WO2016171451A1 - 기판 처리 장치 - Google Patents

기판 처리 장치 Download PDF

Info

Publication number
WO2016171451A1
WO2016171451A1 PCT/KR2016/004074 KR2016004074W WO2016171451A1 WO 2016171451 A1 WO2016171451 A1 WO 2016171451A1 KR 2016004074 W KR2016004074 W KR 2016004074W WO 2016171451 A1 WO2016171451 A1 WO 2016171451A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion plate
substrate
process gas
plasma
chamber
Prior art date
Application number
PCT/KR2016/004074
Other languages
English (en)
French (fr)
Inventor
정우덕
최규진
박송환
김경훈
한성민
최성하
Original Assignee
주식회사 유진테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진테크 filed Critical 주식회사 유진테크
Priority to CN201680021656.9A priority Critical patent/CN107466421B/zh
Priority to US15/566,696 priority patent/US20180122638A1/en
Priority to JP2017549781A priority patent/JP6499771B2/ja
Publication of WO2016171451A1 publication Critical patent/WO2016171451A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32633Baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a substrate processing apparatus, and more particularly, to a substrate processing apparatus capable of improving the uniformity of substrate processing.
  • a substrate processing apparatus is a device that performs substrate processing such as etching or depositing a substrate using a physical or chemical reaction such as a plasma phenomenon in a vacuum state.
  • a reaction gas is injected through a shower head installed in a chamber to perform substrate processing.
  • the injected reaction gas forms a plasma in the chamber by application of power, and is processed by a plasma state material such as radicals formed in the chamber to be etched or deposited on the surface of the substrate in accordance with the purpose of processing the substrate. Is performed.
  • the substrate and the circuit elements formed on the substrate are damaged due to arc generation, collision of ions, and ion implantation in the chamber, resulting in poor process. There is a problem that can cause.
  • the reaction gas plasma cannot be uniformly moved and distributed only by the shower head for distributing the reaction gas, so that the reaction gas plasma is not uniformly distributed throughout the substrate, and is deposited on the substrate by being biased in one place.
  • the film to be made cannot have a uniform thickness.
  • Patent Document 1 Korean Registered Patent No. 10-0880767
  • the present invention provides a substrate processing apparatus capable of improving the uniformity of substrate processing by uniformly distributing plasma throughout the substrate.
  • a substrate processing apparatus includes a chamber for providing a substrate processing space; A process gas supply line for supplying a process gas to the chamber; A first diffusion plate having an injection hole in which an edge of the process gas is injected; A substrate support positioned opposite the first diffusion plate and supporting the substrate; A second diffusion plate provided between the first diffusion plate and the substrate support and having a plurality of distribution holes; And a plasma generator configured to form a plasma in a space between the first diffusion plate and the second diffusion plate.
  • It may further include a side wall member connected to the edge of the second diffusion plate, the plurality of gas induction hole is formed.
  • the second diffusion plate may have an effective area density of the distribution holes that are different for each location.
  • an effective area density of the distribution hole may be greater than that of an edge of a center portion of the second diffusion plate.
  • It may further include an insert inserted into the distribution hole to adjust the open area of the second diffusion plate.
  • the insert may include a through hole through which the center part passes.
  • the second diffusion plate may be formed of a plurality of multi-stage structures, and the distribution holes of each stage may have different positions between adjacent stages.
  • the apparatus may further include a position adjusting unit configured to adjust a distance between the first diffusion plate and the second diffusion plate.
  • the apparatus may further include a plurality of exhaust ports disposed in a symmetrical manner along the circumference of the substrate support adjacent to the inner wall of the chamber.
  • It may further include a blocking ring extending from the edge of the substrate support along the periphery of the substrate support.
  • a substrate processing apparatus may achieve a uniform distribution of plasma using a first diffusion plate for distributing process gas and a second diffusion plate for distributing plasma. Accordingly, substrate processing such as etching and deposition can be uniformly performed on the entire substrate.
  • the substrate when the plasma is formed, the substrate may not be directly exposed to the plasma through the second diffusion plate, thereby causing damage to the substrate and the circuit elements formed on the substrate due to arc generation, collision of ions, and ion implantation in the chamber. It can solve the problem that caused it. Accordingly, process defects of the substrate and the circuit elements formed on the substrate may be minimized.
  • grounding the second diffusion plate and filtering the charged ions and electrons in the plasma only neutral reactive species can be introduced onto the substrate, thereby minimizing the adverse effects of the charged ions and electrons on the substrate and around the substrate. have.
  • the effective area density of the distribution hole can be easily adjusted by using an insert inserted into the distribution hole of the second diffusion plate. Because of this, even if the process conditions are different, it is possible to achieve a uniform distribution of the neutral reactive species (or plasma).
  • the second diffusion plate may be formed in a multi-stage structure to control the flow of neutral reactive species (or plasma).
  • FIG. 1 is a cross-sectional view showing a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a second diffusion plate according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a side wall member according to an embodiment of the present invention.
  • Figure 4 is a perspective view of the second diffusion plate and the side wall member in accordance with an embodiment of the present invention.
  • FIG 5 is a plan view of a second diffuser plate having a large distribution hole according to an embodiment of the present invention.
  • FIG. 6 is a plan view of a second diffuser plate having a small distribution hole according to an embodiment of the present invention.
  • FIG. 7 is a plan view of a second diffusion plate in which a large distribution hole in the center portion and a small distribution hole in the edge portion are formed according to an embodiment of the present invention.
  • FIG 8 is a view showing an insert inserted into the distribution hole of the second diffusion plate according to an embodiment of the present invention.
  • Figure 9 is a cross-sectional view showing a second stage diffusion plate different in the position of the distribution hole according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a second stage diffusion plate of the multi-stage different position and size of the distribution hole according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating a substrate processing apparatus according to an embodiment of the present invention.
  • a substrate processing apparatus includes a chamber 110 that provides a substrate processing space; A process gas supply line 120 supplying a process gas to the chamber 110; A first diffusion plate 130 having an injection hole 131 through which an edge of the process gas is injected; A substrate support 140 positioned opposite to the first diffusion plate 130 and supporting the substrate 10; A second diffuser plate 150 provided between the first diffuser plate 130 and the substrate support 140 and having a plurality of distribution holes 151 therein; And a plasma generator 160 forming a plasma 164 in a space between the first diffusion plate 130 and the second diffusion plate 150.
  • the chamber 110 may provide a space in which substrate processing is performed, may allow a vacuum to be formed in the chamber 110, and may form a plasma inside the chamber 110 for effective substrate processing.
  • the chamber 110 may include an exhaust means 210 for exhausting a gas.
  • the exhaust means 210 may be formed under the chamber 110.
  • the chamber 110 may be made of various materials including metals, ceramics, glass, polymers, and composites, and the shape of the chamber 110 may include a right angle, a dome shape, a cylindrical shape, and the like.
  • the process gas supply line 120 supplies the process gas from the process gas supply source (not shown) to the chamber 110.
  • the process gas may include an etching gas and a source gas for thin film deposition.
  • the process gas supply line 120 may supply the etching gas during the etching process, and supply the source gas for thin film deposition during the thin film deposition process, and may supply a suitable process gas according to the purpose of substrate processing.
  • the etching gas may include a natural oxide film etching gas such as nitrogen trifluoride (NF 3 ), ammonia (NH 3 ), and the source gas for thin film deposition is monosilane (SiH 4 ), phosphine (PH 3 ), or the like.
  • It may include a silicon deposition gas of, may be appropriately selected according to the type of deposition thin film.
  • an inert gas such as hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), or the like may be supplied to the process gas together with the etching gas or the source gas for thin film deposition.
  • the first diffusion plate 130 distributes the process gas, and an injection hole 131 through which the process gas is injected may be formed at an edge portion thereof. Since the process gas is distributed and injected through the first diffusion plate 130, the process gas may uniformly reach the substrate 10.
  • Process gas supply line 120 may be located in the center of the chamber 110 for uniform distribution of the process gas. In this case, when the injection hole 131 is located in the center portion, the process gas is injected more than other portions in the center portion communicating with the process gas supply line 120 to reach the substrate 10 at the position. Therefore, it becomes nonuniform and the process of the substrate by the said process gas also becomes nonuniform depending on a position.
  • the process gas is bypassed and uniformly distributed to the edges without being in communication with the process gas supply line 120, so that the substrate ( 10) The process gas can reach uniformly.
  • the precise position, the injection direction, the number of injection holes 131 may be appropriately determined to create a uniform flow of the process gas in the chamber 110 according to the process conditions.
  • the substrate support 140 is positioned to face the first diffusion plate 130 and supports the substrate 10.
  • the substrate support 140 may be disposed below the inner side of the chamber 110 to support the substrate 10, the substrate 10 is supported on the substrate support 140, and the substrate 10 is electrostatically And a chargeable electrostatic chuck or the like to be maintained.
  • the second diffuser plate 150 may be provided between the first diffuser plate 130 and the substrate support 140, and a plurality of distribution holes 151 may be formed. Even using only the first diffusion plate 130 may create a uniform flow of the process gas in the chamber 110. However, when only the first diffusion plate 130 is used, the flow of the process gas (or plasma) is directed to the exhaust direction by the exhaust means 210 due to the distance between the first diffusion plate 130 and the substrate 10. It cannot be biased to achieve a uniform distribution of the process gas (or plasma) on the substrate 10. However, when the second diffusion plate 150 is used together, the flow of the process gas (or plasma) may be controlled to achieve a uniform distribution of the process gas (or plasma) on the substrate 10.
  • the second diffusion plate 150 may be grounded or applied with a voltage to filter ions and electrons charged in the plasma. That is, when the plasma passes through the second diffusion plate 150, ions and electrons may be blocked so that only neutral reactive species react on the substrate 10. The second diffuser plate 150 may cause the plasma to strike the second diffuser plate 150 at least once and then reach the substrate 10. In addition, when the plasma strikes the second diffusion plate 150 which is grounded (or applied with a different polarity), ions and electrons having high energy may be absorbed by the second diffusion plate 150. Accordingly, adverse effects of charged ions and electrons on the substrate 10 and around the substrate 10 can be minimized.
  • the peripheral parts inside the chamber 110 may be used.
  • the surface of 10) may not be damaged.
  • the second diffuser plate 150 may also block the light of the plasma, the light of the plasma may be impinged on the second diffuser plate 150 to prevent transmission.
  • the second diffusion plate 150 may be grounded through contact with the chamber 110 without applying a secondary electrode.
  • the second diffusion plate 150 may prevent the substrate 10 from being directly exposed to the plasma when the plasma is formed, and thus, the substrate 10 may be formed by arc generation, collision of ions, ion implantation, etc. in the chamber 110. 10) and the problem that caused damage to the circuit elements formed on the substrate 10 may be solved. Accordingly, process defects of the substrate 10 and the circuit elements formed on the substrate 10 according to the substrate processing process may be minimized.
  • the plasma generator 160 may form the plasma 164 in a space between the first diffusion plate 130 and the second diffusion plate 150.
  • the plasma generator 160 excites the process gas to form the plasma 164, and may include an discharge tube 162 and an antenna 161 or an inductive coupling coil provided to surround the discharge tube 162.
  • the discharge tube 162 may be made of sapphire, quartz, ceramic, or the like, and may be formed in a predetermined dome (or tube) shape.
  • the discharge tube 162 may be provided above the inside of the chamber 110, and an upper side thereof may be connected to the process gas supply line 120, and a lower side thereof may form a space for forming the second diffusion plate 150 and the plasma 164. That is, a space between the first diffusion plate and the second diffusion plate can be provided.
  • the process gas may be distributed to a space between the upper side of the discharge tube 162 and the first diffusion plate 130, and the process gas may be injected through the injection hole 131 of the first diffusion plate 130.
  • the antenna 161 may be provided to surround the discharge tube 162 in the chamber 110, and receive power from the power supply unit 163 to excite the process gas in the discharge tube 162 to form the plasma 164. can do.
  • the power may be applied to the provided electrode to form a plasma.
  • the substrate processing apparatus bypasses the process gas supply line 120 positioned in the center of the chamber 110 through the first diffusion plate 130 so that the process gas is uniformly injected through the injection hole 131. Can be.
  • the process gas may be widely spread in a space between the first diffusion plate 130 and the second diffusion plate 150, and only the neutral reactive species is disposed through the distribution holes 151 of the second diffusion plate 150. It can flow into (10) uniformly.
  • the substrate processing apparatus according to the present invention may uniformly perform substrate processing on the entire substrate 10.
  • Each of the first diffusion plate 130 and the second diffusion plate 150 affects the flow of gas (eg, process gas, plasma, reactive species, etc.), and as a result, the neutral reactive paper is disposed on the substrate 10. It can be distributed uniformly.
  • FIG. 2 is a plan view of a second diffusion plate according to an embodiment of the present invention
  • FIG. 3 is a perspective view of a side wall member according to an embodiment of the present invention
  • FIG. 4 is a second diffusion plate according to an embodiment of the present invention. A perspective view of the plate and the side wall member.
  • the substrate processing apparatus of the present invention may further include a sidewall member 170 connected to an edge of the second diffusion plate 150 and having a plurality of gas induction holes 171 formed therein.
  • the sidewall member 170 may be coupled to the second diffusion plate 150, and may provide a space for the neutral reactive species passing through the second diffusion plate 150 to react on the substrate 10. Without the side wall member 170, the reactive species is exhausted on the substrate 10 due to the exhaust by the exhaust means 210. However, if the side wall member 170 is included, it is possible to control the flow of the reactive species, thereby allowing the reactive species to sufficiently react on the substrate 10.
  • a plurality of gas induction holes 171 are formed in the side wall member 170.
  • the flow of the gas due to the suction (or pumping) of the exhaust means 210 can be adjusted according to the size, position and number of the gas induction hole 171, thereby controlling the flow of the reactive species. Accordingly, the flow of gas may be controlled in the formation space of the plasma 164.
  • gaseous processes eg, etching or deposition
  • by-products may be exhausted into the gas induction hole 171 by suction (or pumping) of the exhaust means 210.
  • the movement speed and the exhaust speed of the reaction species may be adjusted according to the size, position and number of the gas induction hole 171.
  • the reactive species reacts on the substrate 10 through the distribution holes 151 of the second diffusion plate 150, and reaches the substrate 10 through the gas induction hole 171 of the sidewall member 170.
  • the flow of the reactive species can be controlled. Accordingly, the moving speed of the reactive species may be adjusted, and the reactive species may be provided on the substrate 10 to sufficiently react on the substrate 10.
  • the second diffusion plate 150 and the side wall member 170 may be formed integrally.
  • FIG. 5 is a plan view of a second diffuser plate having a large distribution hole according to an embodiment of the present invention
  • FIG. 6 is a plan view of a second diffuser plate having a small distribution hole according to an embodiment of the present invention
  • FIG. 7. Is a plan view of a second diffusion plate in which a large distribution hole in a center portion and a small distribution hole in an edge portion are formed according to an embodiment of the present invention. 5 to 7 show a modification of the second diffusion plate according to an embodiment of the present invention.
  • the second diffusion plate 150 may have effective area densities of distribution holes 151 that are different for each location.
  • the effective area density represents the total area of the distribution holes 151 per unit area, that is, the open area per unit area of the second diffusion plate 150 (that is, the open area by the distribution holes).
  • a large distribution hole 151a may be formed in the second diffusion plate 150 as shown in FIG. 5. If the distribution hole 151a is too large, the flow of the reactive species is directed to the exhaust direction by the exhaust means 210. It may be biased so that the reactive species may not be uniformly distributed on the substrate 10.
  • a small distribution hole 151b may be formed in the second diffusion plate 150 as shown in FIG. 6.
  • the movement speed of the reactive species may be slowed, which may take a long time. Can be.
  • the exhaust means 210 provided at the position and the edge of the injection hole 131 of the first diffusion plate 130 formed at the edge. Due to the exhaust direction by the reaction species on the substrate 10 may be supplied to the edge portion of the substrate 10 more than the center portion of the substrate 10 may not be uniformly distributed. However, the reaction species may be uniformly distributed on the substrate 10 by changing the size of the distribution hole 151 or the density of the distribution hole 151 for each position.
  • the second diffusion plate 150 may have an effective area density of the distribution holes 151 that are different for each location by varying the size of the distribution holes 151 for each location or by varying the density of the distribution holes 151.
  • the distribution hole 151 located at the center of the second diffusion plate 150 may be larger than the distribution hole 151 located at the edge portion, or the size of the distribution hole 151 may be gradually increased depending on the distance from the center. You can change it.
  • the effective area density of the distribution hole 151 may be greater than that of the edge portion of the second diffusion plate 150.
  • the distribution hole 151a in the center portion may be larger than the distribution hole 151b in the edge portion, and the effective area density of the distribution hole 151 may be larger than the edge portion in the center portion.
  • the reactive species introduced into the center portion of the second diffusion plate 150 may be increased to uniformly distribute the reactive species on the substrate 10.
  • the injection hole 131 of the first diffusion plate 130 is located at the edge portion and the exhaust direction by the exhaust means 210 is also the edge direction, the flow of gas is biased to the edge.
  • the amount of the reactive species reaching the substrate 10 is small in the central portion of the second diffusion plate 150 so that the reaction does not occur in the central portion of the substrate 10.
  • the effective area density of the distribution hole 151a formed in the center portion of the second diffusion plate 150 is greater than the effective area density of the distribution hole 151b formed in the edge portion of the second diffusion plate 150, 2 may increase the flow rate of the reactive species flowing into the central portion of the diffusion plate 150. Accordingly, the reactive species may be uniformly distributed on the substrate 10.
  • FIG. 8 is a diagram illustrating an insert inserted into a distribution hole of a second diffusion plate according to an embodiment of the present invention.
  • the substrate processing apparatus of the present invention may further include an insert 220 inserted into the distribution hole 151 to adjust the open area of the second diffusion plate 150.
  • the insert 220 may be formed in a plug shape, and the insert 220a may be inserted into the distribution hole 151 to block the insert.
  • the arrangement structure of the distribution holes 151 may be easily changed only by inserting the insert 220a without having to re-form the second diffusion plate 150 to change the arrangement structure of the distribution holes 151. It is possible to have an effective area density of the distribution holes 151 different for each position. Accordingly, the insertion of the insert 220a can easily adjust the flow of the reactive species.
  • the insert 220b may include a through hole 221 through which a central portion thereof passes.
  • the size of the distribution hole 151 may be adjusted and the flow of the fine reactive species may be adjusted. Accordingly, the reaction species is more uniform on the substrate 10 by adjusting the size of the distribution hole 151 through the insertion of the insert 220b with a minute difference according to the process conditions such as the conditions of the chamber 110 and the pumping speed. Can be distributed.
  • the through hole 221 may be formed in various sizes, and through the through holes 221 of various sizes, a finer flow of the reactive species may be controlled.
  • the inserted insert 220a and the insert 220b having the through hole 221 formed therein may be used together, and in this case, the flow of the reactive species may be more precisely controlled.
  • FIG. 9 is a cross-sectional view illustrating a second diffusion plate having a multistage different position of a distribution hole according to an embodiment of the present invention
  • FIG. 10 is a second multistage of all different positions and sizes of a distribution hole according to an embodiment of the present invention. It is sectional drawing which showed the diffuser plate.
  • 9 to 10 are conceptual views for explaining the multi-stage structure of the second diffusion plate according to an embodiment of the present invention.
  • the second diffusion plate 150 may be formed in a plurality of multi-stage structures, and the distribution holes 151 of each stage may have different positions between adjacent stages.
  • the distribution holes 151 adjacent to each other may have different positions only as illustrated in FIG. 9, and both positions and sizes may be different from each other as illustrated in FIG. 10.
  • the plurality of second diffusion plates 150 may control the flow of the reactive species, and the amount of the reactive species that reaches the position of the substrate 10 and the moving (or inflow) speed of the reactive species are reached. I can regulate it.
  • the inflow rate of the reaction species is faster and the time that the reaction species can react on the substrate 10 is also shortened distribution holes 151
  • the difference in uniformity of substrate processing occurs at the formed position and the position where the distribution hole 151 is not formed. Accordingly, when the second diffusion plate 150 is formed in a plurality of multistage structures, even when the distance between the second diffusion plate 150 and the substrate 10 is close, a bottleneck is caused in the flow of the reactive species, thereby introducing the reactive species. By lowering the speed and efficiently distributing the reactive species, the reactive species may be uniformly distributed on the substrate 10.
  • the substrate processing apparatus of the present invention may further include a position adjusting unit (not shown) for adjusting a distance between the first diffusion plate 130 and the second diffusion plate 150.
  • the position adjusting unit may adjust a position of the second diffuser plate 150 to adjust a distance between the first diffuser plate 130 and the second diffuser plate 150. If the distance between the first diffusion plate 130 and the second diffusion plate 150 is adjusted, the space for forming the plasma 164 may be adjusted, and sufficient space may be provided to allow the process gas to be widely spread. In addition, the plasma 164 at the interval between the first diffusion plate 130 and the second diffusion plate 150 in which the process gas is uniformly distributed in the space between the first diffusion plate 130 and the second diffusion plate 150. ) Can be formed.
  • the distance between the substrate 10 and the second diffusion plate 150 may be adjusted by adjusting the position of the second diffusion plate 150.
  • the first diffusion plate 130 may be adjusted according to the position of the second diffusion plate 150.
  • the gap between the second diffusion plate 150 is also adjusted.
  • substrate processing such as etching may be more uniform, and substrate throughput (eg, etching rate) may be increased.
  • the selectivity eg, the etching ratio between the natural oxide film and the nitride film
  • the selectivity eg, the etching ratio between the natural oxide film and the nitride film
  • the second diffusion plate 150 may be formed in a multi-stage structure to bottleneck the flow of the reactive species, thereby obtaining a more uniform substrate treatment such as etching and deposition.
  • the film color is caused by inconsistent etching due to uneven surface of the substrate 10 or uneven thickness of the deposited thin film.
  • the diameter of the distribution hole 151 is smaller than 10 mm, the flow of the reactive species is reduced. It becomes uniform and can prevent the said film color.
  • the substrate processing apparatus of the present invention may be positioned to be symmetrical along the circumference of the substrate support 140 adjacent to the inner wall of the chamber 110, and may further include a plurality of exhaust ports 180 formed in multiple stages.
  • the exhaust port 180 may be formed in multiple stages, and the exhaust port plate 181 in which the plurality of exhaust ports 180 are formed to be symmetric along the circumference of the substrate support 140 may be configured in multiple stages.
  • the exhaust port 180 may maintain the degree of vacuum in the chamber 110 while controlling the flow of the reactive species uniformly throughout the substrate 10, and may allow the process byproduct to be exhausted.
  • the exhaust port plate 181 may be formed in an annular plate shape 181a, or may be bent on an annular plate to include sidewalls.
  • the length of the sidewall may be short (181b) or long (181c).
  • the side wall may induce an exhaust flow, which prevents the exhaust gas exhausted to the exhaust port 180 from leaking to another place and induces the exhaust flow so that the exhaust gas can be well exhausted to the exhaust means 210.
  • the uppermost exhaust port plate 181a may be connected to the sidewall member 170, and the exhaust port plate 181a and the sidewall member 170 are connected to each other to exhaust the exhaust gas to the gas induction hole 171.
  • the exhaust port 180 may be well exhausted without leaking out.
  • the substrate processing apparatus of the present invention may further include a blocking ring 190 extending from an edge of the substrate support 140 along the circumference of the substrate support 140.
  • the blocking ring 190 may guide the substrate 10 so that the substrate 10 can be stably supported by the substrate support 140 when the substrate 10 moves.
  • the blocking ring 190 reduces the gap between the substrate support 140 and the side wall member 170 to minimize the reaction species do not react on the substrate 10 due to the exhaust by the exhaust means 210 is exhausted Can be. That is, the reaction species react on the substrate 10 by passing through the distribution holes 151 of the second diffusion plate 150, and exhaust the exhaust species to the exhaust port 180 through the gas induction hole 171 of the sidewall member 170.
  • the flow of the reactive species can be controlled.
  • the exhaust gas exhausted to the exhaust port 180a may be minimized to leak to other places, and the exhaust flow may be induced to be well exhausted to the exhaust means 210.
  • the first diffusion plate 130 and the second diffusion plate 150 each influence the flow of gas (for example, process gas, plasma, reactive species, etc.), resulting in neutral
  • the reactive species may be uniformly distributed on the substrate 10.
  • more precise substrate processing may be performed through the sidewall member 170, the exhaust port 180, and the like.
  • the substrate processing apparatus of the present invention may perform substrate processing such as etching and deposition on the entire substrate 10 by adjusting the gas flow to various components, and more uniformly by changing the structure of the components.
  • One substrate treatment can be performed.
  • the substrate processing apparatus may achieve a uniform distribution of the plasma by using the first diffusion plate for distributing the process gas and the second diffusion plate for distributing the plasma. Accordingly, substrate processing such as etching and deposition can be uniformly performed on the entire substrate.
  • substrate processing such as etching and deposition can be uniformly performed on the entire substrate.
  • the substrate may not be directly exposed to the plasma through the second diffusion plate, thereby causing damage to the substrate and the circuit elements formed on the substrate due to arc generation, collision of ions, and ion implantation in the chamber. It can solve the problem that caused it. Accordingly, process defects of the substrate and the circuit elements formed on the substrate may be minimized.
  • the second diffusion plate By grounding the second diffusion plate and filtering the charged ions and electrons in the plasma, only neutral reactive species can be introduced onto the substrate, thereby minimizing the adverse effects of the charged ions and electrons on the substrate and around the substrate. have. In addition, it is possible to prevent the substrate and the surroundings of the substrate from being damaged by the plasma. Meanwhile, the effective area density of the distribution hole can be easily adjusted by using an insert inserted into the distribution hole of the second diffusion plate. This makes it possible to achieve a uniform distribution of neutral reactive species simply even if the process conditions are different.
  • the second diffusion plate may be formed in a multistage structure to control the flow of the neutral reactive species.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

본 발명은 기판 처리 공간을 제공하는 챔버; 상기 챔버로 공정가스를 공급하는 공정가스 공급라인; 가장자리부에 상기 공정가스가 분사되는 분사홀이 형성된 제1 확산판; 상기 제1 확산판에 대향되어 위치하고, 기판을 지지하는 기판 지지대; 상기 제1 확산판과 상기 기판 지지대의 사이에 제공되고, 복수의 분배홀이 형성된 제2 확산판; 및 상기 제1 확산판과 상기 제2 확산판의 사이 공간에 플라즈마를 형성하는 플라즈마 발생부를 포함하는 기판 처리 장치가 제시된다.

Description

기판 처리 장치
본 발명은 기판 처리 장치에 관한 것으로서, 보다 상세하게는 기판 처리의 균일도를 향상시킬 수 있는 기판 처리 장치에 관한 것이다.
기판 처리 장치는 진공상태에서 플라즈마 현상 등 물리적 또는 화학적 반응을 이용하여 기판을 식각하거나 증착하는 등 기판 처리를 수행하는 장치이다. 일반적으로 기판 처리 장치에 의한 기판 처리 공정은 기판 처리를 수행하기 위해 챔버 내에 설치된 샤워헤드를 통하여 반응가스가 주입된다. 그리고 주입된 반응가스는 전원 인가에 의하여 챔버 내에 플라즈마를 형성하게 되고, 챔버 내에 형성된 래디칼(radical) 등의 플라즈마 상태 물질에 의하여 기판의 표면에서 기판 처리의 목적에 따라 식각되거나 증착되는 등의 기판 처리가 수행된다.
그러나, 종래의 기판 처리 장치는 기판 처리를 수행하기 위하여 플라즈마가 형성될 때, 챔버 내의 아크(Arc) 발생, 이온의 충돌, 이온주입 등에 의하여 기판 및 기판에 형성된 회로소자에 손상을 초래하여 공정불량을 야기할 수 있다는 문제점이 있다.
또한, 종래의 기판 처리 장치는 반응가스를 분배하는 샤워헤드만으로 반응가스 플라즈마의 균일한 이동 및 분포가 이루어질 수 없어 반응가스 플라즈마가 기판 전체에 균일하게 분포되지 못하고 한 곳에 편중됨으로써 기판에 증착되거나 식각되는 막이 균일한 두께를 가질 수 없게 된다.
(특허문헌 1) 한국등록특허 제10-0880767호
본 발명은 플라즈마를 기판 전체에 균일하게 분배하여 기판 처리의 균일도를 향상시킬 수 있는 기판 처리 장치를 제공한다.
본 발명의 일실시예에 따른 기판 처리 장치는 기판 처리 공간을 제공하는 챔버; 상기 챔버로 공정가스를 공급하는 공정가스 공급라인; 가장자리부에 상기 공정가스가 분사되는 분사홀이 형성된 제1 확산판; 상기 제1 확산판에 대향되어 위치하고, 기판을 지지하는 기판 지지대; 상기 제1 확산판과 상기 기판 지지대의 사이에 제공되고, 복수의 분배홀이 형성된 제2 확산판; 및 상기 제1 확산판과 상기 제2 확산판의 사이 공간에 플라즈마를 형성하는 플라즈마 발생부를 포함할 수 있다.
상기 제2 확산판의 가장자리와 연결되고, 복수의 가스유도홀이 형성된 측벽부재를 더 포함할 수 있다.
상기 제2 확산판은 위치별로 상이한 상기 분배홀의 유효 면적 밀도를 가질 수 있다.
상기 제2 확산판은 중앙부가 가장자리부보다 상기 분배홀의 유효 면적 밀도가 클 수 있다.
상기 분배홀에 삽입하여 상기 제2 확산판의 개방 면적을 조절하는 삽입체를 더 포함할 수 있다.
상기 삽입체는 중심부가 관통된 관통홀을 포함할 수 있다.
상기 제2 확산판은 복수의 다단 구조로 형성되고, 각 단의 상기 분배홀은 서로 인접한 단 간에 위치가 상이할 수 있다.
상기 제1 확산판과 상기 제2 확산판의 간격을 조절하는 위치조정부를 더 포함할 수 있다.
상기 챔버의 내벽에 인접하여 상기 기판 지지대의 둘레를 따라 대칭되도록 위치하고, 다단으로 이루어진 복수의 배기 포트를 더 포함할 수 있다.
상기 기판 지지대의 둘레를 따라 상기 기판 지지대의 가장자리부로부터 연장되는 차단링을 더 포함할 수 있다.
본 발명의 일실시예에 따른 기판 처리 장치는 공정가스를 분배하는 제1 확산판과 플라즈마를 분배하는 제2 확산판을 사용하여 플라즈마의 균일한 분포를 이룰 수 있다. 이에 따라 식각, 증착 등의 기판 처리를 기판 전체에 균일하게 수행할 수 있다.
또한, 플라즈마의 형성시에 제2 확산판을 통해 기판이 플라즈마에 직접 노출되지 않도록 할 수 있어 챔버 내의 아크(Arc) 발생, 이온의 충돌, 이온주입 등에 의하여 기판 및 기판에 형성된 회로소자에 손상을 초래하던 문제를 해결할 수 있다. 이에 따라 기판 및 기판에 형성된 회로소자의 공정불량을 최소화할 수도 있다. 그리고 제2 확산판을 접지하여 플라즈마에서 전하를 띤 이온 및 전자를 필터링함으로써 중성의 반응종만이 기판 상으로 유입되게 할 수 있어 전하를 띤 이온과 전자가 기판 및 기판 주변에 미치는 악영향을 최소화할 수 있다. 또한, 플라즈마에 의해 기판 및 기판 주변이 손상되지 않도록 할 수 있다.
한편, 제2 확산판의 분배홀에 삽입되는 삽입체를 이용하여 분배홀의 유효 면적 밀도를 간단하게 조절할 수 있다. 이로 인해 공정 조건이 달라지더라도 간단하게 중성의 반응종(또는 플라즈마)의 균일한 분포를 이룰 수 있다. 그리고 제2 확산판을 다단 구조로 형성하여 중성의 반응종(또는 플라즈마)의 흐름을 제어할 수도 있다.
도 1은 본 발명의 일실시예에 따른 기판 처리 장치를 나타낸 단면도.
도 2는 본 발명의 일실시예에 따른 제2 확산판의 평면도.
도 3은 본 발명의 일실시예에 따른 측벽부재의 사시도.
도 4는 본 발명의 일실시예에 따른 제2 확산판과 측벽부재의 결합 사시도.
도 5는 본 발명의 일실시예에 따른 큰 분배홀이 형성된 제2 확산판의 평면도.
도 6은 본 발명의 일실시예에 따른 작은 분배홀이 형성된 제2 확산판의 평면도.
도 7은 본 발명의 일실시예에 따른 중앙부의 큰 분배홀과 가장자리부의 작은 분배홀이 형성된 제2 확산판의 평면도.
도 8은 본 발명의 일실시예에 따른 제2 확산판의 분배홀에 삽입되는 삽입체를 나타내는 그림.
도 9는 본 발명의 일실시예에 따른 분배홀의 위치만 다른 다단의 제2 확산판을 나타낸 단면도.
도 10은 본 발명의 일실시예에 따른 분배홀의 위치와 크기가 모두 다른 다단의 제2 확산판을 나타낸 단면도.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 일실시예에 따른 기판 처리 장치를 나타낸 단면도이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 기판 처리 장치는 기판 처리 공간을 제공하는 챔버(110); 상기 챔버(110)로 공정가스를 공급하는 공정가스 공급라인(120); 가장자리부에 상기 공정가스가 분사되는 분사홀(131)이 형성된 제1 확산판(130); 상기 제1 확산판(130)에 대향되어 위치하고, 기판(10)을 지지하는 기판 지지대(140); 상기 제1 확산판(130)과 상기 기판 지지대(140)의 사이에 제공되고, 복수의 분배홀(151)이 형성된 제2 확산판(150); 및 상기 제1 확산판(130)과 상기 제2 확산판(150)의 사이 공간에 플라즈마(164)를 형성하는 플라즈마 발생부(160)를 포함할 수 있다.
챔버(110)는 기판 처리가 수행되는 공간을 제공하며, 챔버(110) 내부에 진공이 형성되도록 할 수 있고, 효과적인 기판 처리를 위해 챔버(110) 내부에 플라즈마를 형성할 수 있다. 그리고 챔버(110)는 가스의 배기를 위한 배기수단(210)을 포함할 수 있는데, 예를 들어 챔버(110)의 하측에 배기수단(210)이 형성될 수 있다. 또한, 챔버(110)는 금속, 세라믹, 유리, 폴리머 및 합성물을 포함하는 다양한 재료로 제조될 수 있고, 챔버(110)의 형상은 직각형, 돔형, 실린더형 등을 포함할 수 있다.
공정가스 공급라인(120)은 공정가스 공급원(미도시)으로부터 챔버(110)로 공정가스를 공급한다. 상기 공정가스는 식각가스와 박막 증착용 원료가스 등을 포함할 수 있다. 여기서, 공정가스 공급라인(120)은 식각 공정시에는 식각가스를 공급하고, 박막 증착 공정시에는 박막 증착용 원료가스를 공급할 수 있으며, 기판 처리의 목적에 따라 알맞은 공정가스를 공급할 수 있다. 상기 식각가스는 삼불화질소(NF3), 암모니아(NH3) 등의 자연 산화막 식각가스를 포함할 수 있고, 상기 박막 증착용 원료가스는 모노실란(SiH4), 포스핀(PH3) 등의 실리콘 증착 가스를 포함할 수 있는데, 증착 박막의 종류에 따라 알맞게 선택될 수 있다. 또한, 상기 공정가스로 상기 식각가스 또는 상기 박막 증착용 원료가스와 함께 수소(H2), 질소(N2), 아르곤(Ar) 등의 불활성 가스가 공급될 수도 있다.
제1 확산판(130)은 상기 공정가스를 분배하는데, 가장자리부에 상기 공정가스가 분사되는 분사홀(131)이 형성될 수 있다. 이러한 제1 확산판(130)을 통하여 상기 공정가스가 분배되어 분사되므로 기판(10) 상에 균일하게 상기 공정가스가 도달할 수 있다. 상기 공정가스의 균일한 분배를 위해 공정가스 공급라인(120)이 챔버(110)의 중앙부에 위치할 수 있다. 이러한 경우, 분사홀(131)이 중앙부에 위치하게 되면 공정가스 공급라인(120)과 연통되는 중앙부에서 다른 부분보다 상기 공정가스가 많이 분사되어 기판(10) 상에 도달하는 상기 공정가스가 위치에 따라 불균일해지고 상기 공정가스에 의한 기판 처리도 위치에 따라 불균일해진다. 하지만, 본 발명의 일실시예와 같이 가장자리부에 분사홀(131)이 형성되면, 공정가스 공급라인(120)과 연통되지 않고 상기 공정가스가 우회되어 가장자리로 균일하게 분배된 후에 분사되므로 기판(10) 상에 균일하게 상기 공정가스가 도달할 수 있다. 한편, 분사홀(131)의 정확한 위치, 분사 방향, 개수 등은 공정 조건에 따라 챔버(110) 내에 균일한 상기 공정가스의 흐름을 만들 수 있도록 알맞게 정해질 수 있다.
기판 지지대(140)는 제1 확산판(130)에 대향되어 위치하고, 기판(10)을 지지한다. 기판 지지대(140)는 기판(10)을 지지하기 위해 챔버(110)의 내측 하부에 배치될 수 있고, 기판(10)이 기판 지지대(140) 상에 지지되며, 기판(10)이 정전기적으로 유지될 수 있도록 대전가능한 정전척 등을 포함할 수 있다.
제2 확산판(150)은 제1 확산판(130)과 기판 지지대(140)의 사이에 제공될 수 있고, 복수의 분배홀(151)이 형성될 수 있다. 제1 확산판(130)만 사용하여도 챔버(110) 내에 균일한 상기 공정가스의 흐름을 만들 수는 있다. 그러나 제1 확산판(130)만 사용하게 되면, 제1 확산판(130)과 기판(10) 사이의 거리로 인하여 상기 공정가스(또는 플라즈마)의 흐름이 배기수단(210)에 의한 배기 방향으로 편중되어 기판(10) 상에 상기 공정가스(또는 플라즈마)의 균일한 분포를 이룰 수는 없다. 하지만, 제2 확산판(150)을 함께 사용하면, 상기 공정가스(또는 플라즈마)의 흐름을 제어할 수 있어 기판(10) 상에 상기 공정가스(또는 플라즈마)의 균일한 분포를 이룰 수 있다.
그리고 제2 확산판(150)은 접지되거나 전압이 인가되어 플라즈마에서 전하를 띤 이온 및 전자를 필터링할 수 있다. 즉, 상기 플라즈마가 제2 확산판(150)을 거치게 되면, 이온 및 전자가 차단되어 중성의 반응종만이 기판(10) 상에서 반응되도록 할 수 있다. 제2 확산판(150)은 상기 플라즈마가 적어도 한번 제2 확산판(150)에 부딪힌 다음, 기판(10) 상에 도달하도록 할 수 있다. 그리고 상기 플라즈마가 접지(또는 다른 극성의 전압이 인가)된 제2 확산판(150)에 부딪힐 경우, 에너지가 큰 이온 및 전자가 제2 확산판(150)에 흡수될 수도 있다. 이에 따라 전하를 띤 이온과 전자가 기판(10) 및 기판(10) 주변에 미치는 악영향을 최소화할 수 있다. 그리고 오직 중성의 반응종에만 기판(10) 또는 기판(10) 상의 박막이 반응함으로 인해 본 발명에 따른 기판 처리 장치를 장기적으로 사용하여도 챔버(110) 내부의 주변 파트 사용이 가능하며, 기판(10)의 표면에도 손상이 없을 수 있다. 한편, 제2 확산판(150)은 상기 플라즈마의 빛도 차단할 수 있는데, 상기 플라즈마의 빛이 제2 확산판(150)에 부딪히게 되어 투과하지 못하게 될 수 있다. 그리고 제2 확산판(150)은 2차 전극을 가하지 않고, 챔버(110)와 접촉을 통하여 접지될 수도 있다.
또한, 제2 확산판(150)은 플라즈마의 형성시에 기판(10)이 플라즈마에 직접 노출되지 않도록 할 수 있어 챔버(110) 내의 아크(Arc) 발생, 이온의 충돌, 이온주입 등에 의하여 기판(10) 및 기판(10)에 형성된 회로소자에 손상을 초래하던 문제를 해결할 수도 있다. 이에 따라 기판 처리 공정에 따른 기판(10) 및 기판(10)에 형성된 회로소자의 공정불량을 최소화할 수도 있다.
플라즈마 발생부(160)는 제1 확산판(130)과 제2 확산판(150)의 사이 공간에 플라즈마(164)를 형성할 수 있다. 플라즈마 발생부(160)는 상기 공정가스를 여기시켜 플라즈마(164)를 형성하는데, 방전관(162)과 방전관(162)을 감싸도록 마련된 안테나(161, 또는 유도결합코일)을 포함할 수 있다. 방전관(162)은 사파이어, 퀄츠, 세라믹 등의 재질로 제작될 수 있으며, 소정의 돔(또는 통) 형상으로 형성될 수 있다. 방전관(162)은 챔버(110)의 내부 상측에 제공될 수 있는데, 상측은 공정가스 공급라인(120)과 연결될 수 있고, 하측은 제2 확산판(150)과 플라즈마(164)의 형성 공간(즉, 제1 확산판과 제2 확산판의 사이 공간)을 마련할 수 있다. 여기서, 방전관(162)의 상측과 제1 확산판(130)의 사이 공간으로 상기 공정가스가 분배되어 제1 확산판(130)의 분사홀(131)을 통해 상기 공정가스가 분사될 수 있다. 안테나(161)는 챔버(110)의 내부에서 방전관(162)을 감싸도록 제공될 수 있고, 전원부(163)로부터 전원을 공급받아 방전관(162) 내의 상기 공정가스를 여기시켜 플라즈마(164)를 형성할 수 있다. 한편, 챔버(110)의 내부 공간에 전극을 제공한 후, 제공된 전극에 전원을 인가하여 플라즈마를 형성할 수도 있다.
본 발명에 따른 기판 처리 장치는 제1 확산판(130)을 통해 챔버(110)의 중앙부에 위치한 공정가스 공급라인(120)을 우회하여 분사홀(131)을 통해 상기 공정가스가 균일하게 분사될 수 있다. 그리고 제1 확산판(130)과 제2 확산판(150)의 사이 공간에서 상기 공정가스가 넓게 퍼질 수 있으며, 제2 확산판(150)의 분배홀(151)을 통해 중성의 반응종만을 기판(10) 상에 균일하게 유입시킬 수 있다. 이에 본 발명에 따른 기판 처리 장치는 기판(10) 전체에 균일하게 기판 처리를 수행할 수 있다. 제1 확산판(130)과 제2 확산판(150)은 각각 가스(예를 들어, 공정가스, 플라즈마, 반응종 등)의 흐름에 영향을 미쳐 결과적으로 중성의 반응종이 기판(10) 상에 균일하게 분포하도록 할 수 있다.
도 2는 본 발명의 일실시예에 따른 제2 확산판의 평면도이고, 도 3은 본 발명의 일실시예에 따른 측벽부재의 사시도이며, 도 4는 본 발명의 일실시예에 따른 제2 확산판과 측벽부재의 결합 사시도이다.
도 2 내지 도 4를 참조하면, 본 발명의 기판 처리 장치는 제2 확산판(150)의 가장자리와 연결되고, 복수의 가스유도홀(171)이 형성된 측벽부재(170)를 더 포함할 수 있다. 측벽부재(170)는 제2 확산판(150)과 결합될 수 있고, 제2 확산판(150)을 통과한 중성의 반응종이 기판(10) 상에서 반응할 수 있는 공간을 제공할 수 있다. 측벽부재(170)가 없으면, 배기수단(210)에 의한 배기로 인해 상기 반응종이 기판(10) 상에서 충분히 반응하지 못하고 배기되어 버린다. 하지만, 측벽부재(170)를 포함하면, 상기 반응종의 흐름을 제어할 수 있고, 이를 통해 상기 반응종이 기판(10) 상에서 충분히 반응하도록 할 수 있다. 측벽부재(170)에는 복수의 가스유도홀(171)이 형성되어 있다. 이를 통해 배기수단(210)의 흡입(또는 펌핑)으로 인한 가스의 흐름을 가스유도홀(171)의 크기, 위치 및 개수에 따라 조절할 수 있고, 이로 인해 상기 반응종의 흐름을 제어할 수 있다. 이에 따라 플라즈마(164)의 형성 공간에도 가스의 흐름이 조절될 수 있다. 그리고 배기수단(210)의 흡입(또는 펌핑)으로 가스 상태의 공정(예를 들어, 식각 또는 증착) 부산물이 가스유도홀(171)로 배기될 수 있다. 또한, 가스유도홀(171)의 크기, 위치 및 개수에 따라 상기 반응종의 이동 속도 및 배기 속도를 조절할 수도 있다. 상기 반응종은 제2 확산판(150)의 분배홀(151)을 통과하여 기판(10) 상에서 반응하는데, 측벽부재(170)의 가스유도홀(171)을 통해 기판(10) 상에 도달한 상기 반응종의 흐름을 제어할 수 있다. 이에 상기 반응종의 이동 속도를 조절할 수도 있고, 상기 반응종이 기판(10) 상에 머물러 기판(10) 상에서 충분히 반응할 수 있는 시간을 제공할 수 있다. 한편, 제2 확산판(150)과 측벽부재(170)는 일체형으로 형성될 수도 있다.
도 5는 본 발명의 일실시예에 따른 큰 분배홀이 형성된 제2 확산판의 평면도이고, 도 6은 본 발명의 일실시예에 따른 작은 분배홀이 형성된 제2 확산판의 평면도이며, 도 7은 본 발명의 일실시예에 따른 중앙부의 큰 분배홀과 가장자리부의 작은 분배홀이 형성된 제2 확산판의 평면도이다. 도 5 내지 도 7은 본 발명의 일실시예에 따른 제2 확산판의 변형예를 나타낸다.
도 5 내지 도 7을 참조하면, 제2 확산판(150)은 위치별로 상이한 분배홀(151)의 유효 면적 밀도를 가질 수 있다. 여기서, 유효 면적 밀도는 단위 면적당 분배홀(151)의 총 면적으로, 다시 말해 제2 확산판(150)의 단위 면적당 개방 면적(즉, 분배홀에 의한 개방 면적)을 나타낸다. 제2 확산판(150)에 전체적으로 도 5와 같이 큰 분배홀(151a)을 형성할 수 있는데, 분배홀(151a)이 너무 크면, 상기 반응종의 흐름이 배기수단(210)에 의한 배기 방향으로 편중되어 기판(10) 상에 상기 반응종이 균일하게 분포하지 못하게 될 수 있다. 그리고 제2 확산판(150)에 전체적으로 도 6과 같이 작은 분배홀(151b)을 형성할 수 있는데, 분배홀(151b)이 너무 작으면, 상기 반응종의 이동 속도가 느려져 공정 시간이 오래 걸리게 될 수 있다. 또한, 제2 확산판(150)에 전체적으로 동일한 크기의 분배홀(151)이 형성되면, 가장자리에 형성된 제1 확산판(130)의 분사홀(131)의 위치와 가장자리에 제공된 배기수단(210)에 의한 배기 방향으로 인해 기판(10) 상에 상기 반응종이 기판(10)의 중앙부보다 기판(10)의 가장자리부에 더 많이 공급되어 균일하게 분포하지 못하게 될 수 있다. 그러나 위치별로 분배홀(151)의 크기를 다르게 하거나 분배홀(151)의 밀도를 다르게 하여 기판(10) 상에 상기 반응종이 균일하게 분포하도록 할 수 있다. 따라서, 제2 확산판(150)은 위치별로 분배홀(151)의 크기를 다르게 하거나 분배홀(151)의 밀도를 다르게 하여 위치별로 상이한 분배홀(151)의 유효 면적 밀도를 가질 수 있다. 예를 들어, 제2 확산판(150)의 중앙부에 위치한 분배홀(151)을 가장자리부에 위치한 분배홀(151)보다 더 크게 하거나 분배홀(151)의 크기를 중심과의 거리에 따라 점진적으로 변화시킬 수도 있다.
한편, 제2 확산판(150)은 중앙부가 가장자리부보다 분배홀(151)의 유효 면적 밀도가 클 수 있다. 예를 들어, 도 7과 같이 중앙부의 분배홀(151a)을 가장자리부의 분배홀(151b)보다 크게 하여 중앙부가 가장자리부보다 분배홀(151)의 유효 면적 밀도가 크게 할 수 있다. 이러한 경우, 제2 확산판(150)의 중앙부로 유입되는 상기 반응종을 증가시킬 수 있어 기판(10) 상에 상기 반응종이 균일하게 분포하도록 할 수 있다. 일반적으로, 제1 확산판(130)의 분사홀(131)이 가장자리부에 위치하고 배기수단(210)에 의한 배기 방향도 가장자리 방향이기 때문에 가스의 흐름이 가장자리로 편중되게 된다. 이에 따라 제2 확산판(150)의 중앙부에서는 상기 반응종이 기판(10) 상에 도달하는 양이 작아 기판(10)의 중앙부에서 반응이 잘 일어나지 않게 된다. 이러한 이유로, 제2 확산판(150)의 중앙부에 형성된 분배홀(151a)의 유효 면적 밀도를 제2 확산판(150)의 가장자리부에 형성된 분배홀(151b)의 유효 면적 밀도보다 크게 하면, 제2 확산판(150)의 중앙부로 유입되는 상기 반응종의 유입량을 늘릴 수 있다. 이에 따라 기판(10) 상에 상기 반응종이 균일하게 분포하도록 할 수 있다.
도 8은 본 발명의 일실시예에 따른 제2 확산판의 분배홀에 삽입되는 삽입체를 나타내는 그림이다.
도 8을 참조하면, 본 발명의 기판 처리 장치는 분배홀(151)에 삽입하여 제2 확산판(150)의 개방 면적을 조절하는 삽입체(220)를 더 포함할 수 있다. 삽입체(220)는 마개 형상으로 형성될 수 있는데, 삽입체(220a)를 분배홀(151)에 삽입하여 막음 처리할 수 있다. 이러한 경우, 분배홀(151) 배치 구조의 변화를 위해 제2 확산판(150)을 다시 형성할 필요없이 삽입체(220a)의 삽입만으로도 쉽게 분배홀(151)의 배치 구조를 변화시킬 수 있고, 위치별로 상이한 분배홀(151)의 유효 면적 밀도를 갖게 할 수 있다. 이에 따라 삽입체(220a)의 삽입으로 간단하게 상기 반응종의 흐름을 조절할 수 있다.
삽입체(220b)는 중심부가 관통된 관통홀(221)을 포함할 수 있다. 관통홀(221)이 형성된 삽입체(220b)를 분배홀(151)에 삽입하면, 분배홀(151)의 크기를 조절할 수 있고, 미세한 상기 반응종의 흐름을 조절할 수도 있다. 이를 통해 챔버(110)의 조건 및 펌핑 스피드 등의 공정 조건에 따른 미세한 차이를 삽입체(220b)의 삽입을 통해 분배홀(151)의 크기를 조절함으로써 기판(10) 상에 상기 반응종이 더욱 균일하게 분포하도록 할 수 있다. 그리고 관통홀(221)은 다양한 크기로 형성될 수 있고, 다양한 크기의 관통홀(221)을 통해 더욱 미세한 상기 반응종의 흐름을 조절할 수 있다.
한편, 막혀 있는 삽입체(220a)와 관통홀(221)이 형성된 삽입체(220b)를 함께 사용할 수 있고, 이러한 경우에 더욱 정밀하게 상기 반응종의 흐름을 조절할 수 있다.
도 9는 본 발명의 일실시예에 따른 분배홀의 위치만 다른 다단의 제2 확산판을 나타낸 단면도이고, 도 10은 본 발명의 일실시예에 따른 분배홀의 위치와 크기가 모두 다른 다단의 제2 확산판을 나타낸 단면도이다. 도 9 내지 도 10은 본 발명의 일실시예에 따른 제2 확산판의 다단 구조를 설명하기 위한 개념도이다.
도 9 내지 도 10을 참조하면, 제2 확산판(150)은 복수의 다단 구조로 형성될 수 있고, 각 단의 분배홀(151)은 서로 인접한 단 간에 위치가 상이할 수 있다. 서로 인접한 단의 분배홀(151)은 도 9와 같이 위치만 서로 다를 수 있고, 도 10과 같이 위치와 크기 모두 서로 다를 수 있으며, 위치는 같고 크기만 서로 다를 수도 있다. 이러한 경우, 복수의 제2 확산판(150)으로 상기 반응종의 흐름을 제어할 수 있는데, 기판(10)의 위치에 따라 도달하는 상기 반응종의 양과 상기 반응종의 이동(또는 유입) 속도를 조절할 수 있다. 한편, 제2 확산판(150)과 기판(10) 사이의 거리가 가까울 경우, 상기 반응종의 유입 속도가 빨라지고 상기 반응종이 기판(10) 상에서 반응할 수 있는 시간도 짧아져 분배홀(151)이 형성된 위치와 분배홀(151)이 형성되지 않은 위치에서의 기판 처리의 균일도 차이가 발생하게 된다. 이에 제2 확산판(150)을 복수의 다단 구조로 형성하면, 제2 확산판(150)과 기판(10) 사이의 거리가 가까울 경우에도 상기 반응종의 흐름에 병목을 주어 상기 반응종의 유입 속도를 낮추고 상기 반응종을 효율적으로 분배함으로써 상기 반응종이 기판(10) 상에 균일하게 분포하도록 할 수 있다.
본 발명의 기판 처리 장치는 제1 확산판(130)과 제2 확산판(150)의 간격을 조절하는 위치조정부(미도시)를 더 포함할 수 있다. 상기 위치조정부는 제2 확산판(150)의 위치를 조정하여 제1 확산판(130)과 제2 확산판(150)의 간격을 조절할 수 있다. 제1 확산판(130)과 제2 확산판(150)의 간격을 조절하면, 플라즈마(164)의 형성 공간을 조절할 수 있고, 상기 공정가스가 넓게 퍼질 수 있는 충분한 공간을 제공할 수 있다. 그리고 제1 확산판(130)과 제2 확산판(150)의 사이 공간에 상기 공정가스가 균일하게 분포되는 제1 확산판(130)과 제2 확산판(150)의 간격일 때에 플라즈마(164)를 형성할 수 있다. 그리고 제2 확산판(150)의 위치를 조정하여 기판(10)과 제2 확산판(150)의 간격을 조절할 수도 있는데, 제2 확산판(150)의 위치에 따라 제1 확산판(130)과 제2 확산판(150)의 간격도 조절된다. 기판(10)과 제2 확산판(150)의 간격이 좁을수록 식각 등의 기판 처리가 보다 균일해지고, 기판 처리율(예를 들어, 식각율)이 보다 증가될 수 있다. 그리고 식각 공정에서는 선택비(예를 들어, 자연 산화막과 질화막의 식각비율)도 보다 증가할 수 있다. 한편, 기판(10)과 제2 확산판(150)의 간격이 약 50 ㎜ 이하일 경우, 분배홀(151)의 직경이 10 ㎜ 이상일 때에는 기판(10) 표면을 식각한 후에 기판(10) 표면에 박막을 증착하게 되면, 제2 확산판(150)의 분배홀(151) 배치 형상으로 필름 칼라가 보이는 문제가 생긴다. 그러나 기판(10)과 제2 확산판(150)의 간격이 약 50 ㎜ 이하에서는 분배홀(151)의 직경을 10 ㎜보다 작게 하여 이러한 문제를 해결할 수 있다. 이때, 제2 확산판(150)을 다단 구조로 형성하여 상기 반응종의 흐름에 병목을 줌으로써 더욱 균일한 식각, 증착 등의 기판 처리를 얻어낼 수도 있다. 상기 필름 칼라는 식각이 균일하지 못하여 기판(10) 표면이 평탄하지 않거나 증착되는 박막의 두께가 균일하지 않아 발생하는 것으로, 분배홀(151)의 직경이 10 ㎜보다 작게 되면 상기 반응종의 흐름이 균일해져서 상기 필름 칼라를 방지할 수 있다.
본 발명의 기판 처리 장치는 챔버(110)의 내벽에 인접하여 기판 지지대(140)의 둘레를 따라 대칭되도록 위치하고, 다단으로 이루어진 복수의 배기 포트(180)를 더 포함할 수 있다. 배기 포트(180)는 다단으로 이루어질 수 있는데, 기판 지지대(140)의 둘레를 따라 대칭되도록 복수의 배기 포트(180)가 형성된 배기포트판(181)이 다단으로 구성되어 이루어질 수 있다. 각 단의 배기 포트(180)의 크기 및 모양을 변화하여 가스의 흐름을 조절할 수 있고, 기판(10) 상에 상기 반응종이 균일하게 분포하도록 할 수 있다. 이러한 배기 포트(180)로 인해 챔버(110) 내에 진공도를 유지할 수 있으면서도 상기 반응종의 흐름이 기판(10) 전체에 균일하도록 조절할 수 있고, 상기 공정 부산물이 배기되게 할 수도 있다. 배기포트판(181)은 고리 모양의 판상(181a)으로 형성될 수도 있고, 고리 모양의 판상에서 절곡되어 측벽을 포함할 수도 있다. 상기 측벽의 길이는 짧을 수도 있고(181b), 길 수도 있다(181c). 상기 측벽은 배기 흐름을 유도할 수 있는데, 배기 포트(180)로 배기되는 배기 가스가 다른 곳으로 새어 나가지 못하게 하고, 배기수단(210)으로 잘 배기될 수 있도록 배기 흐름을 유도할 수 있다. 한편, 최상단의 배기포트판(181a)은 측벽부재(170)와 연결될 수도 있는데, 배기포트판(181a)과 측벽부재(170)가 연결되어 가스유도홀(171)로 배기되는 배기 가스가 다른 곳으로 새어 나가지 않고 배기 포트(180)로 잘 배기되도록 할 수 있다.
본 발명의 기판 처리 장치는 기판 지지대(140)의 둘레를 따라 기판 지지대(140)의 가장자리부로부터 연장되는 차단링(190)을 더 포함할 수 있다. 차단링(190)은 기판(10)이 이동시에 안정적으로 기판 지지대(140)에 지지될 수 있도록 기판(10)을 가이드할 수 있다. 그리고 차단링(190)은 기판 지지대(140)와 측벽부재(170) 사이의 틈을 줄여주어 배기수단(210)에 의한 배기로 인해 상기 반응종이 기판(10) 상에서 반응하지 못하고 배기되는 것을 최소화할 수 있다. 즉, 상기 반응종이 제2 확산판(150)의 분배홀(151)을 통과하여 기판(10) 상에서 반응하고, 측벽부재(170)의 가스유도홀(171)을 통해 배기 포트(180)로 배기될 수 있도록 상기 반응종의 흐름을 제어할 수 있다. 또한, 배기포트판(181a)의 측벽 역할을 대신하여 배기 포트(180a)로 배기되는 배기 가스가 다른 곳으로 새어 나가는 것을 최소화하고, 배기수단(210)으로 잘 배기될 수 있도록 배기 흐름을 유도할 수 있다. 즉, 식각, 증착 등의 공정 부산물을 포함하는 배기 가스의 배기경로를 측벽부재(170)의 가스유도홀(171)을 통과하여 배기 포트(180)를 통해 배기수단(210)으로 배기 가스가 배기될 수 있도록 유도할 수 있다.
본 발명에 따른 기판 처리 장치는 제1 확산판(130)과 제2 확산판(150)은 각각 가스(예를 들어, 공정가스, 플라즈마, 반응종 등)의 흐름에 영향을 미쳐 결과적으로 중성의 반응종이 기판(10) 상에 균일하게 분포하도록 할 수 있다. 그리고 측벽부재(170), 배기 포트(180) 등을 통하여 더욱 정밀한 기판 처리를 수행할 수 있다. 이와 같이, 본 발명의 기판 처리 장치는 여러 구성 요소들로 가스 흐름을 조절하여 기판(10) 전체에 균일하게 식각, 증착 등의 기판 처리를 수행할 수 있고, 구성 요소들의 구조 변화를 통해 더욱 균일한 기판 처리를 수행할 수 있다.
이처럼, 본 발명의 일실시예에 따른 기판 처리 장치는 공정가스를 분배하는 제1 확산판과 플라즈마를 분배하는 제2 확산판을 사용하여 플라즈마의 균일한 분포를 이룰 수 있다. 이에 따라 식각, 증착 등의 기판 처리를 기판 전체에 균일하게 수행할 수 있다. 또한, 플라즈마의 형성시에 제2 확산판을 통해 기판이 플라즈마에 직접 노출되지 않도록 할 수 있어 챔버 내의 아크(Arc) 발생, 이온의 충돌, 이온주입 등에 의하여 기판 및 기판에 형성된 회로소자에 손상을 초래하던 문제를 해결할 수 있다. 이에 따라 기판 및 기판에 형성된 회로소자의 공정불량을 최소화할 수도 있다. 그리고 제2 확산판을 접지하여 플라즈마에서 전하를 띤 이온 및 전자를 필터링함으로써 중성의 반응종만이 기판 상으로 유입되게 할 수 있어 전하를 띤 이온과 전자가 기판 및 기판 주변에 미치는 악영향을 최소화할 수 있다. 또한, 플라즈마에 의해 기판 및 기판 주변이 손상되지 않도록 할 수 있다. 한편, 제2 확산판의 분배홀에 삽입되는 삽입체를 이용하여 분배홀의 유효 면적 밀도를 간단하게 조절할 수 있다. 이로 인해 공정 조건이 달라지더라도 간단하게 중성의 반응종의 균일한 분포를 이룰 수 있다. 그리고 제2 확산판을 다단 구조로 형성하여 중성의 반응종의 흐름을 제어할 수도 있다. 또한, 각 단의 배기 포트의 크기 및 모양을 변화하여 가스의 흐름을 조절할 수 있고, 기판 상에 상기 반응종이 균일하게 분포하도록 할 수 있다. 이러한 배기 포트로 인해 챔버 내에 진공도를 유지할 수 있으면서도 상기 반응종의 흐름이 기판 전체에 균일하도록 조절할 수 있고, 상기 공정 부산물이 배기되게 할 수도 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (10)

  1. 기판 처리 공간을 제공하는 챔버;
    상기 챔버로 공정가스를 공급하는 공정가스 공급라인;
    가장자리부에 상기 공정가스가 분사되는 분사홀이 형성된 제1 확산판;
    상기 제1 확산판에 대향되어 위치하고, 기판을 지지하는 기판 지지대;
    상기 제1 확산판과 상기 기판 지지대의 사이에 제공되고, 복수의 분배홀이 형성된 제2 확산판; 및
    상기 제1 확산판과 상기 제2 확산판의 사이 공간에 플라즈마를 형성하는 플라즈마 발생부를 포함하는 기판 처리 장치.
  2. 청구항 1에 있어서,
    상기 제2 확산판의 가장자리와 연결되고, 복수의 가스유도홀이 형성된 측벽부재를 더 포함하는 기판 처리 장치.
  3. 청구항 1에 있어서,
    상기 제2 확산판은 위치별로 상이한 상기 분배홀의 유효 면적 밀도를 갖는 기판 처리 장치.
  4. 청구항 3에 있어서,
    상기 제2 확산판은 중앙부가 가장자리부보다 상기 분배홀의 유효 면적 밀도가 큰 기판 처리 장치.
  5. 청구항 1에 있어서,
    상기 분배홀에 삽입하여 상기 제2 확산판의 개방 면적을 조절하는 삽입체를 더 포함하는 기판 처리 장치.
  6. 청구항 5에 있어서,
    상기 삽입체는 중심부가 관통된 관통홀을 포함하는 기판 처리 장치.
  7. 청구항 1에 있어서,
    상기 제2 확산판은 복수의 다단 구조로 형성되고,
    각 단의 상기 분배홀은 서로 인접한 단 간에 위치가 상이한 기판 처리 장치.
  8. 청구항 1에 있어서,
    상기 제1 확산판과 상기 제2 확산판의 간격을 조절하는 위치조정부를 더 포함하는 기판 처리 장치.
  9. 청구항 1에 있어서,
    상기 챔버의 내벽에 인접하여 상기 기판 지지대의 둘레를 따라 대칭되도록 위치하고, 다단으로 이루어진 복수의 배기 포트를 더 포함하는 기판 처리 장치.
  10. 청구항 1에 있어서,
    상기 기판 지지대의 둘레를 따라 상기 기판 지지대의 가장자리부로부터 연장되는 차단링을 더 포함하는 기판 처리 장치.
PCT/KR2016/004074 2015-04-20 2016-04-19 기판 처리 장치 WO2016171451A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680021656.9A CN107466421B (zh) 2015-04-20 2016-04-19 基板处理装置
US15/566,696 US20180122638A1 (en) 2015-04-20 2016-04-19 Substrate processing apparatus
JP2017549781A JP6499771B2 (ja) 2015-04-20 2016-04-19 基板処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150055297A KR101682155B1 (ko) 2015-04-20 2015-04-20 기판 처리 장치
KR10-2015-0055297 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016171451A1 true WO2016171451A1 (ko) 2016-10-27

Family

ID=57143453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004074 WO2016171451A1 (ko) 2015-04-20 2016-04-19 기판 처리 장치

Country Status (6)

Country Link
US (1) US20180122638A1 (ko)
JP (1) JP6499771B2 (ko)
KR (1) KR101682155B1 (ko)
CN (1) CN107466421B (ko)
TW (1) TWI634587B (ko)
WO (1) WO2016171451A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358208A1 (en) * 2017-06-09 2018-12-13 Mattson Technology, Inc. Plasma Processing Apparatus With Post Plasma Gas Injection
CN111471980A (zh) * 2020-04-15 2020-07-31 北京北方华创微电子装备有限公司 适于远程等离子体清洗的反应腔室、沉积设备及清洗方法
US11201036B2 (en) 2017-06-09 2021-12-14 Beijing E-Town Semiconductor Technology Co., Ltd Plasma strip tool with uniformity control

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009348B1 (ko) 2017-09-20 2019-08-09 주식회사 유진테크 배치식 플라즈마 기판처리장치
SG11202005088WA (en) * 2017-12-27 2020-07-29 Mattson Tech Inc Plasma processing apparatus and methods
JP7166147B2 (ja) * 2018-11-14 2022-11-07 東京エレクトロン株式会社 プラズマ処理装置
TW202044320A (zh) * 2019-01-23 2020-12-01 美商蘭姆研究公司 包含下游電漿用雙離子過濾器的基板處理系統
CN116884826A (zh) * 2019-01-25 2023-10-13 玛特森技术公司 隔栅中的等离子体后气体注入
GB201904587D0 (en) * 2019-04-02 2019-05-15 Oxford Instruments Nanotechnology Tools Ltd Surface processing apparatus
KR102187121B1 (ko) * 2019-04-30 2020-12-07 피에스케이 주식회사 기판 처리 장치
CN110170286B (zh) * 2019-07-06 2021-10-01 河南佰利联新材料有限公司 一种可在线调节的干气密封氧化加料反应器
CN114388324A (zh) * 2020-10-22 2022-04-22 中微半导体设备(上海)股份有限公司 一种接地环及等离子体刻蚀设备
US12018372B2 (en) 2021-05-11 2024-06-25 Applied Materials, Inc. Gas injector for epitaxy and CVD chamber
US12060651B2 (en) 2021-05-11 2024-08-13 Applied Materials, Inc. Chamber architecture for epitaxial deposition and advanced epitaxial film applications
EP4337814A1 (en) * 2021-05-11 2024-03-20 Applied Materials, Inc. Gas injector for epitaxy and cvd chamber
CN118400855A (zh) * 2024-06-26 2024-07-26 深圳市恒运昌真空技术股份有限公司 等离子体产生装置和等离子体处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051570A (ko) * 1999-11-10 2001-06-25 니시가키 코지 큰 면적의 화학 기상 성장막용 플라즈마 화학 기상 성장장치
KR20060043213A (ko) * 2004-03-01 2006-05-15 캐논 가부시끼가이샤 플라스마 처리장치 및 그의 설계방법
US20090025877A1 (en) * 2003-11-14 2009-01-29 Gwang Ho Hur Flat panel display manufacturing apparatus
KR20090024518A (ko) * 2007-09-04 2009-03-09 주식회사 유진테크 기판처리장치
KR20090024520A (ko) * 2007-09-04 2009-03-09 주식회사 유진테크 배기 유닛 및 이를 이용하는 배기방법, 상기 배기 유닛을포함하는 기판 처리 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405496B2 (ja) * 1997-02-24 2010-01-27 株式会社エフオーアイ プラズマ処理装置
WO2000068985A1 (fr) 1999-05-06 2000-11-16 Tokyo Electron Limited Appareil de traitement au plasma
US7461614B2 (en) * 2003-11-12 2008-12-09 Tokyo Electron Limited Method and apparatus for improved baffle plate
TW200709296A (en) * 2005-05-31 2007-03-01 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method
KR100849929B1 (ko) * 2006-09-16 2008-08-26 주식회사 피에조닉스 반응 기체의 분사 속도를 적극적으로 조절하는 샤워헤드를구비한 화학기상 증착 방법 및 장치
US20080193673A1 (en) * 2006-12-05 2008-08-14 Applied Materials, Inc. Method of processing a workpiece using a mid-chamber gas distribution plate, tuned plasma flow control grid and electrode
JP2008282888A (ja) * 2007-05-09 2008-11-20 Canon Anelva Corp 真空処理装置および真空処理方法
JP4883368B2 (ja) * 2007-07-31 2012-02-22 三菱マテリアル株式会社 プラズマエッチング用単結晶シリコン電極板
KR20090024522A (ko) * 2007-09-04 2009-03-09 주식회사 유진테크 기판처리장치
US8627783B2 (en) * 2008-12-19 2014-01-14 Lam Research Corporation Combined wafer area pressure control and plasma confinement assembly
JP5323628B2 (ja) * 2009-09-17 2013-10-23 東京エレクトロン株式会社 プラズマ処理装置
EP2360292B1 (en) * 2010-02-08 2012-03-28 Roth & Rau AG Parallel plate reactor for uniform thin film deposition with reduced tool foot-print
JP5685094B2 (ja) * 2011-01-25 2015-03-18 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US8802545B2 (en) * 2011-03-14 2014-08-12 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
TWI666975B (zh) * 2011-10-05 2019-07-21 美商應用材料股份有限公司 對稱電漿處理腔室

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051570A (ko) * 1999-11-10 2001-06-25 니시가키 코지 큰 면적의 화학 기상 성장막용 플라즈마 화학 기상 성장장치
US20090025877A1 (en) * 2003-11-14 2009-01-29 Gwang Ho Hur Flat panel display manufacturing apparatus
KR20060043213A (ko) * 2004-03-01 2006-05-15 캐논 가부시끼가이샤 플라스마 처리장치 및 그의 설계방법
KR20090024518A (ko) * 2007-09-04 2009-03-09 주식회사 유진테크 기판처리장치
KR20090024520A (ko) * 2007-09-04 2009-03-09 주식회사 유진테크 배기 유닛 및 이를 이용하는 배기방법, 상기 배기 유닛을포함하는 기판 처리 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358208A1 (en) * 2017-06-09 2018-12-13 Mattson Technology, Inc. Plasma Processing Apparatus With Post Plasma Gas Injection
US10790119B2 (en) * 2017-06-09 2020-09-29 Mattson Technology, Inc Plasma processing apparatus with post plasma gas injection
US11201036B2 (en) 2017-06-09 2021-12-14 Beijing E-Town Semiconductor Technology Co., Ltd Plasma strip tool with uniformity control
CN111471980A (zh) * 2020-04-15 2020-07-31 北京北方华创微电子装备有限公司 适于远程等离子体清洗的反应腔室、沉积设备及清洗方法

Also Published As

Publication number Publication date
JP6499771B2 (ja) 2019-04-10
JP2018517276A (ja) 2018-06-28
CN107466421A (zh) 2017-12-12
KR101682155B1 (ko) 2016-12-02
TWI634587B (zh) 2018-09-01
CN107466421B (zh) 2019-05-28
KR20160124534A (ko) 2016-10-28
TW201705197A (zh) 2017-02-01
US20180122638A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
WO2016171451A1 (ko) 기판 처리 장치
KR102453450B1 (ko) 플라즈마 처리 장치, 반도체 소자의 제조설비 및 그의 제조방법
CN107895683B (zh) 具有改良轮廓的双通道喷淋头
TWI704845B (zh) 用於循環與選擇性材料移除與蝕刻的處理腔室
US10388528B2 (en) Non-ambipolar electric pressure plasma uniformity control
KR101445226B1 (ko) 배기 링 어셈블리 및 이를 포함하는 기판 처리 장치
WO1999001888A1 (en) Apparatus and method for uniform, low-damage anisotropic plasma processing
KR19990013651A (ko) 이씨알 플라즈마 발생기 및 이씨알 플라즈마 발생기를 사용하는이씨알 시스템
KR20160134908A (ko) 기판 처리 장치
KR101632376B1 (ko) 가스 분배 장치 및 이를 구비하는 기판 처리 장치
US20070283889A1 (en) Apparatus of processing substrate
KR101614032B1 (ko) 가스 분배 장치 및 이를 구비하는 기판 처리 장치
US20200243305A1 (en) Post Plasma Gas Injection In A Separation Grid
TW201711529A (zh) 基底處理設備
KR20210054325A (ko) 기판 처리 장치
JPH06216078A (ja) ウェハの容量結合放電処理装置および方法
WO2021101279A1 (ko) 기판 처리 장치
KR101173574B1 (ko) 기판처리방법
KR20090046552A (ko) 플라즈마 기판 처리 장치
US20220208514A1 (en) Grid Assembly for Plasma Processing Apparatus
KR20190092296A (ko) 윈도우 히팅 시스템을 갖는 기판 처리 장치
WO2020251148A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2023033259A1 (ko) 기판 처리 장치 및 유전체 판 정렬 방법
WO2023080324A1 (ko) 상부 전극 유닛, 그리고 이를 포함하는 기판 처리 장치
KR20010006881A (ko) 반도체 시료의 처리 장치 및 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549781

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566696

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783384

Country of ref document: EP

Kind code of ref document: A1