WO2016170562A1 - Composition for microorganisms - Google Patents

Composition for microorganisms Download PDF

Info

Publication number
WO2016170562A1
WO2016170562A1 PCT/JP2015/002248 JP2015002248W WO2016170562A1 WO 2016170562 A1 WO2016170562 A1 WO 2016170562A1 JP 2015002248 W JP2015002248 W JP 2015002248W WO 2016170562 A1 WO2016170562 A1 WO 2016170562A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
glycerin
composition
sorbitol
microorganisms
Prior art date
Application number
PCT/JP2015/002248
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 安藤
清水 巧治
紀賢 當田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580003186.9A priority Critical patent/CN105960446B/en
Priority to MYPI2016701330A priority patent/MY162881A/en
Priority to PCT/JP2015/002248 priority patent/WO2016170562A1/en
Priority to JP2015534717A priority patent/JP5866508B1/en
Priority to MYPI2016701329A priority patent/MY161710A/en
Publication of WO2016170562A1 publication Critical patent/WO2016170562A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms

Definitions

  • the present invention relates to a composition for microorganisms that is injected into soil and groundwater to decompose organochlorine compounds in soil and groundwater using microorganisms and purify the soil and groundwater.
  • Soil and groundwater contaminated with chemical substances is a problem that disrupts the balance of not only human beings but also the entire biological world, and some measures are necessary from the viewpoint of environmental protection. In addition, leaving contaminated soil and groundwater will limit the area of human activity, and measures are also needed from an economic point of view.
  • the bioremediation method is said to be suitable as one of the methods for economically purifying soil and groundwater in situ without requiring large-scale construction. This is a method of decomposing chemical substances that are pollutants into aerobic or anaerobic microorganisms in soil and groundwater.
  • organic chlorine compounds such as chloroform, dichloromethane, dichloroethane, and trichloroethylene to purify these chemical substances.
  • an organic chlorine compound can be dechlorinated and a chemical substance can be purified by a reduction reaction with hydrogen generated in an anaerobic atmosphere.
  • Patent Document 1 discloses a composition in which a linear fatty acid granulated or a linear fatty acid is mixed in glycerine so that it is difficult to move from the injection point.
  • Patent Document 2 discloses a technique in which a nutrient source mainly composed of sorbitol is diluted to 2000 ppm and is fed into soil and groundwater to decompose microorganisms into organochlorine compounds. More specifically, 60% sorbitol, 10% glycerin, 2% anions, and 28% water diluted to 2000 ppm are fed into soil and groundwater for diffusion. At the end of diffusion, the concentration of carbon in the nutrient source is diluted to approximately 100 ppm, so that the microorganism is at a concentration that allows co-uptake with chemicals. For this reason, decomposition of the chemical substance is promoted.
  • Patent Document 3 discloses one in which a nonionic surfactant is added so that a diluted nutrient source can be diffused well in the ground.
  • the nutrient source includes a polyhydric alcohol and a surfactant
  • the polyhydric alcohol is one or more sugar alcohols selected from sorbitol, mannitol, and xylitol, 62 to 68 parts by weight, and 8 to 10 parts by weight.
  • the surfactant is 1 to 5 parts by weight of a nonionic surfactant, and further comprises 22 to 25 parts by weight of water.
  • the nutrient source (composition for microorganisms) having the composition of Patent Document 3 is actually used and has the effect as planned.
  • a nutrient source is prepared in advance in a factory, and packed in an 18-liter can (so-called “Ito can”: hereinafter referred to as “carrying container”) and carried to the site. Since soil purification requires weeks or months, transport containers containing nutrients are often left outdoors.
  • the present invention has been conceived in view of the above problems, and provides a composition for microorganisms (nutrient source) that does not coagulate in a transport container even when left in the field.
  • composition for microorganisms comprises: A composition for microorganisms capable of purifying organochlorine compounds in soil and groundwater, One or more sugar alcohols selected from sorbitol and mannitol; Glycerin, A nonionic surfactant; Composed of water, The sugar alcohol has a content of less than 6 times that of the glycerin.
  • composition for microorganisms according to the present invention does not solidify in the transport container even when repeatedly subjected to heat shock. Therefore, even after being transported to the site, it does not take time to manage until it is used.
  • composition for microorganisms according to the present invention will be described.
  • the following description exemplifies a part of the embodiments and examples of the present invention, and the present invention is not limited to the following description.
  • the following embodiments can be modified without departing from the gist of the present invention.
  • the composition for microorganisms according to the present invention contains a material for activating microorganisms in soil and groundwater and is intended to diffuse from the injection site. Therefore, it is a liquid and has a low viscosity. Moreover, since it aims at using it in the highly diluted state with respect to the microorganisms in soil and groundwater, it needs to be water-soluble. It must function as a nutrient source for the purpose of purifying soil and groundwater.
  • sorbitol a sugar alcohol which is a polyhydric alcohol
  • mannitol can be used similarly.
  • sorbitol a sugar alcohol which is a polyhydric alcohol
  • glycerin which is a trivalent alcohol
  • the freezing point can be lowered, so that it also serves as an antifreeze. This is useful when purifying soil and groundwater in places with low temperatures.
  • glycerin is contained in the microbial composition before dilution at a ratio of 1/6 or more with respect to sorbitol.
  • sorbitol which is a polyhydric alcohol
  • water may be contained at a ratio of about 40% by mass or less. Basically, water is not necessary as a nutrient source. However, it is also necessary to adjust the concentration of nutrient sources. Water may be the remainder of sorbitol, glycerin and other additives.
  • the water used has been subjected to sterilization treatment.
  • Water contains bacteria such as water mold. This is because sorbitol can also be a nutrient source for these microorganisms, and therefore, if miscellaneous bacteria are included, the problem arises that the composition for microorganisms corrodes during storage.
  • the sterilization treatment may be a boiling treatment or may be irradiated with ultraviolet rays.
  • you may use the water which does not contain a germ in the first place, such as a pure water and an ultrapure water.
  • Nutrient sources include nonionic surfactants.
  • the surfactant lowers the surface energy of the soil when the nutrient source is injected into the soil and groundwater, and makes the soil easy to get wet with the nutrient source. As a result, along with the effect of capillarity, it makes it easier for nutrients to diffuse in soil and groundwater.
  • Nonionic surfactants can exhibit surface activity regardless of the pH of the liquid.
  • nonionic surfactants do not depend on the pH of soil and groundwater.
  • soil and groundwater an anaerobic environment can be easily obtained, so that anaerobic decomposition of organic matter proceeds and the soil tends to become acidic.
  • the composition for microorganisms can be diffused if it is a nonionic surfactant.
  • Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene Myristyl ether, polyoxyethylene distyrenated phenyl ether, etc.
  • sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan distearate, etc. which are sorbitan fatty acid esters, polyoxyethylene sorbitan Polyoxyethylene sorbitan mono-coconut fatty acid ester, polyoxyethylene sorbitan laurate, polyio Ciethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbite tetraoleate it can.
  • polyoxyethylene lauryl ether can be preferably used.
  • composition for microorganisms according to the present invention may further contain a pH buffer.
  • the pH buffer can be added from 1 to 4 parts by weight based on the total amount. When adding the pH buffering agent, the ratio with other components is appropriately adjusted.
  • pH buffer is a lactic acid buffer, a citrate buffer, a phosphate buffer, an acetate buffer, and the like. These are added from 1 to 4 parts by weight.
  • the reason for using a pH buffer is as follows.
  • the microorganisms in the soil and groundwater can be activated.
  • an organic acid such as acetic acid
  • the pH in the soil and groundwater decreases. If the pH of the soil and groundwater is too low, the activity of microorganisms will be suppressed. That is, when the composition for microorganisms is injected into soil and groundwater, a period during which decomposition of the organic chlorine compound or the like does not proceed is formed for a certain period after injection. This is called the “purification stagnation period”.
  • the pH buffer can alleviate a decrease in pH due to the production of an organic acid such as acetic acid to some extent, and can suppress the “stagnation period of purification” due to an excessive decrease in pH. Therefore, there is no “purification stagnation period”. As a result, there is an advantage that the period required for purification of soil and groundwater is shortened.
  • composition for microorganisms according to the present invention are shown below.
  • Table 1 For confirmation of crystallization, each sample shown in Table 1 was prepared, and 5 cans were packed in a transport container, and a temperature change was given in a constant temperature test chamber.
  • the carrying container is an ordinary 18 liter can and is made of iron. No treatment such as providing a protective film or a protective sheet on the inner wall is performed.
  • heat shock was applied for 30 days at a cycle of 24 ° C. for 12 hours and 15 ° C. for 12 hours. In the thermostat, it takes about 60 minutes to change the temperature.
  • Sample 1 is 65% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 23% by mass of water.
  • nonionic surfactant polyoxyethylene lauryl ether was used.
  • the boiled tap water was used for water. This is the same for all subsequent samples.
  • Sample 2 is 60% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 28% by mass of water. In Sample 2, crystallization occurred in 5 out of 5 cans. The results are shown in Table 1.
  • Sample 3 is 59% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 29% by mass of water. Sample 5 did not crystallize in all 5 cans. The results are shown in Table 1.
  • Sample 4 is 58% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water. Sample 5 did not crystallize in all 5 cans. The results are shown in Table 1.
  • Sample 5 is 55% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water. The results are shown in Table 1. Sample 5 did not crystallize in all 5 cans. The results are shown in Table 1.
  • Sample 6 is 60% by mass of sorbitol, 7% by mass of glycerin, 2% by mass of nonionic surfactant, and 31% by mass of water.
  • Sample 7 is 58% by mass of sorbitol, 7% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water.
  • Sample 8 is 60% by mass of sorbitol, 8% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water.
  • Sample 9 is 58% by mass of sorbitol, 8% by mass of glycerin, 2% by mass of nonionic surfactant, and 32% by mass of water.
  • Sample 10 is sorbitol 60% by mass, glycerin 9% by mass, nonionic surfactant 2% by mass, and water 29% by mass.
  • Sample 11 is 58% by mass of sorbitol, 9% by mass of glycerin, 2% by mass of nonionic surfactant, and 31% by mass of water.
  • Sample 12 is 60% by mass of sorbitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 27% by mass of water.
  • Sample 13 is 58% by mass of sorbitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 29% by mass of water.
  • Sample 14 is 60% by mass of sorbitol, 12% by mass of glycerin, 2% by mass of nonionic surfactant, and 26% by mass of water.
  • Sample 15 is 58% by mass of sorbitol, 12% by mass of glycerin, 2% by mass of nonionic surfactant, and 28% by mass of water.
  • Sample 16 is 65% by mass of sorbitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 22% by mass of water. The results are shown in Table 2.
  • Sample 16 was the one shown in Table 1 (65% by mass of sorbitol), and a composition containing 11% by mass of glycerin was tested. In sample 16, sorbitol to glycerin is 5.9 to 1. As shown in Table 2, even if sample 16 had a sorbitol content of 65% by mass, crystallization did not occur in 5 of 5 cans as long as the ratio was 6 times or less of glycerin.
  • Sample 17 is 60% by mass of mannitol, 7% by mass of glycerin, 2% by mass of nonionic surfactant, and 31% by mass of water.
  • the ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 8.5: 1.
  • Sample 18 is mannitol 58% by mass, glycerin 9% by mass, nonionic surfactant 2% by mass, and water 31% by mass.
  • the ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 6.4: 1.
  • Sample 19 is 60% by mass of mannitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 27% by mass of water.
  • the ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 5.4: 1.
  • Sample 20 is mannitol 58% by mass, glycerin 11% by mass, nonionic surfactant 2% by mass, and water 29% by mass.
  • the ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 5.3: 1.
  • Sample 21 is 65% by mass of mannitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 22% by mass of water.
  • the ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 5.9: 1.
  • the example was performed at a site contaminated with tetrachlorethylene.
  • the aquifer was 2.0 to 12.2 m from the ground surface.
  • concentration in groundwater was about 0.8 mg / L.
  • an injection well having a diameter of 100 mm was installed, and a pipe was connected to the well opening to inject the composition for microorganisms.
  • an observation well was set up at a location 3 m away from the injection well, and the tetrachlorethylene concentration, sorbitol concentration, and pH in the groundwater were regularly monitored.
  • the injection well and the observation well into which each microbial composition was injected were provided sufficiently apart from each other so as not to be affected by the microbial composition.
  • aqueous solution diluted to 2000 ppm was used, and after continuous injection at 9.0 L / min for 7 days, only monitoring was continued.
  • Example 1 is a mixture of 52% by mass of sorbitol, 9% by mass of glycerin, 2% by mass of nonionic surfactant, and 37% by mass of water.
  • the ratio of sorbitol and glycerin is “5.7: 1”.
  • polyoxyethylene lauryl ether was used as the nonionic surfactant.
  • water water obtained by boiling normal tap water for 10 minutes and cooling it to 25 ° C was used. The composition and results are shown in Table 4.
  • G ratio means “ratio of glycerin” and indicates the ratio of sugar alcohol when glycerin is 1.
  • S represents sorbitol
  • M represents mannitol.
  • Example 2 is a mixture of 55% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water. The ratio of sorbitol and glycerin is “5.5: 1”. In Example 3, 58% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water are mixed. The ratio of sorbitol and glycerin is “5.8: 1”.
  • Example 4 is a mixture of mannitol 52% by mass, glycerin 9% by mass, nonionic surfactant 2% by mass, and water 37% by mass.
  • the ratio of mannitol to glycerin is “5.7: 1”.
  • Example 5 is a mixture of 55% by mass of mannitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water. The ratio of mannitol to glycerin is “5.5: 1”. In Example 6, 58% by mass of mannitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water are mixed. The ratio of mannitol to glycerin is “5.8: 1”.
  • the ratio of sugar alcohol to glycerin is 6: 1 or less (low sugar alcohol).
  • the composition and results are shown in Table 4.
  • the decomposition rate was calculated from the concentration of tetrachlorethylene before the test and the concentration after 30 days, and displayed in%. Moreover, the sugar concentration (mg / L) after 7 days at a sampling point 3 m away from the well was shown.
  • composition for microorganisms according to the present invention can be suitably used as a nutrient source for decomposing and purifying organochlorine compounds in soil and groundwater using microorganisms in soil and groundwater.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

There are cases when a composition for microorganisms is conveyed to a soil purification site, and subsequently left in a field in a conveyance container. However, when the composition for microorganisms is left for several weeks, a phenomenon in which the composition for microorganisms crystallizes in the conveyance container occurs. This composition for microorganisms, which is capable of purging organochlorine compounds in soil and groundwater, is characterized by being formed from: at least one sugar alcohol selected from sorbitol, mannitol, and xylitol; glycerine; a non-ionic surfactant; and water. The composition for microorganisms is further characterized in that the content of the sugar alcohol is less than 6 times that of the glycerine. This composition for microorganisms does not crystallize in a conveyance container, even if left in a field in the conveyance container.

Description

微生物用組成物Microbial composition
 本発明は、土壌および地下水中の有機塩素化合物を微生物を利用して分解し、土壌および地下水を浄化するために、土壌および地下水中に注入する微生物用組成物に関するものである。 The present invention relates to a composition for microorganisms that is injected into soil and groundwater to decompose organochlorine compounds in soil and groundwater using microorganisms and purify the soil and groundwater.
 化学物質によって汚染された土壌および地下水は、人ばかりでなく生物界全体のバランスを崩す問題であり、環境保護的な観点から何らかの対策が必要である。また、汚染された土壌および地下水を放置しておくのは、人の活動領域を制限することに繋がり経済的な観点からも対策が必要である。 Soil and groundwater contaminated with chemical substances is a problem that disrupts the balance of not only human beings but also the entire biological world, and some measures are necessary from the viewpoint of environmental protection. In addition, leaving contaminated soil and groundwater will limit the area of human activity, and measures are also needed from an economic point of view.
 従来、化学物質で汚染された土壌および地下水を浄化するためには、石灰法、鉄粉法、土壌掘削置換法、土壌湿気式洗浄法、バイオレメディエーション法など様々な方法が提案されている。土壌および地下水の汚染は、広範囲に広がる場合が多く、土壌そのものを置換するといった方法は、規模および経費が莫大となる。 Conventionally, various methods such as lime method, iron powder method, soil excavation and replacement method, soil moisture cleaning method, and bioremediation method have been proposed to purify soil and groundwater contaminated with chemical substances. Soil and groundwater contamination is often widespread and methods such as replacing the soil itself are enormous in scale and cost.
 大規模な工事を必要とせず、原位置で経済的に土壌および地下水を浄化する方法の1つとしては、バイオレメディエーション法が好適であるといわれる。これは、土壌および地下水中の好気性若しくは嫌気性の微生物に汚染物質である化学物質を分解させる方法である。 The bioremediation method is said to be suitable as one of the methods for economically purifying soil and groundwater in situ without requiring large-scale construction. This is a method of decomposing chemical substances that are pollutants into aerobic or anaerobic microorganisms in soil and groundwater.
 例えばクロストリジウム属の微生物は嫌気性雰囲気中で、有機物を分解し、酢酸等に分解する。その工程中に水素を放出する。この水素は、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエチレンといった有機塩素系化合物の塩素と置換し、これらの化学物質を浄化することができる。すなわち、嫌気性雰囲気下で発生した水素による還元反応で、有機塩素系化合物を脱塩素化し、化学物質を浄化することができる。 [For example, microorganisms belonging to the genus Clostridium decompose organic substances into acetic acid etc. in an anaerobic atmosphere. Hydrogen is released during the process. This hydrogen can be replaced with chlorine of organic chlorine compounds such as chloroform, dichloromethane, dichloroethane, and trichloroethylene to purify these chemical substances. In other words, an organic chlorine compound can be dechlorinated and a chemical substance can be purified by a reduction reaction with hydrogen generated in an anaerobic atmosphere.
 以上の様に水素を発生させ提供する物質群を水素供与体と言うが、微生物を活性化させるとともに、水素供与体となる物質群(以後「栄養源」と呼ぶ。)を土壌および地下水中に注入する方法が提案されている。このような栄養源には、過剰注入した場合、汚染箇所以外の部分にまで拡散することによる二次汚染の懸念があった。そのため、例えば、特許文献1には、粒状にした直鎖脂肪酸や、グリセリン中に直鎖脂肪酸を混入させ、注入地点から移動しにくいようにした組成物が開示されている。 A group of substances that generate and provide hydrogen as described above is called a hydrogen donor, and while activating microorganisms, a group of substances that become hydrogen donors (hereinafter referred to as “nutrient sources”) are put into soil and groundwater. Injecting methods have been proposed. When such a nutrient source is excessively injected, there is a concern of secondary contamination due to diffusion to a portion other than the contaminated portion. Therefore, for example, Patent Document 1 discloses a composition in which a linear fatty acid granulated or a linear fatty acid is mixed in glycerine so that it is difficult to move from the injection point.
 しかし、微生物は、高濃度の栄養源下では、却って失活することがわかり、極度に希釈した栄養源を土壌および地下水中に送り込むことが行われるようになった。また、栄養源も天然物に近いものであれば、毒性も少なく二次汚染を心配する必要も少ない。すると、埋設箇所より移動しない固形物やゲル状よりも、むしろ粘度が低く、土壌および地下水中を拡散し1つの井戸から広範囲に栄養源を与えられる方法が提案された。 However, it has been found that microorganisms are inactivated under a high concentration of nutrient sources, and extremely diluted nutrient sources are sent into soil and groundwater. Moreover, if the nutrient source is close to natural products, there is little toxicity and there is little need to worry about secondary contamination. Then, rather than solids or gels that do not move from the buried site, a method has been proposed in which the viscosity is rather low, and the nutrient source can be provided widely from one well by diffusing in soil and groundwater.
 特許文献2には、ソルビトールを主体とする栄養源を2000ppmまで希釈したものを土壌および地下水中に送り込み、微生物に有機塩素化合物を分解させる技術が開示されている。より詳しくは、ソルビトール60%と、グリセリン10%、陰イオン2%、水28%の栄養源を2000ppmに希釈したものを土壌および地下水中に送り込み、拡散させる。拡散の末端では、栄養源内の炭素濃度はおよそ100ppmにまで希釈され、微生物にとって、化学物質との共摂取が可能な程度の濃度になっている。このため、化学物質の分解が促進させられる。 Patent Document 2 discloses a technique in which a nutrient source mainly composed of sorbitol is diluted to 2000 ppm and is fed into soil and groundwater to decompose microorganisms into organochlorine compounds. More specifically, 60% sorbitol, 10% glycerin, 2% anions, and 28% water diluted to 2000 ppm are fed into soil and groundwater for diffusion. At the end of diffusion, the concentration of carbon in the nutrient source is diluted to approximately 100 ppm, so that the microorganism is at a concentration that allows co-uptake with chemicals. For this reason, decomposition of the chemical substance is promoted.
 特許文献3には、希釈した栄養源を地中でよく拡散できるように、非イオン性界面活性剤を添加したものが開示されている。ここで栄養源は、多価アルコールと界面活性剤を含み、前記多価アルコールは、ソルビトール、マンニトール、キシリトールから選択される1種類以上の糖アルコールを62乃至68重量部と、8乃至10重量部のグリセリンであり、前記界面活性剤は、1乃至5重量部の非イオン性界面活性剤であり、さらに、22乃至25重量部の水から構成されている。 Patent Document 3 discloses one in which a nonionic surfactant is added so that a diluted nutrient source can be diffused well in the ground. Here, the nutrient source includes a polyhydric alcohol and a surfactant, and the polyhydric alcohol is one or more sugar alcohols selected from sorbitol, mannitol, and xylitol, 62 to 68 parts by weight, and 8 to 10 parts by weight. The surfactant is 1 to 5 parts by weight of a nonionic surfactant, and further comprises 22 to 25 parts by weight of water.
特開2002-370085号公報(特許第3746726号)JP 2002-370085 A (Patent No. 3746726) 特開2009-11939号公報(特許第5023850号)JP 2009-11939 A (Patent No. 5023850) 特許第5587453号Patent No. 5,587,453
 特許文献3の組成を持つ栄養源(微生物用組成物)は、実際に運用され、予定通りの効果を挙げている。このような栄養源は、予め工場で調製され、18リットル缶(所謂「一斗缶」:以後「運搬容器」と呼ぶ。)に詰められて現場に運ばれる。土壌の浄化は数週間から数ヶ月の時間が必要となるため、栄養源の入った運搬容器は、野外に放置される場合が多い。 The nutrient source (composition for microorganisms) having the composition of Patent Document 3 is actually used and has the effect as planned. Such a nutrient source is prepared in advance in a factory, and packed in an 18-liter can (so-called “Ito can”: hereinafter referred to as “carrying container”) and carried to the site. Since soil purification requires weeks or months, transport containers containing nutrients are often left outdoors.
 すると、栄養源が運搬容器内で固まってしまい、運搬容器から取り出すことが困難になるという問題が生じた。 As a result, a problem arises that the nutrient source is hardened in the transport container and it becomes difficult to remove it from the transport container.
 本発明は上記の課題に鑑み想到されたものであり、野外に放置されていても、運搬容器で凝固することのない微生物用組成物(栄養源)を提供する。 The present invention has been conceived in view of the above problems, and provides a composition for microorganisms (nutrient source) that does not coagulate in a transport container even when left in the field.
 より具体的に本発明に係る微生物用組成物は、
 土壌、地下水中の有機塩素化合物を浄化することのできる微生物用組成物であって、
 ソルビトール、マンニトールのいずれかから選択される1種類以上の糖アルコールと、
 グリセリンと、
 非イオン性界面活性剤と、
 水から構成され、
 前記糖アルコールは、前記グリセリンの6倍より少ない含有率であることを特徴とする。
More specifically, the composition for microorganisms according to the present invention comprises:
A composition for microorganisms capable of purifying organochlorine compounds in soil and groundwater,
One or more sugar alcohols selected from sorbitol and mannitol;
Glycerin,
A nonionic surfactant;
Composed of water,
The sugar alcohol has a content of less than 6 times that of the glycerin.
 本発明に係る微生物用組成物は、繰り返しヒートショックを受けても運搬容器内で凝固することがない。したがって、現場に運搬した後も、使用するまで管理に手間がかかることがない。 The composition for microorganisms according to the present invention does not solidify in the transport container even when repeatedly subjected to heat shock. Therefore, even after being transported to the site, it does not take time to manage until it is used.
 以下に本発明に係る微生物用組成物について説明する。以下の説明は、本発明の実施形態および実施例の一部を例示するものであり、本発明は以下の説明に限定されるものではない。本発明の主旨を逸脱しない限りにおいて下記の実施形態は変更することができる。 Hereinafter, the composition for microorganisms according to the present invention will be described. The following description exemplifies a part of the embodiments and examples of the present invention, and the present invention is not limited to the following description. The following embodiments can be modified without departing from the gist of the present invention.
 本発明に係る微生物用組成物は、土壌および地下水中の微生物を活性させるための材料を含み、注入箇所から拡散させることを目的とする。したがって、液体で粘度が低い状態にする。また、土壌および地下水中の微生物に対して高希釈の状態で使用することを目的とするので、水溶性である必要がある。また、土壌および地下水の浄化という目的のため、栄養源として機能する必要がある。 The composition for microorganisms according to the present invention contains a material for activating microorganisms in soil and groundwater and is intended to diffuse from the injection site. Therefore, it is a liquid and has a low viscosity. Moreover, since it aims at using it in the highly diluted state with respect to the microorganisms in soil and groundwater, it needs to be water-soluble. It must function as a nutrient source for the purpose of purifying soil and groundwater.
 このような材料としては、多価アルコールである糖アルコールのソルビトールが好適に利用することができる。ただし、マンニトールでも同様に使用できる。ここではソルビトールについて述べる。 As such a material, sorbitol, a sugar alcohol which is a polyhydric alcohol, can be suitably used. However, mannitol can be used similarly. Here we describe sorbitol.
 水で希釈されたソルビトールを土壌および地下水中で保持させるため、保湿剤を混合させる。保湿剤としては、3価のアルコールであるグリセリンが好適に利用できる。グリセリン自体が微生物の栄養源となり得るからである。また、エチレングリコール同様、凝固点を下げることができるので、不凍液としての役割も有する。これは、気温の低い場所での土壌および地下水浄化の際に有用となる。 ∙ Mix humectant to keep sorbitol diluted with water in soil and groundwater. As the humectant, glycerin, which is a trivalent alcohol, can be suitably used. This is because glycerin itself can be a nutrient source for microorganisms. Further, like ethylene glycol, the freezing point can be lowered, so that it also serves as an antifreeze. This is useful when purifying soil and groundwater in places with low temperatures.
 また、野外での放置保存でも凝固させないためには、希釈前の微生物用組成物に対してグリセリンをソルビトールに対して1/6以上の割合で含有させる。後の実施例でも示されるが、多価アルコールであるソルビトールは、60質量%以上の高濃度で放置すると、周囲の温度変化を受けることで、運搬容器内に種結晶ができることがある。そしてこの種結晶を中心として結晶化が生じ、凝固してしまう場合がある。 In order not to coagulate even when stored in the field, glycerin is contained in the microbial composition before dilution at a ratio of 1/6 or more with respect to sorbitol. As will be shown in the following examples, sorbitol, which is a polyhydric alcohol, may be seeded in the transport container when it is left at a high concentration of 60% by mass or more, due to a change in ambient temperature. In some cases, crystallization occurs around the seed crystal and solidifies.
 しかし、濃度を下げるか若しくはグリセリンの含有量を増やすことで、この現象を回避することができる。したがって、ソルビトールとグリセリンの混合割合に加えて、ソルビトールの含有量を53質量%以上58質量%以下に調節するのが好ましい。 However, this phenomenon can be avoided by reducing the concentration or increasing the glycerin content. Therefore, in addition to the mixing ratio of sorbitol and glycerin, it is preferable to adjust the content of sorbitol to 53 mass% or more and 58 mass% or less.
 本発明に係る微生物用組成物には、水も40質量%程以下の比率で含有させてもよい。基本的に栄養源としては、水は不要である。しかし、栄養源の濃度調節などに使用する必要もあるからである。なお、水は、ソルビトール、グリセリン、その他の添加剤の残部としてよい。 In the microorganism composition according to the present invention, water may be contained at a ratio of about 40% by mass or less. Basically, water is not necessary as a nutrient source. However, it is also necessary to adjust the concentration of nutrient sources. Water may be the remainder of sorbitol, glycerin and other additives.
 また、使用する水は、除菌処理を施したものであるのが好ましい。水には水カビなどの雑菌が含まれている。ソルビトールは、これらの微生物の栄養源ともなりうるため、雑菌が含まれていると、保存している間に、微生物用組成物が腐食するという問題が起こるからである。 Moreover, it is preferable that the water used has been subjected to sterilization treatment. Water contains bacteria such as water mold. This is because sorbitol can also be a nutrient source for these microorganisms, and therefore, if miscellaneous bacteria are included, the problem arises that the composition for microorganisms corrodes during storage.
 また、除菌処理は煮沸処理であってもよいし、紫外線などを照射してもよい。また、純水や超純水といったそもそも雑菌が含まれていない水を用いてもよい。 Further, the sterilization treatment may be a boiling treatment or may be irradiated with ultraviolet rays. Moreover, you may use the water which does not contain a germ in the first place, such as a pure water and an ultrapure water.
 栄養源には、非イオン性界面活性剤を含ませる。界面活性剤は、土壌および地下水中に栄養源を注入した際に、土壌の表面エネルギーを下げ、栄養源に対して土壌を濡れやすくする。その結果、毛細管現象の効果と共に、栄養源が土壌および地下水中で拡散しやすくする。非イオン性界面活性剤は、液体のpHに係らず界面活性を発揮することができる。 Nutrient sources include nonionic surfactants. The surfactant lowers the surface energy of the soil when the nutrient source is injected into the soil and groundwater, and makes the soil easy to get wet with the nutrient source. As a result, along with the effect of capillarity, it makes it easier for nutrients to diffuse in soil and groundwater. Nonionic surfactants can exhibit surface activity regardless of the pH of the liquid.
 したがって、非イオン性界面活性剤は、土壌および地下水中のpHに依存しない。土壌および地下水中では、嫌気性環境も容易に得ることができるので、有機物の嫌気分解が進み土壌は酸性に傾きやすい。そのような環境であっても、非イオン性界面活性剤であれば、微生物用組成物を拡散させることができる。 Therefore, nonionic surfactants do not depend on the pH of soil and groundwater. In soil and groundwater, an anaerobic environment can be easily obtained, so that anaerobic decomposition of organic matter proceeds and the soil tends to become acidic. Even in such an environment, the composition for microorganisms can be diffused if it is a nonionic surfactant.
 非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテルであるポリオキシエチレンラウリルエーテル,ポリオキシエチレンセチルエーテル,ポリオキシエチレンステアリルエーテル,ポリオキシエチレンオレイルエーテル,ポリオキシエチレン高級アルコールエーテル,ポリオキシエチレンミリスチルエーテル,ポリオキシエチレンジスチレン化フェニルエーテルなどが,ソルビタン脂肪酸エステルであるソルビタンモノラウレート,ソルビタンモノパルミテート,ソルビタンモノステアレート,ソルビタンモノオレエート,ソルビタンジステアレートなどが,ポリオキシエチレンソルビタン脂肪酸エステルであるポリオキシエチレンソルビタンモノヤシ脂肪酸エステル,ポリオキシエチレンソルビタンラウレート,ポリオキシエチレンソルビタンモノパルミテート,ポリオキシエチレンソルビタンモノステアレート,ポリオキシエチレンソルビタントリステアレート,ポリオキシエチレンソルビタントリイソステアレート,ポリオキシエチレンソルビタンモノオレエート,テトラオレイン酸ポリオキシエチレンソルビットなどが利用できる。なかでもポリオキシエチレンラウリルエーテルは好適に利用することができる。 Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene Myristyl ether, polyoxyethylene distyrenated phenyl ether, etc. are sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan distearate, etc., which are sorbitan fatty acid esters, polyoxyethylene sorbitan Polyoxyethylene sorbitan mono-coconut fatty acid ester, polyoxyethylene sorbitan laurate, polyio Ciethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbite tetraoleate it can. Among these, polyoxyethylene lauryl ether can be preferably used.
 さらに、本発明に係る微生物用組成物は、pH緩衝剤をさらに加えることもできる。pH緩衝剤は全量に対して1から4重量部加えることができる。pH緩衝剤を加える際に他の成分との比率は適宜調整する。 Furthermore, the composition for microorganisms according to the present invention may further contain a pH buffer. The pH buffer can be added from 1 to 4 parts by weight based on the total amount. When adding the pH buffering agent, the ratio with other components is appropriately adjusted.
 pH緩衝剤として好適に利用できるのは、乳酸系緩衝剤、クエン酸系緩衝剤、リン酸系緩衝剤、酢酸系緩衝剤などである。これらは、1から4重量部添加される。 Favorable use as a pH buffer is a lactic acid buffer, a citrate buffer, a phosphate buffer, an acetate buffer, and the like. These are added from 1 to 4 parts by weight.
 pH緩衝剤を用いる理由は以下の通りである。栄養源となる微生物用組成物は、土壌および地下水中に注入することで、土壌および地下水中の微生物を活性化させることができる。しかし、活性化した微生物によって嫌気分解が進行すると酢酸等の有機酸が生成され、土壌及び地下水中のpHが低下する。土壌及び地下水のpHが低下し過ぎると微生物の活性を抑制することになる。つまり、微生物用組成物を土壌および地下水中に注入すると、注入後一定の期間は有機塩素化合物等の分解が進まない期間が形成される。これを「浄化の停滞期間」と呼ぶ。 The reason for using a pH buffer is as follows. By injecting the composition for microorganisms as a nutrient source into soil and groundwater, the microorganisms in the soil and groundwater can be activated. However, when anaerobic decomposition proceeds by activated microorganisms, an organic acid such as acetic acid is generated, and the pH in the soil and groundwater decreases. If the pH of the soil and groundwater is too low, the activity of microorganisms will be suppressed. That is, when the composition for microorganisms is injected into soil and groundwater, a period during which decomposition of the organic chlorine compound or the like does not proceed is formed for a certain period after injection. This is called the “purification stagnation period”.
 pH緩衝剤は、酢酸等の有機酸の生成によるpHの低下をある程度緩和することができ、pHが低下し過ぎることによる「浄化の停滞期間」を抑制することができる。よって、「浄化の停滞期間」がなくなる。結果、土壌および地下水の浄化に必要な期間が短くなるというメリットが奏される。 The pH buffer can alleviate a decrease in pH due to the production of an organic acid such as acetic acid to some extent, and can suppress the “stagnation period of purification” due to an excessive decrease in pH. Therefore, there is no “purification stagnation period”. As a result, there is an advantage that the period required for purification of soil and groundwater is shortened.
 以下に本発明に係る微生物用組成物の実施例を示す。結晶化の確認のため、表1に示す各サンプルを調製し、運搬容器に5缶ずつ詰め、恒温試験室中で温度変化を与えた。運搬容器は通常の18リットル缶で、鉄製である。内壁には特に保護膜若しくは保護シートを設けるといった処理は行っていない。恒温試験室中では、24℃を12時間、15℃を12時間のサイクルでヒートショックを30日間与えた。なお、恒温槽内では、温度の変更には約60分かかる。 Examples of the composition for microorganisms according to the present invention are shown below. For confirmation of crystallization, each sample shown in Table 1 was prepared, and 5 cans were packed in a transport container, and a temperature change was given in a constant temperature test chamber. The carrying container is an ordinary 18 liter can and is made of iron. No treatment such as providing a protective film or a protective sheet on the inner wall is performed. In a constant temperature test chamber, heat shock was applied for 30 days at a cycle of 24 ° C. for 12 hours and 15 ° C. for 12 hours. In the thermostat, it takes about 60 minutes to change the temperature.
 サンプル1は、ソルビトール65質量%、グリセリン10質量%、非イオン性界面活性剤2質量%、水23質量%である。非イオン性界面活性剤は、ポリオキシエチレンラウリルエーテルを用いた。また、水は煮沸させた水道水を用いた。これは以後の全てのサンプルで同じである。サンプル1は5缶中5缶で結晶化が生じた。結果を表1に示す。 Sample 1 is 65% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 23% by mass of water. As the nonionic surfactant, polyoxyethylene lauryl ether was used. Moreover, the boiled tap water was used for water. This is the same for all subsequent samples. In Sample 1, crystallization occurred in 5 out of 5 cans. The results are shown in Table 1.
 サンプル2は、ソルビトール60質量%、グリセリン10質量%、非イオン性界面活性剤2質量%、水28質量%である。サンプル2は5缶中5缶で結晶化が生じた。結果を表1に示す。 Sample 2 is 60% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 28% by mass of water. In Sample 2, crystallization occurred in 5 out of 5 cans. The results are shown in Table 1.
 サンプル3は、ソルビトール59質量%、グリセリン10質量%、非イオン性界面活性剤2質量%、水29質量%である。サンプル3は5缶とも結晶化は生じなかった。結果を表1に示す。 Sample 3 is 59% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 29% by mass of water. Sample 5 did not crystallize in all 5 cans. The results are shown in Table 1.
 サンプル4は、ソルビトール58質量%、グリセリン10質量%、非イオン性界面活性剤2質量%、水30質量%である。サンプル4は5缶とも結晶化は生じなかった。結果を表1に示す。 Sample 4 is 58% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water. Sample 5 did not crystallize in all 5 cans. The results are shown in Table 1.
 サンプル5は、ソルビトール55質量%、グリセリン10質量%、非イオン性界面活性剤2質量%、水33質量%である。結果を表1に示す。サンプル5は5缶とも結晶化は生じなかった。結果を表1に示す。 Sample 5 is 55% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water. The results are shown in Table 1. Sample 5 did not crystallize in all 5 cans. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、ソルビトールが59質量%を超えると、各サンプルの5缶中半分以上で結晶化が生じていた。しかし、58質量%では、5缶中結晶化が生じているものはなかった。よく知られているようにソルビトールの結晶は、一度極低温まで冷却し、ゆっくりと温度を上げることで得ることができる。しかし、ここではそのような温度処理を行ってはいない。 Referring to Table 1, when sorbitol exceeded 59 mass%, crystallization occurred in more than half of 5 cans of each sample. However, at 58% by mass, no crystallization occurred in 5 cans. As is well known, sorbitol crystals can be obtained by cooling to a very low temperature and slowly raising the temperature. However, such temperature treatment is not performed here.
 したがって、純粋なソルビトールの結晶が発生し、それが種結晶となって結晶化が起こったとは考えにくい。おそらく、調製の際に混入する微小な不純物が、運搬容器内の壁面と微生物用組成物の液面の境界部分で擬似的な種結晶を作り、それを起因として結晶化が生じたと考えられた。ここでは運搬容器に詰められた微生物用組成物が凝固する現象を結晶化と呼ぶことにする。 Therefore, it is unlikely that pure sorbitol crystals were generated, which became seed crystals and crystallization occurred. Probably, the minute impurities mixed in during the preparation formed a pseudo seed crystal at the boundary between the wall surface in the transport container and the liquid surface of the microbial composition, and it was thought that crystallization occurred due to this. . Here, the phenomenon that the composition for microorganisms packed in the transport container is solidified is called crystallization.
 次に結晶化を起こすソルビトールが60質量%と起こさない58質量%についてグリセリンの含有量を変化させてみた。各サンプルの組成を表2に示す。 Next, the content of glycerin was changed with respect to 60% by mass of sorbitol causing crystallization and 58% by mass not causing crystallization. The composition of each sample is shown in Table 2.
 サンプル6は、ソルビトール60質量%、グリセリン7質量%、非イオン性界面活性剤2質量%、水31質量%である。 Sample 6 is 60% by mass of sorbitol, 7% by mass of glycerin, 2% by mass of nonionic surfactant, and 31% by mass of water.
 サンプル7は、ソルビトール58質量%、グリセリン7質量%、非イオン性界面活性剤2質量%、水33質量%である。 Sample 7 is 58% by mass of sorbitol, 7% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water.
 サンプル8は、ソルビトール60質量%、グリセリン8質量%、非イオン性界面活性剤2質量%、水30質量%である。 Sample 8 is 60% by mass of sorbitol, 8% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water.
 サンプル9は、ソルビトール58質量%、グリセリン8質量%、非イオン性界面活性剤2質量%、水32質量%である。 Sample 9 is 58% by mass of sorbitol, 8% by mass of glycerin, 2% by mass of nonionic surfactant, and 32% by mass of water.
 サンプル10は、ソルビトール60質量%、グリセリン9質量%、非イオン性界面活性剤2質量%、水29質量%である。 Sample 10 is sorbitol 60% by mass, glycerin 9% by mass, nonionic surfactant 2% by mass, and water 29% by mass.
 サンプル11は、ソルビトール58質量%、グリセリン9質量%、非イオン性界面活性剤2質量%、水31質量%である。 Sample 11 is 58% by mass of sorbitol, 9% by mass of glycerin, 2% by mass of nonionic surfactant, and 31% by mass of water.
 サンプル12は、ソルビトール60質量%、グリセリン11質量%、非イオン性界面活性剤2質量%、水27質量%である。 Sample 12 is 60% by mass of sorbitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 27% by mass of water.
 サンプル13は、ソルビトール58質量%、グリセリン11質量%、非イオン性界面活性剤2質量%、水29質量%である。 Sample 13 is 58% by mass of sorbitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 29% by mass of water.
 サンプル14は、ソルビトール60質量%、グリセリン12質量%、非イオン性界面活性剤2質量%、水26質量%である。 Sample 14 is 60% by mass of sorbitol, 12% by mass of glycerin, 2% by mass of nonionic surfactant, and 26% by mass of water.
 サンプル15は、ソルビトール58質量%、グリセリン12質量%、非イオン性界面活性剤2質量%、水28質量%である。 Sample 15 is 58% by mass of sorbitol, 12% by mass of glycerin, 2% by mass of nonionic surfactant, and 28% by mass of water.
 サンプル16は、ソルビトール65質量%、グリセリン11質量%、非イオン性界面活性剤2質量%、水22質量%である。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Sample 16 is 65% by mass of sorbitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 22% by mass of water. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2を参照すると、表1の結果から結晶化が発生すると考えられたはずのサンプル12および14(ソルビトール60質量%)であっても、5缶中5缶とも結晶化が生じなかった。また、結晶化が発生しないと考えられたはずのサンプル7、9、11(ソルビトール58質量%)のものも、5缶中1若しくは2缶に結晶化が生じた。また、結晶化が生じないと判断した運搬容器であっても、中でこぶし大程度の塊ができていた。 Referring to Table 2, even in Samples 12 and 14 (60 wt% sorbitol) that were supposed to be crystallized from the results in Table 1, no crystallization occurred in 5 out of 5 cans. In addition, crystallization occurred in one or two of the five cans of Samples 7, 9, and 11 (58% by mass of sorbitol) that were supposed to be free from crystallization. In addition, even a transport container judged that crystallization did not occur, a large lump was formed inside.
 以上の結果から、結晶化の発生の有無は、ソルビトールの濃度だけではないと結論できた。そこで、次にソルビトールとグリセリンの比率に着目した。表2には、ソルビトール対グリセリンの比率(「S:G」と示した。)を示した。 From the above results, it was concluded that the presence or absence of crystallization was not only the concentration of sorbitol. Next, attention was paid to the ratio of sorbitol and glycerin. Table 2 shows the ratio of sorbitol to glycerin (shown as “S: G”).
 このソルビトール対グリセリンの比率を比べると、6対1を境として結晶化が生じる場合が発生していることが予想できた。そこで、サンプル16は、表1で示したサンプル1(ソルビトールが65質量%)のもので、グリセリンを11質量%入れた組成を試した。サンプル16において、ソルビトール対グリセリンは5.9対1である。表2に示されるように、サンプル16はソルビトールが65質量%であっても、グリセリンに対して6倍以下の割合であれば、5缶中5缶とも結晶化は生じなかった。 When the ratio of sorbitol to glycerin was compared, it could be expected that crystallization occurred at 6: 1. Therefore, Sample 16 was the one shown in Table 1 (65% by mass of sorbitol), and a composition containing 11% by mass of glycerin was tested. In sample 16, sorbitol to glycerin is 5.9 to 1. As shown in Table 2, even if sample 16 had a sorbitol content of 65% by mass, crystallization did not occur in 5 of 5 cans as long as the ratio was 6 times or less of glycerin.
 以上のように、微生物用組成物において、ソルビトールとグリセリンの比率が6対1より小さければ(ソルビトールが少なければ)、結晶化を回避することができることがわかった。 As described above, it was found that crystallization can be avoided if the ratio of sorbitol and glycerin is less than 6: 1 in the composition for microorganisms (if the amount of sorbitol is small).
 ソルビトールとマンニトールは構造が非常に類似しているため、マンニトールについても、同様の現象が発生する。ソルビトールについて上記の実験で得た知見に基づいて表3の組成で結晶化の有無に実験を行ってみた。 Since sorbitol and mannitol are very similar in structure, the same phenomenon occurs with mannitol. Based on the knowledge obtained in the above experiment for sorbitol, an experiment was conducted on the presence or absence of crystallization with the composition shown in Table 3.
 サンプル17は、マンニトール60質量%、グリセリン7質量%、非イオン性界面活性剤2質量%、水31質量%である。マンニトールとグリセリンの比率(表3で「M:G」と表す)は、8.5:1である。 Sample 17 is 60% by mass of mannitol, 7% by mass of glycerin, 2% by mass of nonionic surfactant, and 31% by mass of water. The ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 8.5: 1.
 サンプル18は、マンニトール58質量%、グリセリン9質量%、非イオン性界面活性剤2質量%、水31質量%である。マンニトールとグリセリンの比率(表3で「M:G」と表す)は、6.4:1である。 Sample 18 is mannitol 58% by mass, glycerin 9% by mass, nonionic surfactant 2% by mass, and water 31% by mass. The ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 6.4: 1.
 サンプル19は、マンニトール60質量%、グリセリン11質量%、非イオン性界面活性剤2質量%、水27質量%である。マンニトールとグリセリンの比率(表3で「M:G」と表す)は、5.4:1である。 Sample 19 is 60% by mass of mannitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 27% by mass of water. The ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 5.4: 1.
 サンプル20は、マンニトール58質量%、グリセリン11質量%、非イオン性界面活性剤2質量%、水29質量%である。マンニトールとグリセリンの比率(表3で「M:G」と表す)は、5.3:1である。 Sample 20 is mannitol 58% by mass, glycerin 11% by mass, nonionic surfactant 2% by mass, and water 29% by mass. The ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 5.3: 1.
 サンプル21は、マンニトール65質量%、グリセリン11質量%、非イオン性界面活性剤2質量%、水22質量%である。マンニトールとグリセリンの比率(表3で「M:G」と表す)は、5.9:1である。 Sample 21 is 65% by mass of mannitol, 11% by mass of glycerin, 2% by mass of nonionic surfactant, and 22% by mass of water. The ratio of mannitol to glycerin (represented as “M: G” in Table 3) is 5.9: 1.
 結果は表3に示す。表3を参照すると、マンニトールとグリセリンの比率が6:1より小さい場合(マンニトールが少ない、若しくはグリセリンが多い)は、結晶化が生じなかった。なお、サンプル18は、結晶化が5缶中4缶で生じた。これは、ソルビトールの場合のサンプル11と同じ組成比であり、ソルビトールの場合は、結晶化が認められたのは5缶中1缶であった。したがって、マンニトールはソルビトールより、結晶化が生じやすいと言える。 The results are shown in Table 3. Referring to Table 3, when the ratio of mannitol to glycerin was smaller than 6: 1 (low mannitol or high glycerin), no crystallization occurred. In Sample 18, crystallization occurred in 4 out of 5 cans. This is the same composition ratio as that of sample 11 in the case of sorbitol. In the case of sorbitol, crystallization was observed in 1 out of 5 cans. Therefore, it can be said that mannitol is more easily crystallized than sorbitol.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に本発明に係る微生物用組成物の土壌の浄化効果を確かめる実施例を示す。実施例は、テトラクロロエチレンで汚染されたサイトで行った。帯水層は地表面より2.0乃至12.2mであった。また、地下水中のテトラクロロエチレン濃度は約0.8mg/Lであった。試験は、直径100mmの注入井戸を設置し、井戸口にパイプを接続して微生物用組成物の注入を行った。 Next, Examples for confirming the soil purification effect of the composition for microorganisms according to the present invention will be shown. The example was performed at a site contaminated with tetrachlorethylene. The aquifer was 2.0 to 12.2 m from the ground surface. Moreover, the tetrachlorethylene density | concentration in groundwater was about 0.8 mg / L. In the test, an injection well having a diameter of 100 mm was installed, and a pipe was connected to the well opening to inject the composition for microorganisms.
 また、注入井戸から3m離れた箇所に観測井戸を設け、定期的に地下水中のテトラクロロエチレン濃度、ソルビトール濃度、pHのモニタリングを行った。また、各微生物用組成物を注入する注入井戸及び観測井戸は、各微生物用組成物の影響が出ないよう十分に離隔して設けた。 Also, an observation well was set up at a location 3 m away from the injection well, and the tetrachlorethylene concentration, sorbitol concentration, and pH in the groundwater were regularly monitored. In addition, the injection well and the observation well into which each microbial composition was injected were provided sufficiently apart from each other so as not to be affected by the microbial composition.
 注入する各微生物用組成物は、2000ppmに希釈した水溶液を用い、それぞれ9.0L/分で7日間連続注入を行ったあと、モニタリングのみを続けた。 For each microorganism composition to be injected, an aqueous solution diluted to 2000 ppm was used, and after continuous injection at 9.0 L / min for 7 days, only monitoring was continued.
 実施例1は、ソルビトールを52質量%、グリセリンを9質量%、非イオン性界面活性剤を2質量%、水を37質量%混合したものである。ソルビトールとグリセリンの比率は「5.7:1」である。なお、非イオン性界面活性剤としては、ポリオキシエチレンラウリルエーテルを用いた。水は、通常の水道水を10分間煮沸したものを25℃まで冷やしたものを用いた。組成と結果を表4に示す。 Example 1 is a mixture of 52% by mass of sorbitol, 9% by mass of glycerin, 2% by mass of nonionic surfactant, and 37% by mass of water. The ratio of sorbitol and glycerin is “5.7: 1”. In addition, polyoxyethylene lauryl ether was used as the nonionic surfactant. As the water, water obtained by boiling normal tap water for 10 minutes and cooling it to 25 ° C was used. The composition and results are shown in Table 4.
 なお、表4中で「G比」は「対グリセリン比率」のことで、グリセリンを1としたときの糖アルコールの比率を示している。また、表4中で「S」はソルビトールを表し、「M」はマンニトールを表す。 In Table 4, “G ratio” means “ratio of glycerin” and indicates the ratio of sugar alcohol when glycerin is 1. In Table 4, “S” represents sorbitol, and “M” represents mannitol.
 実施例2は、ソルビトールを55質量%、グリセリンを10質量%、非イオン性界面活性剤を2質量%、水を33質量%混合したものである。ソルビトールとグリセリンの比率は「5.5:1」である。実施例3は、ソルビトールを58質量%、グリセリンを10質量%、非イオン性界面活性剤を2質量%、水を30質量%混合したものである。ソルビトールとグリセリンの比率は「5.8:1」である。 Example 2 is a mixture of 55% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water. The ratio of sorbitol and glycerin is “5.5: 1”. In Example 3, 58% by mass of sorbitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water are mixed. The ratio of sorbitol and glycerin is “5.8: 1”.
 実施例4は、マンニトールを52質量%、グリセリンを9質量%、非イオン性界面活性剤を2質量%、水を37質量%混合したものである。マンニトールとグリセリンの比率は「5.7:1」である。 Example 4 is a mixture of mannitol 52% by mass, glycerin 9% by mass, nonionic surfactant 2% by mass, and water 37% by mass. The ratio of mannitol to glycerin is “5.7: 1”.
 実施例5は、マンニトールを55質量%、グリセリンを10質量%、非イオン性界面活性剤を2質量%、水を33質量%混合したものである。マンニトールとグリセリンの比率は「5.5:1」である。実施例6は、マンニトールを58質量%、グリセリンを10質量%、非イオン性界面活性剤を2質量%、水を30質量%混合したものである。マンニトールとグリセリンの比率は「5.8:1」である。 Example 5 is a mixture of 55% by mass of mannitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 33% by mass of water. The ratio of mannitol to glycerin is “5.5: 1”. In Example 6, 58% by mass of mannitol, 10% by mass of glycerin, 2% by mass of nonionic surfactant, and 30% by mass of water are mixed. The ratio of mannitol to glycerin is “5.8: 1”.
 いずれの実施例の微生物組成物も糖アルコール対グリセリンは6:1以下の比率(糖アルコールが少ない)になっている。組成および結果を表4に示す。なお、この実施例を行う際、運搬容器に充填された微生物用組成物は、長いものは試験地で1ヵ月以上野外放置にされていたが、結晶化を起こしたものは1缶も無かった。 In all the microbial compositions of Examples, the ratio of sugar alcohol to glycerin is 6: 1 or less (low sugar alcohol). The composition and results are shown in Table 4. When carrying out this example, the microbial composition filled in the transport container had been left in the field at the test site for more than one month, but none of the ones that had crystallized had been allowed to stand. .
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4を参照して、試験前のテトラクロロエチレンの濃度と、30日後の濃度から分解率を求め、%で表示した。また、井戸から3m離れたサンプリング地点での7日後の糖の濃度(mg/L)を示した。 Referring to Table 4, the decomposition rate was calculated from the concentration of tetrachlorethylene before the test and the concentration after 30 days, and displayed in%. Moreover, the sugar concentration (mg / L) after 7 days at a sampling point 3 m away from the well was shown.
 実施例1乃至6とも、井戸から3m離れた地点でのテトラクロロエチレンは95%以上分解されていた。また、井戸から3m離れたサンプリング地点での7日後の糖の濃度は、800mg/Lを超えていた。このことから、本発明に係る微生物用組成物の組成であっても、高希釈した状態で土壌表面の濡れ性を向上させ、地中を広がりながら、テトラクロロエチレンの分解に寄与していることがわかった。 In all of Examples 1 to 6, tetrachlorethylene at a point 3 m away from the well was decomposed by 95% or more. In addition, the sugar concentration after 7 days at a sampling point 3 m away from the well exceeded 800 mg / L. From this, it is understood that even the composition of the microorganism composition according to the present invention improves the wettability of the soil surface in a highly diluted state and contributes to the decomposition of tetrachlorethylene while spreading in the ground. It was.
 本発明に係る微生物用組成物は、土壌および地下水中の有機塩素化合物を土壌および地下水中の微生物を利用して分解・浄化する際の栄養源として好適に利用することができる。 The composition for microorganisms according to the present invention can be suitably used as a nutrient source for decomposing and purifying organochlorine compounds in soil and groundwater using microorganisms in soil and groundwater.

Claims (3)

  1.  土壌、地下水中の有機塩素化合物を浄化することのできる微生物用組成物であって、
     ソルビトール、マンニトールのいずれかから選択される1種類以上の糖アルコールと、
     グリセリンと、
     非イオン性界面活性剤と、
     水から構成され、
     前記糖アルコールは、前記グリセリンの6倍より少ない含有率であることを特徴とする微生物用組成物。
    A composition for microorganisms capable of purifying organochlorine compounds in soil and groundwater,
    One or more sugar alcohols selected from sorbitol and mannitol;
    Glycerin,
    A nonionic surfactant;
    Composed of water,
    The composition for microorganisms, wherein the sugar alcohol has a content of less than 6 times that of the glycerin.
  2.  前記非イオン性界面活性剤が、ポリオキシエチレンラウリルエーテルであることを特徴とする請求項1に記載された微生物用組成物。 The microbial composition according to claim 1, wherein the nonionic surfactant is polyoxyethylene lauryl ether.
  3.  前記糖アルコールは、前記微生物用組成物中53質量%以上58質量%以下であることを特徴とする請求項1または2のいずれかに記載された微生物用組成物。 3. The microbial composition according to claim 1, wherein the sugar alcohol is 53% by mass or more and 58% by mass or less in the microbial composition.
PCT/JP2015/002248 2015-04-24 2015-04-24 Composition for microorganisms WO2016170562A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580003186.9A CN105960446B (en) 2015-04-24 2015-04-24 Microorganism compositionss
MYPI2016701330A MY162881A (en) 2015-04-24 2015-04-24 Composition for microorganisms
PCT/JP2015/002248 WO2016170562A1 (en) 2015-04-24 2015-04-24 Composition for microorganisms
JP2015534717A JP5866508B1 (en) 2015-04-24 2015-04-24 Microbial composition
MYPI2016701329A MY161710A (en) 2015-04-24 2015-04-24 Composition for microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002248 WO2016170562A1 (en) 2015-04-24 2015-04-24 Composition for microorganisms

Publications (1)

Publication Number Publication Date
WO2016170562A1 true WO2016170562A1 (en) 2016-10-27

Family

ID=55347030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002248 WO2016170562A1 (en) 2015-04-24 2015-04-24 Composition for microorganisms

Country Status (4)

Country Link
JP (1) JP5866508B1 (en)
CN (1) CN105960446B (en)
MY (2) MY161710A (en)
WO (1) WO2016170562A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370085A (en) * 2001-04-13 2002-12-24 Matsushita Electric Ind Co Ltd Method for reducing nitrate nitrogen and volatile organic compound in soil or ground water
JP2007083169A (en) * 2005-09-22 2007-04-05 Miyoshi Oil & Fat Co Ltd Decontaminating agent for soil and ground water
JP2009011939A (en) * 2007-07-05 2009-01-22 Panasonic Corp Cleaning method of contaminated soil and underground water
JP5587453B1 (en) * 2013-03-29 2014-09-10 パナソニック株式会社 Microbial composition
JP2014188481A (en) * 2013-03-28 2014-10-06 Panasonic Corp Injection device of nutrient for microbe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944157B2 (en) * 2009-05-21 2012-05-30 エコサイクル株式会社 Additives and purification methods for purifying media contaminated with mineral oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370085A (en) * 2001-04-13 2002-12-24 Matsushita Electric Ind Co Ltd Method for reducing nitrate nitrogen and volatile organic compound in soil or ground water
JP2007083169A (en) * 2005-09-22 2007-04-05 Miyoshi Oil & Fat Co Ltd Decontaminating agent for soil and ground water
JP2009011939A (en) * 2007-07-05 2009-01-22 Panasonic Corp Cleaning method of contaminated soil and underground water
JP2014188481A (en) * 2013-03-28 2014-10-06 Panasonic Corp Injection device of nutrient for microbe
JP5587453B1 (en) * 2013-03-29 2014-09-10 パナソニック株式会社 Microbial composition

Also Published As

Publication number Publication date
CN105960446A (en) 2016-09-21
MY161710A (en) 2017-05-15
JPWO2016170562A1 (en) 2017-04-27
JP5866508B1 (en) 2016-02-17
CN105960446B (en) 2017-03-01
MY162881A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
Bayless et al. Biodegradation of six haloacetic acids in drinking water
CN104445570B (en) A kind of persulfate-calper calcium peroxide dual oxidants removes the method for multiring aromatic hydrocarbon substance methyl naphthalene
JP3564574B1 (en) Hexavalent chromium-contaminated soil, groundwater, and sediment purification agent and purification method
JP3746726B2 (en) Methods for reducing nitrate nitrogen and volatile organic compounds in soil and groundwater
JP5866508B1 (en) Microbial composition
JP6196137B2 (en) Methods for purifying contaminated soil or water
TWI524914B (en) Composition for microbiological use
JP5587453B1 (en) Microbial composition
JP2007268401A (en) In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
JP5303389B2 (en) Soil or groundwater purification agent and purification method
JP2006116420A (en) Method for treating chemical contaminant
JP2009154152A (en) Method for clarifying contaminated soil or ground water
JP3817534B2 (en) Soil and groundwater purification composition and purification method
CN110845076A (en) Combined remediation method for atrazine-polluted water body
JP5866507B1 (en) Microbial composition
EP3643686A1 (en) Biodegradation treatment method for organic compound
CZ30044U1 (en) Stimulant
JP2009034073A (en) Method for culturing microorganism, and method for cleaning polluted soil and underground water
JP2022180731A (en) Purification bacteria culture method and purification method
KR101948472B1 (en) Nitrogen and phosphorus removing agent in groundwater and removing methods using it
JP2006320848A (en) Water environment purification method and additive for water purification
JP6519996B2 (en) Cyanide compound decomposition accelerator, and decomposition acceleration method using the same
TWI604794B (en) Yeast composition
TW201631147A (en) Manufacturing method and use of nutritional composition for anaerobic microorganisms to buffer pH value of water
TWI520914B (en) Method for bioremediation of contaminated soils and contaminated groundwater

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534717

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889803

Country of ref document: EP

Kind code of ref document: A1