JP6196137B2 - Methods for purifying contaminated soil or water - Google Patents

Methods for purifying contaminated soil or water Download PDF

Info

Publication number
JP6196137B2
JP6196137B2 JP2013246871A JP2013246871A JP6196137B2 JP 6196137 B2 JP6196137 B2 JP 6196137B2 JP 2013246871 A JP2013246871 A JP 2013246871A JP 2013246871 A JP2013246871 A JP 2013246871A JP 6196137 B2 JP6196137 B2 JP 6196137B2
Authority
JP
Japan
Prior art keywords
water
soil
electron transfer
microorganisms
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013246871A
Other languages
Japanese (ja)
Other versions
JP2015104687A (en
Inventor
橋本和仁
中村龍平
岡本章玄
砂田香矢乃
磯和俊男
Original Assignee
橋本 和仁
橋本 和仁
アクアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 橋本 和仁, 橋本 和仁, アクアス株式会社 filed Critical 橋本 和仁
Priority to JP2013246871A priority Critical patent/JP6196137B2/en
Publication of JP2015104687A publication Critical patent/JP2015104687A/en
Application granted granted Critical
Publication of JP6196137B2 publication Critical patent/JP6196137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、一般に生物分解が困難とされる生物難分解性の有機化合物や生物に有害な無機化合物によって汚染された土壌または水の浄化方法に関し、さらに詳しくは、上記生物難分解性の有機化合物や生物に有害な無機化合物(以下、有害物質と称することもある)を特定の微生物を用いて分解または固定化する方法に関する。   The present invention relates to a method for purifying soil or water contaminated with inorganic compounds that are generally difficult to biodegrade and biologically degradable, and more specifically, the organic compounds that are difficult to biodegrade. The present invention relates to a method for decomposing or immobilizing inorganic compounds (hereinafter sometimes referred to as harmful substances) harmful to organisms and organisms using specific microorganisms.

近年、重油や掘削油のような油類、トリハロメタン等のハロゲン化炭化水素、ダイオキシン類、PCB、ベンゼン、フェノール類などの生物難分解性の有機化合物、ヒ素、クロム、鉛、水銀、ウラン等の生物に有害な無機化合物による土壌、地下水、底質土等の環境汚染が顕在化し問題となっている。また、鉱工業廃水等に上記有害物質が含まれている場合、環境汚染防止の観点から高度な処理が求められている。   In recent years, oils such as heavy oil and drilling oil, halogenated hydrocarbons such as trihalomethane, dioxins, PCBs, benzene, phenols and other biodegradable organic compounds, arsenic, chromium, lead, mercury, uranium, etc. Environmental pollution of soil, groundwater, sediments, etc. due to inorganic compounds harmful to living organisms has become obvious and has become a problem. Moreover, when the said hazardous | toxic substance is contained in industrial wastewater etc., advanced treatment is calculated | required from a viewpoint of environmental pollution prevention.

生物難分解性の有機化合物や生物に有害な無機化合物で汚染された土壌を浄化する方法として、特定の微生物を用いて有害物質を分解・無害化する技術(特許文献1、特許文献2)が提案されている。このように、微生物の活動を利用して環境汚染物質濃度の低減を図る方法はバイオレメディエーションと呼ばれ、浄化対象の環境に特定の微生物や微生物の栄養源等を添加することで環境浄化が可能なので、環境負荷が小さく低コストの浄化法として注目されている。   As a method for purifying soil contaminated with biologically indegradable organic compounds or inorganic compounds harmful to living organisms, technologies (Patent Document 1 and Patent Document 2) that decompose and detoxify harmful substances using specific microorganisms are available. Proposed. In this way, the method of reducing the concentration of environmental pollutants using the activity of microorganisms is called bioremediation, and it is possible to purify the environment by adding specific microorganisms or nutrient sources of microorganisms to the environment to be purified. Therefore, it is attracting attention as a low-cost purification method with low environmental impact.

また、特定の微生物を利用した浄化技術は廃水処理にも応用され、生物難分解性有機化合物の分解技術(特許文献3)や、重金属の沈殿分離技術(特許文献4)が提案されている。   In addition, a purification technique using a specific microorganism is also applied to wastewater treatment, and a decomposition technique for a biologically indegradable organic compound (Patent Document 3) and a heavy metal precipitation separation technique (Patent Document 4) have been proposed.

特開平7−123976公報JP-A-7-123976 特開2008−246269公報JP 2008-246269 A 特再WO2005−001066公報Japanese Patent Publication WO2005-001066 特表2002−533218公報Special table 2002-533218 gazette 特開平7−236897公報JP-A-7-236897 特開2003−250529公報JP 2003-250529 A

Lovley, D R, & Lonergan, D. J. (1990). Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Applied and environmental microbiology, 56(6), 1858-64. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=184522&tool=pmcentrez&rendertype=abstractLovley, DR, & Lonergan, DJ (1990). Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Applied and environmental microbiology, 56 (6), 1858-64. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=184522&tool=pmcentrez&rendertype=abstract Sung, Y., Fletcher, K. E., Ritalahti, K. M., Apkarian, R. P., Ramos-hernndez, N., Robert, A., Mesbah, N. M., et al. (2006). Novel Metal-Reducing and Bacterium Geobacter lovleyi sp . nov . Strain SZ , a Novel Metal-Reducing and Tetrachloroethene-Dechlorinating Bacterium †. Society. doi:10.1128/AEM.72.4.2775Sung, Y., Fletcher, KE, Ritalahti, KM, Apkarian, RP, Ramos-hernndez, N., Robert, A., Mesbah, NM, et al. (2006). Novel Metal-Reducing and Bacterium Geobacter lovleyi sp. nov. Strain SZ, a Novel Metal-Reducing and Tetrachloroethene-Dechlorinating Bacterium †. Society. doi: 10.1128 / AEM.72.4.2775 Amos, B. K., Sung, Y., Fletcher, K. E., Gentry, T. J., Wu, W.-M., Criddle, C. S., Zhou, J., et al. (2007). Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites. Applied and environmental microbiology, 73(21), 6898-904. doi:10.1128/AEM.01218-07Amos, BK, Sung, Y., Fletcher, KE, Gentry, TJ, Wu, W.-M., Criddle, CS, Zhou, J., et al. (2007). Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites.Applied and environmental microbiology, 73 (21), 6898-904.doi: 10.1128 / AEM.01218-07 Taylor, P., Anderson, R. T., & Lovley, D. R. (2010). Naphthalene and Benzene Degradation under Fe ( III ) - Reducing Conditions in Petroleum-Contaminated Aquifers Naphthalene and Benzene Degradation under Fe ( III ) -Reducing Conditions in Petroleum-Contaminated Aquifers. Bioremediation Journal, (February 2012), 37-41.Taylor, P., Anderson, RT, & Lovley, DR (2010) .Naphthalene and Benzene Degradation under Fe (III)-Reducing Conditions in Petroleum-Contaminated Aquifers Naphthalene and Benzene Degradation under Fe (III) -Reducing Conditions in Petroleum-Contaminated Aquifers. Bioremediation Journal, (February 2012), 37-41.

ここで、上記環境浄化技術における一番の課題は、有害物質を分解・無害化する特定の微生物を、いかにして浄化対象の環境における優先種として適応させるかという点である。   Here, the most important issue in the environmental purification technology is how to adapt a specific microorganism that decomposes and renders harmful substances harmful as a priority species in the environment to be purified.

一般に、有害物質を分解・無害化する特定の微生物が浄化対象の環境に元々生息している場合には、その微生物に対する栄養源や酸素等を供給することで環境浄化を行うが、これらは土着の他の微生物の生育も活性化してしまうため、単に栄養源や酸素等を供給しただけでは必要な微生物をその環境の優先種とすることは難しい。   In general, when specific microorganisms that decompose and detoxify harmful substances originally live in the environment to be purified, the environment is purified by supplying nutrient sources, oxygen, etc. for those microorganisms. Since the growth of other microorganisms is also activated, it is difficult to make the necessary microorganisms a priority species of the environment simply by supplying nutrient sources, oxygen and the like.

また、環境浄化に利用する特定の微生物が浄化対象の環境に生息していない場合には、浄化のための微生物を別途培養し、浄化対象の環境に添加することで有害物質の分解・無害化を行うが、このように外部から導入した微生物は、既存の微生物種により形成されている生態学的ニッチに割り込んで生残、増殖を図ることは困難であり、個体数が徐々に減少して目的物の分解が困難となる。また、当初は新たな環境に適応したとしても、その後様々な環境因子の変化によって固体数が減少し分解浄化の機能低下を起こしてしまう。   In addition, when specific microorganisms used for environmental purification do not live in the environment to be purified, the microorganisms for purification are separately cultured and added to the environment to be purified, thereby decomposing and detoxifying harmful substances. However, microorganisms introduced from outside in this way are difficult to survive and multiply by breaking into the ecological niche formed by existing microbial species, and the number of individuals gradually decreases. Decomposition of the target object becomes difficult. Moreover, even if it is adapted to a new environment at the beginning, the number of solids is decreased due to changes in various environmental factors, and the function of decomposition and purification is lowered.

環境浄化に利用する特定の微生物を浄化対象の環境に優先種として適応させる方法として、浄化対象の環境に元々生息している微生物を殺菌し、個体数を減少させた後に特定の微生物を添加する方法(特許文献5、特許文献6)も提案されているが、この方法を用いても特定の微生物を浄化対象の環境における優先種として定着させることは難しい。また、仮に該微生物が浄化対象の環境に定着したとしても、有害物質の分解活性を長期間高いレベルに維持するのは困難であり、時間経過とともに有害物質の分解速度が低下して良好な浄化環境が得られなくなる。   As a method of adapting specific microorganisms used for environmental purification to the environment to be purified as a priority species, sterilize microorganisms originally inhabiting the environment to be purified, add specific microorganisms after reducing the number of individuals Although methods (Patent Document 5 and Patent Document 6) have also been proposed, it is difficult to establish a specific microorganism as a preferred species in the environment to be purified even if this method is used. Even if the microorganisms settle in the environment to be purified, it is difficult to maintain the decomposition activity of harmful substances at a high level for a long period of time. The environment cannot be obtained.

本発明は、上記課題に鑑みなされたものであり、特定の微生物を利用した環境浄化技術において、有害物質を分解または固定化する微生物の活性を長期間高いレベルに維持し、安定して環境中の有害物質を分解または固定化して清浄な環境を得るための方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in the environmental purification technology using specific microorganisms, the activity of microorganisms that decompose or immobilize harmful substances is maintained at a high level for a long period of time, and stably in the environment. The purpose is to provide a method for decomposing or immobilizing harmful substances to obtain a clean environment.

本発明者等は有害物質を分解または固定化する微生物として、細胞外膜に電子伝達タンパク質を持つ微生物に着目した。   The present inventors have focused on microorganisms having an electron transfer protein in the outer cell membrane as microorganisms that decompose or immobilize harmful substances.

細胞外膜に電子伝達タンパク質を持つ微生物は、細胞外の物質に直接「細胞外電子移動」を行うことが可能であり、水に不溶性の鉄やマンガンの酸化物をエネルギー源として利用することができる。また、細胞外膜に電子伝達タンパク質を持つ微生物は、有機物の分解・浄化反応を多岐に渡って進行させる能力を有している。なお、細胞外膜に電子伝達タンパク質を持たない微生物は、自由拡散する電子メディエーターを介して「細胞外電子移動」を行うが、その速度は極めて遅い。この「細胞外電子移動」速度の違いが、難分解性有機物の分解能に影響しているものと推定される。   Microorganisms that have electron transport proteins in the outer membrane can perform "extracellular electron transfer" directly to extracellular materials, and can use water-insoluble iron and manganese oxides as energy sources. it can. Microorganisms having an electron transfer protein in the outer membrane have the ability to proceed with a wide variety of organic decomposition and purification reactions. Microorganisms that do not have an electron transfer protein in the outer membrane perform “extracellular electron transfer” via a free-diffusing electron mediator, but the rate is extremely slow. It is presumed that the difference in the “extracellular electron transfer” speed affects the resolution of the hardly-decomposable organic matter.

ここで、細胞外膜に電子伝達タンパク質を持つ微生物としては、具体的にはジオバクター属(Geobacter sp.)、シェワネラ属(Shewanella sp.)等の細菌を挙げることができ、これらの細菌類は、その代謝反応により様々な難分解性有機物を分解し、無機物を固定化することが知られている。  Here, specific examples of the microorganism having an electron transfer protein in the extracellular membrane include bacteria such as Geobacter sp. And Shewanella sp. These bacteria are: It is known that various hardly decomposable organic substances are decomposed by the metabolic reaction to fix inorganic substances.

例えば、特許文献4にはジオバクター属、シェワネラ属の細菌がヒ素、クロム、鉛、水銀、ウラン等の金属を生物学的に還元する能力を有し、これら金属を非水溶性の金属種として沈殿させて廃水から分離する技術が記載されている。   For example, in Patent Document 4, bacteria belonging to the genus Geobacter and Chewanella have the ability to biologically reduce metals such as arsenic, chromium, lead, mercury, uranium, and precipitate these metals as water-insoluble metal species. And a technique for separating it from wastewater.

有機物の分解に関しても、Geobacter metallireducence GS-15株がトルエン、フェノールを二酸化炭素まで酸化すること(非特許文献1)、Geobacter lovelyがテトラクロロエチレンやトリクロロエチレンを還元分解すること(非特許文献2)が確かめられている。   Regarding the decomposition of organic matter, it was confirmed that Geobacter metallireducence GS-15 strain oxidizes toluene and phenol to carbon dioxide (Non-patent Document 1), and Geobacter lovely reductively decomposes tetrachloroethylene and trichlorethylene (Non-patent Document 2). ing.

また、ジオバクター属の細菌が、汚染サイトに土着菌として存在することは様々な汚染サイトにおける現地調査で確認されており(非特許文献3)、汚染サイトの帯水層でベンゼンなどの芳香族化合物の酸化反応が進行する場合には、土着微生物内においてジオバクター属の細菌の占有率が高いことも報告されている(非特許文献4)。   In addition, the presence of Geobacter bacteria as indigenous bacteria at contaminated sites has been confirmed in field studies at various contaminated sites (Non-patent Document 3), and aromatic compounds such as benzene in the aquifer of contaminated sites. When the oxidation reaction proceeds, it is also reported that the occupancy rate of Geobacter bacteria is high in the indigenous microorganism (Non-patent Document 4).

上記課題を解決するため、本発明者等はジオバクターに代表される細胞外膜に電子伝達タンパク質を持つ微生物について鋭意研究を行った結果、該微生物の増殖時に難分解性有機物の分解能が極めて強く発現することを見出し、その知見に基づいて本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors conducted extensive research on microorganisms having an electron transfer protein in the extracellular membrane represented by Geobacter. As a result, the resolution of persistent organic substances is extremely strongly expressed during the growth of the microorganisms. And the present invention has been completed based on the findings.

すなわち、本発明に係る汚染された土壌または水の浄化方法は、有機化合物及び/または無機化合物に汚染された土壌または水の浄化方法であり、浄化対象の土壌または水の中で、細胞外膜に電子伝達タンパク質を持つ微生物を増殖させることで汚染物質を分解または固定化する汚染された土壌または水の浄化方法であり、前記浄化対象の土壌または水の中で、細胞外膜に電子伝達タンパク質を持つ微生物を増殖させる手段が、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程、および、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤を浄化対象の土壌または水に添加する工程とからなる汚染された土壌または水の浄化方法であって、前記微生物外膜に電子伝達タンパク質を持つ微生物がジオバクター属の細菌であり、前記増殖剤が、フラビン類もしくはキノン類から選択される少なくとも1種を含む電子伝達材と、該電子伝達材の溶解度を上げるための有機溶媒または有機塩のうちの少なくとも1種と、を含むことを特徴とする。 That is, the purification method of contaminated soil or water according to the present invention is a soil or purification process of water contaminated by organic compounds and / or inorganic compounds, in soil or water to be purified, the cell outer membrane A method for purifying contaminated soil or water by decomposing or immobilizing pollutants by growing microorganisms having electron transfer proteins on the surface, and in the soil or water to be purified, A means for growing microorganisms having a function of sterilizing at least a part of microorganisms living in soil or water to be purified, and activating microorganisms having electron transfer proteins in the extracellular membrane to promote growth A method for purifying contaminated soil or water comprising the step of adding a growth agent for the purpose to the soil or water to be purified, the method comprising: An electron transfer material containing at least one selected from flavins or quinones, and an organic solvent or an organic salt for increasing the solubility of the electron transfer material And at least one of them .

また、本発明に係る汚染された土壌または水の浄化方法は、前記電子伝達材の溶解度を上げるための有機溶媒または有機塩が、酢酸水溶液であることを特徴とする。 The contaminated soil or water purification method according to the present invention is characterized in that the organic solvent or organic salt for increasing the solubility of the electron transfer material is an aqueous acetic acid solution.

また、本発明に係る汚染された土壌または水の浄化方法は、前記浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程、および、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤を浄化対象の土壌または水に添加する工程を、繰り返し実施することを特徴とする。 In addition, the method for purifying contaminated soil or water according to the present invention includes a step of sterilizing at least a part of microorganisms inhabiting the soil or water to be purified, and an electron transfer protein in an outer membrane. The step of adding a growth agent for activating microorganisms and promoting growth to soil or water to be purified is repeatedly performed.

ここで、前記浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程で添加する殺菌剤が、浄化対象の土壌または水のpHを3.0以下にすることができる酸であり、前記殺菌剤を無効にする工程が、pH中和剤の添加であることが好ましい。   Here, the disinfectant added in the step of disinfecting at least a part of the microorganisms inhabiting the soil or water to be purified is an acid capable of reducing the pH of the soil or water to be purified to 3.0 or less. It is preferable that the step of disabling the disinfectant is addition of a pH neutralizing agent.

また、前記細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤が、電子伝達材、電子アクセプター、電子ドナー、あるいは栄養素から選択される少なくとも1種を含み、特に電子伝達材を含むことで、汚染された土壌または水を効率的に浄化することができる。この際、電子伝達材は水への溶解性が悪いので、前記増殖剤は、電子伝達材の溶解度を上げるための有機溶媒または有機塩のうちの少なくとも一種を含むものとする。   In addition, the proliferation agent for activating the microorganism having an electron transfer protein in the extracellular membrane and promoting proliferation includes at least one selected from an electron transfer material, an electron acceptor, an electron donor, or a nutrient, By including the electron transfer material, the contaminated soil or water can be efficiently purified. At this time, since the electron transfer material has poor solubility in water, the growth agent includes at least one of an organic solvent or an organic salt for increasing the solubility of the electron transfer material.

更に、前記電子伝達材がフラビン類もしくはキノン類から選択される少なくとも1種であり、前記電子伝達材の溶解度を上げるための有機溶媒または有機塩が酢酸水溶液であり、前記電子アクセプターが三価鉄または四価マンガンからなる金属化合物、あるいはフマル酸塩から選択される少なくとも1種を含み、前記電子ドナーが、酢酸塩、蟻酸塩、グルコースから選択される少なくとも1種を含むことが、細胞外膜に電子伝達タンパク質を持つ微生物を活性化する上での好ましい様態である。   Further, the electron transfer material is at least one selected from flavins or quinones, an organic solvent or an organic salt for increasing the solubility of the electron transfer material is an aqueous acetic acid solution, and the electron acceptor is trivalent iron. Or at least one selected from metal compounds consisting of tetravalent manganese or fumarate, and the electron donor includes at least one selected from acetate, formate, and glucose. This is a preferable mode for activating a microorganism having an electron transfer protein.

そして、前記細胞外膜に電子伝達タンパク質を持つ微生物の中で、汚染された土壌または水の浄化に最も好ましい微生物はジオバクター属の細菌である。   Among the microorganisms having an electron transfer protein in the extracellular membrane, the most preferable microorganism for purifying contaminated soil or water is a Geobacter bacterium.

本発明の汚染された土壌または水の浄化方法によれば、細胞外膜に電子伝達タンパク質を持つ微生物は、増殖時に有機物の分解能や金属の還元能が極めて強く発現するので、浄化対象の土壌または水の中で該微生物の増殖状態を作り出すことにより有害物質を効率良く分解または固定化することが可能となる。   According to the method for purifying contaminated soil or water of the present invention, microorganisms having an electron transfer protein in the extracellular membrane exhibit extremely strong organic matter resolution and metal reducing ability during growth. By creating the growth state of the microorganism in water, it becomes possible to efficiently decompose or immobilize harmful substances.

また、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌することで、細胞外膜に電子伝達タンパク質を持つ微生物を活性化するために添加する増殖剤が、該微生物以外に利用される比率が小さくなり、浄化対象の土壌または水の中で細胞外膜に電子伝達タンパク質を持つ微生物の増殖状態を容易に作り出すことができるようになる。   In addition to the microorganism, a proliferation agent added to activate microorganisms having an electron transfer protein in the extracellular membrane by sterilizing at least a part of microorganisms living in the soil or water to be purified. The ratio used becomes small, and it becomes possible to easily create a growth state of a microorganism having an electron transfer protein in the extracellular membrane in soil or water to be purified.

また、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程を、浄化対象の土壌または水に殺菌剤を添加する工程と、一定時間経過後に、添加した殺菌剤を無効にする工程とすることで、容易に浄化対象の土壌または水の中に生息する微生物の殺菌を行うことができる。   In addition, the process of sterilizing at least some of the microorganisms inhabiting the soil or water to be purified, the process of adding a fungicide to the soil or water to be purified, and the added disinfectant after a certain period of time are invalidated By adopting the step, the microorganisms that live in the soil or water to be purified can be easily sterilized.

また、細胞外膜に電子伝達タンパク質を持つ微生物が、前記浄化対象の土壌または水の中に生息していない場合には、別途培養した細胞外膜に電子伝達タンパク質を持つ微生物を添加することで、浄化対象の土壌または水の中で該微生物の増殖状態を確実に作り出すことが可能となる。   In addition, when a microorganism having an electron transfer protein in the outer membrane does not live in the soil or water to be purified, a microorganism having an electron transfer protein can be added to the separately cultured outer membrane. Thus, it is possible to reliably produce a growth state of the microorganism in the soil or water to be purified.

更に、本発明では、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程と、細胞外膜に電子伝達タンパク質を持つ微生物の増殖剤を浄化対象の土壌または水に添加する工程を繰り返し実施する。一般に微生物は、閉鎖環境中で個体数がある程度増加すると、増殖を停止してそれ以上個体数を増やさなくなるが、本発明では浄化対象の土壌または水の中に生息する微生物の殺菌を繰り返し実施するので、細胞外膜に電子伝達タンパク質を持つ微生物の個体数も都度減少し、個体数の飽和状態が続くことなく該微生物の増殖状態を長期間作り出すことができる。つまり、細胞外膜に電子伝達タンパク質を持つ微生物の優れた有機物分解能や金属還元能が維持されて、長期間安定して浄化対象の土壌または水の中の有害物質を分解または固定化することが可能となる。   Furthermore, in the present invention, a step of sterilizing at least a part of microorganisms that live in the soil or water to be purified, and a growth agent for microorganisms having an electron transfer protein in the extracellular membrane are added to the soil or water to be purified. The step of performing is repeated. In general, when the number of individuals in a closed environment increases to some extent, microorganisms stop growing and the number of individuals no longer increases. However, in the present invention, microorganisms that live in the soil or water to be purified are repeatedly sterilized. Therefore, the number of microorganisms having an electron transfer protein in the outer membrane also decreases each time, and the growth state of the microorganisms can be created for a long period without the saturation of the number of individuals continuing. In other words, the excellent organic matter resolving power and metal reducing ability of microorganisms with electron transfer proteins in the extracellular membrane are maintained, and toxic substances in the soil or water to be purified can be decomposed or immobilized stably over a long period of time. It becomes possible.

ここで、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程で添加する殺菌剤を、浄化対象の土壌または水のpHを3.0以下にすることができる酸とし、殺菌剤を無効にする工程をpH中和剤の添加とすると、浄化対象の土壌または水の中に生息する微生物の殺菌がより容易なものとなる。   Here, the disinfectant added in the step of disinfecting at least a part of the microorganisms inhabiting the soil or water to be purified is an acid that can reduce the pH of the soil or water to be purified to 3.0 or less. If the step of disabling the disinfectant is the addition of a pH neutralizing agent, disinfection of microorganisms living in the soil or water to be purified becomes easier.

また、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤が、電子伝達材、電子アクセプター、電子ドナー、あるいは栄養素から選択される少なくとも1種を含み、特に電子伝達材を含むことで、他の微生物よりも細胞外膜に電子伝達タンパク質を持つ微生物が増殖しやすい環境となる。   In addition, a proliferation agent for activating a microorganism having an electron transfer protein in the outer membrane and promoting proliferation includes at least one selected from an electron transfer material, an electron acceptor, an electron donor, or a nutrient, By including the transfer material, an environment in which a microorganism having an electron transfer protein in the outer cell membrane is easier to grow than other microorganisms.

更に、電子伝達材としてフラビン類もしくはキノン類から選択される少なくとも1種を、電子伝達材の溶解度を上げるための有機溶媒または有機塩として酢酸水溶液を、電子アクセプターとして三価鉄または四価マンガンからなる金属化合物、あるいはフマル酸塩から選択される少なくとも1種を、電子ドナーとして酢酸塩、蟻酸塩、グルコースから選択される少なくとも1種を用いると、細胞外膜に電子伝達タンパク質を持つ微生物の増殖には極めて好ましく、浄化対象の土壌または水の中の有害物質の分解または固定化を促進することができる。   Further, at least one selected from flavins or quinones as an electron transfer material, an acetic acid aqueous solution as an organic solvent or organic salt for increasing the solubility of the electron transfer material, and trivalent iron or tetravalent manganese as an electron acceptor. When at least one selected from the following metal compounds or fumarate is used as the electron donor, at least one selected from acetate, formate, and glucose, the growth of microorganisms having an electron transfer protein in the outer membrane Is very preferable, and can promote decomposition or immobilization of harmful substances in soil or water to be purified.

そして、前記細胞外膜に電子伝達タンパク質を持つ微生物をジオバクター属の細菌とすることで、多種多様な生物難分解性の有機物や生物に有害な無機物に対応した、優れた汚染された土壌または水の浄化方法となる。   The microorganism having an electron transfer protein in the extracellular membrane is a bacterium belonging to the genus Geobacter, so that excellent contaminated soil or water corresponding to a wide variety of biodegradable organic substances and inorganic substances harmful to living organisms can be obtained. It becomes a purification method.

本発明の汚染された土壌または水の浄化方法における最も重要なポイントは、浄化対象の土壌または水の中で、細胞外膜に電子伝達蛋白質を持つ微生物の増殖状態を作り出すことである。これにより、細胞外膜に電子伝達蛋白質を持つ微生物の優れた有機物分解能や金属還元能が最大限発揮され、従来にない環境浄化効果を得ることができる。   The most important point in the contaminated soil or water purification method of the present invention is to create a growth state of microorganisms having an electron transfer protein in the extracellular membrane in the soil or water to be purified. As a result, the excellent organic matter resolving power and metal reducing ability of microorganisms having an electron transfer protein in the extracellular membrane are maximized, and an unprecedented environmental purification effect can be obtained.

浄化対象の土壌または水の中で、細胞外膜に電子伝達蛋白質を持つ微生物の増殖状態を作り出すために、本発明では浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程(以下、殺菌工程と称することもある)と、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤を添加する工程(以下、増殖剤添加工程と称することもある)とを実施する。殺菌工程は細胞外膜に電子伝達タンパク質を持つ微生物以外の微生物数を減少させるために行うが、同時に土着の細胞外膜に電子伝達タンパク質を持つ微生物数を減らしてしまっても構わない。微生物の絶対数が少ない状態で細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤を作用させると、増殖剤が他の微生物に利用される比率が小さくなり、細胞外膜に電子伝達タンパク質を持つ微生物の増殖に有効に利用される。   In order to create a growth state of microorganisms having an electron transfer protein in the extracellular membrane in the soil or water to be purified, the present invention sterilizes at least a part of the microorganisms living in the soil or water to be purified. A step (hereinafter also referred to as a sterilization step) and a step of activating a microorganism having an electron transfer protein in the extracellular membrane and adding a proliferation agent for promoting proliferation (hereinafter referred to as a proliferation agent addition step) There is also. The sterilization step is performed to reduce the number of microorganisms other than those having electron transfer proteins in the outer membrane, but at the same time, the number of microorganisms having electron transfer proteins in the native outer membrane may be reduced. When a microorganism having an electron transfer protein is activated in the extracellular membrane in a state where the absolute number of microorganisms is small and a proliferation agent for promoting growth is allowed to act, the ratio of the proliferation agent to other microorganisms decreases, It is effectively used for the growth of microorganisms having electron transfer proteins in the outer membrane.

前記殺菌工程における殺菌方法は特に限定されず、熱処理、紫外線処理、オゾン処理、殺菌剤による処理等、公知の方法を採用可能だが、細胞外膜に電子伝達蛋白質を持つ微生物の増殖状態を作り出すことが目的なので、浄化対象の土壌または水が微生物の生育に不適な環境にならない方法を採らなければならない。作業性や経済性、殺菌の有効性を加味すると、浄化対象の土壌または水に殺菌剤を添加し、一定時間経過後に、添加した殺菌剤を無効にするのが好ましい。殺菌剤を無効にすることを考慮した場合、有機系の殺菌剤を用いるのは難しく、次亜塩素酸塩などの酸化剤や浄化対象の土壌または水のpHを3.0以下にすることができる酸を用いるのが好適である。酸化剤は還元剤で、酸はアルカリによる中和で容易に殺菌剤を無効にでき、また、大量の水で希釈することでも殺菌力を低下させることが可能となる。細胞外膜に電子伝達タンパク質を持つ微生物の一種であるジオバクターの生育至適pHは中性域なので、酸を用いて殺菌した場合に中和は必須であり、中性から弱アルカリ性の緩衝液等のpH中和剤の添加が好ましい。   The sterilization method in the sterilization step is not particularly limited, and a known method such as heat treatment, ultraviolet treatment, ozone treatment, treatment with a bactericide can be adopted, but a growth state of microorganisms having an electron transfer protein in the extracellular membrane can be created. Therefore, it is necessary to adopt a method in which the soil or water to be purified does not become an unsuitable environment for the growth of microorganisms. In consideration of workability, economy, and effectiveness of sterilization, it is preferable to add a sterilizing agent to the soil or water to be purified, and to invalidate the added sterilizing agent after a certain period of time. When considering disinfecting disinfectants, it is difficult to use organic disinfectants, and the pH of oxidants such as hypochlorite and soil or water to be purified may be 3.0 or less. It is preferable to use an acid that can be used. The oxidizing agent is a reducing agent, and the acid can be easily invalidated by neutralization with an alkali, and the sterilizing power can also be reduced by diluting with a large amount of water. Since the optimal pH for growth of Geobacter, a type of microorganism that has an electron transfer protein in the outer cell membrane, is neutral, neutralization is essential when sterilized with acid, such as neutral to weakly alkaline buffers. It is preferable to add a pH neutralizing agent.

また、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤は、電子伝達材、電子アクセプター、電子ドナー、あるいは栄養素から選択される少なくとも1種からなる。より具体的には、電子伝達材としては、リボフラビン、フラビンモノヌクレオチド等のフラビン類もしくは、メナキノン、アントラキノン−2,6−ジスルホン酸等のキノン類、電子アクセプターとしては三価鉄、四価マンガン等の金属化合物やフマル酸塩、電子ドナーとしては酢酸塩、蟻酸塩、グルコース、栄養素としては酵母エキスを利用することができる。ここで、上記増殖剤を構成する各物質は、浄化対象の土壌または水に対して全てを別々のタイミングで添加しても、いくつかの物質を同時に添加しても、全てを同時に添加しても構わない。いくつかの物質を同時に添加する場合には、一液製剤化したものを添加しても、個別に製剤化したものを同時に添加しても良い。なお、増殖剤を構成するそれぞれの物質の比率は、浄化対象の環境や有害物質に合わせて適宜設定することで浄化効果を高めることができる。   In addition, a proliferation agent for activating a microorganism having an electron transfer protein in the outer membrane and promoting proliferation is at least one selected from an electron transfer material, an electron acceptor, an electron donor, or a nutrient. More specifically, examples of the electron transfer material include flavins such as riboflavin and flavin mononucleotide, or quinones such as menaquinone and anthraquinone-2,6-disulfonic acid, and examples of the electron acceptor include trivalent iron and tetravalent manganese. As the metal compound, fumarate, and electron donor, acetate, formate, glucose, and yeast extract can be used as nutrients. Here, each substance constituting the above-mentioned growth agent may be added to the soil or water to be purified at different timings, or several substances may be added simultaneously, or all may be added simultaneously. It doesn't matter. When several substances are added at the same time, a one-part preparation may be added, or individual preparations may be added simultaneously. In addition, the purification effect can be enhanced by appropriately setting the ratio of each substance constituting the proliferation agent in accordance with the environment to be purified and harmful substances.

前記増殖剤を構成する各物質の中で、電子伝達材のフラビン類はジオバクターの電子伝達反応を促進する作用があるので特に重要である。但し、フラビン類は親水性が低いため、増殖剤として添加するための高濃度溶液とするには、溶解度を上げるための有機溶媒または有機塩を併用する必要がある。フラビン類の溶解度を上げるための好ましい溶媒は酢酸水溶液である。   Among the substances constituting the proliferation agent, the flavins of the electron transfer material are particularly important because they have an action of promoting the electron transfer reaction of Geobacter. However, since flavins have low hydrophilicity, it is necessary to use an organic solvent or an organic salt for increasing the solubility in order to obtain a high-concentration solution to be added as a proliferating agent. A preferred solvent for increasing the solubility of flavins is an aqueous acetic acid solution.

前記殺菌工程で添加する殺菌剤や、殺菌剤を無効にするための薬剤と、前記増殖剤を構成する各物質は、浄化対象の土壌または水に同時に添加しても別々に添加しても構わない。また、同時に添加する場合には一液製剤化したものを添加することも可能である。   The disinfectant added in the disinfecting step, the disinfectant for disinfecting disinfectant, and each substance constituting the growth agent may be added to the soil or water to be purified simultaneously or separately. Absent. Moreover, when adding simultaneously, it is also possible to add what was made into one liquid formulation.

ここで、細胞外膜に電子伝達タンパク質を持つ微生物、特にジオバクター属の細菌は、各種環境中に土着菌として生息していることが知られており、本発明で浄化対象とする土壌または水の中にも生息していると考えられるが、万一、細胞外膜に電子伝達タンパク質を持つ微生物が、浄化対象の土壌または水の中に生息していない場合には、別途培養した該微生物を浄化対象の土壌または水に添加する。この場合であっても、前記殺菌工程と前記増殖剤添加工程を実施することで、浄化対象の土壌または水の中で、細胞外膜に電子伝達蛋白質を持つ微生物の増殖状態を作り出すことができる。   Here, microorganisms having an electron transfer protein in the extracellular membrane, especially bacteria of the genus Geobacter, are known to live as indigenous bacteria in various environments, and soil or water to be purified in the present invention. In the unlikely event that a microorganism having an electron transfer protein in its outer membrane does not live in the soil or water to be purified, Add to soil or water to be purified. Even in this case, by performing the sterilization step and the growth agent addition step, it is possible to create a growth state of a microorganism having an electron transfer protein in the extracellular membrane in the soil or water to be purified. .

また、前記殺菌工程と前記増殖剤添加工程は繰り返し実施するのが好ましい。これにより、細胞外膜に電子伝達タンパク質を持つ微生物の個体数が飽和状態になって、増殖が停止してしまうのを避けることができる。   The sterilization step and the growth agent addition step are preferably performed repeatedly. Thereby, it can be avoided that the number of microorganisms having an electron transfer protein in the extracellular membrane is saturated and the growth is stopped.

本発明では、細胞外膜に電子伝達タンパク質を持つ微生物を利用して有害物質の分解・浄化を行うが、該微生物がジオバクター属の細菌であると、多種多様な生物難分解性有機物や生物に有害な無機物を分解・浄化することが可能である。   In the present invention, microorganisms having electron transfer proteins in the outer membrane are used to decompose and purify harmful substances. It is possible to decompose and purify harmful inorganic substances.

また、本発明で最も推奨される実施の形態は、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌するための殺菌剤として、酢酸水溶液を使用することである。酢酸水溶液はフラビン類の溶媒となるため、フラビン類を溶解した状態で浄化対象の土壌または水に添加する。酢酸は殺菌剤として作用した後、中和されて酢酸塩となると電子ドナーとして働き、また、酢酸塩が存在するとジオバクターの増殖が早まることから浄化対象の土壌または水の中で土着のジオバクターを優先種とする効果も得られる。このように、本発明に酢酸水溶液を使用することで、非常に効率的な環境浄化が可能となる。   The most recommended embodiment of the present invention is to use an acetic acid aqueous solution as a disinfectant for disinfecting at least a part of microorganisms that inhabit the soil or water to be purified. Since the aqueous acetic acid solution serves as a solvent for flavins, it is added to the soil or water to be purified in a state where the flavins are dissolved. Acetic acid acts as a bactericidal agent and then acts as an electron donor when neutralized to acetate, and in the presence of acetate, the growth of geobacter is accelerated, giving priority to indigenous geobacter in the soil or water to be purified. The seed effect is also obtained. Thus, by using the acetic acid aqueous solution in the present invention, very efficient environmental purification becomes possible.

以下に本発明の汚染された土壌または水の浄化方法について実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples Hereinafter, the method for purifying contaminated soil or water according to the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

東京都内の下水処理場で採取した下水を用いて以下の試験を実施した。試験に使用した試薬類は下記の通りである。なお、採取した下水を予め検査した結果、ジオバクターが生息していることを確認した。
試薬1:1mmol/Lのリボフラビンを溶解した10%酢酸水溶液
試薬2:pH7.5 HEPES緩衝液
(HEPES=4−(2−ヒドロキシエチル)−1−ピペラジンエタン
スルホン酸)
試薬3:500mmol/Lフマル酸ナトリウム水溶液
試薬4:1%酵母エキス水溶液
試薬5:10mmol/Lベンゼン水溶液
The following tests were conducted using sewage collected at a sewage treatment plant in Tokyo. The reagents used in the test are as follows. In addition, as a result of examining the collected sewage in advance, it was confirmed that Geobacter was inhabiting.
Reagent 1: 10% aqueous acetic acid solution in which 1 mmol / L riboflavin is dissolved Reagent 2: pH 7.5 HEPES buffer (HEPES = 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid)
Reagent 3: 500 mmol / L sodium fumarate aqueous solution Reagent 4: 1% yeast extract aqueous solution Reagent 5: 10 mmol / L benzene aqueous solution

<実施例1>
下水1Lに対して試薬1を50mL添加してpHを2.9とし、30分経過後に試薬2、試薬3、試薬4を各50mLずつ順次添加した。その後、試薬5を60mL添加して、ベンゼンを0.5mmol/L(39mg/L)含有する試験水1とした。試験水1を嫌気条件下30℃で放置し、2日間経過後にベンゼン濃度を測定したところ、0.11mmol/L(分解率78%)であった。
<Example 1>
50 mL of Reagent 1 was added to 1 L of sewage to adjust the pH to 2.9, and after 30 minutes, 50 mL of Reagent 2, Reagent 3, and Reagent 4 were sequentially added. Thereafter, 60 mL of Reagent 5 was added to prepare Test Water 1 containing benzene 0.5 mmol / L (39 mg / L). The test water 1 was allowed to stand at 30 ° C. under anaerobic conditions, and the benzene concentration was measured after 2 days. The result was 0.11 mmol / L (decomposition rate 78%).

<比較例1>
下水1Lに対して試薬2を50mL、滅菌イオン交換水を150mL添加し、その後、試薬5を60mL添加して、ベンゼンを0.5mmol/L含有する試験水2とした。試験水2を嫌気条件下30℃で放置し、2日間経過後にベンゼン濃度を測定したところ、0.45mmol/L(分解率10%)であった。
<Comparative Example 1>
50 mL of reagent 2 and 150 mL of sterilized ion-exchanged water were added to 1 L of sewage, and then 60 mL of reagent 5 was added to obtain test water 2 containing 0.5 mmol / L of benzene. The test water 2 was allowed to stand at 30 ° C. under anaerobic conditions, and the benzene concentration was measured after 2 days. The result was 0.45 mmol / L (decomposition rate 10%).

<比較例2>
下水1Lに対して試薬1と試薬2を予め体積比1:1で混合したものを100mL添加し、次いで試薬3、試薬4を各50mLずつ順次添加した。その後、試薬5を60mL添加して、ベンゼンを0.5mmol/L含有する試験水3とした。試験水3を嫌気条件下30℃で放置し、2日間経過後にベンゼン濃度を測定したところ、0.27mmol/L(分解率46%)であった。
<Comparative example 2>
100 mL of reagent 1 and reagent 2 previously mixed at a volume ratio of 1: 1 to 1 L of sewage was added, and then 50 mL each of reagent 3 and reagent 4 were sequentially added. Thereafter, 60 mL of reagent 5 was added to prepare test water 3 containing benzene at 0.5 mmol / L. The test water 3 was allowed to stand at 30 ° C. under anaerobic conditions, and the benzene concentration was measured after 2 days. The result was 0.27 mmol / L (decomposition rate 46%).

<実施例2>
実施例1でベンゼン濃度を測定した後の試験水500mLに対して試薬1を25mL添加し、30分経過後に試薬2、試薬3、試薬4を各25mLずつ順次添加した。その後、試薬5を適宜添加して、ベンゼンを0.5mmol/L含有する試験水4とした。試験水4を嫌気条件下30℃で放置し、2日間経過後にベンゼン濃度を測定したところ、0.12mmol/L(分解率76%)であった。
<Example 2>
25 mL of Reagent 1 was added to 500 mL of test water after measuring the benzene concentration in Example 1, and 25 mL each of Reagent 2, Reagent 3, and Reagent 4 were sequentially added after 30 minutes. Then, the reagent 5 was added suitably and it was set as the test water 4 containing 0.5 mmol / L of benzene. The test water 4 was allowed to stand at 30 ° C. under anaerobic conditions, and the benzene concentration was measured after 2 days. The result was 0.12 mmol / L (decomposition rate 76%).

<比較例3>
実施例1でベンゼン濃度を測定した後の試験水500mLに対して試薬1と試薬2を予め体積比1:1で混合したものを50mL添加し、次いで試薬3、試薬4を各25mLずつ順次添加した。その後、試薬5を適宜添加して、ベンゼンを0.5mmol/L含有する試験水5とした。試験水5を嫌気条件下30℃で放置し、2日間経過後にベンゼン濃度を測定したところ、0.30mmol/L(分解率40%)であった。
<Comparative Example 3>
50 mL of reagent 1 and reagent 2 previously mixed at a volume ratio of 1: 1 was added to 500 mL of test water after measuring the benzene concentration in Example 1, and then 25 mL each of reagent 3 and reagent 4 were sequentially added. did. Then, the reagent 5 was added suitably and it was set as the test water 5 containing 0.5 mmol / L of benzene. The test water 5 was allowed to stand at 30 ° C. under anaerobic conditions, and the benzene concentration was measured after 2 days. The result was 0.30 mmol / L (decomposition rate 40%).

上記試験結果から明らかな通り、本発明の殺菌工程と増殖剤添加工程を実施した実施例1では良好なベンゼン分解効果が認められた。一方、ジオバクターが生息している下水であっても、比較例1のように単に中性の嫌気状態に保っただけではベンゼン分解能は極めて低く、また、従来技術である比較例2のように増殖剤添加工程を行っただけでは、本発明の2分の1程度のベンゼン分解能しか得られない。   As apparent from the test results, a good benzene decomposition effect was observed in Example 1 in which the sterilization step and the proliferation agent addition step of the present invention were performed. On the other hand, even if the sewage is inhabited by Geobacter, the benzene resolution is very low if it is kept in a neutral anaerobic state as in Comparative Example 1, and it is proliferated as in Comparative Example 2 which is the prior art. If only the agent addition step is performed, only about half the benzene resolution of the present invention can be obtained.

更に、比較例3で示したとおり、殺菌工程と増殖剤添加工程を実施後しばらく経つと、増殖剤を再度添加するだけでは当初のベンゼン分解能が得られなくなるが、実施例2のように、殺菌工程と増殖剤添加工程を合わせて実施することで、当初のベンゼン分解能を維持することができた。これは、比較例3ではジオバクターの個体数が飽和状態近くに達し、増殖状態を保てなくなったことでベンゼン分解能が低下したのに対し、実施例2では殺菌工程を再度実施してジオバクターの個体数を一旦減少させたことで、その後にジオバクターの増殖状態を作り出すことができ、良好なベンゼン分解能を維持したものである。   Furthermore, as shown in Comparative Example 3, after a while after performing the sterilization step and the growth agent addition step, the initial benzene resolution cannot be obtained only by adding the growth agent again. The initial benzene resolution could be maintained by carrying out the process and the growth agent addition process together. This is because, in Comparative Example 3, the number of Geobacter individuals reached a saturation state and the benzene resolution was lowered because the growth state could not be maintained, whereas in Example 2, the sterilization process was performed again to perform the Geobacter individual. Once the number is reduced, the growth state of Geobacter can be created thereafter, and good benzene resolution is maintained.

本発明係る汚染された土壌または水の浄化方法は、生物難分解性の有機化合物や生物に有害な無機化合物で汚染された土壌、地下水、底質土、廃水等の浄化に広く利用可能である。   The method for purifying contaminated soil or water according to the present invention can be widely used for purifying soil, groundwater, sediment, wastewater, etc. contaminated with organic compounds that are hardly biodegradable or inorganic compounds harmful to living organisms. .

Claims (3)

有機化合物及び/または無機化合物に汚染された土壌または水の浄化方法であり、浄化対象の土壌または水の中で、細胞外膜に電子伝達タンパク質を持つ微生物を増殖させることで汚染物質を分解または固定化する汚染された土壌または水の浄化方法であり、前記浄化対象の土壌または水の中で、細胞外膜に電子伝達タンパク質を持つ微生物を増殖させる手段が、浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程、および、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤を浄化対象の土壌または水に添加する工程とからなる汚染された土壌または水の浄化方法であって、前記微生物外膜に電子伝達タンパク質を持つ微生物がジオバクター属の細菌であり、前記増殖剤が、フラビン類もしくはキノン類から選択される少なくとも1種を含む電子伝達材と、該電子伝達材の溶解度を上げるための有機溶媒または有機塩のうちの少なくとも1種と、を含むことを特徴とする汚染された土壌または水の浄化方法。 An organic compound and / or contaminated with inorganic compounds soil or purification process of water in the soil or water to be purified, degradation or contamination by growing a microorganism having an electron transfer protein to the extracellular membrane A method for purifying contaminated soil or water to be immobilized , wherein the means for growing a microorganism having an electron transfer protein in an extracellular membrane in the soil or water to be purified is contained in the soil or water to be purified. Sterilizing at least a part of microorganisms that inhabit, and adding a growth agent for activating and promoting the growth of microorganisms having electron transfer proteins in the extracellular membrane to the soil or water to be purified A method for purifying contaminated soil or water, wherein the microorganism having an electron transfer protein in the outer membrane of the microorganism is a bacterium belonging to the genus Geobacter, and the growth agent is An electron transfer material that includes at least one selected from the Rabin acids or quinones, characterized in that it comprises at least one, the one of the organic solvent or organic salts to increase the solubility of the electronic transfer material contamination Soil or water purification methods. 前記電子伝達材の溶解度を上げるための有機溶媒または有機塩が、酢酸水溶液であることを特徴とする請求項1に記載の汚染された土壌または水の浄化方法。 The method for purifying contaminated soil or water according to claim 1, wherein the organic solvent or organic salt for increasing the solubility of the electron transfer material is an aqueous acetic acid solution . 前記浄化対象の土壌または水の中に生息する微生物の少なくとも一部を殺菌する工程、および、細胞外膜に電子伝達タンパク質を持つ微生物を活性化し、増殖を促進するための増殖剤を浄化対象の土壌または水に添加する工程を、繰り返し実施することを特徴とする請求項1または請求項2に記載の汚染された土壌または水の浄化方法。 A step of sterilizing at least a part of microorganisms inhabiting the soil or water to be purified, and a proliferation agent for activating the microorganisms having an electron transfer protein in the extracellular membrane to promote proliferation; The method for purifying contaminated soil or water according to claim 1 or 2, wherein the step of adding to soil or water is repeatedly performed .
JP2013246871A 2013-11-29 2013-11-29 Methods for purifying contaminated soil or water Active JP6196137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246871A JP6196137B2 (en) 2013-11-29 2013-11-29 Methods for purifying contaminated soil or water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246871A JP6196137B2 (en) 2013-11-29 2013-11-29 Methods for purifying contaminated soil or water

Publications (2)

Publication Number Publication Date
JP2015104687A JP2015104687A (en) 2015-06-08
JP6196137B2 true JP6196137B2 (en) 2017-09-13

Family

ID=53435162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246871A Active JP6196137B2 (en) 2013-11-29 2013-11-29 Methods for purifying contaminated soil or water

Country Status (1)

Country Link
JP (1) JP6196137B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391696A (en) * 2016-10-25 2017-02-15 中国科学院青岛生物能源与过程研究所 Method for restoring polluted soil through coupling stimulation of electron acceptors and nutrients
CN106345803A (en) * 2016-10-31 2017-01-25 湖南科技学院 Soil disinfection and soil restoration method
JP7398914B2 (en) 2018-09-27 2023-12-15 住友理工株式会社 Process for treating wastewater containing polyethers, wastewater treatment equipment containing polyethers, and sludge used therein
CN111320286B (en) * 2018-12-14 2022-10-04 中国科学院天津工业生物技术研究所 Method for quickly removing hexavalent chromium pollutants by using electronic carrier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267084A (en) * 1996-04-01 1997-10-14 Canon Inc Soil contaminating method using microorganism
JP2013212468A (en) * 2012-04-03 2013-10-17 Toyohashi Univ Of Technology Cleaning agent using acetic acid-assimilating extracellular electron transport microorganism, and cleaning method

Also Published As

Publication number Publication date
JP2015104687A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
Zhang et al. Antibiotics and antibiotic resistance genes in landfills: a review
Wang et al. Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review
Dorival-García et al. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions
Myers et al. Abiotic and bioaugmented granular activated carbon for the treatment of 1, 4-dioxane-contaminated water
Lin et al. Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation
Suyamud et al. Antibiotic resistant bacteria and genes in shrimp aquaculture water: Identification and removal by ferrate (VI)
JP6196137B2 (en) Methods for purifying contaminated soil or water
JP3564574B1 (en) Hexavalent chromium-contaminated soil, groundwater, and sediment purification agent and purification method
Almaraz et al. Emergence and fate of volatile iodinated organic compounds during biological treatment of oil and gas produced water
Samir et al. Enhanced photocatalytic–biological degradation of 2, 4 dichlorophenoxyacetic acid
Balakrishnan et al. Treatment of triclosan through enhanced microbial biodegradation
Al Kharusi et al. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils
JP2007222823A (en) Cleaning method of soil polluted with chloroorganic compound
Rojo-Nieto et al. Microbial degradation of PAHs: organisms and environmental compartments
Fan et al. Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products
JP5218807B2 (en) Culture composition
Habtewold et al. Sodium persulfate and potassium permanganate inhibit methanogens and methanogenesis in stored liquid dairy manure
Salcedo et al. Fate of tetracycline resistance in synthetic livestock carcass leachate for two years
JP6153304B2 (en) Purification method for oil-contaminated soil
RU2502569C1 (en) Method of removing hydrocarbon contaminants from soils
Khorasanizadeh The Effect of Biotic and Abiotic Factors on Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria in the Soil
Porika et al. Advances in the bioremediation of pharmaceuticals and personal care products (PPCPs): polluted water and soil
Asano et al. Isolation and characterization of sulfur oxidizing bacteria from cattle manure compost
JP2003251331A (en) Method for biologically restoring polluted soil or underground water, and additive
JP4670425B2 (en) Novel degrading bacteria and method for decomposing organic compounds using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170817

R150 Certificate of patent or registration of utility model

Ref document number: 6196137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250