JP2009154152A - Method for clarifying contaminated soil or ground water - Google Patents

Method for clarifying contaminated soil or ground water Download PDF

Info

Publication number
JP2009154152A
JP2009154152A JP2008310534A JP2008310534A JP2009154152A JP 2009154152 A JP2009154152 A JP 2009154152A JP 2008310534 A JP2008310534 A JP 2008310534A JP 2008310534 A JP2008310534 A JP 2008310534A JP 2009154152 A JP2009154152 A JP 2009154152A
Authority
JP
Japan
Prior art keywords
soil
groundwater
inorganic
amount
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310534A
Other languages
Japanese (ja)
Other versions
JP5481846B2 (en
Inventor
Noriya Okutsu
徳也 奥津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008310534A priority Critical patent/JP5481846B2/en
Publication of JP2009154152A publication Critical patent/JP2009154152A/en
Application granted granted Critical
Publication of JP5481846B2 publication Critical patent/JP5481846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for clarifying contaminated soil or ground water by which soil or ground water contaminated with an organic compound such as oil is efficiently be clarified. <P>SOLUTION: In the method for clarifying contaminated soil or ground water, an inorganic nitrogen source or an inorganic phosphorous source is added to the soil or ground water contaminated with the organic compound to clarify the contaminated soil or ground water. The inorganic nitrogen source of 1/60 to 1/15 and the inorganic phosphorous source of 1/600 to 1/150 to the oxygen consumption or carbon dioxide generation amount upon the decomposition of the organic compound with microorganisms comprised in the soil or ground water are added to the soil or group water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機化合物により汚染された土壌又は地下水を浄化する方法に関するものであり、更に詳細には、一定量の無機物窒素源及び無機物リン源を添加することにより、浄化効率を向上させた汚染土壌又は地下水の浄化方法に関する。   The present invention relates to a method for purifying soil or groundwater contaminated with an organic compound, and more specifically, contamination with improved purification efficiency by adding a certain amount of an inorganic nitrogen source and an inorganic phosphorus source. The present invention relates to a method for purifying soil or groundwater.

近年において、工場等の産業施設跡地等で、石油系炭化水素化合物等の有機化合物による土壌の汚染が問題となることが増えている。土壌は人の生活や経済活動の基盤である土地を構成しており、汚染土壌を放置すると、直接摂取したり、農作物・魚介類等を通じて摂取することによって人の健康に影響が及ぶという問題がある。また、土壌中に残留した、上記有機化合物は雨水等によって地下水中に溶解し、周辺に広がるものとされている。   In recent years, contamination of soil with organic compounds such as petroleum hydrocarbon compounds has become a problem on the site of industrial facilities such as factories. Soil constitutes the foundation of people's lives and economic activities, and if contaminated soil is left unattended, it may affect human health by ingesting it directly or through crops, seafood, etc. is there. In addition, the organic compounds remaining in the soil are dissolved in groundwater by rainwater and spread around the periphery.

汚染土壌又は地下水を浄化する技術の一つとして、例えば、特許文献1には、好気性微生物による油汚染土壌の浄化方法として、土壌中の炭素量を基準として、C/N/P比を約100/20/1とするようにN/P型栄養素等を、処理すべき土壌に加える方法が開示されている。該特許文献に記載の方法によると、例えば油分濃度が10,000mg/kgの汚染土壌に対し、約2,000mgN/kgの窒素及び約100mgP/kgのリンを添加する必要があるが、このように過剰に窒素やリンを添加すると、むしろ窒素やリンそれ自体が地下水汚染の原因となるおそれがある。   As one of the technologies for purifying contaminated soil or groundwater, for example, Patent Document 1 discloses a method for purifying oil-contaminated soil by aerobic microorganisms, with a C / N / P ratio of approximately about the amount of carbon in the soil. A method of adding N / P type nutrients or the like to the soil to be treated so as to be 100/20/1 is disclosed. According to the method described in the patent document, for example, about 2,000 mg N / kg of nitrogen and about 100 mg P / kg of phosphorus need to be added to contaminated soil having an oil concentration of 10,000 mg / kg. If nitrogen or phosphorus is added excessively, nitrogen or phosphorus itself may cause groundwater contamination.

特許文献2には、土壌のpHを特定の範囲とし、N/P及び土壌中のN量を一定の範囲とするように、土壌に無機物N源及び/又はP源を添加する、油汚染土壌の生物的浄化方法が開示されている。該特許文献に記載の方法においても、油分濃度が低濃度である場合には、窒素及びリンが過剰である可能性がある。   Patent Document 2 discloses an oil-contaminated soil in which an inorganic N source and / or a P source are added to the soil so that the pH of the soil is in a specific range and the N / P and the amount of N in the soil are in a certain range. A biological purification method is disclosed. Even in the method described in the patent document, if the oil concentration is low, nitrogen and phosphorus may be excessive.

特許文献3には、土壌中の好気性微生物への通気により土壌を浄化する方法において、汚染土壌中の残存酸素濃度の減少速度を測定し、該減少濃度の測定値に基づき汚染土壌への通気量を制御する方法が開示されている。該特許文献に記載の方法においては酸素量を制御することにより、微生物の分解活性に応じて通気を制御できることが記載されているが、窒素量やリン量については言及していない。   In Patent Document 3, in a method of purifying soil by aeration to aerobic microorganisms in the soil, the rate of decrease in the residual oxygen concentration in the contaminated soil is measured, and aeration to the contaminated soil is performed based on the measured value of the decreased concentration. A method for controlling the amount is disclosed. In the method described in the patent document, it is described that the aeration can be controlled according to the decomposition activity of microorganisms by controlling the oxygen amount, but the nitrogen amount and the phosphorus amount are not mentioned.

特許文献4には、炭素源/窒素含有量/リン含有量が100/1〜10/0.1〜1.0の重量比の栄養源を土壌に加える、土壌浄化方法が開示されている。また、特許文献5には、石油汚染土壌に、窒素源及びリン源の水溶液を混和する、土壌浄化方法が開示されており、土壌乾燥重量1kgに対し、窒素濃度が100〜2,000mgN/kgであることが開示されている。これらの特許文献に開示された方法では、窒素等の添加量に幅がありすぎて、実際に土壌にどの程度添加すればよいかが明確ではない。   Patent Document 4 discloses a soil purification method in which a nutrient source having a weight ratio of carbon source / nitrogen content / phosphorus content of 100/1 to 10 / 0.1 to 1.0 is added to soil. Patent Document 5 discloses a soil purification method in which an aqueous solution of a nitrogen source and a phosphorus source is mixed with petroleum-contaminated soil. The nitrogen concentration is 100 to 2,000 mgN / kg with respect to 1 kg of the dry soil weight. It is disclosed that. In the methods disclosed in these patent documents, the amount of addition of nitrogen or the like is too wide, and it is not clear how much it should actually be added to the soil.

特許文献6には、リン、窒素等の栄養塩濃度のみが低い低栄養条件で生育し、環境汚染物質を分解することのできる微生物を用いた環境浄化方法が開示されている。該特許文献に開示された方法では、土壌を浄化するには、上記条件を満たす微生物を、浄化しようとする土壌に添加する必要があった。   Patent Document 6 discloses an environmental purification method using microorganisms that grow under low nutrient conditions where only nutrient salts such as phosphorus and nitrogen are low and can decompose environmental pollutants. In the method disclosed in the patent document, in order to purify the soil, it is necessary to add a microorganism satisfying the above condition to the soil to be purified.

特表平9−501841号公報Japanese National Patent Publication No. 9-501841 特許第3346242号公報Japanese Patent No. 3346242 特開2003−340431号公報JP 2003-340431 A 特開2003−185986号公報JP 2003-185986 A 特開平9−276831号公報Japanese Patent Laid-Open No. 9-276831 特開平10−276771号公報Japanese Patent Laid-Open No. 10-276771

上述したように、油等の有機化合物で汚染された土壌や地下水を浄化するために、土壌又は地下水に、窒素やリン等の無機塩を添加する方法は知られていたが、実際にどの程度添加すればよいのかは明確でなく、過剰に添加した場合には、逆に土壌や地下水を汚染する原因となっていた。このように、従来は、油等の有機化合物で汚染された土壌や地下水を浄化するための、効率的な無機塩添加方法がないのが実状であった。
従って、本発明の目的は、油等の有機化合物で汚染された土壌や地下水を効率よく浄化するための、汚染土壌又は地下水の浄化方法を提供することにある。本発明の汚染土壌又は地下水の浄化方法は、特に、原位置生物浄化方法として用いられる。
As described above, in order to purify soil and groundwater contaminated with organic compounds such as oil, methods for adding inorganic salts such as nitrogen and phosphorus to soil or groundwater have been known. It is not clear whether it should be added, and when it was added excessively, it was a cause of contaminating soil and groundwater. Thus, conventionally, there has been no actual method for adding an inorganic salt to purify soil or groundwater contaminated with an organic compound such as oil.
Accordingly, an object of the present invention is to provide a method for purifying contaminated soil or groundwater for efficiently purifying soil and groundwater contaminated with an organic compound such as oil. The method for purifying contaminated soil or groundwater of the present invention is particularly used as a method for purifying in situ organisms.

上記目的を達成するため、本発明者らは鋭意検討した結果、土壌中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量と、添加すべき無機物窒素源及び無機物リン源の割合との適切な関係を見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, the amount of oxygen consumed or carbon dioxide generated when microorganisms contained in the soil decompose organic compounds, and the inorganic nitrogen source and inorganic phosphorus to be added. An appropriate relationship with the source ratio was found and the present invention was completed.

すなわち、本発明は、有機化合物により汚染された土壌又は地下水に、無機物窒素源及び無機物リン源を添加することにより、該汚染土壌又は地下水中を浄化する汚染土壌又は地下水の浄化方法であって、土壌又は地下水中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量の1/60〜1/15倍(窒素換算重量)の無機物窒素源及び1/600〜1/150倍(リン換算重量)の無機物リン源を、前記土壌又は地下水に添加することを特徴とする、汚染土壌又は地下水の浄化方法を提供するものである。   That is, the present invention is a method for purifying contaminated soil or groundwater by purifying the contaminated soil or groundwater by adding an inorganic nitrogen source and an inorganic phosphorus source to soil or groundwater contaminated with an organic compound, 1/60 to 1/15 times (nitrogen equivalent weight) of inorganic nitrogen source and 1/600 to 1/150 times the amount of oxygen consumed or carbon dioxide generated when microorganisms contained in soil or groundwater decompose organic compounds The present invention provides a method for purifying contaminated soil or groundwater, characterized by adding twice (phosphorus equivalent weight) inorganic phosphorus source to the soil or groundwater.

本発明においては、前記汚染土壌又は地下水の一部をサンプルとして採取し、該サンプルに前記無機物窒素源及び無機物リン源を添加したときの酸素減少量又は二酸化炭素増加量と、前記無機物窒素源及び無機物リン源を添加しなかったときの酸素減少量又は二酸化炭素増加量とを、所定期間断続的又は連続的に測定し、それぞれの測定値の差を酸素消費量又は二酸化炭素発生量として求めることができる。
本発明においては、前記汚染土壌又は地下水に、無機物窒素源及び無機物リン源を、微生物の塩阻害とならない範囲、すなわち、無機塩として、それぞれ水分1Lあたり1000〜5000mgN及び100〜500mgPとなるように添加したときと、しなかったときの酸素減少量又は二酸化炭素増加量を、所定期間断続的又は連続的に測定し、それぞれの測定値の差を、前記酸素消費量又は二酸化炭素発生量とすることができる。
本発明において、浄化の対象となる土壌又は地下水の汚染源である有機化合物としては、油が挙げられる。
In the present invention, a part of the contaminated soil or groundwater is collected as a sample, and when the inorganic nitrogen source and inorganic phosphorus source are added to the sample, the amount of oxygen decrease or carbon dioxide increase, the inorganic nitrogen source and The amount of oxygen decrease or carbon dioxide increase when no inorganic phosphorus source is added is measured intermittently or continuously for a predetermined period, and the difference between the measured values is determined as oxygen consumption or carbon dioxide generation. Can do.
In the present invention, an inorganic nitrogen source and an inorganic phosphorus source are added to the contaminated soil or groundwater in a range that does not cause salt inhibition of microorganisms, that is, an inorganic salt of 1000 to 5000 mgN and 100 to 500 mgP per liter of water, respectively. The amount of oxygen decrease or carbon dioxide increase when added or not is measured intermittently or continuously for a predetermined period, and the difference between the measured values is defined as the oxygen consumption or carbon dioxide generation amount. be able to.
In the present invention, the organic compound that is a contamination source of soil or groundwater to be purified includes oil.

本発明の汚染土壌又は地下水の浄化方法によれば、油等の有機化合物で汚染された土壌や地下水を効率よく浄化することができる。また、本発明の汚染土壌又は地下水の浄化方法は、原位置生物浄化方法として用いることができる。   According to the method for purifying contaminated soil or groundwater of the present invention, soil and groundwater contaminated with an organic compound such as oil can be efficiently purified. Moreover, the contaminated soil or groundwater purification method of the present invention can be used as an in situ biological purification method.

以下、本発明の汚染土壌又は地下水の浄化方法について説明する。本発明の汚染土壌又は地下水の浄化方法は、無機物窒素源及び無機物リン源を添加することを含む。
用いられる無機物窒素源としては、土壌中の微生物により利用されるものであれば特に制限はなく、例えば、塩化アンモニウム、硫酸アンモニウムや、硝酸ナトリウム、硝酸カリウム等の硝酸態窒素等が挙げられ、この中でも塩化アンモニウムが好ましく用いられる。
Hereinafter, the purification method of contaminated soil or groundwater of the present invention will be described. The method for purifying contaminated soil or groundwater of the present invention includes adding an inorganic nitrogen source and an inorganic phosphorus source.
The inorganic nitrogen source to be used is not particularly limited as long as it is used by microorganisms in the soil, and examples thereof include ammonium chloride, ammonium sulfate, nitrate nitrogen such as sodium nitrate and potassium nitrate, and the like. Ammonium is preferably used.

また、無機物リン源としては、土壌中の微生物により利用されるものであれば特に制限はなく、例えば、リン酸塩、過リン酸塩、メタリン酸塩、ポリリン酸塩等が挙げられ、具体的には、リン酸二水素カリウム、リン酸水素二カリウム、メタリン酸カリウム、ピロリン酸カリウム、トリポリリン酸カリウム等が挙げられる。この中でも、リン酸二水素カリウム及びリン酸水素二カリウムが、経済的な観点から好ましい。また、本発明において、無機塩の添加効果を生じさせるためには、土壌のpHが6〜8に維持されることが好ましい。従って、土壌のpHが上記範囲からはずれた場合、塩基又は酸を用いて土壌のpHを上記範囲とすることが好ましい。土壌のpHが酸性である場合には、水酸化ナトリウム、炭酸水素ナトリウム又は炭酸ナトリウムの水溶液を添加して中和することが好ましい。好ましいのは炭酸水素ナトリウムである。一方、土壌のpHが塩基性の場合には、例えば、硫酸第一鉄、硫酸カリウム等を添加して中和することが好ましい。   The inorganic phosphorus source is not particularly limited as long as it is used by microorganisms in the soil, and examples thereof include phosphate, perphosphate, metaphosphate, polyphosphate, and the like. Include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium metaphosphate, potassium pyrophosphate, potassium tripolyphosphate, and the like. Among these, potassium dihydrogen phosphate and dipotassium hydrogen phosphate are preferable from an economical viewpoint. Moreover, in this invention, in order to produce the addition effect of inorganic salt, it is preferable that pH of soil is maintained at 6-8. Therefore, when the pH of the soil deviates from the above range, it is preferable to set the soil pH to the above range using a base or acid. When the pH of the soil is acidic, it is preferable to neutralize by adding an aqueous solution of sodium hydroxide, sodium hydrogen carbonate or sodium carbonate. Preference is given to sodium hydrogen carbonate. On the other hand, when the pH of the soil is basic, for example, it is preferable to neutralize by adding ferrous sulfate, potassium sulfate or the like.

上記無機物窒素源、無機物リン源、pHを調整するための酸及び塩基の添加方法としては、原位置処理の場合には、地表から散水してもよく、又は井戸から注入してもよい。掘削土壌を処理する場合には、上記無機物窒素窒素源、無機物リン源、pHを調整するための酸及び塩基を添加し、撹拌して混合することもできる。   As the method for adding the inorganic nitrogen source, the inorganic phosphorus source, and the acid and base for adjusting the pH, in the case of in-situ treatment, water may be sprinkled from the ground surface or injected from a well. When processing excavated soil, the inorganic nitrogen source, inorganic phosphorus source, acid and base for adjusting pH can be added, and mixed by stirring.

本発明の汚染土壌又は地下水の浄化方法においては、土壌又は地下水中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量の1/60〜1/15倍(窒素換算重量)の無機物窒素源及び1/600〜1/150倍(リン換算重量)の無機物リン源を、汚染土壌又は地下水に添加する。無機物窒素源の好ましい量は、酸素消費量又は二酸化炭素発生量の1/30〜1/20倍(窒素換算重量)であり、無機物リン源の1/300〜1/200倍(リン換算重量)である。無機物窒素源及び無機物リン源の量が上記範囲を超えると、有機化合物の分解活性が低下してしまい、一方、上記範囲より少なくても、有機化合物の分解活性が低下してしまう。
なお、本明細書における無機物窒素源及び無機物リン源の量とは、窒素及びリンの量を意味する。
In the method for purifying contaminated soil or groundwater of the present invention, 1/60 to 1/15 times the amount of oxygen consumption or carbon dioxide generation when microorganisms contained in soil or groundwater decompose organic compounds (weight in terms of nitrogen) ) And an inorganic phosphorus source 1/600 to 1/150 times (phosphorus equivalent weight) are added to the contaminated soil or groundwater. The preferred amount of the inorganic nitrogen source is 1/30 to 1/20 times (nitrogen equivalent weight) of the oxygen consumption or carbon dioxide generation amount, and 1/300 to 1/200 times (phosphorus equivalent weight) of the inorganic phosphorus source. It is. When the amount of the inorganic nitrogen source and the inorganic phosphorus source exceeds the above range, the decomposition activity of the organic compound is reduced. On the other hand, if the amount is less than the above range, the decomposition activity of the organic compound is reduced.
In addition, the amount of inorganic nitrogen source and inorganic phosphorus source in the present specification means the amount of nitrogen and phosphorus.

窒素やリン等の無機塩は、一定濃度以上存在すると、油等の有機化合物を分解する、微生物の活性を低下させることが知られている。例えば、これまでに得られている知見によれば、アンモニウム塩は水1Lあたり5,000mgN、リン酸塩は水1Lあたり500mgPの含有量を超えると、油の分解活性が低下することがわかっている。そのため、本発明において、土壌又は地下水中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量とは、前記汚染土壌又は地下水に、無機物窒素源及び無機物リン源を、無機塩としてそれぞれ水分1Lあたり1000〜5000mgN及び100〜500mgPとなるように添加したときと、しなかったときの酸素減少量又は二酸化炭素増加量を、所定期間断続的又は連続的に測定し、それぞれの測定値の差を意味する。   Inorganic salts such as nitrogen and phosphorus are known to degrade the activity of microorganisms, which decompose organic compounds such as oil, when present at a certain concentration or more. For example, according to the knowledge obtained so far, when the content of ammonium salt exceeds 5,000 mgN per liter of water and that of phosphate exceeds 500 mgP per liter of water, the oil decomposition activity decreases. Yes. Therefore, in the present invention, the oxygen consumption amount or carbon dioxide generation amount when the microorganisms contained in the soil or groundwater decompose the organic compound refers to the inorganic nitrogen source and the inorganic phosphorus source in the contaminated soil or groundwater. When the salt is added to 1000 to 5000 mgN and 100 to 500 mgP per liter of water, and the oxygen decrease amount or carbon dioxide increase amount when not added is measured intermittently or continuously for a predetermined period, It means the difference between measured values.

本発明において、無機窒素源及び無機リン源の量を上記範囲とした場合に、浄化効率が向上するのは下記理由によるものと思われる。
すなわち、これまでに油を初めとした様々な有機化合物を基質として生物分解試験を行った場合、微生物の分解によって菌体に取り込まれるCOD量は、酸素消費量又は二酸化炭素発生量とほぼ当量であることがわかっている。一方、油の量はCOD量に対して、重量あたり約1/3倍であることがわかっている。従って、酸素消費量又は二酸化炭素発生量の3分の1が油の分解量となることがわかる。また、菌体を構成する元素の構成割合は、炭素(C):窒素(N):リン(P)=100:(5〜20):(0.5〜2)であることがわかっているので、油の分解に必要な窒素の添加量は、酸素消費量又は二酸化炭素発生量の約1/60〜1/15倍(窒素換算重量)となり、リンの添加量は、酸素消費量又は二酸化炭素発生量の約1/600〜1/15倍(リン換算重量)となると考えられる。
従って、本発明において、無機窒素源添加量は、土壌又は地下水中に含まれる微生物が有機化合物を酸化分解するときの酸素消費量又は二酸化炭素発生量の1/60〜1/15倍(窒素換算重量)、好ましくは1/30〜1/20倍(窒素換算重量)とし、無機リン源添加量は、酸素消費量又は二酸化炭素発生量の1/600〜1/150倍(リン換算重量)、好ましくは1/300〜1/200倍(リン換算重量)とし、無機窒素源窒素換算添加量:無機リン源リン換算添加量=1:0.1〜0.3(重量比)となるように添加量を制御することが好ましい。
In the present invention, when the amounts of the inorganic nitrogen source and the inorganic phosphorus source are within the above ranges, the purification efficiency is considered to be improved for the following reasons.
That is, when biodegradation tests have been carried out using various organic compounds such as oil as a substrate, the amount of COD incorporated into the cells by the decomposition of microorganisms is approximately equivalent to the amount of oxygen consumed or the amount of carbon dioxide generated. I know that there is. On the other hand, the amount of oil is known to be about 1/3 times the weight of COD. Therefore, it can be seen that one third of the oxygen consumption or the amount of carbon dioxide generation is the amount of oil decomposition. Moreover, it is known that the constituent ratio of the elements constituting the microbial cells is carbon (C): nitrogen (N): phosphorus (P) = 100: (5-20) :( 0.5-2). Therefore, the amount of nitrogen required for oil decomposition is about 1/60 to 1/15 times the amount of oxygen consumption or carbon dioxide generation (weight in terms of nitrogen), and the amount of phosphorus added is oxygen consumption or It is considered to be about 1/600 to 1/15 times the carbon generation amount (phosphorus equivalent weight).
Therefore, in the present invention, the amount of inorganic nitrogen source added is 1/60 to 1/15 times the amount of oxygen consumed or carbon dioxide generated when microorganisms contained in soil or groundwater oxidatively decompose organic compounds (nitrogen conversion) Weight), preferably 1/30 to 1/20 times (nitrogen equivalent weight), and the inorganic phosphorus source addition amount is 1/600 to 1/150 times the oxygen consumption or carbon dioxide generation amount (phosphorus equivalent weight), Preferably, 1/300 to 1/200 times (phosphorus equivalent weight), so that the amount of inorganic nitrogen source added in terms of nitrogen: inorganic phosphorus source added in terms of phosphorus = 1: 0.1 to 0.3 (weight ratio). It is preferable to control the addition amount.

土壌又は地下水中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量を測定する方法については特に制限はなく、従来公知の方法で実施することができ、例えば、浄化しようとする土壌又は地下水をサンプリングし、その土壌又は地下水を用いて実験室内にて酸素消費量又は二酸化炭素発生量を測定することができる。   There is no particular limitation on the method of measuring oxygen consumption or carbon dioxide generation when microorganisms contained in soil or groundwater decompose organic compounds, and it can be carried out by a conventionally known method, for example, purification. The soil or groundwater to be sampled is sampled, and oxygen consumption or carbon dioxide generation can be measured in the laboratory using the soil or groundwater.

酸素消費量又は二酸化炭素発生量を測定する方法について、図面を参照しつつ説明する。図1は、酸素消費量を測定するための装置を示す概略図である。
図1に示すように、カラム12は、流路14を介して二酸化炭素吸収瓶20と連結されており、また、カラム12と二酸化炭素吸収瓶20とは、他の流路15を介して連結されており、流路15にはポンプ16が接続されている。カラム12中に汚染土壌又は地下水を充填し、ポンプ16によって内部空気が密閉循環されるようになっている。カラム12は、油が付着しにくい材質で作製されているものが好ましく、例えば、ガラス製やステンレス製のものが好ましい。油が分解されると二酸化炭素が発生するが、この二酸化炭素は、二酸化炭素吸収瓶20中に充填された二酸化炭素吸収剤22によって吸収される。二酸化炭素吸収剤22としては、例えば炭酸カルシウム、水酸化ナトリウム等が挙げられるが、5N濃度の水酸化ナトリウム水溶液が好ましい。
A method for measuring oxygen consumption or carbon dioxide generation will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an apparatus for measuring oxygen consumption.
As shown in FIG. 1, the column 12 is connected to a carbon dioxide absorption bottle 20 via a flow path 14, and the column 12 and the carbon dioxide absorption bottle 20 are connected via another flow path 15. The pump 16 is connected to the flow path 15. The column 12 is filled with contaminated soil or ground water, and the internal air is hermetically circulated by the pump 16. The column 12 is preferably made of a material that does not easily adhere to oil, and is preferably made of glass or stainless steel, for example. When the oil is decomposed, carbon dioxide is generated, and this carbon dioxide is absorbed by the carbon dioxide absorbent 22 filled in the carbon dioxide absorption bottle 20. Examples of the carbon dioxide absorbent 22 include calcium carbonate and sodium hydroxide, and a 5N sodium hydroxide aqueous solution is preferable.

また、図1に示す装置においては、二酸化炭素吸収瓶20に、流路24を介して分圧変化測定装置26が接続されている。分圧変化測定装置26は、二酸化炭素吸収瓶20中の空気の分圧を測定することができる装置で、酸素濃度を連続的に測定でき、酸素の消費に伴い、系内に酸素を連続的に供給できるものが好ましい。このような装置としては、例えば、Challemging Systems社製のANRが挙げられる。この装置によれば、系内に供給した酸素供給量を連続的に記録測定することができ、酸素の消費量の積算値を算出することができる。なお、酸素の供給は、分圧変化測定装置26と、流路28を介して連結された酸素ボンベ30からの供給により実施することができる。また、酸素供給量のデータは、分圧変化測定装置26と、流路32を介して接続されたデータ記録装置34に記録される。
この他、酸素消費量を測定する方法としては、例えば、ライシメーターを用いた方法が挙げられ、また、二酸化炭素発生量を測定する方法としては、例えば、吸収剤中のIC濃度を測定する方法が挙げられる。
In the apparatus shown in FIG. 1, a partial pressure change measuring device 26 is connected to the carbon dioxide absorption bottle 20 through a flow path 24. The partial pressure change measuring device 26 is a device that can measure the partial pressure of air in the carbon dioxide absorption bottle 20 and can continuously measure the oxygen concentration. As the oxygen is consumed, oxygen is continuously introduced into the system. What can be supplied to is preferable. An example of such an apparatus is an ANR manufactured by Challenge Systems. According to this apparatus, the oxygen supply amount supplied into the system can be continuously recorded and measured, and an integrated value of oxygen consumption can be calculated. The supply of oxygen can be performed by supplying from a partial pressure change measuring device 26 and an oxygen cylinder 30 connected via a flow path 28. The oxygen supply amount data is recorded in the partial pressure change measuring device 26 and the data recording device 34 connected via the flow path 32.
In addition, examples of the method for measuring oxygen consumption include a method using a lysimeter, and examples of a method for measuring the amount of carbon dioxide generated include a method of measuring IC concentration in an absorbent. Is mentioned.

なお、酸素消費量又は二酸化炭素発生量を測定する期間は、無機物塩の添加効果が発揮されなくなるまでが好ましい、すなわち、無機物窒素源及び無機物リン源を、無機塩としてそれぞれ水分1Lあたり1000〜5000mgN及び100〜500mgPとなるように添加したときと、しなかったときの酸素減少量又は二酸化炭素増加量を、所定期間断続的又は連続的に測定し、それぞれの測定値の差を意味する。すなわち、無機物窒素源及び無機物リン源を、無機塩としてそれぞれ水分1Lあたり1000〜5000mgN及び100〜500mgPとなるように添加したときと、しなかったときの酸素消費速度(酸素消費量増加の傾き)がほぼ同じになるまで実施することが好ましい。   The period for measuring the oxygen consumption or carbon dioxide generation amount is preferably until the effect of adding the inorganic salt is no longer exhibited. That is, the inorganic nitrogen source and the inorganic phosphorus source are used as inorganic salts at 1000 to 5000 mgN per liter of water, respectively. And when adding so that it may become 100-500 mgP, the amount of oxygen decrease or the amount of carbon dioxide increase when not doing is measured intermittently or continuously for a predetermined period, and the difference of each measured value is meant. That is, the oxygen consumption rate when the inorganic nitrogen source and the inorganic phosphorus source were added as inorganic salts to 1000 to 5000 mgN and 100 to 500 mgP per liter of water, respectively, and the oxygen consumption rate (inclination of increase in oxygen consumption) It is preferable to carry out until the values are substantially the same.

本発明の汚染土壌又は地下水の浄化方法は、上述のようにして求めた酸素消費量又は二酸化炭素発生量の1/60〜1/15倍(窒素換算重量)の無機物窒素源、及び1/600〜1/50倍(リン換算重量)の無機物リン源を、土壌又は地下水に添加するものである。本発明の汚染土壌又は地下水の浄化方法は、油等の有機化合物で汚染された土壌又は地下水を浄化するものであり、特に原位置浄化方法において用いられる。以下、油で汚染された土壌又は地下水を浄化するものとして本発明を説明するが、本発明は、油で汚染された土壌又は地下水を浄化するものに限定されるものでなく、その他の有機化合物で汚染された土壌又は地下水の浄化にも適用できる。油で汚染された土壌又は地下水としては、例えば、原油、ガソリン、軽油、重油、エンジンオイル等の炭化水素化合物等によって汚染された土壌又は地下水を意味するものであり、このような土壌及び/又は地下水において、バイオレメディエーションを実施するための方法として使用できる。すなわち、このバイオレメディエーションは、土着微生物を活性化、すなわち、汚染土壌及び/又は地下水に生息する、油を分解する能力を有する微生物に栄養物質を与えて増殖、活性化し、汚染物質である油の分解を促進する方法(バイオスティミュレーション)、及び外来微生物を導入し、すなわち、外部で大量に増殖、活性化した、油を分解する能力を有する微生物を汚染土壌又は地下水に注入して浄化する方法(バイオオーグメンテーション)の双方を含む。例えば、汚染土壌又は地下水中に、有機化合物を分解する微生物が含まれない場合、有機化合物を分解する微生物を添加してもよい。なお、微生物を添加する場合、分解しようとする有機化合物が油である場合、そのような微生物としては、従来公知の微生物を用いることができ、例えば、Rhodococcus属細菌、Pseudomonas属細菌、Acinetobacter属細菌等が挙げられる。   The method for purifying contaminated soil or groundwater of the present invention comprises an inorganic nitrogen source that is 1/60 to 1/15 times (nitrogen equivalent weight) of the oxygen consumption or carbon dioxide generation determined as described above, and 1/600. An inorganic phosphorus source of ~ 1/50 times (phosphorus equivalent weight) is added to soil or groundwater. The method for purifying contaminated soil or groundwater of the present invention purifies soil or groundwater contaminated with an organic compound such as oil, and is used particularly in the in situ purification method. Hereinafter, the present invention will be described as purifying soil or groundwater contaminated with oil, but the present invention is not limited to purifying soil or groundwater contaminated with oil, and other organic compounds. It can also be applied to the purification of soil or groundwater contaminated with water. The soil or groundwater contaminated with oil means, for example, soil or groundwater contaminated with hydrocarbon compounds such as crude oil, gasoline, light oil, heavy oil, and engine oil. It can be used as a method for conducting bioremediation in groundwater. That is, this bioremediation activates indigenous microorganisms, i.e., provides nutrients to microorganisms that have the ability to decompose oil that inhabit contaminated soil and / or groundwater, and propagates and activates them. Method of promoting decomposition (biostimulation) and introduction of foreign microorganisms, that is, purifying by injecting microorganisms that have grown and activated in large quantities with the ability to decompose oil into contaminated soil or groundwater Includes both methods (bioaugmentation). For example, if the contaminated soil or groundwater does not contain microorganisms that decompose organic compounds, microorganisms that decompose organic compounds may be added. In addition, when adding a microorganism, when the organic compound to be decomposed is oil, a conventionally known microorganism can be used as such a microorganism. For example, Rhodococcus bacteria, Pseudomonas bacteria, Acinetobacter bacteria Etc.

上述した、バイオレメディエーションを実施するには、好気性微生物を用いて好気的な雰囲気で処理する場合と、嫌気性微生物を用いて嫌気的な雰囲気で処理する場合とがあり、本発明においては、いずれであってもよい。   In order to perform the bioremediation described above, there are a case where the treatment is performed in an aerobic atmosphere using an aerobic microorganism and a case where the treatment is performed in an anaerobic atmosphere using an anaerobic microorganism. Any of these may be used.

本発明によれば、土壌中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量を測定し、その測定量を基準として無機物窒素源及び無機物リン源を添加するので、窒素源及びリン源が過剰に添加されることなく、微生物の有する有機化合物の分解活性を阻害することもなくなるため、浄化効率が向上した、土壌又は地下水の浄化方法が提供される。また、過剰のN/Pによる地下水汚染の危険性を低減することもできる。
本発明における生物浄化処理については、土中に空気を供給して原位置で分解させるスパージング技術や、掘削除土壌に通気管で空気を供給したり、空気を撹拌混合したりして、オンサイト又はオフサイトで分解させる技術が挙げられる。
According to the present invention, the amount of oxygen consumed or the amount of carbon dioxide generated when microorganisms contained in the soil decompose organic compounds is measured, and the inorganic nitrogen source and the inorganic phosphorus source are added based on the measured amount. Since the nitrogen source and the phosphorus source are not added excessively and the decomposition activity of the organic compound contained in the microorganism is not inhibited, a method for purifying soil or groundwater with improved purification efficiency is provided. Moreover, the danger of groundwater contamination by excess N / P can also be reduced.
For the biological purification treatment in the present invention, a sparging technique in which air is supplied to the soil and decomposed in-situ, or air is supplied to the excavated soil with a ventilation pipe, or the air is stirred and mixed to be on-site. Or the technique decomposed | disassembled off-site is mentioned.

本発明において添加に用いられる無機物窒素源及び無機物リン源としては、上述したものが用いられる。すなわち、無機物窒素源としては、土壌中の微生物により利用されるものであれば特に制限はなく、例えば、塩化アンモニウム、硫酸アンモニウムや、硝酸ナトリウム、硝酸カリウム等の硝酸態窒素等が挙げられ、この中でも塩化アンモニウムが好ましく用いられる。   As the inorganic nitrogen source and inorganic phosphorus source used for addition in the present invention, those described above are used. That is, the inorganic nitrogen source is not particularly limited as long as it is used by microorganisms in the soil, and examples thereof include ammonium chloride, ammonium sulfate, nitrate nitrogen such as sodium nitrate, potassium nitrate, and the like. Ammonium is preferably used.

また、無機物リン源としては、土壌中の微生物により利用されるものであれば特に制限はなく、例えば、リン酸塩、過リン酸塩、メタリン酸塩、ポリリン酸塩等が挙げられ、具体的には、リン酸二水素カリウム、リン酸水素二カリウム、メタリン酸カリウム、ピロリン酸カリウム、トリポリリン酸カリウム等が挙げられる。この中でも、リン酸二水素カリウム及びリン酸水素二カリウムが、経済的な観点から好ましい。また、本発明において、無機塩の添加効果を生じさせるためには、土壌のpHが6〜8に維持されることが好ましい。従って、土壌のpHが上記範囲からはずれた場合、塩基又は酸を用いて土壌のpHを上記範囲とすることが好ましい。   The inorganic phosphorus source is not particularly limited as long as it is used by microorganisms in the soil, and examples thereof include phosphate, perphosphate, metaphosphate, polyphosphate, and the like. Include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium metaphosphate, potassium pyrophosphate, potassium tripolyphosphate, and the like. Among these, potassium dihydrogen phosphate and dipotassium hydrogen phosphate are preferable from an economical viewpoint. Moreover, in this invention, in order to produce the addition effect of inorganic salt, it is preferable that pH of soil is maintained at 6-8. Therefore, when the pH of the soil deviates from the above range, it is preferable to set the soil pH to the above range using a base or an acid.

本発明において無機物窒素源及び無機物リン源を添加する方法に特に制限はないが、原位置浄化法に用いる場合は、地表から散水してもよく、又は井戸から注入してもよい。掘削土壌を処理する場合には、無機物窒素源及び無機物リン源を撹拌混合してもよい。本発明においては、無機物窒素源及び無機物の添加は、固体の無機物を添加することもできるが、土壌又は地下水に均等に分散させるために水溶液として加えることが好ましい。この場合、の無機物窒素源及び無機物リン源の濃度は、それぞれ10〜20gN/L及び1〜2gP/L程度でよい。   Although there is no restriction | limiting in particular in the method of adding an inorganic nitrogen source and an inorganic phosphorus source in this invention, When using for an in-situ purification method, you may water from the ground surface or you may inject from a well. When processing excavated soil, you may stir and mix an inorganic nitrogen source and an inorganic phosphorus source. In the present invention, the inorganic nitrogen source and the inorganic substance can be added as a solid inorganic substance, but are preferably added as an aqueous solution in order to disperse evenly in soil or groundwater. In this case, the concentration of the inorganic nitrogen source and the inorganic phosphorus source may be about 10 to 20 gN / L and about 1 to 2 gP / L, respectively.

なお、本発明の土壌又は地下水の浄化方法を実施する際には、空気(酸素)を注入しながら行ってもよい。空気(酸素)の注入は、例えば、エアーコンプレッサー等を用いて行うことができる。空気(酸素)の注入量は、土質、処理方法、汚染物質等の条件で変わるが、例えば10〜100L/min程度である。   In addition, when implementing the purification method of the soil or groundwater of this invention, you may carry out, inject | pouring air (oxygen). The injection of air (oxygen) can be performed using, for example, an air compressor. The injection amount of air (oxygen) varies depending on conditions such as soil quality, treatment method, and contaminants, but is, for example, about 10 to 100 L / min.

本発明の土壌又は地下水の浄化方法は、好ましくは、原位置浄化方法を実施する際に用いられるが、原位置浄化方法のシステム等については、従来公知のものを特に制限なく用いることができる。   The method for purifying soil or groundwater of the present invention is preferably used when the in-situ purification method is carried out, but a conventionally known method or the like can be used for the in-situ purification method system without particular limitation.

以下、本発明を実施例により更に詳細に説明する。なお、本発明の範囲は、かかる実施例に限定されないことはいうまでもない。
〔実施例1〕
重質油で汚染した土壌200g(油分濃度、10,000mg/kg土壌、含水率20質量%)を、200mL用量のカラムに充填し、窒素源として塩化アンモニウムを土壌水分1Lあたり5000mg(約1,000mgN/L)、リン源としてリン酸二水素カリウム及びリン酸水素二カリウムを100mgP/Lとなるように、カラム内に添加した後、通気(通気量:100L/min)を行いながら、Challemging Systems社製のANRを用いて酸素消費量を連続的に測定した(図1参照)。
〔比較例1〕
窒素源及びリン源を添加しないで、実施例1と同様にして酸素消費量を連続的に測定した。
Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to such examples.
[Example 1]
200 g of soil contaminated with heavy oil (oil concentration 10,000 mg / kg soil, moisture content 20% by mass) is packed in a 200 mL column, and ammonium chloride as a nitrogen source is 5000 mg per liter of soil moisture (about 1, 000 mg N / L), and potassium dihydrogen phosphate and dipotassium hydrogen phosphate as a phosphorus source were added to the column so as to be 100 mg P / L, and then ventilating (aeration rate: 100 L / min) The oxygen consumption was continuously measured using ANR manufactured by the company (see FIG. 1).
[Comparative Example 1]
The oxygen consumption was continuously measured in the same manner as in Example 1 without adding a nitrogen source and a phosphorus source.

酸素消費量を測定した結果を図2に示す。図2は、実施例1及び比較例1において酸素消費量を連続的に測定した結果を示すグラフである。図2において、横軸は時間(日数)を表し、縦軸は酸素消費量(mg/kg)を表わす。図2に示すように、通気を開始し、約20日後には、実施例1、比較例1共に酸素消費速度がほぼ同じとなり、このときの酸素消費量は、実施例1において3000mgO/kgであったのに対し、比較例1においては1500mgO/kgであった。酸素消費量と微生物のCOD分解によって菌体に取り込まれるCOD量(以下「COD取込量」と称す)とは、ほぼ等量であるから、無機物窒素源及び無機物リン源の添加により、CODとして約1500mg/kgが分解されたことになる。また、油の量はCOD量に対して重量あたり約1/3倍であるから、無機物窒素源及び無機物リン源の添加によって多く分解される油分は約500mg/kg(=1500mg/kg÷3)であると算出された。
そのため、上述したように、菌体を構成する元素の構成割合は、炭素(C):窒素(N):リン(P)=100:(5〜20):(0.5〜2)(重量比)であることがわかっているので、例えば、必要な窒素添加量及びリン添加量は、それぞれ約25〜100mgN/kg(酸素消費量の1/60〜1/15倍(窒素換算重量)、約2.5〜10mgP/kg(酸素消費量の1/600〜1/150倍(リン換算重量)と考えられる。ここで、土壌あたりの油分総量は10,000mg/kgであるから、必要となる窒素及びリンの添加量は、土壌中の油分総量あたりの炭素量に対して、最大でC:N:P=10,000:100:10=100:1:0.1(重量比)となる。
The result of measuring the oxygen consumption is shown in FIG. FIG. 2 is a graph showing the results of continuous measurement of oxygen consumption in Example 1 and Comparative Example 1. In FIG. 2, the horizontal axis represents time (days), and the vertical axis represents oxygen consumption (mg / kg). As shown in FIG. 2, aeration was started, and after about 20 days, the oxygen consumption rate was almost the same in both Example 1 and Comparative Example 1, and the oxygen consumption at this time was 3000 mgO 2 / kg in Example 1. In contrast, in Comparative Example 1, it was 1500 mgO 2 / kg. Since the amount of oxygen consumed and the amount of COD taken into cells by the COD degradation of microorganisms (hereinafter referred to as “COD uptake”) are almost equal, the addition of an inorganic nitrogen source and an inorganic phosphorus source results in COD. About 1500 mg / kg has been decomposed. Further, since the amount of oil is about 1/3 times the weight of COD, the amount of oil that is largely decomposed by the addition of inorganic nitrogen source and inorganic phosphorus source is about 500 mg / kg (= 1500 mg / kg ÷ 3). It was calculated to be.
Therefore, as above-mentioned, the component ratio of the element which comprises a microbial cell is carbon (C): nitrogen (N): phosphorus (P) = 100: (5-20) :( 0.5-2) (weight) For example, the required nitrogen addition amount and phosphorus addition amount are about 25 to 100 mg N / kg (1/60 to 1/15 times the oxygen consumption (weight in terms of nitrogen), About 2.5 to 10 mg P / kg (considered to be 1/600 to 1/150 times the oxygen consumption (phosphorus equivalent weight). Here, the total amount of oil per soil is 10,000 mg / kg, so it is necessary. The amount of nitrogen and phosphorus to be added is at most C: N: P = 10,000: 100: 10 = 100: 1: 0.1 (weight ratio) with respect to the amount of carbon per total oil content in the soil. Become.

〔実施例2、比較例2、比較例3〕
そこで、窒素源として塩化アンモニウムを100mgN/kg (含水率が20%であるため、土壌水分1Lあたり500mgN/L)となるように、リン酸水素カリウムを10mgP/kgとなるように添加した上記土壌(実施例2)と、一般的に言われているC:N:P=100:20:1(重量比)で算出した量の窒素(2,000mgN/kg)及びリン(100mgP/kg)を添加した系(比較例2)、全く添加しない系(比較例3)で、連続的に通気(通気量:100L/min)を3週間行った後の油分残存量を測定した。
[Example 2, Comparative Example 2, Comparative Example 3]
Therefore, the above-mentioned soil to which potassium hydrogen phosphate was added to 10 mg P / kg so that ammonium chloride as a nitrogen source would be 100 mg N / kg (the water content is 20%, so 500 mg N / L per liter of soil water). (Example 2) and nitrogen (2,000 mgN / kg) and phosphorus (100 mgP / kg) in the amounts calculated by C: N: P = 100: 20: 1 (weight ratio), which is generally said. The residual amount of oil was measured after continuous aeration (aeration rate: 100 L / min) for 3 weeks with the added system (Comparative Example 2) and the system without any addition (Comparative Example 3).

油分残存量は、ノルマルヘキサン重量法により測定した。この方法を簡単に説明すると以下の通りである。
土壌中の水分を脱水処理した後、n−ヘキサンを混合撹拌した後、ヘキサン相を回収する。次に、ヘキサン相を加熱してヘキサンのみを揮発させ、ヘキサン相中に溶解していた油分の重量を測定する。土壌を3回採取して測定した。それぞれの測定値及び平均値、並びに分解率を表1に示す。
The residual amount of oil was measured by the normal hexane weight method. This method is briefly described as follows.
After dehydrating the moisture in the soil, n-hexane is mixed and stirred, and then the hexane phase is recovered. Next, the hexane phase is heated to volatilize only the hexane, and the weight of the oil dissolved in the hexane phase is measured. The soil was collected 3 times and measured. Table 1 shows the measured values, average values, and decomposition rates.

Figure 2009154152
Figure 2009154152

表1に示すように、実施例2においては、無機物塩を全く添加しない比較例3に対し、約2倍量の油分が分解されたことがわかった。比較例2においては、無機物を過剰量添加したことにより、塩阻害が生じ、油分の分解が阻害されたと考えられる。   As shown in Table 1, in Example 2, it was found that about twice as much oil was decomposed as in Comparative Example 3 in which no inorganic salt was added. In Comparative Example 2, it is considered that salt addition was caused by adding an excessive amount of an inorganic substance, and decomposition of oil was inhibited.

〔実施例3、比較例4、比較例5〕
実施例2において3週間通気した後の土壌の油臭及び油膜について試験を行った。それぞれの評価結果を表2に示す。
油臭については、以下のように試験を行った。
土壌10gを100mL容量のガラス瓶に入れ、蓋をして25℃の温度に30分間放置した後、蓋を外して、直ちに土壌から発生する臭いを嗅ぎ、臭気の有無及び臭気強度を判定し、下記評価基準に従って評価を行った。
0:無臭である。
1:やっと感知できる程度の臭いである。
2:何の臭いであるのかわかる程度であるが、臭気は弱い。
3:楽に感知できる臭いである。
4:強い臭いである。
5:強烈な臭いである。
[Example 3, Comparative Example 4, Comparative Example 5]
In Example 2, the oily odor and oil film of the soil after aeration for 3 weeks were tested. The respective evaluation results are shown in Table 2.
The oily odor was tested as follows.
Put 10 g of soil in a glass bottle with a capacity of 100 mL, cover it and leave it at a temperature of 25 ° C. for 30 minutes, then remove the lid, immediately sniff the odor generated from the soil, determine the presence or absence of odor and the odor intensity, Evaluation was performed according to the evaluation criteria.
0: Odorless.
1: The smell is barely perceivable.
2: The odor is weak although it can be understood what kind of smell it is.
3: The smell is easy to detect.
4: Strong odor.
5: Strong smell.

油膜については以下のように評価を行った。
直径90mm、高さ14mmのシャーレに純水を20mL入れ、黒い机の上に静置した。次いで、シャーレ中の純水に、約2gの土壌を静かに入れ、その直後の液面を目視により観察し、下記評価基準に従って評価を行った。
0:油膜が見えない。
1:光の当たり具合によってはかすかに油膜が見る。
2:わずかに油膜が見える。
3:シャーレ面に油膜が薄く見える。
4:シャーレ面に、通常に油膜が見える。
5:シャーレの一面がぎらぎらしている(油滴が観察される場合も含む)。
The oil film was evaluated as follows.
20 mL of pure water was placed in a petri dish having a diameter of 90 mm and a height of 14 mm, and left on a black desk. Next, about 2 g of soil was gently put into the pure water in the petri dish, and the liquid level immediately after that was visually observed and evaluated according to the following evaluation criteria.
0: No oil film is visible.
1: An oil film is faintly seen depending on how the light hits.
2: A slight oil film is visible.
3: An oil film appears thin on the petri dish surface.
4: An oil film is usually visible on the petri dish surface.
5: One side of the petri dish is glaring (including the case where oil droplets are observed).

Figure 2009154152
Figure 2009154152

表2から明らかなように、無機物塩を添加しない比較例5においては、油臭、油膜ともに、かなり残っていることがわかった。これに対し、無機物塩を添加した実施例3においては、油臭、油膜の低減効果が認められた。無機物塩を過剰に添加した比較例4においては塩阻害が生じ、油分の分解が阻害されたと考えられる。
上記結果から明らかなように、汚染土壌又は汚染地下水の浄化において、該汚染土壌又は汚染地下水中に含まれる微生物が、油等の有機化合物を分解するときの酸素消費量又は二酸化炭素発生量の1/60〜1/15倍(窒素換算重量)の無機物窒素源及び1/600〜1/150倍(リン換算重量)の無機物リン源を添加することにより、浄化効率が向上することがわかった。
As is clear from Table 2, it was found that both the oily odor and the oil film remained considerably in Comparative Example 5 in which the inorganic salt was not added. On the other hand, in Example 3 to which the inorganic salt was added, an oily odor and an effect of reducing the oil film were recognized. In Comparative Example 4 in which an excessive amount of inorganic salt was added, salt inhibition occurred, and it was considered that decomposition of the oil was inhibited.
As is clear from the above results, in purification of contaminated soil or contaminated groundwater, 1% of the amount of oxygen consumed or carbon dioxide generated when microorganisms contained in the contaminated soil or contaminated groundwater decompose organic compounds such as oil. It was found that the purification efficiency was improved by adding an inorganic nitrogen source of / 60 to 1/15 times (nitrogen equivalent weight) and an inorganic phosphorus source of 1/600 to 1/150 times (phosphorus equivalent weight).

酸素消費量を測定するための装置を示す概略図である。It is the schematic which shows the apparatus for measuring oxygen consumption. 実施例1及び比較例1において酸素消費量を連続的に測定した結果を示すグラフである。It is a graph which shows the result of having measured oxygen consumption continuously in Example 1 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

12 カラム 14 流路
15 流路 16 ポンプ
20 二酸化炭素吸収瓶 22 二酸化炭素吸収剤
24 流路 26 分圧変化測定装置
28 流路 30 酸素ボンベ
12 column 14 flow path 15 flow path 16 pump 20 carbon dioxide absorption bottle 22 carbon dioxide absorbent 24 flow path 26 partial pressure change measuring device 28 flow path 30 oxygen cylinder

Claims (4)

有機化合物により汚染された土壌又は地下水に、無機物窒素源及び無機物リン源を添加することにより、該汚染土壌又は地下水を浄化する汚染土壌又は地下水の浄化方法であって、
土壌又は地下水中に含まれる微生物が有機化合物を分解するときの酸素消費量又は二酸化炭素発生量の1/60〜1/15倍(窒素換算重量)の無機物窒素源及び1/600〜1/150倍(リン換算重量)の無機物リン源を、前記土壌又は地下水に添加することを特徴とする、汚染土壌又は地下水の浄化方法。
A method for purifying contaminated soil or groundwater by purifying the contaminated soil or groundwater by adding an inorganic nitrogen source and an inorganic phosphorus source to soil or groundwater contaminated with an organic compound,
1/60 to 1/15 times (nitrogen equivalent weight) of inorganic nitrogen source and 1/600 to 1/150 times the amount of oxygen consumed or carbon dioxide generated when microorganisms contained in soil or groundwater decompose organic compounds A method for purifying contaminated soil or groundwater, comprising adding double (phosphorus equivalent weight) inorganic phosphorus source to the soil or groundwater.
前記汚染土壌又は地下水の一部をサンプルとして採取し、該サンプルに前記無機物窒素源及び無機物リン源を添加したときの酸素減少量又は二酸化炭素増加量と、前記無機物窒素源及び無機物リン源を添加しなかったときの酸素減少量又は二酸化炭素増加量とを、所定期間断続的又は連続的に測定し、それぞれの測定値の差を酸素消費量又は二酸化炭素発生量とする、請求項1に記載の汚染土壌又は地下水の浄化方法。   A part of the contaminated soil or groundwater is collected as a sample, and when the inorganic nitrogen source and inorganic phosphorus source are added to the sample, the oxygen decrease amount or carbon dioxide increase amount, and the inorganic nitrogen source and inorganic phosphorus source are added. The oxygen decrease amount or the carbon dioxide increase amount when not performed is measured intermittently or continuously for a predetermined period, and a difference between the measured values is defined as an oxygen consumption amount or a carbon dioxide generation amount. For purification of contaminated soil or groundwater. 前記汚染土壌又は地下水に無機物窒素源及び無機物リン源を、それぞれ無機塩として水分1Lあたり1000〜5000mgN及び100〜500mgPとなるように添加したときと、しなかったときの酸素減少量又は二酸化炭素増加量を、所定期間断続的又は連続的に測定し、それぞれの測定値の差を、前記酸素消費量又は二酸化炭素発生量とする、請求項1に記載の汚染土壌又は地下水の浄化方法。   When the inorganic nitrogen source and the inorganic phosphorus source are added to the contaminated soil or groundwater as inorganic salts so as to be 1000 to 5000 mgN and 100 to 500 mgP per liter of water, respectively, the oxygen decrease amount or carbon dioxide increase when not added The method for purifying contaminated soil or groundwater according to claim 1, wherein the amount is measured intermittently or continuously for a predetermined period, and the difference between the measured values is defined as the oxygen consumption amount or the carbon dioxide generation amount. 前記有機化合物が油である、請求項1〜3のいずれか1項に記載の汚染土壌又は地下水の浄化方法。   The method for purifying contaminated soil or groundwater according to any one of claims 1 to 3, wherein the organic compound is oil.
JP2008310534A 2007-12-07 2008-12-05 Method for purifying contaminated soil or groundwater Active JP5481846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310534A JP5481846B2 (en) 2007-12-07 2008-12-05 Method for purifying contaminated soil or groundwater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007316622 2007-12-07
JP2007316622 2007-12-07
JP2008310534A JP5481846B2 (en) 2007-12-07 2008-12-05 Method for purifying contaminated soil or groundwater

Publications (2)

Publication Number Publication Date
JP2009154152A true JP2009154152A (en) 2009-07-16
JP5481846B2 JP5481846B2 (en) 2014-04-23

Family

ID=40958742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310534A Active JP5481846B2 (en) 2007-12-07 2008-12-05 Method for purifying contaminated soil or groundwater

Country Status (1)

Country Link
JP (1) JP5481846B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072923A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water
JP2012121013A (en) * 2010-12-10 2012-06-28 Nippon Steel Engineering Co Ltd Method for remediation of polluted soil in situ
JP2014119357A (en) * 2012-12-17 2014-06-30 Takenaka Komuten Co Ltd Quantitative measurement system for oil polluted soil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276831A (en) * 1996-04-10 1997-10-28 Taisei Corp Restoration of petroleum contaminated soil
JPH09314120A (en) * 1996-05-31 1997-12-09 Shimizu Corp Method for evaluating biodegradation of polluted soil and method for recovering polluted soil
JP3346242B2 (en) * 1997-10-02 2002-11-18 トヨタ自動車株式会社 Biological purification method for oil contaminated soil
JP2005185986A (en) * 2003-12-26 2005-07-14 Showa Shell Sekiyu Kk Purification method of petroleum contaminated soil
WO2006092950A1 (en) * 2005-02-28 2006-09-08 Obayashi Corporation Method of purifying polluted soil
JP2010022978A (en) * 2008-07-23 2010-02-04 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276831A (en) * 1996-04-10 1997-10-28 Taisei Corp Restoration of petroleum contaminated soil
JPH09314120A (en) * 1996-05-31 1997-12-09 Shimizu Corp Method for evaluating biodegradation of polluted soil and method for recovering polluted soil
JP3346242B2 (en) * 1997-10-02 2002-11-18 トヨタ自動車株式会社 Biological purification method for oil contaminated soil
JP2005185986A (en) * 2003-12-26 2005-07-14 Showa Shell Sekiyu Kk Purification method of petroleum contaminated soil
WO2006092950A1 (en) * 2005-02-28 2006-09-08 Obayashi Corporation Method of purifying polluted soil
JP2010022978A (en) * 2008-07-23 2010-02-04 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012029212; 岡村 和夫: '生物による油汚染土壌の修復' 平成16年度 国土交通省 管内技術研究発表会論文集 環境・景観部門 NO.5 , 2004, pp.1-4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072923A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water
JP2012121013A (en) * 2010-12-10 2012-06-28 Nippon Steel Engineering Co Ltd Method for remediation of polluted soil in situ
JP2014119357A (en) * 2012-12-17 2014-06-30 Takenaka Komuten Co Ltd Quantitative measurement system for oil polluted soil

Also Published As

Publication number Publication date
JP5481846B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
Zhang et al. Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations
Tsuneda et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater
Liang et al. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater
Hasan et al. On–off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system
JP3564574B1 (en) Hexavalent chromium-contaminated soil, groundwater, and sediment purification agent and purification method
Sang et al. Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus
JP3820180B2 (en) Purification method for contaminated soil
CN101962230B (en) Method for preparing biological expanded graphite for in-situ repair of petroleum polluted water body
JP4021511B2 (en) Purification method for organic chlorine compound contaminants
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
JP2007216119A (en) Water-permeable purification wall and purification treatment method of contaminated ground water
JP4288198B2 (en) Purification method for contaminated soil
JP2012005474A (en) Activator for nitrification and denitrification
JP2008229579A (en) Clarification method of soil and ground water
JP2010022978A (en) Method for purifying contaminated soil or ground water
CN103663695B (en) A kind of method removing nitrogen phosphorus in waste water
JP2003053324A (en) Restoration method for soil polluted with petroleum
KR101439728B1 (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
JP2007075670A (en) Purification method of soil polluted by organic materials and cyanide
Hasegawa et al. Nitrate removal with low N2O emission by application of sulfur denitrification in actual agricultural field
CN202823167U (en) Deodorization member and deodorization device
JP3400953B2 (en) Method for regenerating microflora and enhancing physical strength in activated sludge treatment
JP3346242B2 (en) Biological purification method for oil contaminated soil
Lee Investigation of a Commercial Product (BiOWISH TM) for Nitrogen Management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5481846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250