали чистый алюминий, доводили температуру расплава до температуры 810 °С и продолжали вести процесс получения, подавая оксид скандия и поддерживая его концентрацию в расплаве солей на уровне 6 мас.% и пропуская электрический ток для разложения образующегося оксида алюминия (глинозема).
Пример 3. Смесь солей KF-NaF-AlF3 с КО = 1,6 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 880 °С в расплав добавляли оксид скандия. Концентрацию оксида скандия в расплаве солей поддерживали на уровне 2,8 мае. % (в расчете на суммарную массу оксида скандия и расплава солей). Электролиз вели при анодной и катодной плотности тока, которые составляли 1 ,6 А/см2 и 1 ,4 А/см2 соответственно. Время электролиза составило 1 ,5 часа. Температуру в реакторе дополнительно поддерживали при помощи нагревательных элементов.
После 1,5 часов электролиза ток отключали и из тигля реактора извлекали часть полученного алюминий-скандиевого сплава. Полученный сплав анализировался на содержание скандия и примесей. ю Полученный сплав содержал 1 , 13 мас.% скандия, суммарное содержание примесей не превысило 0,17 мас.%.
Для организации непрерывного процесса в тигель реактора загружали чистый алюминий, доводили температуру расплава до температуры 880 °С и продолжали вести процесс получения, подавая оксид скандия и поддерживая его концентрацию в расплаве солей на уровне 2,8 мае. % и пропуская электрический ток для разложения образующегося оксида алюминия (глинозема).
Пример 4. Смесь солей KF-NaF-AlF3 с КО = 1,48 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 860 °С в расплав добавляли оксид скандия.
Концентрацию оксида скандия в расплаве поддерживали на уровне 5 мас.% (в расчете на суммарную массу оксида скандия и расплава солей). Электролиз вели при анодной и катодной плотности тока, которые составляли 1,8 А/см2 и 1,6 А/см2 соответственно. Время электролиза составило 5 часов. Температуру в реакторе дополнительно поддерживали при помощи нагревательных элементов.
После 5 часов электролиза ток отключали и из тигля реактора извлекали часть полученного алюминий-скандиевого сплава.
Полученный сплав анализировался на содержание скандия и примесей.
Полученный сплав содержал 2 мас.% скандия, суммарное содержание примесей не превысило 0,21 мае. %.
Для организации непрерывного процесса в тигель реактота загружали чистый алюминий, доводили температуру расплава до температуры 860 °С и продолжали вести процесс получения, подавая оксид скандия и поддерживая его концентрацию в расплаве солей на уровне 5 мае. % и пропуская электрический ток для разложения образующегося оксида алюминия (глинозема). Пример 5. Смесь солей KF-NaF-AlF3 с КО = 1 ,68 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 920 °С в расплав добавляли оксид скандия. Концентрацию оксида скандия в расплаве солей поддерживали на уровне 3 мас.% (в расчете на суммарную массу оксида скандия и расплава солей). Электролиз вели при анодной и катодной плотности тока, которые составляли 1 ,8 А/см и 1 ,6 А/см соответственно. Время электролиза составило 4,4 часа. Температуру в реакторе дополнительно поддерживали при помощи нагревательных элементов.
После 4,4 часов электролиза ток отключали и из тигля реактора извлекали часть полученного алюминий-скандиевого сплава. Полученный сплав анализировался на содержание скандия и примесей. Полученный сплав содержал 1,6 мас.% скандия, суммарное содержание примесей не превысило 0,15 мас.%.
Для организации непрерывного процесса в тигель реактора загружали чистый алюминий, доводили температуру расплава до температуры 920 °С и продолжали вести процесс получения, подавая оксид скандия и поддерживая его концентрацию в расплаве солей на уровне 3 мас.% и пропуская электрический ток для разложения образующегося оксида алюминия (глинозема).
Пример 6. Смесь солей KF-NaF-AlF3 с КО = 1 ,5 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 870 °С в расплав добавляли оксид скандия. Концентрацию оксида скандия в расплаве солей поддерживали на уровне 8 мас.% (в расчете на суммарную массу оксида скандия и расплава солей). Электролиз вели при анодной и катодной плотности тока, которые составляли 1,8 А/см и 1,6 А/см соответственно. Время электролиза составило 4,4 часа. Температуру в реакторе дополнительно поддерживали при помощи нагревательных элементов.
После 4,4 часов электролиза ток отключали и из тигля реактора извлекали часть полученного алюминий-скандиевого сплава. Полученный сплав анализировался на содержание скандия и примесей.
Полученный сплав содержал 4 мас.% скандия, суммарное содержание примесей не превысило 0,24 мас.%.
Для организации непрерывного процесса в тигель реактора загружали чистый алюминий, доводили температуру расплава до температуры 920 °С и продолжали вести процесс получения сплава, подавая оксид скандия и поддерживая его концентрацию в расплаве солей на уровне 8 мас.% и пропуская электрический ток для разложения образующегося оксида алюминия (глинозема).
Пример 7. Смесь солей KF-NaF-AlF3 с КО = 1,48 массой 4100 г и алюминий марки А99 массой 4670 г помещали в графитовый тигель и нагревали. После плавления смеси солей и алюминия и достижения требуемой температуры в 850 °С в расплав добавляли оксид скандия.
Концентрацию оксида скандия в расплаве солей поддерживали на уровне
1 мас.% (в расчете на суммарную массу оксида скандия и расплава солей). Электролиз вели при анодной и катодной плотности тока, которые составляли 1,8 А/см и 1,6 А/см соответственно. Время электролиза составило 1 час. Температуру в реакторе дополнительно поддерживали при помощи нагревательных элементов.
После 1 часа электролиза ток отключали и из тигля реактора извлекали часть полученного алюминий-скандиевого сплава.
Полученный сплав анализировался на содержание скандия и примесей.
Полученный сплав содержал 0,41 мас.% скандия, суммарное содержание примесей не превысило 0,20 мас.%.
Для организации непрерывного процесса в тигель реактора загружали чистый алюминий, доводили температуру расплава до температуры 850 °C и продолжали вести процесс получения, подавая оксид скандия и поддерживая его концентрацию в расплаве солей на уровне 1 мас.% и пропуская электрический ток для разложения образующегося оксида алюминия (глинозема).

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ получения сплава алюминий-скандий с содержанием скандия 0,41-4 масс.%, включающий следующие стадии:
a) расплавляют алюминий и смесь солей, содержащую фториды 5 натрия, калия и алюминия;
b) осуществляют, при непрерывной подаче оксида скандия в расплавленную смесь солей, одновременное алюмотермическое восстановление скандия из его оксида и электролитическое разложение образующегося оксида алюминия, при этом концентрацию оксида ю скандия в расплавленной смеси солей поддерживают от 1 до 8 масс. %, c) извлекают по меньшей мере часть полученного сплава алюминий-скандий;
d) добавляют алюминий и осуществляют повторение стадий Ь)- с).
15 2. Способ по п.1, отличающийся тем, что расплавленную смесь солей используют, по меньшей мере, в четырех циклах получения сплава алюминий-скандий.
3. Способ по п.1 , отличающийся тем, что содержание фторида натрия в расплавленной смеси солей составляет 1 - 15 мае. %.
20 4. Способ по п.1, отличающийся тем, что способ осуществляют при температуре 800-950 °С.
5. Способ по п.1, отличающийся тем, что криолитовое отношение смеси фторидов калия, натрия и алюминия поддерживают в пределах 1 ,3 - 1 ,7.
25 6. Способ по п. 1 , отличающийся тем, электролитическое разложение оксида алюминия осуществляют при значении анодной плотности тока 0,3-2 А/см .
7. Способ по п. 1 , отличающийся тем, электролитическое разложение оксида алюминия осуществляют при значении катодной зо плотности тока и 0,4-1,8 А/см .
8. Способ по п. 1 , отличающийся тем, что длительность его осуществления составляет от 30 минут до 5 часов с момента начала расплавления алюминия и смеси солей до извлечения по меньшей мере части полученного сплава алюминий-скандий.
5 9. Способ по п. 1, отличающийся тем, что содержание скандия в полученном сплаве составляет 0,5 до 3,5% масс.
10. Способ по п. 1, отличающийся тем, что содержание скандия в полученном сплаве составляет от 1 до 3% масс.
11. Способ по п. 1 , отличающийся тем, что содержание скандия в ю полученном сплаве составляет от 1 ,5 до 2,5% масс.
12. Способ по п. 1, отличающийся тем, что концентрацию оксида скандия в расплавленной смеси солей поддерживают от 2 до 7 масс. %.
13. Способ по п. 1 , отличающийся тем, что концентрацию оксида скандия в расплавленной смеси солей поддерживают от 3 до 6 масс. %.
15 14. Способ по п. 1, отличающийся тем, что концентрацию оксида скандия в расплавленной смеси солей поддерживают от 4 до 5 масс. %.
15. Реактор для получения сплава алюминий-скандий способом по любому из п.п.1-14, содержащий корпус, футерованный внутри огнеупорным материалом, с крышкой, по меньшей мере, один анод, катод
20 и токоподвод, представляющий собой графитовый блок с установленным в него блюмсом, при этом на графитовом блоке установлен графитовый тигель, с внешней стороны которого размещены нагревательные элементы, а в крышке установлены дозатор для непрерывной подачи оксида скандия и отверстие для загрузки алюминия и выгрузки сплава.
25 16. Реактор по п. 15, отличающийся тем, что в нижней части корпуса дополнительно выполнено сливное отверстие для отвода расплава.
17. Реактор по п. 15, отличающийся тем, что корпус выполнен из стали.
18. Реактор по п. 15, отличающийся тем, что огнеупорный материал представляет собой огнеупорный кирпич.
ю
15
20
30
PCT/RU2016/000226 2015-04-22 2016-04-21 Способ получения сплава алюминий -скандий и реактор для осуществления способа WO2016171589A1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112017022497-6A BR112017022497A2 (pt) 2015-04-22 2016-04-21 Método para produzir uma liga de alumínio- escândio e reator para implementar o método
EP16783484.5A EP3287548B8 (en) 2015-04-22 2016-04-21 Method for producing aluminium-scandium alloy
CN201680022769.0A CN107532317B (zh) 2015-04-22 2016-04-21 生产铝钪合金的方法和实施该方法的反应器
US15/566,131 US11186897B2 (en) 2015-04-22 2016-04-21 Method for producing aluminum-scandium alloy and reactor for implementing the method
ES16783484T ES2774075T3 (es) 2015-04-22 2016-04-21 Procedimiento de producción de una aleación de aluminio y escandio
AU2016253069A AU2016253069A1 (en) 2015-04-22 2016-04-21 Method for producing aluminium-scandium alloy and reactor for implementing the method
CA2983108A CA2983108C (en) 2015-04-22 2016-04-21 Method for producing aluminium-scandium alloy and reactor for implementing the method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
RU2015115260 2015-04-22
RU2015115260/02A RU2593246C1 (ru) 2015-04-22 2015-04-22 Способ получения лигатуры алюминий-скандий
RU2015153433 2015-12-11
RU2015153433A RU2621207C1 (ru) 2015-12-11 2015-12-11 Способ получения сплава на основе алюминия и устройство для осуществления способа

Publications (1)

Publication Number Publication Date
WO2016171589A1 true WO2016171589A1 (ru) 2016-10-27

Family

ID=57143279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000226 WO2016171589A1 (ru) 2015-04-22 2016-04-21 Способ получения сплава алюминий -скандий и реактор для осуществления способа

Country Status (8)

Country Link
US (1) US11186897B2 (ru)
EP (1) EP3287548B8 (ru)
CN (1) CN107532317B (ru)
AU (1) AU2016253069A1 (ru)
BR (1) BR112017022497A2 (ru)
CA (1) CA2983108C (ru)
ES (1) ES2774075T3 (ru)
WO (1) WO2016171589A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515851A (ja) * 2018-03-15 2021-06-24 インフィニアム インコーポレイテッド アルミニウム−スカンジウム合金の製造方法
CN113881973A (zh) * 2021-11-09 2022-01-04 中国恩菲工程技术有限公司 一种含钪氟化物熔盐作为补充电解质的电解制备铝钪合金的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195242A (zh) * 2019-05-13 2019-09-03 赣州飞腾轻合金有限公司 一种钾冰晶石熔盐下沉阴极电解制备铝钪中间合金的方法
CN113957245A (zh) * 2020-04-27 2022-01-21 佛山市南海区晶鼎泰智能科技有限公司 一种制备铝钪合金的铝热还原方法
DE102020208782A1 (de) * 2020-07-14 2022-01-20 Taniobis Gmbh Sauerstoffarme AlSc-Legierungspulver und Verfahren zu deren Herstellung
CN113005312A (zh) * 2021-02-19 2021-06-22 罗朝巍 一种利用NaF-NaCl-KCl熔盐制备铝钪合金的方法
CN113758254A (zh) * 2021-08-31 2021-12-07 新星轻合金材料(洛阳)有限公司 一种用于铝锶合金生产的真空感应炉的使用方法
CN114561539A (zh) * 2021-09-08 2022-05-31 桂林理工大学 一种氟化钠-氯化钠-氯化钾熔盐体系用铝镁热还原法制备铝镁钪中间合金的方法
US20240093333A1 (en) 2022-09-15 2024-03-21 Ii-Vi Delaware, Inc. Streamlined process for producing aluminum-scandium alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010893C1 (ru) * 1991-12-09 1994-04-15 Малое научно-производственное предприятие "ММС" Способ получения лигатуры алюминий - стронций и электролизер для его осуществления
RU2124574C1 (ru) * 1997-10-16 1999-01-10 Институт химии твердого тела Уральского Отделения РАН Способ получения лигатуры скандий-алюминий (его варианты)
RU2213795C1 (ru) * 2001-11-12 2003-10-10 Махов Сергей Владимирович Способ получения лигатуры алюминий-скандий (варианты)
RU2361941C2 (ru) * 2007-06-06 2009-07-20 Институт химии твердого тела Уральского отделения Российской Академии наук Способ получения лигатуры алюминий-скандий, флюс для получения лигатуры и устройство для осуществления способа

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383294A (en) * 1965-01-15 1968-05-14 Wood Lyle Russell Process for production of misch metal and apparatus therefor
CN1184356C (zh) * 2002-12-03 2005-01-12 中国铝业股份有限公司 一种电解生产铝钪合金的方法
CN1260397C (zh) * 2003-08-21 2006-06-21 中国铝业股份有限公司 一种高纯铝钪合金的生产方法
CN100410400C (zh) * 2004-11-09 2008-08-13 湖南稀土金属材料研究院 铝热还原制备铝钪合金的方法
WO2006079353A1 (de) * 2005-01-25 2006-08-03 Alcan Technology & Management Ltd. Verfahren zur herstellung ainer aluminium-scandium-vorliegerung
CN101709394B (zh) * 2009-12-11 2011-05-11 清华大学 一种铝钪中间合金的制备方法
CN102653829B (zh) * 2012-05-18 2013-11-06 东北大学 一种铝钪合金的制备方法
CN103484891B (zh) * 2012-06-11 2016-06-15 内蒙古联合工业有限公司 一种电解铝用电解槽及使用该电解槽的电解工艺
CN203474925U (zh) * 2013-10-10 2014-03-12 宝纳资源控股(集团)有限公司 一种具有良好密封结构的高温连续电解实验炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010893C1 (ru) * 1991-12-09 1994-04-15 Малое научно-производственное предприятие "ММС" Способ получения лигатуры алюминий - стронций и электролизер для его осуществления
RU2124574C1 (ru) * 1997-10-16 1999-01-10 Институт химии твердого тела Уральского Отделения РАН Способ получения лигатуры скандий-алюминий (его варианты)
RU2213795C1 (ru) * 2001-11-12 2003-10-10 Махов Сергей Владимирович Способ получения лигатуры алюминий-скандий (варианты)
RU2361941C2 (ru) * 2007-06-06 2009-07-20 Институт химии твердого тела Уральского отделения Российской Академии наук Способ получения лигатуры алюминий-скандий, флюс для получения лигатуры и устройство для осуществления способа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287548A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515851A (ja) * 2018-03-15 2021-06-24 インフィニアム インコーポレイテッド アルミニウム−スカンジウム合金の製造方法
JP7361058B2 (ja) 2018-03-15 2023-10-13 エフイーエー マテリアルズ エルエルシー アルミニウム-スカンジウム合金の製造方法
CN113881973A (zh) * 2021-11-09 2022-01-04 中国恩菲工程技术有限公司 一种含钪氟化物熔盐作为补充电解质的电解制备铝钪合金的方法

Also Published As

Publication number Publication date
CN107532317A (zh) 2018-01-02
EP3287548B8 (en) 2020-04-08
EP3287548A1 (en) 2018-02-28
US20180087129A1 (en) 2018-03-29
EP3287548A4 (en) 2018-10-17
CA2983108A1 (en) 2016-10-27
BR112017022497A2 (pt) 2018-07-17
US11186897B2 (en) 2021-11-30
EP3287548B1 (en) 2020-01-15
CN107532317B (zh) 2021-04-13
ES2774075T3 (es) 2020-07-16
AU2016253069A1 (en) 2017-11-30
CA2983108C (en) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2016171589A1 (ru) Способ получения сплава алюминий -скандий и реактор для осуществления способа
EP0958409B1 (en) Process for the electrolytic production of metals
US5024737A (en) Process for producing a reactive metal-magnesium alloy
RU2593246C1 (ru) Способ получения лигатуры алюминий-скандий
KR101163375B1 (ko) 원광 금속환원 및 전해정련 일관공정에 의한 원자로급 지르코늄 친환경 신 제련공정
TW201042089A (en) Primary production of elements
US11970782B2 (en) Method of aluminum-scandium alloy production
JPH0633161A (ja) 均質で純粋なインゴットに加工することのできる耐熱金属合金及び該合金の製造方法
JPS5942079B2 (ja) アルミニウムの精製方法
RU2621207C1 (ru) Способ получения сплава на основе алюминия и устройство для осуществления способа
JP6095374B2 (ja) チタンの製造方法。
JP2004052003A (ja) ニオブ粉末またはタンタル粉末の製造方法および製造装置
RU2401875C2 (ru) Способ производства химически активных металлов и восстановления шлаков и устройство для его осуществления
US3616438A (en) Production of aluminum and aluminum alloys from aluminum chloride
US3098021A (en) Process for producing ductile vanadium
RU2103391C1 (ru) Способ получения тугоплавких металлов из рудных концентратов
RU2599312C1 (ru) Электролитический способ непрерывного получения алюминиевого сплава со скандием
RU2658556C1 (ru) Способ получения лигатур алюминия с цирконием
RU2629418C1 (ru) Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия
Nair et al. Production of tantalum metal by the aluminothermic reduction of tantalum pentoxide
JPS63118089A (ja) チタン,チタン合金の製造方法
RU2639165C1 (ru) Способ получения лигатуры "алюминий - гадолиний"
GB812817A (en) Electrolytic production of titanium
JPH02259092A (ja) カルシウムの製造方法
Takenaka et al. Influence of Bath Composition on Ti Electrolysis in CaF2-CaO-TiO2 Melt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566131

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2983108

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017022497

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016783484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016253069

Country of ref document: AU

Date of ref document: 20160421

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017022497

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171019