WO2016171182A1 - 分析方法及び内部標準物質 - Google Patents

分析方法及び内部標準物質 Download PDF

Info

Publication number
WO2016171182A1
WO2016171182A1 PCT/JP2016/062540 JP2016062540W WO2016171182A1 WO 2016171182 A1 WO2016171182 A1 WO 2016171182A1 JP 2016062540 W JP2016062540 W JP 2016062540W WO 2016171182 A1 WO2016171182 A1 WO 2016171182A1
Authority
WO
WIPO (PCT)
Prior art keywords
labeled
stratum corneum
stable isotope
ion suppression
internal standard
Prior art date
Application number
PCT/JP2016/062540
Other languages
English (en)
French (fr)
Inventor
克行 前野
治男 島田
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016083850A external-priority patent/JP6101385B2/ja
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Publication of WO2016171182A1 publication Critical patent/WO2016171182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns

Definitions

  • the present invention relates to a method for quantitative analysis of components contained in skin and an internal standard substance used for quantitative analysis of components contained in skin.
  • NMF natural moisturizing factor
  • Patent Document 1 as a method for quantitative analysis of components contained in the stratum corneum, a step of peeling a plurality of stratum corneum from the skin and a measurement of protein content in the peeled stratum corneum And an analysis method having a step of performing mass analysis by sequentially introducing ions generated from a plurality of stratum corneums whose protein contents are measured using DART or DESI into a mass spectrometer. Yes.
  • One aspect of the present invention provides an analysis method and an internal standard that can improve the linearity of a calibration curve in the case of quantitative analysis of components contained in the skin, in view of the above-described problems of the prior art. For the purpose.
  • One aspect of the present invention is a method for quantitative analysis of components contained in skin, wherein a sample collected from skin is labeled with a compound and / or stable isotope that is susceptible to ion suppression labeled with a stable isotope.
  • a step of supplying a predetermined amount of an internal standard material containing a compound that is not easily subjected to ion suppression, a step of mass-analyzing ions generated from a sample supplied with the internal standard material using an atmospheric pressure ionization method, Have
  • One aspect of the present invention is an internal standard substance used for quantitative analysis of components contained in the skin, which is susceptible to ion suppression labeled with a stable isotope and / or ion suppression labeled with a stable isotope. Contains compounds that are not easily affected.
  • an analysis method and an internal standard substance that can improve the linearity of a calibration curve when quantitatively analyzing components contained in the skin.
  • FIG. 2 It is a figure which shows an example of the adhesive tape in which the cut
  • the analysis method in this embodiment is a method for quantitatively analyzing components contained in the skin.
  • the components contained in the skin are not particularly limited, and examples include amino acids, urea, uric acid, pyrrolidone carboxylic acid, urocanic acid, lactic acid, creatine, sugar, organic acid, glycerin, and lipid.
  • the analysis method in the present embodiment includes a step of supplying a predetermined amount of an internal standard substance to a sample collected from the skin, and mass analysis of ions generated from the sample supplied with the internal standard substance using an atmospheric pressure ionization method. The process of carrying out.
  • the internal standard substance includes a compound that is susceptible to ion suppression labeled with a stable isotope and / or a compound that is less susceptible to ion suppression labeled with a stable isotope.
  • a compound that is susceptible to ion suppression (or that is less susceptible to ion suppression) is susceptible to ion suppression (or ion suppression) when mass-analyzing ions generated from a sample collected from the skin by atmospheric pressure ionization.
  • a compound that is easily subjected to ion suppression (or difficult to be subjected to ion suppression) used as an internal standard substance in the present embodiment is similar to a component to be analyzed contained in a sample collected from the skin in terms of the degree of ion suppression. Preferably it is.
  • the compound that is easily subjected to ion suppression and / or the compound that is difficult to receive ion suppression used as an internal standard substance in the present embodiment is preferably a component contained in the skin.
  • the grade which receives an ion suppression can be made equivalent to the analysis object component contained in the sample extract
  • the components contained in the skin that can be applied to compounds that are susceptible to ion suppression and / or compounds that are not susceptible to ion suppression are not particularly limited, but include amino acids, urea, uric acid, pyrrolidone carboxylic acid, lactic acid, creatine, organic Acid, glycerin, lipid and the like can be mentioned.
  • the atmospheric pressure ionization method is not particularly limited, and examples thereof include DART, DESI, atmospheric pressure photoionization method, atmospheric pressure MALDI, ESI-assisted laser desorption ionization method, and atmospheric pressure individual analysis probe method.
  • sample collected from the skin examples include, but are not limited to, stratum corneum, sweat, sebum and the like.
  • a plurality of stratum corneum is peeled from the skin using a plurality of adhesive tapes that are cut at predetermined intervals.
  • the adhesive tape is not particularly limited as long as it can be applied to the tape stripping method.
  • D-Squame manufactured by CuDerm
  • Cellotape registered trademark
  • PPS tape manufactured by Nichiban
  • FIG. 1 shows an example of an adhesive tape in which cuts are made at predetermined intervals.
  • (A) and (b) are a top view and a cross-sectional view, respectively.
  • the pressure-sensitive adhesive tape 10 has a circular upper surface, has a pressure-sensitive adhesive layer 10b formed on the surface of the carrier 10a, and has three cuts 11 at predetermined intervals. For this reason, amino acids contained in the stratum corneum can be analyzed a plurality of times by changing the conditions as necessary.
  • the shape of the upper surface of the adhesive tape 10 is not limited to a circle, and may be a rectangle, an ellipse, or the like.
  • the method for making the cuts 11 in the adhesive tape 10 at a predetermined interval is not particularly limited, and examples thereof include a method for making a cut using a cutter.
  • Spacing G 1 of the cut 11 is usually 0.5 ⁇ 5 mm, is preferably 1 ⁇ 3 mm.
  • the number of cuts 11 is usually 2-6.
  • the adhesive tape 10 before use has a release material held on the surface of the adhesive layer 10b.
  • an adhesive tape without a cut may be used.
  • the adhesive tape from which the stratum corneum has been peeled may be cut with a predetermined width or may not be cut.
  • the stratum corneum may be peeled off by applying an adhesive such as Aron Alpha (registered trademark) (manufactured by Toagosei Co., Ltd.) to the skin.
  • Aron Alpha registered trademark
  • one layer of stratum corneum may be peeled off using an adhesive tape.
  • the method for measuring the protein content in the stratum corneum is not particularly limited, and examples thereof include a method for measuring absorbance in the near infrared region and a BCA colorimetric method. Among them, a method for measuring absorbance in the near infrared region is preferable.
  • the amino acid contained in the stratum corneum may be quantitatively analyzed by omitting the second step.
  • FIG. 2 shows a columnar member 20 having a right isosceles triangular columnar shape as an example of the columnar member.
  • (A) and (b) are a perspective view and a sectional view, respectively.
  • One double-sided tape 21 is fixed to the surfaces P 1 and P 2 sandwiching the corner portion C of the columnar member 20 so as to be substantially parallel to the height direction H. For this reason, the cut adhesive tape 10 'can be fixed.
  • the material constituting the columnar member 20 is not particularly limited as long as it has heat resistance, but glass, quartz glass, ceramics, titanium, stainless steel, aluminum, iron, acrylic resin, polypropylene, fluororesin, vinyl chloride. Resin, nylon, polystyrene, polycarbonate, silicone resin and the like can be mentioned.
  • gap G 2 of which are adjacent to cut the adhesive tape 10 ' is usually 1 ⁇ 50 mm, is preferably 5 ⁇ 10 mm.
  • N is usually an integer of 1 to 90.
  • the surface P 1 and P 2 sandwiching the corner portion C of the columnar member 20, may not be two-sided tape 21 is fixed, using an adhesive, it was cleaved adhesive tape 10 'fixed May be.
  • an arbitrary number of stratum corneums can be fixed to the single columnar member 20 among the plurality of stratum corneums separated.
  • the internal standard includes glycine labeled with a stable isotope and lysine labeled with a stable isotope.
  • the glycine labeled with a stable isotope is not particularly limited as long as the molecular weight is different from the component contained in the stratum corneum, and examples thereof include glycine in which 14 N is substituted with 15 N.
  • the lysine labeled with a stable isotope is not particularly limited as long as the molecular weight is different from the component contained in the stratum corneum, and examples thereof include lysine in which two 14 N are substituted with 15 N.
  • glycine labeled with a stable isotope is susceptible to ion suppression, it is not labeled with a stable isotope in the sample (horny layer) and is used as an internal standard for amino acids that are susceptible to ion suppression. . Specifically, it is included in the stratum corneum using the ratio of the area of the peak derived from amino acids that are susceptible to ion suppression that is not labeled with a stable isotope to the area of the peak derived from glycine that is labeled with a stable isotope. Quantitative analysis of amino acids that are susceptible to ion suppression. As a result, the linearity of the calibration curve can be improved, and the distribution state of amino acids that are easily subjected to ion suppression contained in the stratum corneum can be accurately quantified.
  • lysine labeled with a stable isotope is less susceptible to ion suppression and is therefore used as an internal standard for amino acids that are less susceptible to ion suppression in the sample (horny layer).
  • it is included in the stratum corneum using the ratio of the area of peaks derived from amino acids not susceptible to ion suppression that is not labeled with stable isotopes to the area of peaks derived from lysine labeled with stable isotopes.
  • Quantitative analysis of amino acids that are not susceptible to ion suppression As a result, the linearity of the calibration curve can be improved, and the distribution state of amino acids that are less susceptible to ion suppression contained in the stratum corneum can be quantified with high accuracy.
  • amino acids that are susceptible to ion suppression include, but are not limited to, glycine, alanine, proline, valine, threonine, glutamine, methionine, and phenylalanine.
  • the method of supplying a predetermined amount of the internal standard substance to the stratum corneum is not particularly limited, and examples thereof include a method of dropping a solution obtained by dissolving the internal standard substance in a solvent into the stratum corneum.
  • the solvent is not particularly limited as long as it can dissolve the internal standard substance, and examples thereof include water, methanol, ethanol, acetonitrile, and hexane.
  • the timing for supplying a predetermined amount of the internal standard substance to the peeled stratum corneum is after measuring the protein content in the peeled stratum corneum, even before fixing to the columnar member 20. Good.
  • a standard sample layer for mass calibration may be further formed on the surfaces P 1 and P 2 sandwiching the corner portion C of the columnar member 20.
  • the standard sample for mass calibration is not particularly limited as long as ions can be generated using a DART ion source, but in consideration of the accuracy of mass calibration, polyethylene in which mass spectrum peaks exist at equal intervals. Examples include glycols (PEG 60 to PEG 2000), fatty acids having 4 to 36 carbon atoms, and the like.
  • the method for forming the mass calibration standard sample layer is not particularly limited, but there is a method for fixing the pressure-sensitive adhesive tape on which the solution of the mass calibration standard sample is applied to the base member 20 to the columnar member 20, and a mass calibration standard sample. Examples thereof include a method of drawing on the columnar member 20 using a pen filled with the added ink, and a method of applying the ink to which the standard sample for mass calibration is added to the columnar member 20.
  • FIG. 3 shows an example of a mass spectrometry method using the columnar member 20.
  • a columnar member 20 in which a plurality of cut adhesive tapes 10 ′ are fixed to a sample stage 100 that can be moved in the direction of an arrow in the figure in a substantially horizontal plane is set to a height of the columnar member 20.
  • the direction H is placed so as to be substantially parallel to the arrow direction.
  • the columnar member 20 is arranged such that a vertical surface faces the DART ion source 200 with respect to the sample stage 100 of the columnar member 20.
  • helium He (2 3 S) in a metastable excited state is collided with water in the atmosphere to be penning ionized.
  • the proton generated by irradiating the corner C of the columnar member 20 with the proton generated in this manner in a substantially horizontal plane substantially perpendicular to the direction of the arrow in the figure is introduced into the mass spectrometer 300 for mass analysis. To do.
  • the ion introduction tube 310 is connected by applying a voltage to the resistance heating wire 311 using a power source (not shown).
  • the generated ions can be subjected to mass spectrometry while being heated. Thereby, adhesion of the generated ions to the ion introduction tube 310 can be suppressed. As a result, the quantitativeness of amino acids contained in the stratum corneum can be improved.
  • the inside of the ion introduction tube 310 is depressurized by a compressor (not shown).
  • the resistance heating wire 311 is usually wound around the ion introduction side of the ion introduction tube 310.
  • the temperature of the inner wall of the ion introduction tube 310 when the ion introduction tube 310 is heated is usually 50 to 500 ° C., preferably 100 to 300 ° C.
  • the method of heating the ion introduction tube 310 is not limited to the method of heating by heating the resistance heating wire 311, the method of heating using a ceramic fiber heater, the method of heating by irradiating microwaves, the hot air fan The method etc. which heat using are mentioned.
  • the ion introduction tube 310 may be removed and the ion introduction port may be directly heated.
  • the ion introduction tube 310 may not be heated.
  • the material constituting the ion introduction tube 310 is not particularly limited as long as it has heat resistance, and examples thereof include ceramics, glass, Teflon (registered trademark), stainless steel, niobium steel, and tantalum steel.
  • the inner surface of the ion introduction tube 310 may be coated with fluorine resin, polyether ether ketone, silicone resin, or the like.
  • the material forming the resistance heating wire 311 is not particularly limited, but a metal heating element such as an iron-chromium-aluminum alloy or nickel-chromium alloy; a refractory metal heating element such as platinum, molybdenum, tantalum, or tungsten; Examples thereof include non-metallic heating elements such as silicon carbide, molybdenum-silicite, and carbon.
  • a metal heating element such as an iron-chromium-aluminum alloy or nickel-chromium alloy
  • a refractory metal heating element such as platinum, molybdenum, tantalum, or tungsten
  • non-metallic heating elements such as silicon carbide, molybdenum-silicite, and carbon.
  • a current of 1 to 6 A is passed.
  • the columnar member 20 may be arranged such that a vertical plane faces the mass spectrometer 300 with respect to the sample stage 100 of the columnar member 20.
  • the same columnar member as the columnar member 20 is provided except that a resistance heating wire is installed at a position corresponding to the position where the adhesive tape 10 'cut inside is fixed. It may be used. Thereby, in mass spectrometry, it can heat to predetermined temperature by applying a voltage to a resistance heating wire using a power supply (not shown). At this time, when a voltage is applied to the resistance heating wire at the timing when the pressure-sensitive adhesive tape 10 'generated by the Penning ionization is cut, the generated ions can be efficiently desorbed.
  • the material constituting the resistance heating wire is not particularly limited, but is a metal heating element such as an iron-chromium-aluminum alloy or nickel-chromium alloy; a refractory metal heating element such as platinum, molybdenum, tantalum, or tungsten; Non-metallic heating elements such as silicon, molybdenum-silicite, and carbon can be used.
  • a metal heating element such as an iron-chromium-aluminum alloy or nickel-chromium alloy
  • a refractory metal heating element such as platinum, molybdenum, tantalum, or tungsten
  • Non-metallic heating elements such as silicon, molybdenum-silicite, and carbon can be used.
  • a hollow right isosceles triangular columnar columnar member may be used, or a plate in which corners are formed by bending may be used.
  • a columnar member having a rounded corner C of the columnar member 20 a trapezoidal columnar columnar member obtained by removing a right-angled isosceles triangular column including the corner C from the columnar member 20, and the columnar member 20.
  • a quadrangular columnar member or the like obtained by removing the triangular prism including the corner portion C may be used (see Patent Document 1).
  • metastable excited state instead of helium He (2 3 S) in the metastable excited state, neon in the metastable excited state, argon in the metastable excited state, nitrogen in the metastable excited state, or the like may be used.
  • a DESI ion source may be used to attach ions to a sample and desorb ions.
  • the solvent to be ionized is not particularly limited, and examples thereof include methanol, methanol aqueous solution, acetonitrile, acetonitrile aqueous solution and the like.
  • the solvent to be ionized may contain an acidic substance or a basic substance.
  • a calibration curve can be created by mass analysis of ions generated from a predetermined amount of amino acid and internal standard using DART or DESI.
  • the generated ions are mass-analyzed in the same manner as described above except that a predetermined amount of amino acid and internal standard substance are attached to a cut adhesive tape fixed to a columnar member without peeling off the stratum corneum.
  • a calibration curve can be created.
  • the method for attaching the amino acid and the internal standard substance to the cut adhesive tape is not particularly limited, and examples thereof include a method of dropping a solution prepared by dissolving the amino acid and the internal standard substance in a solvent onto the adhesive tape.
  • the solvent is not particularly limited as long as it can dissolve an amino acid and an internal standard substance, and examples thereof include water, methanol, ethanol, acetonitrile, and hexane.
  • the procedure for creating a calibration curve may be performed so as to correspond to the procedure for mass spectrometry of ions generated from the stratum corneum supplied with the internal standard substance.
  • Example 1 (Preparation of aqueous solution of calibration curve sample) Unlabeled with stable isotope, glycine, alanine, proline, valine, phenylalanine, methionine, threonine, glutamine, lysine, tyrosine, histidine, serine (above, manufactured by Wako Pure Chemical Industries) and labeled with stable isotope Glycine and lysine (manufactured by Pure Science Co., Ltd.) were dissolved in pure water so as to have predetermined concentrations, respectively, to obtain aqueous solutions of five types of calibration curve preparation samples.
  • the concentration of glycine, alanine, proline, valine, phenylalanine, methionine, threonine, glutamine, lysine, tyrosine, histidine, and serine that are not labeled with a stable isotope in the aqueous solution of each calibration curve sample is 1 ⁇ g / mL, 2.5 ⁇ g / mL, 10 ⁇ g / mL, 25 ⁇ g / mL, 50 ⁇ g / mL.
  • the concentration of glycine and lysine labeled with stable isotopes in the aqueous solution of each calibration curve preparation sample is 10 ⁇ g / mL.
  • Glycine labeled with a stable isotope (glycine in which 14 N is substituted with 15 N) (manufactured by Junsei Kagaku) and lysine labeled with a stable isotope (two 14 N are replaced with 15 N) Lysine) (manufactured by Junsei Co., Ltd.) was dissolved in pure water to a concentration of 10 ⁇ g / mL to obtain an aqueous solution of an internal standard substance.
  • ions generated from the cut adhesive tape fixed to the columnar member 20 were sequentially subjected to mass spectrometry. Specifically, first, the columnar member 20 was placed on the sample stage 100 so that the height direction H was substantially parallel to the arrow direction. At this time, the columnar member 20 was disposed such that a vertical surface of the columnar member 20 was opposed to the DART ion source 200 with respect to the sample stage 100. Next, the DART ion source 200 is used to move helium He (2 3 S) in a metastable excitation state while moving the sample stage 100 in a substantially horizontal plane at a rate of 0.2 mm / s in the direction of the arrow.
  • Protons generated by colliding with water in the atmosphere and penning ionized ions are generated by irradiating the corners C of the columnar member 20 substantially perpendicularly to the direction of the arrows in the figure in a substantially horizontal plane. Then, it was introduced into the mass spectrometer 300 for mass analysis. At this time, since the ion introduction tube 310 was heated by flowing a current of 4 A through the resistance heating wire 311, the temperature of the inner wall of the ion introduction tube 310 was 110 ° C.
  • DART SVP (made by Ionsense) was used as the DART ion source 200, and the set temperature of the gas heater was set to 450 ° C.
  • mass spectrometer 300 MicroTOFQII (manufactured by Bruker Daltonics) was used, and the measurement mode was set to positive ion mode.
  • ion introduction tube 310 a ceramic tube having an outer diameter of 6.2 mm, an inner diameter of 4.7 mm, and a length of 94 mm is used, and a resistance heating wire 311 is wound around a region 35 mm from the ion introduction side. It was. At this time, a nichrome wire having a diameter of 0.26 mm was used as the resistance heating wire 311.
  • Fig. 4 shows an extracted chromatogram of a sample for preparing a calibration curve. * Means that it is labeled with a stable isotope.
  • FIG. 4 shows 15 peaks for each amino acid. These peaks correspond to the signal intensity of each amino acid measured from each of the 15 adhesive tapes fixed to the columnar member 20.
  • amino acid glycine, alanine, proline, valine, phenylalanine, methionine, threonine, glutamine, lysine, tyrosine, histidine, serine
  • 3 from the left in the figure in ascending order of concentration.
  • the peak of the same concentration sample is displayed.
  • the peak of the sample of 10 ⁇ g / mL is displayed.
  • FIG. 5 shows a calibration curve of amino acids that are not labeled with stable isotopes and are susceptible to ion suppression.
  • 5 is the area of the peak of the amino acid that is not labeled with a stable isotope and is susceptible to ion suppression with respect to the area of the peak derived from glycine that is labeled with a stable isotope.
  • content of the amino acid which is easy to receive ion suppression means content per cut
  • FIG. 6 shows a calibration curve for amino acids that are not labeled with stable isotopes and are not susceptible to ion suppression.
  • 6 is the area of the peak of amino acid that is not labeled with a stable isotope and is less susceptible to ion suppression with respect to the area of the peak derived from lysine labeled with a stable isotope. Means the ratio of Specifically, Qt / Qs is calculated for each peak corresponding to each adhesive tape shown in FIG. 4, and an average value of Qt / Qs is calculated for each of the three samples having the same concentration to prepare a calibration curve. It was. Moreover, content of the amino acid which is hard to receive ion suppression means content per cut
  • the ratio of the peak area of amino acids that are susceptible to ion suppression and the area of lysine-derived peaks that are labeled with stable isotopes are those that are not labeled with stable isotopes and are not susceptible to ion suppression. It is an area ratio. Further, the content of amino acid relative to the content of protein in the 1st to 10th layer of the horny layer using the content of protein per sheet of the pressure-sensitive adhesive tape 10 'cut from the 1st to 10th layer of the horny layer The ratio of was calculated.
  • FIG. 7 shows the relationship between the cumulative value of the protein content in the stratum corneum and the ratio of the amino acid content to the protein content in the stratum corneum.
  • the cumulative value of the protein content in the stratum corneum is the sum of the protein contents in the stratum corneum of the 1st to nth (where n is an integer of 1 to 10) layers, This means that the depth of the stratum corneum increases.
  • the concentration of glycine, alanine, proline, valine, phenylalanine, methionine, threonine, glutamine, lysine, tyrosine, histidine, and serine that are not labeled with a stable isotope in the aqueous solution of each calibration curve sample is 1 ⁇ g / mL, 2.5 ⁇ g / mL, 10 ⁇ g / mL, 25 ⁇ g / mL, 50 ⁇ g / mL.
  • the content of glycine and lysine means the content per cut adhesive tape.
  • the calibration curves for glycine and lysine that are not labeled with a stable isotope show the peaks of glycine and lysine that are labeled with a stable isotope, as shown in FIGS.
  • a calibration curve of glycine and lysine that is not labeled with a stable isotope obtained using the area as an internal standard substance it can be seen that the linearity is low.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

分析方法は、皮膚に含まれる成分を定量分析する方法であって、皮膚から採取された試料に、安定同位体で標識されたイオンサプレッションを受けやすい化合物及び/又は安定同位体で標識されたイオンサプレッションを受けにくい化合物を含む所定量の内部標準物質を供給する工程と、大気圧イオン化法を用いて、該内部標準物質が供給された試料から生成したイオンを質量分析する工程と、を有する。

Description

分析方法及び内部標準物質
 本発明は、皮膚に含まれる成分を定量分析する方法及び皮膚に含まれる成分の定量分析に用いられる内部標準物質に関する。
 皮膚状態の変化により、角層に含まれる天然保湿因子(NMF)の量が変化することが知られている。NMFの成分としては、アミノ酸、ミネラル、ピロリドンカルボン酸、乳酸塩、尿素等が挙げられる。
 皮膚に含まれる成分を分析する方法としては、種々の方法が知られている。
 特許文献1には、角層中に含まれる成分を定量分析する方法として、皮膚から複数層の角層を剥離する工程と、該剥離された複数層の角層中のタンパク質の含有量を測定する工程と、DART又はDESIを用いて、該タンパク質の含有量が測定された複数層の角層から生成したイオンを順次質量分析計に導入して質量分析する工程を有する分析方法が開示されている。
特開2014-206488号公報
 しかしながら、皮膚に含まれる成分を定量分析する場合に、検量線の直線性を向上させることが望まれている。
 本発明の一態様は、上記の従来技術が有する問題に鑑み、皮膚に含まれる成分を定量分析する場合に、検量線の直線性を向上させることが可能な分析方法及び内部標準物質を提供することを目的とする。
 本発明の一態様は、皮膚に含まれる成分を定量分析する方法であって、皮膚から採取された試料に、安定同位体で標識されたイオンサプレッションを受けやすい化合物及び/又は安定同位体で標識されたイオンサプレッションを受けにくい化合物を含む所定量の内部標準物質を供給する工程と、大気圧イオン化法を用いて、該内部標準物質が供給された試料から生成したイオンを質量分析する工程と、を有する。
 本発明の一態様は、皮膚に含まれる成分の定量分析に用いられる内部標準物質であって、安定同位体で標識されたイオンサプレッションを受けやすい化合物及び/又は安定同位体で標識されたイオンサプレッションを受けにくい化合物を含む。
 本発明の一態様によれば、皮膚に含まれる成分を定量分析する場合に、検量線の直線性を向上させることが可能な分析方法及び内部標準物質を提供することができる。
所定の間隔で切れ目が入れられている粘着テープの一例を示す図である。 切断された複数の粘着テープが固定されている柱状部材の一例を示す図である。 図2の柱状部材を用いる質量分析方法の一例を示す模式図である。 実施例1の検量線作成用試料の抽出クロマトグラムである。 実施例1の安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸の検量線である。 実施例1の安定同位体で標識されておらず、イオンサプレッションを受けにくいアミノ酸の検量線である。 実施例1の角層中のタンパク質の含有量の累積値と、角層中のタンパク質の含有量に対するアミノ酸の含有量の比の関係を示す図である。 比較例1の安定同位体で標識されていないグリシンの検量線である。 比較例1の安定同位体で標識されていないリジンの検量線である。
 次に、本発明を実施するための形態を図面と共に説明する。
 本実施形態における分析方法は、皮膚に含まれる成分を定量分析する方法である。
 皮膚に含まれる成分としては、特に限定されないが、アミノ酸、尿素、尿酸、ピロリドンカルボン酸、ウロカニン酸、乳酸、クレアチン、糖、有機酸、グリセリン、脂質等が挙げられる。
 本実施形態における分析方法は、皮膚から採取された試料に所定量の内部標準物質を供給する工程と、大気圧イオン化法を用いて、内部標準物質が供給された試料から生成したイオンを質量分析する工程を有する。
 内部標準物質は、安定同位体で標識されたイオンサプレッションを受けやすい化合物及び/又は安定同位体で標識されたイオンサプレッションを受けにくい化合物を含む。
 なお、イオンサプレッションを受けやすい(又はイオンサプレッションを受けにくい)化合物とは、皮膚から採取された試料から大気圧イオン化法により生成したイオンを質量分析する際に、イオンサプレッションを受けやすい(又はイオンサプレッションを受けにくい)化合物を意味する。
 また、本実施形態で内部標準物質として用いられるイオンサプレッションを受けやすい(又はイオンサプレッションを受けにくい)化合物は、イオンサプレッションを受ける程度が皮膚から採取された試料に含まれる分析対象成分と類似していることが好ましい。
 本実施形態で内部標準物質として用いられるイオンサプレッションを受けやすい化合物及び/又はイオンサプレッションを受けにくい化合物は、皮膚に含まれる成分であることが好ましい。これにより、イオンサプレッションを受ける程度を皮膚から採取された試料に含まれる分析対象成分と同等にすることができる。
 イオンサプレッションを受けやすい化合物及び/又はイオンサプレッションを受けにくい化合物に適用することが可能な皮膚に含まれる成分としては、特に限定されないが、アミノ酸、尿素、尿酸、ピロリドンカルボン酸、乳酸、クレアチン、有機酸、グリセリン、脂質等が挙げられる。
 大気圧イオン化法としては、特に限定されないが、DART、DESI、大気圧光イオン化法、大気圧MALDI、ESI支援レーザー脱離イオン化法、大気圧個体分析プローブ法等が挙げられる。
 皮膚から採取された試料としては、特に限定されないが、角層、汗、皮脂等が挙げられる。
 次に、分析方法の具体例として、角層に含まれる複数のアミノ酸を定量分析する場合について説明する。
 [第一の工程]
 所定の間隔で切れ目が入れられている複数の粘着テープを用いて、皮膚から、複数層の角層を剥離する。
 粘着テープとしては、テープストリッピング法に適用することが可能であれば、特に限定されないが、D-Squame(CuDerm社製)、セロテープ(登録商標)(ニチバン社製)、PPSテープ(ニチバン社製)等が挙げられる。
 図1に、所定の間隔で切れ目が入れられている粘着テープの一例を示す。なお、(a)及び(b)は、それぞれ上面図及び断面図である。
 粘着テープ10は、上面が円状であり、担体10aの表面に粘着剤層10bが形成されており、所定の間隔で切れ目11が3本入れられている。このため、角層に含まれるアミノ酸を、必要に応じて、条件を変更して、複数回分析することができる。
 粘着テープ10の上面の形状は、円状に限定されず、矩形状、楕円状等であってもよい。
 粘着テープ10に所定の間隔で切れ目11を入れる方法としては、特に限定されないが、カッターを用いて切れ目を入れる方法等が挙げられる。
 切れ目11の間隔Gは、通常、0.5~5mmであり、1~3mmであることが好ましい。
 切れ目11の数は、通常、2~6個である。
 ここで、使用前の粘着テープ10は、粘着剤層10bの表面に剥離材が保持されている。
 なお、粘着テープ10の代わりに、切れ目が入れられていない粘着テープを用いてもよい。この場合、角層を剥離した粘着テープを所定の幅で切断してもよいし、切断しなくてもよい。
 また、粘着テープ10を用いて、皮膚から角層を剥離する代わりに、アロンアルファ(登録商標)(東亞合成株式会社製)等の接着剤を皮膚に塗布して角層を剥離してもよい。
 さらに、粘着テープを用いて、一層の角層を剥離してもよい。
 [第二の工程]
 剥離された角層中のタンパク質の含有量を測定する。
 角層中のタンパク質の含有量の測定方法としては、特に限定されないが、近赤外領域での吸光度を測定する方法、BCA比色法等が挙げられる。中でも、近赤外領域での吸光度を測定する方法が好ましい。
 なお、第二の工程を省略して、角層中に含まれるアミノ酸を定量分析してもよい。
 [第三の工程]
 角層を剥離した粘着テープを切れ目の間隔に対応する幅で切断した後、切断された粘着テープの角層が固定されている側と反対側の面を、所定の間隔を隔てて柱状部材に固定する。
 図2に、柱状部材の一例として、直角二等辺三角柱状の柱状部材20を示す。なお、(a)及び(b)は、それぞれ斜視図及び断面図である。
 柱状部材20の角部Cを挟む面P及びPには、高さ方向Hに対して略平行に、それぞれ1枚の両面テープ21が固定されている。このため、切断された粘着テープ10'を固定することができる。
 柱状部材20を構成する材料としては、耐熱性を有していれば、特に限定されないが、ガラス、石英ガラス、セラミックス、チタン、ステンレス鋼、アルミニウム、鉄、アクリル樹脂、ポリプロピレン、フッ素樹脂、塩化ビニル樹脂、ナイロン、ポリスチレン、ポリカーボネート、シリコーン樹脂等が挙げられる。
 なお、使用前の柱状部材20は、両面テープ21の粘着剤層の表面に剥離材が保持されている。
 柱状部材20に固定されている、隣接する切断された粘着テープ10'の間隔Gは、通常、1~50mmであり、5~10mmであることが好ましい。
 柱状部材20の角部Cを挟む面P及びPには、間隔G及びGに応じて決定される、切断された粘着テープ10'を固定する位置1~Nが表示されている。このとき、Nは、通常、1~90の整数である。
 なお、柱状部材20の角部Cを挟む面P及びPには、2枚の両面テープ21が固定されていなくてもよく、接着剤を用いて、切断された粘着テープ10'を固定してもよい。
 このとき、剥離された複数層の角層のうち、任意の層数の角層を単一の柱状部材20に固定することができる。
 なお、柱状部材20の代わりに、板状部材を用いてもよい(特許文献1参照)。
 また、第一の板状部材及び所定の間隔を隔てて、複数の貫通孔が形成されている第二の板状部材を有するデバイスを用いて、粘着テープの角層が固定されている側を貫通孔に対向するようにして、粘着テープを挟持してもよい(特許文献1参照)。
 [第四の工程]
 柱状部材20に固定された、切断された粘着テープ10'に所定量の内部標準物質を供給する。
 内部標準物質は、安定同位体で標識されているグリシン及び安定同位体で標識されているリジンを含む。
 安定同位体で標識されているグリシンとしては、角層に含まれる成分と分子量が異なれば、特に限定されないが、14Nが15Nにより置換されているグリシン等が挙げられる。
 安定同位体で標識されているリジンとしては、角層に含まれる成分と分子量が異なれば、特に限定されないが、2個の14Nが15Nにより置換されているリジン等が挙げられる。
 ここで、安定同位体で標識されているグリシンは、イオンサプレッションを受けやすいため、試料(角層)中の安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸に対する内部標準物質として用いる。具体的には、安定同位体で標識されているグリシン由来のピークの面積に対する安定同位体で標識されていないイオンサプレッションを受けやすいアミノ酸由来のピークの面積の比を用いて、角層に含まれるイオンサプレッションを受けやすいアミノ酸を定量分析する。その結果、検量線の直線性を向上させることができ、角層に含まれるイオンサプレッションを受けやすいアミノ酸の分布状態を精度良く定量することができる。
 一方、安定同位体で標識されているリジンは、イオンサプレッションを受けにくいため、試料(角層)中のイオンサプレッションを受けにくいアミノ酸に対する内部標準物質として用いる。具体的には、安定同位体で標識されているリジン由来のピークの面積に対する安定同位体で標識されていないイオンサプレッションを受けにくいアミノ酸由来のピークの面積の比を用いて、角層に含まれるイオンサプレッションを受けにくいアミノ酸を定量分析する。その結果、検量線の直線性を向上させることができ、角層に含まれるイオンサプレッションを受けにくいアミノ酸の分布状態を精度良く定量することができる。
 イオンサプレッションを受けやすいアミノ酸としては、特に限定されないが、グリシン、アラニン、プロリン、バリン、スレオニン、グルタミン、メチオニン、フェニルアラニン等が挙げられる。
 イオンサプレッションを受けにくいアミノ酸としては、特に限定されないが、リジン、ヒスチジン、チロシン、セリン等が挙げられる。
 角層に所定量の内部標準物質を供給する方法としては、特に限定されないが、内部標準物質を溶媒中に溶解させた溶液を角層に滴下する方法等が挙げられる。
 溶媒としては、内部標準物質を溶解させることが可能であれば、特に限定されないが、水、メタノール、エタノール、アセトニトリル、ヘキサン等が挙げられる。
 なお、剥離された角層に所定量の内部標準物質を供給するタイミングは、剥離された角層中のタンパク質の含有量を測定した後であれば、柱状部材20に固定する前であってもよい。
 [第五の工程]
 切断された粘着テープ10'が固定されている柱状部材20を移動させながら、角層から生成したイオンを質量分析する。
 また、柱状部材20の角部Cを挟む面P及びPには、質量校正用標準試料層がさらに形成されていてもよい。これにより、切断された粘着テープ10'が固定されている柱状部材20を用いて質量分析する際に、質量分析計を質量校正し、感度を補正することができる。
 質量校正用標準試料としては、DARTイオン源を用いて、イオンを生成させることが可能であれば、特に限定されないが、質量校正の精度を考慮すると、マススペクトルのピークが等間隔で存在するポリエチレングリコール(PEG60~PEG2000)、炭素数が4~36の脂肪酸等が挙げられ、二種以上併用してもよい。
 質量校正用標準試料層を形成する方法としては、特に限定されないが、質量校正用標準試料の溶液が基材に塗布されている粘着テープを柱状部材20に固定する方法、質量校正用標準試料が添加されているインクが充填されているペンを用いて柱状部材20に描画する方法、質量校正用標準試料が添加されているインクを柱状部材20に塗布する方法等が挙げられる。
 図3に、柱状部材20を用いる質量分析方法の一例を示す。
 まず、略水平面内において、図中、矢印方向に移動させることが可能なサンプルステージ100に、複数個の切断された粘着テープ10'が固定されている柱状部材20を、柱状部材20の高さ方向Hが矢印方向に対して略平行になるように載せる。このとき、柱状部材20のサンプルステージ100に対して、垂直な面がDARTイオン源200と対向するように、柱状部材20を配置する。次に、サンプルステージ100を、図中、矢印方向に移動させながら、DARTイオン源200を用いて、準安定励起状態のヘリウムHe(2S)を大気中の水に衝突させてペニングイオン化させて生成したプロトンを、略水平面内において、図中、矢印方向に対して、略垂直に、柱状部材20の角部Cに照射して生成したイオンを、質量分析計300に導入して質量分析する。
 このとき、質量分析計300のイオン導入管310は、抵抗発熱線311が巻き付けられているため、電源(不図示)を用いて抵抗発熱線311に電圧を印加することにより、イオン導入管310を加熱しながら、生成したイオンを質量分析することができる。これにより、生成したイオンのイオン導入管310への付着を抑制することができる。その結果、角層に含まれるアミノ酸の定量性を向上させることができる。このとき、イオン導入管310内は、コンプレッサー(不図示)により減圧されている。
 なお、生成したイオンは、イオン導入管310のイオンが導入される側に付着しやすいため、通常、イオン導入管310のイオンが導入される側に抵抗発熱線311が巻き付けられる。
 イオン導入管310を加熱するときのイオン導入管310の内壁の温度は、通常、50~500℃であり、100~300℃であることが好ましい。
 なお、イオン導入管310を加熱する方法としては、抵抗発熱線311を巻き付けて加熱する方法に限定されず、セラミックファイバーヒーターを用いて加熱する方法、マイクロ波を照射して加熱する方法、熱風器を用いて加熱する方法等が挙げられる。
 また、イオン導入管310を外して、イオン導入口を直接加熱してもよい。
 さらに、イオン導入管310に生成したイオンが付着しにくい場合は、イオン導入管310を加熱しなくてもよい。
 イオン導入管310を構成する材料としては、耐熱性を有していれば、特に限定されないが、セラミックス、ガラス、テフロン(登録商標)、ステンレス鋼、ニオブ鋼、タンタル鋼等が挙げられる。
 イオン導入管310の内面に、フッ素樹脂、ポリエーテルエーテルケトン、シリコーン樹脂等がコーティングされていてもよい。
 抵抗発熱線311を構成する材料としては、特に限定されないが、鉄-クロム-アルミ系合金、ニッケル-クロム系合金等の金属発熱体;白金、モリブデン、タンタル、タングステン等の高融点金属発熱体;炭化ケイ素、モリブデン-シリサイト、カーボン等の非金属発熱体等が挙げられる。
 例えば、抵抗発熱線311として、直径が0.26mmのニクロム線を用いる場合は、1~6Aの電流を流す。
 なお、柱状部材20のサンプルステージ100に対して、垂直な面が質量分析計300と対向するように、柱状部材20を配置してもよい。
 また、柱状部材20の代わりに、内部の切断された粘着テープ10'が固定されている位置に対応する位置に、抵抗発熱線が設置されている以外は、柱状部材20と同一の柱状部材を用いてもよい。これにより、質量分析する際に、電源(不図示)を用いて抵抗発熱線に電圧を印加することにより、所定の温度に加熱することができる。このとき、ペニングイオン化させて生成したプロトンが切断された粘着テープ10'に照射されるタイミングで、抵抗発熱線に電圧を印加すると、生成したイオンを効率的に脱離させることができる。
 抵抗発熱線を構成する材料としては、特に限定されないが、鉄-クロム-アルミ系合金、ニッケル-クロム系合金等の金属発熱体;白金、モリブデン、タンタル、タングステン等の高融点金属発熱体;炭化ケイ素、モリブデン-シリサイト、カーボン等の非金属発熱体等が挙げられる。
 さらに、柱状部材20の代わりに、中空の直角二等辺三角柱状の柱状部材を用いてもよいし、折り曲げることにより角部が形成されている板を用いてもよい。
 また、柱状部材20の代わりに、柱状部材20の角部Cが丸みを帯びている柱状部材、柱状部材20から角部Cを含む直角二等辺三角柱を除去した台形柱状の柱状部材、柱状部材20から角部Cを含む三角柱を除去した四角柱状の柱状部材等を用いてもよい(特許文献1参照)。
 なお、準安定励起状態のヘリウムHe(2S)の代わりに、準安定励起状態のネオン、準安定励起状態のアルゴン、準安定励起状態の窒素等を用いてもよい。
 また、DARTイオン源200の代わりに、DESIイオン源を用いて、イオン化した溶媒を試料に付着させてイオンを脱離させてもよい。
 イオン化させる溶媒としては、特に限定されないが、メタノール、メタノール水溶液、アセトニトリル、アセトニトリル水溶液等が挙げられる。
 イオン化させる溶媒は、酸性物質や塩基性物質を含んでいてもよい。
 [検量線の作成]
 DART又はDESIを用いて、所定量のアミノ酸及び内部標準物質から生成したイオンを質量分析することにより、検量線を作成することができる。
 例えば、角層を剥離せず、柱状部材に固定された、切断された粘着テープに所定量のアミノ酸及び内部標準物質を付着させる以外は、上記と同様にして、生成したイオンを質量分析することにより、検量線を作成することができる。
 切断された粘着テープにアミノ酸及び内部標準物質を付着させる方法としては、特に限定されないが、アミノ酸及び内部標準物質を溶媒中に溶解させた溶液を粘着テープに滴下する方法等が挙げられる。
 溶媒としては、アミノ酸及び内部標準物質を溶解させることが可能であれば、特に限定されないが、水、メタノール、エタノール、アセトニトリル、ヘキサン等が挙げられる。
 なお、検量線を作成する手順は、内部標準物質が供給された角層から生成したイオンを質量分析する手順に対応するように、実施すればよい。
 [粘着テープ10の作製]
 3枚の刃が2mm間隔で固定されているカッターを用いて、上面が直径が22mmの円状の粘着テープD-Squame disc(CuDerm社製)に切れ目11を3本入れ、粘着テープ10を得た。
 [柱状部材20の作製]
 直角を挟む二辺の長さが10mm、高さが160mmの直角二等辺三角柱状の石英製のプリズム(藤原製作所社製)の高さ方向Hに対して平行に、3mm×60mmの両面テープ21を、角部Cを挟む間隔が14mmとなるように2枚固定し、柱状部材20(N=15)を得た。
 [実施例1]
 (検量線作成用試料の水溶液の調製)
 安定同位体で標識されていない、グリシン、アラニン、プロリン、バリン、フェニルアラニン、メチオニン、スレオニン、グルタミン、リジン、チロシン、ヒスチジン、セリン(以上、和光純薬社製)と、安定同位体で標識されているグリシン、リジン(以上、純正科学社製)を、それぞれ所定の濃度になるように純水中に溶解させ、5種類の検量線作成用試料の水溶液を得た。なお、各検量線作成用試料の水溶液における安定同位体で標識されていない、グリシン、アラニン、プロリン、バリン、フェニルアラニン、メチオニン、スレオニン、グルタミン、リジン、チロシン、ヒスチジン、セリンの濃度は、それぞれ1μg/mL、2.5μg/mL、10μg/mL、25μg/mL、50μg/mLである。また、各検量線作成用試料の水溶液における安定同位体で標識されているグリシン、リジンの濃度は、それぞれ10μg/mLである。
 (内部標準物質の水溶液の調製)
 安定同位体で標識されているグリシン(14Nが15Nにより置換されているグリシン)(純正科学社製)と安定同位体で標識されているリジン(2個の14Nが15Nにより置換されているリジン)(純正科学社製)を、濃度がそれぞれ10μg/mLになるように純水中に溶解させ、内部標準物質の水溶液を得た。
 (検量線の作成)
 3枚の刃が2mm間隔で固定されているカッターを用いて、上面が直径が22mmの円状の粘着テープD-Squame disc(CuDerm社製)を、粘着テープ10に対応するように、幅が2mmの短冊状に切断した。
 次に、切断された粘着テープ15枚を基材側の面が両面テープ21に接着するように、10mmピッチで柱状部材20に固定した。
 さらに、シリンジを用いて、5種類の検量線作成用試料の水溶液を、それぞれ切断された粘着テープ3枚ずつに1μLずつ滴下した後、30分間乾燥させた。
 次に、図3の質量分析方法に対応するように、柱状部材20に固定された、切断された粘着テープから生成したイオンを順次質量分析した。具体的には、まず、柱状部材20を、高さ方向Hが矢印方向に対して略平行になるようにサンプルステージ100に載せた。このとき、柱状部材20のサンプルステージ100に対して、垂直な面がDARTイオン源200と対向するように、柱状部材20を配置した。次に、サンプルステージ100を、略水平面内において、図中、矢印方向に0.2mm/sで移動させながら、DARTイオン源200を用いて、準安定励起状態のヘリウムHe(2S)を大気中の水に衝突させてペニングイオン化させて生成したプロトンを、略水平面内において、図中、矢印方向に対して、略垂直に、柱状部材20の角部Cに照射して生成したイオンを、質量分析計300に導入して質量分析した。このとき、抵抗発熱線311に4Aの電流を流すことにより、イオン導入管310を加熱したため、イオン導入管310の内壁の温度は110℃であった。
 なお、DARTイオン源200として、DART SVP(Ionsense社製)を用い、ガスヒーターの設定温度を450℃とした。また、質量分析計300として、MicrOTOFQII(Bruker Daltonics社製)を用い、測定モードをpositive ion modeとした。さらに、イオン導入管310として、外径が6.2mm、内径が4.7mm、長さが94mmのセラミックス製のチューブを用い、イオンが導入される側から35mmの領域に抵抗発熱線311を巻き付けた。このとき、抵抗発熱線311として、直径が0.26mmのニクロム線を用いた。
 図4に、検量線作成用試料の抽出クロマトグラムを示す。なお、*は、安定同位体で標識されていることを意味する。
 図4には、各アミノ酸毎に、15個のピークが示されている。これらのピークは、柱状部材20に固定された粘着テープ15枚からそれぞれ測定された各アミノ酸の信号強度に対応する。安定同位体で標識されていない試料の各アミノ酸(グリシン、アラニン、プロリン、バリン、フェニルアラニン、メチオニン、スレオニン、グルタミン、リジン、チロシン、ヒスチジン、セリン)については、図中左側から、濃度が低い順に3つずつ同じ濃度の試料のピークが表示されている。また、安定同位体で標識された試料の各アミノ酸(グリシン、リジン)については、全て10μg/mLの試料のピークが表示されている。
 図5に、安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸の検量線を示す。
 ここでは、安定同位体で標識されているグリシン由来のピーク(モノアイソトピック質量=76.03)の面積Qsに対する安定同位体で標識されていないイオンサプレッションを受けやすい各アミノ酸由来のピーク(例えば、グリシンの場合はモノアイソトピック質量=75.03)の面積Qtの比(Qt/Qs)を用いて、角層に含まれるイオンサプレッションを受けやすいアミノ酸を定量分析した。つまり、図5の抽出クロマトグラムのピーク面積比は、安定同位体で標識されているグリシン由来のピークの面積に対する、安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸のピークの面積の比を意味する。具体的には、図4に示した各粘着テープに対応するピーク毎にQt/Qsを算出し、同じ濃度の試料3つ毎にQt/Qsの平均値を算出して検量線の作成に用いた。また、イオンサプレッションを受けやすいアミノ酸の含有量は、切断された粘着テープ1枚当たりの含有量を意味する。
 図5から、安定同位体で標識されているグリシン由来のピークの面積を内部標準物質として用いることにより、安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸の検量線の直線性を良好にできることがわかる。なお、ここで、安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸として、グリシンだけでなく、アラニン、プロリン、バリン、フェニルアラニン、メチオニン、スレオニン、グルタミンについても、安定同位体で標識されているグリシン由来のピークの面積を内部標準物質として用いることにより、検量線の直線性を良好にすることができる。
 図6に、安定同位体で標識されておらず、イオンサプレッションを受けにくいアミノ酸の検量線を示す。
 ここでは、安定同位体で標識されているリジン由来のピーク(モノアイソトピック質量=146.10)の面積Qsに対する安定同位体で標識されていないイオンサプレッションを受けにくい各アミノ酸由来のピーク(例えば、リジンの場合はモノアイソトピック質量=148.10)の面積Qtの比(Qt/Qs)を用いて、角層に含まれるイオンサプレッションを受けにくいアミノ酸を定量分析した。つまり、図6の抽出クロマトグラムのピーク面積比は、安定同位体で標識されているリジン由来のピークの面積に対する、安定同位体で標識されておらず、イオンサプレッションを受けにくいアミノ酸のピークの面積の比を意味する。具体的には、図4に示した各粘着テープに対応するピーク毎にQt/Qsを算出し、同じ濃度の試料3つ毎にQt/Qsの平均値を算出して検量線の作成に用いた。また、イオンサプレッションを受けにくいアミノ酸の含有量は、切断された粘着テープ1枚当たりの含有量を意味する。
 図6から、安定同位体で標識されているリジン由来のピークの面積を内部標準物質として用いることにより、安定同位体で標識されておらず、イオンサプレッションを受けにくいアミノ酸の検量線の直線性を良好にできることがわかる。なお、ここで、安定同位体で標識されておらず、イオンサプレッションを受けにくいアミノ酸として、リジンだけでなく、チロシン、ヒスチジン、セリンについても、安定同位体で標識されているリジン由来のピークの面積を内部標準物質として用いることにより、検量線の直線性を良好にすることができる。
 次に、図5及び図6に示した検量線を用いて、角層中のアミノ酸の含有量を検出する例を説明する。
 (第一の工程)
 前腕屈側部を洗浄した後、乾燥させた。次に、粘着テープ10を用いて、前腕屈側部から10層の角層を剥離した。
 (第二の工程)
 D-squame Scan 850A(CuDerm社)を用いて、1~10層目の角層を剥離した粘着テープ10の単位面積当たりのタンパク質の含有量[μg/cm]を測定した。次に、切断された粘着テープ10'の面積[cm]を用いて、1~10層目の角層の切断された粘着テープ10'の1枚当たりのタンパク質の含有量[μg]を算出した。
 (第三の工程)
 10層の角層を剥離した粘着テープ10の切れ目11の根元部分を切断し、幅が2mmの矩形状の切断された粘着テープ10'を得た。次に、1~10層目の角層を剥離した、切断された粘着テープ10'を、担体10a側の面が両面テープ21に接着するように、柱状部材20に10mmピッチで固定した。
 (第四の工程)
 柱状部材20に固定された、切断された粘着テープ10'に、内部標準物質の水溶液を1μLずつ添加した後、30分間乾燥させた。
 (第五の工程)
 検量線の作成と同様にして、柱状部材20に固定された、切断された粘着テープ10'から生成したイオンを順次質量分析した。次に、1~10層目の角層の抽出クロマトグラムのピーク面積比を算出した後、検量線を用いて、1~10層目の角層の切断された粘着テープ10'の1枚当たりの各アミノ酸の含有量を求めた。ここで、角層の抽出クロマトグラムのピーク面積比は、各粘着テープ10'毎に算出された、安定同位体で標識されているグリシン由来のピークの面積に対する、安定同位体で標識されておらず、イオンサプレッションを受けやすいアミノ酸のピークの面積の比及び安定同位体で標識されているリジン由来のピークの面積に対する、安定同位体で標識されておらず、イオンサプレッションを受けにくいアミノ酸のピークの面積の比である。さらに、1~10層目の角層の切断された粘着テープ10'の1枚当たりのタンパク質の含有量を用いて、1~10層目の角層中のタンパク質の含有量に対するアミノ酸の含有量の比を算出した。
 図7に、角層中のタンパク質の含有量の累積値と、角層中のタンパク質の含有量に対するアミノ酸の含有量の比の関係を示す。
 なお、角層中のタンパク質の含有量の累積値は、1~n(ただし、nは、1~10の整数である。)層目の角層中のタンパク質の含有量の合計であり、大きくなる程、角層の深さが大きくなることを意味する。
 図7から、表面付近の角層中のアミノ酸の含有量は、内部の角層中のアミノ酸の含有量よりも小さいことがわかる。
 [比較例1]
 (検量線作成用試料の水溶液の調製)
 安定同位体で標識されていない、グリシン、アラニン、プロリン、バリン、フェニルアラニン、メチオニン、スレオニン、グルタミン、リジン、チロシン、ヒスチジン、セリン(以上、和光純薬社製)を、それぞれ所定の濃度になるように純水中に溶解させ、5種類の検量線作成用試料の水溶液を得た。なお、各検量線作成用試料の水溶液における安定同位体で標識されていない、グリシン、アラニン、プロリン、バリン、フェニルアラニン、メチオニン、スレオニン、グルタミン、リジン、チロシン、ヒスチジン、セリンの濃度は、それぞれ1μg/mL、2.5μg/mL、10μg/mL、25μg/mL、50μg/mLである。
 (検量線の作成)
 得られた検量線作成用試料の水溶液を用いた以外は、実施例1と同様にして、質量分析した。
 図8及び図9に、安定同位体で標識されていない、グリシン及びリジンの検量線を示す。
 なお、グリシン及びリジンの含有量は、切断された粘着テープ1枚当たりの含有量を意味する。
 図8及び図9から、安定同位体で標識されていない、グリシン及びリジンの検量線は、図5及び図6で示したように、安定同位体で標識されているグリシン及びリジン由来のピークの面積を内部標準物質として用いて得られた安定同位体で標識されていない、グリシン及びリジンの検量線と対比すると、直線性が低いことがわかる。
 以上、本発明の好ましい実施形態及び実施例について詳述したが、本発明は上記した特定の実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。
 本国際出願は2015年4月24日に出願された日本国特許出願2015-089520号及び2016年4月19日に出願された日本国特許出願2016-083850号に基づく優先権を主張するものであり、その全内容をここに援用する。
 10  粘着テープ
 10a  担体
 10b  粘着剤層
 11  切れ目
 10'  切断された粘着テープ
 20  柱状部材
 21  両面テープ
 100  サンプルステージ
 200  DARTイオン源
 300  質量分析計
 310  イオン導入管
 311  抵抗発熱線

Claims (7)

  1.  皮膚に含まれる成分を定量分析する方法であって、
     皮膚から採取された試料に、安定同位体で標識されたイオンサプレッションを受けやすい化合物及び/又は安定同位体で標識されたイオンサプレッションを受けにくい化合物を含む所定量の内部標準物質を供給する工程と、
     大気圧イオン化法を用いて、該内部標準物質が供給された試料から生成したイオンを質量分析する工程と、
    を有することを特徴とする分析方法。
  2.  前記皮膚に含まれる成分は、角層に含まれるアミノ酸であり、
     前記イオンサプレッションを受けやすい化合物は、グリシンであり、
     前記イオンサプレッションを受けにくい化合物は、リジンであることを特徴とする請求項1に記載の分析方法。
  3.  前記安定同位体で標識されたグリシン由来のピークの面積に対する、安定同位体で標識されていない、イオンサプレッションを受けやすいアミノ酸由来のピークの面積の比、及び/又は前記安定同位体で標識されたリジン由来のピークの面積に対する、安定同位体で標識されていない、イオンサプレッションを受けにくいアミノ酸由来のピークの面積の比を用いて、前記角層に含まれるアミノ酸を定量分析することを特徴とする請求項2に記載の分析方法。
  4.  表面に粘着剤層が形成されている担体を用いて、前記皮膚から角層を剥離する工程と、
     該角層を剥離した担体を所定の幅で切断する工程と、
     該切断された担体の前記角層が固定されている側と反対側の面を、所定の間隔を隔てて柱状部材に固定する工程をさらに有し、
     該切断された担体が固定されている柱状部材を移動させながら、前記角層から生成したイオンを質量分析することを特徴とする請求項2に記載の分析方法。
  5.  前記角層中のタンパク質の含有量を測定する工程をさらに有し、
     該タンパク質の含有量が測定された角層に前記所定量の内部標準物質を供給することを特徴とする請求項2に記載の分析方法。
  6.  前記大気圧イオン化法は、DART又はDESIであることを特徴とする請求項1に記載の分析方法。
  7.  皮膚に含まれる成分の定量分析に用いられる内部標準物質であって、
     安定同位体で標識されたイオンサプレッションを受けやすい化合物及び/又は安定同位体で標識されたイオンサプレッションを受けにくい化合物を含むことを特徴とする内部標準物質。
PCT/JP2016/062540 2015-04-24 2016-04-20 分析方法及び内部標準物質 WO2016171182A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015089520 2015-04-24
JP2015-089520 2015-04-24
JP2016083850A JP6101385B2 (ja) 2015-04-24 2016-04-19 分析方法
JP2016-083850 2016-04-19

Publications (1)

Publication Number Publication Date
WO2016171182A1 true WO2016171182A1 (ja) 2016-10-27

Family

ID=57143143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062540 WO2016171182A1 (ja) 2015-04-24 2016-04-20 分析方法及び内部標準物質

Country Status (1)

Country Link
WO (1) WO2016171182A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503818A (ja) * 2003-08-29 2007-03-01 パーキンエルマー ラス インコーポレイテッド 代謝酵素活性及び代謝産物レベルの同時検出のための質量分析法
WO2009151091A1 (ja) * 2008-06-13 2009-12-17 エーザイ・アール・アンド・ディー・マネジメント株式会社 アルツハイマー病の検査方法
WO2013012028A1 (ja) * 2011-07-21 2013-01-24 和光純薬工業株式会社 血漿中アミノ酸分析用標準液
JP2014013201A (ja) * 2012-07-04 2014-01-23 Shiseido Co Ltd 成分分布可視化装置、成分分布可視化方法、及び成分分布可視化プログラム
JP2014206488A (ja) * 2013-04-15 2014-10-30 株式会社 資生堂 分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503818A (ja) * 2003-08-29 2007-03-01 パーキンエルマー ラス インコーポレイテッド 代謝酵素活性及び代謝産物レベルの同時検出のための質量分析法
WO2009151091A1 (ja) * 2008-06-13 2009-12-17 エーザイ・アール・アンド・ディー・マネジメント株式会社 アルツハイマー病の検査方法
WO2013012028A1 (ja) * 2011-07-21 2013-01-24 和光純薬工業株式会社 血漿中アミノ酸分析用標準液
JP2014013201A (ja) * 2012-07-04 2014-01-23 Shiseido Co Ltd 成分分布可視化装置、成分分布可視化方法、及び成分分布可視化プログラム
JP2014206488A (ja) * 2013-04-15 2014-10-30 株式会社 資生堂 分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Shitsuryo Bunseki Gijustu (Mass Spectrometry", JAPAN PATENT OFFICE HYOJUN GIJUTSUSHU HEISEI 17 NENDO, vol. 2-6-1, 12 May 2006 (2006-05-12), pages 183 - 186 *

Similar Documents

Publication Publication Date Title
Andrade et al. Atmospheric pressure chemical ionization source. 2. Desorption− ionization for the direct analysis of solid compounds
US10056243B2 (en) Apparatus and method for rapid chemical analysis using differential desorption
Rohner et al. Polymer microspray with an integrated thick-film microelectrode
Weston et al. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization
US7388195B2 (en) Apparatus and systems for processing samples for analysis via ion mobility spectrometry
Haapala et al. Desorption atmospheric pressure photoionization
Lin et al. Using electrospray-assisted laser desorption/ionization mass spectrometry to characterize organic compounds separated on thin-layer chromatography plates
Shen et al. Mass imaging of ketamine in a single scalp hair by MALDI-FTMS
WO2013169491A2 (en) Techniques for analyzing mass spectra from thermal desorption response
Reyes-Garcés et al. Coupling needle trap devices with gas chromatography–ion mobility spectrometry detection as a simple approach for on-site quantitative analysis
Arce et al. Sample-introduction systems coupled to ion-mobility spectrometry equipment for determining compounds present in gaseous, liquid and solid samples
Zhou et al. Reactive paper spray mass spectrometry for in situ identification of quinones
Kleeblatt et al. Detection of gaseous compounds by needle trap sampling and direct thermal-desorption photoionization mass spectrometry: concept and demonstrative application to breath gas analysis
JP5970246B2 (ja) 分析方法及び分析キット
US8044344B2 (en) Mass spectroscope
JP6101385B2 (ja) 分析方法
Sheibani et al. Application of ion mobility spectrometry for the determination of tramadol in biological samples
JP6199592B2 (ja) 分析方法
Michalczuk et al. Atmospheric pressure chemical ionisation study of selected volatile organic compounds (VOCs) by ion mobility spectrometry coupled with orthogonal acceleration time of flight mass spectrometry
Lee et al. Liquid chromatography/tandem mass spectrometric method for the simultaneous determination of tobacco-specific nitrosamine NNK and its five metabolites
WO2004038752A2 (en) Contiguous capillary electrospray sources and analytical device
WO2016171182A1 (ja) 分析方法及び内部標準物質
Inoue et al. Rapid on-site air sampling with a needle extraction device for evaluating the indoor air environment in school facilities
Yang et al. Ultrasensitive detection of volatile aldehydes with chemi-ionization-coupled time-of-flight mass spectrometry
Zhang et al. Induced self-aspiration electrospray ionization mass spectrometry for flexible sampling and analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783203

Country of ref document: EP

Kind code of ref document: A1