JP2003053324A - Restoration method for soil polluted with petroleum - Google Patents

Restoration method for soil polluted with petroleum

Info

Publication number
JP2003053324A
JP2003053324A JP2002163426A JP2002163426A JP2003053324A JP 2003053324 A JP2003053324 A JP 2003053324A JP 2002163426 A JP2002163426 A JP 2002163426A JP 2002163426 A JP2002163426 A JP 2002163426A JP 2003053324 A JP2003053324 A JP 2003053324A
Authority
JP
Japan
Prior art keywords
soil
petroleum
oil
microorganisms
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163426A
Other languages
Japanese (ja)
Inventor
Kenichi Hisatsuka
謙一 久塚
Kenji Yamada
健司 山田
Kazutoshi Furuta
一俊 古田
Etsuo Suzuki
悦夫 鈴木
Takao Matsumoto
孝夫 松本
Shigenori Sakuma
繁徳 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Showa Shell Sekiyu KK
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, Cosmo Oil Co Ltd, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical Showa Shell Sekiyu KK
Priority to JP2002163426A priority Critical patent/JP2003053324A/en
Publication of JP2003053324A publication Critical patent/JP2003053324A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new restoration method for soil polluted by petroleum which is capable of effectively utilizing both of aerobic bacteria and anaerobic bacteria. SOLUTION: This restoration method for the soil polluted by the petroleum comprises supplying an aqueous solution replenished with oxygen together with microorganism nutrient sources to the soil polluted by the petroleum and cleaning the soil polluted by the petroleum by the indigenous microorganism, more preferably the indigenous aerobic bacteria and anaerobic bacteria.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石油汚染土壌の修
復方法に関する。
TECHNICAL FIELD The present invention relates to a method for remediating petroleum-contaminated soil.

【0002】[0002]

【従来の技術】我が国の石油精製設備・油槽所・給油所
は過剰状態にあるため、適正規模への迅速な集約がのぞ
まれているが、設備撤廃後の土地における土壌の石油に
よる汚染が懸念されている。そのため、石油の種類、土
質、汚染規模等の汚染状況に応じた最適な石油汚染土壌
の修復方法が必要である。しかしながら、これまで開発
あるいは実用化された石油汚染土壌の修復技術は、ガソ
リン及び軽油等の軽質油による汚染土壌が対象とされて
おり、重質油による汚染土壌に適用可能な修復技術は極
めて乏しい現状にある。このような重質油汚染土壌を物
理化学的手段によって修復する技術として、例えば焼却
処理法があるが、大規模な汚染に対する処理能力に限界
がある上、運用コストにおいて課題が多いとされてい
る。また、アルカリと過酸化水素を用いる気泡連行法に
は、これらの薬剤によるコストの発生や油を含有するア
ルカリ性廃液の処理が課題とされており、石油汚染土壌
を水と共に磨砕するスーパーリサイクロンシステムで
は、コスト面や粘土質の多い土壌への適用が課題とされ
ている。
[Prior Art] Japan's petroleum refining facilities, oil tanks, and gas stations are in a state of excess, so it is hoped that swift integration will be achieved at an appropriate scale. There is concern. Therefore, there is a need for an optimal method for remediating oil-contaminated soil according to the pollution status such as the type of oil, soil quality, and pollution scale. However, the restoration technology for petroleum-contaminated soil that has been developed or put into practical use is targeted at soil contaminated with light oil such as gasoline and light oil, and there are very few restoration technologies applicable to contaminated soil with heavy oil. It is in the present condition. As a technique for repairing such heavy oil-contaminated soil by physicochemical means, for example, there is an incineration treatment method, but it is said that there are many problems in operating cost in addition to the limited treatment capacity for large-scale pollution. . In addition, the bubble entrainment method using alkali and hydrogen peroxide has problems such as generation of costs by these chemicals and treatment of alkaline waste liquid containing oil, and super recyclone that grinds oil contaminated soil with water. In the system, there are problems in terms of cost and application to soil with a lot of clay.

【0003】重質油に含まれる難分解性物質の生物学的
分解を促進する方法の一つとして、対象とする難分解性
物質を分解する能力を有する微生物を外部から添加して
浄化を行うバイオオーギュメンテーションが研究されて
いる。しかしながら、バイオオーギュメンテーションに
よると、添加した微生物が土壌環境に十分に馴染めない
こと、ならびに単一微生物では多種多様な難分解性物質
を十分に分解できないため、複数種の微生物を添加する
必要があること等の難点がある。更に、外部から土壌環
境中に添加した微生物が生態系に影響しかねないという
潜在的な問題も懸念される。
As one of the methods for promoting the biological decomposition of the hardly decomposable substance contained in heavy oil, a microorganism having the ability to decompose the target hardly decomposable substance is added from the outside for purification. Bioaugmentation is being studied. However, according to bio-augmentation, it is necessary to add multiple types of microorganisms because the added microorganisms do not adapt well to the soil environment and a single microorganism cannot sufficiently decompose a wide variety of persistent substances. There are some problems such as being present. Furthermore, there is also a concern about the potential problem that microorganisms added to the soil environment from the outside may affect the ecosystem.

【0004】これに対して、バイオスティミュレーショ
ンと称される土壌中の常在微生物を利用する生物学的浄
化技術は、特に生態系への影響が少ない点で有利とさ
れ、ランドファーミング法、バイオパイル法、スラリー
処理法、バイオリアクター法等が検討されている。例え
ば、汚染された土壌中の常在微生物の複合微生物群を、
増殖・活性化(以下、「集積」と称することがある)す
ることにより土壌を浄化するバイオレメディエーション
技術として、特開平11−179336号公報、特開平
11−318435号公報、ならびに特開平10−34
127号公報が挙げられる。
On the other hand, the biological purification technique called biostimulation utilizing indigenous microorganisms in soil is considered to be particularly advantageous in that it has little effect on the ecosystem, and the land farming method, Biopile method, slurry processing method, bioreactor method and the like are being studied. For example, a complex microbial community of indigenous microorganisms in contaminated soil,
As bioremediation techniques for purifying soil by proliferating and activating (hereinafter, sometimes referred to as “accumulation”), Japanese Patent Laid-Open Nos. 11-179336, 11-318435, and 10-34 are known.
No. 127 publication is cited.

【0005】特開平11−179336号公報には、土
壌中に元々生息する複合微生物群を二つの貯留槽で増殖
させて、石油(軽油)による汚染土壌を浄化した事例が
開示されている。しかしながら、二つの貯留槽では、複
合微生物群の好気培養が行われているため、石油の分解
は好気性従属栄養細菌に依存することになり、土壌浄化
が不均一となる。しかも、この事例においては、土壌微
生物を含む浸出液を二つの貯水槽に貯留し、油分解微生
物を増殖させた後に注水する操作を繰り返すため、装置
が大型化することは避けられない。
Japanese Unexamined Patent Publication (Kokai) No. 11-179336 discloses a case where a complex microorganism group originally inhabiting soil is grown in two storage tanks to purify contaminated soil with petroleum (light oil). However, since aerobic culturing of complex microorganisms is carried out in the two storage tanks, the decomposition of petroleum depends on aerobic heterotrophic bacteria, resulting in uneven soil purification. Moreover, in this case, since the operation of storing the leachate containing soil microorganisms in the two water storage tanks, proliferating the oil-degrading microorganisms and then injecting the water is repeated, it is inevitable that the apparatus becomes large.

【0006】また、特開平11−318435号公報に
は、土壌中に元々生息する常在微生物から有機塩素系農
薬PCNBを分解できる特殊な好気性細菌を集積する方
法が開示されているが、油汚染土壌についての開示はな
い。更に、特開平10−34127公報には、排水を活
性汚泥で処理するときに排出される活性汚泥を土壌に散
布してフェノール化合物による汚染土壌を浄化する技術
が開示されているが、汚染土壌由来の複合微生物群によ
る浄化は開示されていない。このように、重質油に汚染
された石油汚染土壌の浄化を効率的に処理する技術は、
これまで実現されていなかった。
Further, Japanese Patent Laid-Open No. 11-318435 discloses a method of accumulating a special aerobic bacterium capable of decomposing the organochlorine pesticide PCNB from indigenous microorganisms originally inhabiting the soil. There is no disclosure about contaminated soil. Further, Japanese Patent Application Laid-Open No. 10-34127 discloses a technique of spraying activated sludge discharged when treating wastewater with activated sludge to soil to purify contaminated soil with a phenol compound. No purification by a complex microbial community of is disclosed. Thus, the technology for efficiently treating the purification of oil-contaminated soil contaminated with heavy oil is
It has never been realized.

【0007】[0007]

【発明が解決しようとする課題】本発明の第1の目的
は、好気性細菌も嫌気性細菌も共に活用できる新規な石
油汚染土壌の修復方法を提供する点にある。本発明の第
2の目的は、石油とくに重質油で汚染された土壌の常在
微生物を、好気性微生物のみならず嫌気性微生物を含め
た複合微生物群として集積したものを活用した新規な石
油汚染土壌の修復方法を提供する点にある。
The first object of the present invention is to provide a novel method for remediating petroleum-contaminated soil which can utilize both aerobic and anaerobic bacteria. The second object of the present invention is a novel petroleum utilizing a resident microorganism of soil contaminated with petroleum, especially heavy oil, accumulated as a complex microorganism group including anaerobic microorganisms as well as aerobic microorganisms. The point is to provide a method for repairing contaminated soil.

【0008】[0008]

【課題を解決するための手段】本発明の第1は、微生物
栄養源とともに酸素が補給された水溶液を石油汚染土壌
に供給して常在する微生物により石油汚染物を浄化する
ことを特徴とする石油汚染土壌の修復方法に関する。本
発明の第2は、(1)微生物栄養源とともに酸素が補給
された水溶液を石油汚染土壌に供給して常在する微生物
を増殖、活性化する工程と(2)集積された好気性微生
物と嫌気性微生物よりなる複合微生物群を含む水及び/
又は土壌を石油汚染土壌に混合して石油汚染物を浄化す
る工程、よりなることを特徴とする石油汚染土壌の修復
方法に関する。本発明の第3は、石油が残留炭素分0.
1重量%以上である重質油または沸点330℃以上の多
環芳香族炭化水素類を含有する重質油である請求項1ま
たは2記載の石油汚染土壌の修復方法に関する。前記残
留炭素分はJIS K 2270に準拠するものであ
り、詳細には平成4年10月1日 石油分析化学研究所
発行 藤田稔著「石油分析化学」第40〜41頁を参照
されたい。本発明の第4は、前記微生物が、好気性微生
物と嫌気性微生物の両方を含むものである請求項1〜3
いずれか記載の石油汚染土壌の修復方法に関する。
A first aspect of the present invention is characterized in that an aqueous solution supplemented with oxygen together with a microbial nutrient source is supplied to a petroleum-contaminated soil to purify petroleum pollutants by resident microorganisms. The present invention relates to a method for repairing oil-contaminated soil. The second aspect of the present invention is: (1) a step of supplying an aqueous solution supplemented with oxygen together with a microbial nutrient source to petroleum-contaminated soil to grow and activate resident microorganisms; and (2) an accumulated aerobic microorganism. Water containing a complex microbial group consisting of anaerobic microorganisms and / or
Or a step of purifying oil pollutants by mixing the soil with the oil-polluted soil, and to a method for repairing the oil-polluted soil. In the third aspect of the present invention, petroleum has a residual carbon content of 0.
The method for remediating petroleum-contaminated soil according to claim 1 or 2, which is a heavy oil containing 1% by weight or more or a heavy oil containing polycyclic aromatic hydrocarbons having a boiling point of 330 ° C or more. The residual carbon content is based on JIS K 2270. For details, refer to Minoru Fujita, “Petroleum Analytical Chemistry”, pages 40 to 41, issued by Petroleum Analytical Chemistry Research Institute, October 1, 1992. A fourth aspect of the present invention is that the microorganism contains both an aerobic microorganism and an anaerobic microorganism.
The present invention relates to any one of the methods for repairing oil-contaminated soil.

【0009】処理対象である個々の石油汚染土壌には、
それぞれの土壌環境に応じて様々な石油分解微生物が常
在している。従って、それらの常在微生物は、外来の石
油分解微生物に比べて、処理すべき石油汚染土壌への環
境適応性に優れている。このため、常在微生物としてそ
こに存在している好気性微生物と嫌気性微生物を活用す
ること、とくにそれを集積した状態で使用すると微生物
の数が非常に多くなっているため、浄化反応の立ち上り
を向上させることができた。
The individual oil-contaminated soils to be treated are
Various petroleum-degrading microorganisms are resident according to each soil environment. Therefore, these indigenous microorganisms are superior in environmental adaptability to petroleum-contaminated soil to be treated, as compared with exogenous petroleum-degrading microorganisms. For this reason, the utilization of aerobic and anaerobic microorganisms present there as resident microorganisms, especially when used in an accumulated state, the number of microorganisms is very large, and the purification reaction starts up. Was able to improve.

【0010】本発明の好ましい態様を図1に基づいて説
明する。汚染現場から掘り出した石油汚染土壌を、上部
以外の周囲をシートで被覆して埋設した後、上部から微
生物栄養源を含む水溶液を滴下し、土壌の底部に敷いた
防水シートやピットなどに浸出液を集めて貯留する。こ
の浸出液には、未利用の微生物栄養源や水に溶けやすい
石油成分及び土壌成分が多く含まれている。なお、水に
溶けやすい石油成分は比較的低分子量のものであり、こ
れらは微生物にとって比較的分解され易いが、本発明方
法の主な対象である重質油成分は、埋設土壌内に止ま
る。
A preferred embodiment of the present invention will be described with reference to FIG. After burying petroleum-contaminated soil excavated from the pollution site by covering the periphery except the top with a sheet, drop an aqueous solution containing a microbial nutrient source from the top and apply the leachate to a waterproof sheet or pit laid on the bottom of the soil. Collect and store. The leachate contains a large amount of unused microbial nutrient sources, petroleum components and soil components that are easily soluble in water. It should be noted that the water-soluble petroleum component has a relatively low molecular weight and is relatively easily decomposed by microorganisms, but the heavy oil component, which is the main object of the method of the present invention, remains in the buried soil.

【0011】ここで、土壌内の石油分解微生物の活動を
効率的に活性化するためには、微生物栄養源(例えば無
機塩類やビタミン類)及び水分の供給が必要である。こ
のような供給手段としては通常貯留された浸出液を循環
する手段が採用されている。前記無機塩類としては、無
機窒素源および無機リン源となるものを挙げることがで
きる。窒素源としては土壌中の微生物により資化される
ものであればよいが、アンモニア態窒素例えば塩化アン
モニウム、硫酸アンモニウム等又は硝酸態窒素例えば硝
酸ナトリウム、硝酸カリウム等が好ましく、特にアンモ
ニア態窒素、例えば硝酸アンモニウムが好ましい。無機
リン源の1つである無機リン酸化合物としては土壌中の
微生物が資化できるものであればよく、例えばリン酸
塩、過リン酸塩、メタリン酸塩、ポリリン酸塩等が挙げ
られ、これらは同等な浄化促進効果を有する。具体的に
は、リン酸二水素カリウム、リン酸水素二カリウム、メ
タリン酸カリウム、ピロリン酸カリウム、トリポリリン
酸カリウム等が挙げられ、これらのうち、リン酸二水素
カリウムやリン酸水素二カリウムが経済的観点から好ま
しい。本発明の方法において、無機窒素源やリン源の添
加効果を生じさせるためには、土壌のpHが6〜8であ
ることが好ましく、土壌が酸性である場合には、塩基性
剤により中和することが好ましい。塩基性剤としては例
えば炭酸カルシウムが好ましい。炭酸カルシウムの添加
量は土壌の酸性度によっても異るが、例えば1%程度で
ある。土壌が塩基性の場合は、例えば硫酸第1鉄、硫酸
カルシウム等の添加により中和することができる。
Here, in order to efficiently activate the activity of petroleum-degrading microorganisms in soil, it is necessary to supply microbial nutrient sources (for example, inorganic salts and vitamins) and water. As such a supply means, a means for circulating the stored leachate is usually adopted. Examples of the inorganic salts include those that serve as an inorganic nitrogen source and an inorganic phosphorus source. The nitrogen source may be one that is assimilated by microorganisms in the soil, but ammonia nitrogen such as ammonium chloride, ammonium sulfate or the like or nitrate nitrogen such as sodium nitrate, potassium nitrate or the like is preferable, and particularly ammonia nitrogen, such as ammonium nitrate is preferable. The inorganic phosphate compound, which is one of the inorganic phosphorus sources, may be one that can be assimilated by microorganisms in soil, and examples thereof include phosphate, perphosphate, metaphosphate, polyphosphate, and the like. These have the same purification promotion effect. Specific examples include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium metaphosphate, potassium pyrophosphate, potassium tripolyphosphate, and the like. Among these, potassium dihydrogen phosphate and dipotassium hydrogen phosphate are economical. It is preferable from the viewpoint. In the method of the present invention, the pH of the soil is preferably 6 to 8 in order to produce the effect of adding the inorganic nitrogen source and the phosphorus source, and when the soil is acidic, it is neutralized with a basic agent. Preferably. As the basic agent, for example, calcium carbonate is preferable. The amount of calcium carbonate added varies depending on the acidity of the soil, but is about 1%, for example. When the soil is basic, it can be neutralized by adding ferrous sulfate, calcium sulfate, or the like.

【0012】また、好気性微生物を集積するためには酸
素の存在が必要である。酸素の供給方法に特に制限はな
いが、貯留された浸出液や浸出液の循環液にコンプレッ
サーで空気を吹き込むことができる。この場合、浸出液
または循環液中の溶存酸素濃度は、飽和濃度または飽和
濃度に近い濃度が望ましく、空気を吹き込む場合には2
0℃で約7〜9重量ppmが目安となる。また、更に溶
存酸素濃度を上げる必要がある場合には、例えば、空気
の代わりに純酸素を吹き込むことにより、約44重量p
pmまで溶存酸素濃度を上げることができる。このよう
に酸素を水溶液として石油汚染土壌に供給することが本
発明の1つの特徴であり、このような供給方法をとるこ
とによって、土壌中で浸出液が早く到達したところでは
好気性微生物が働き、浸出液が遅く到達したところでは
既に酸素がかなり消費されているために嫌気性微生物が
働くことになり、これらの複合微生物群の共同作用によ
って石油の分解が効率良く行われると推定される。
Further, the presence of oxygen is required for accumulating aerobic microorganisms. The method of supplying oxygen is not particularly limited, but air can be blown into the stored leachate or the circulating liquid of the leachate with a compressor. In this case, it is desirable that the dissolved oxygen concentration in the leachate or the circulating fluid be a saturated concentration or a concentration close to the saturated concentration.
A guideline is about 7-9 ppm by weight at 0 ° C. When it is necessary to further increase the dissolved oxygen concentration, for example, by blowing pure oxygen instead of air, about 44 wt.
The dissolved oxygen concentration can be increased up to pm. Thus, one feature of the present invention is to supply oxygen to the oil-polluted soil as an aqueous solution. By adopting such a supply method, aerobic microorganisms work where the leachate reaches the soil quickly, When the leachate arrives late, oxygen is already consumed so much that anaerobic microorganisms act, and it is presumed that the decomposition of petroleum is efficiently performed by the synergistic action of these complex microorganism groups.

【0013】このように石油汚染土壌の浄化を行うため
には、図1のように上部以外の周囲をシートで被覆して
石油汚染土壌を埋設する代わりに、上部以外の周囲をシ
ートで被覆して石油汚染土壌を盛り土しても良いし、あ
るいは図2のように土壌カラムを形成しても良い。
In order to purify oil-contaminated soil in this way, instead of covering the periphery other than the upper part with a sheet and burying the oil-contaminated soil as shown in FIG. 1, the periphery other than the upper part is covered with a sheet. A petroleum-contaminated soil may be filled with the soil, or a soil column may be formed as shown in FIG.

【0014】微生物栄養源の組成は特に制限されない
が、炭素(C):窒素(N):リン(P)の比は、通常
10〜1000:1〜100:1、特に、100:1
0:1となるように窒素やリンを含有する水溶液を調製
するのが望ましい。また、必要に応じて、石油分解微生
物の酵素を誘導するためのサルチル酸等の有機物、微量
栄養素としての金属類やビタミン類、それらを含有する
酵母エキスやコーン・スティープ・リカー、ならびに石
油を分散させるための界面活性剤を微生物栄養源として
添加することも可能である。これらの微生物栄養源は水
溶液として供給しても良く、水溶液とは別に土壌に供給
しても良い。
The composition of the microbial nutrient source is not particularly limited, but the ratio of carbon (C): nitrogen (N): phosphorus (P) is usually 10 to 1000: 1 to 100: 1, particularly 100: 1.
It is desirable to prepare an aqueous solution containing nitrogen or phosphorus so that the ratio becomes 0: 1. In addition, if necessary, organic substances such as salicylic acid for inducing enzymes of petroleum degrading microorganisms, metals and vitamins as micronutrients, yeast extract and corn steep liquor containing them, and petroleum are dispersed. It is also possible to add a surface active agent as a microbial nutrient source. These microbial nutrient sources may be supplied as an aqueous solution or may be supplied to the soil separately from the aqueous solution.

【0015】各栄養分の補給濃度の具体的決定方法につ
いて以下に1例を挙げて説明する。まず、前準備とし
て、予め各油種に含まれる炭素含有比率を求めておく。
次に使用する窒素含有塩、リン含有塩を選択する。炭素
が100gの場合の炭素対窒素対リン(C対N対P比)
の重量比が100対10対1になるように使用する窒素
塩、リン塩の分子量から各塩の添加量を計算する。さら
に各油種の炭素含量に基づき、各油種100gあたりの
各塩の添加量を再計算する。そして油種毎並びに油の量
に対応する窒素塩、リン塩の添加量の一覧表を作成して
おく。なお、リン塩は循環液作成後のpHを7に保てる
ように、pH緩衝作用を持たせるために、2種類の塩を
使用しているが、リン量は両塩を合わせたものの合計で
計算する。つぎに実際の添加量について述べる。まず、
浄化対象とする石油汚染土壌に含まれる油種と濃度を分
析する。油種が決定できたら前述の要領で作成した一覧
表から油種に該当する表を選ぶ。濃度分析結果に基づ
き、処理汚染土壌全体の油量を計算する。選択した表か
ら油量に対応する窒素塩、リン塩の添加量を求める。他
の金属塩類、酵母エキスは表に示した濃度の溶液を作成
して使用する。添加方法は窒素塩、リン塩は直接土壌に
混ぜても良く、少量の場合は他の金属塩や酵母エキス溶
解液に溶かして使用することもできる。時間経過と共に
分解されてしまう恐れのあるものは時間毎に分けて添加
する。
A specific method of determining the supplemental concentration of each nutrient will be described below with reference to one example. First, as a preliminary preparation, the carbon content ratio contained in each oil type is obtained in advance.
Next, the nitrogen-containing salt and phosphorus-containing salt to be used are selected. Carbon to nitrogen to phosphorus when carbon is 100 g (C to N to P ratio)
The addition amount of each salt is calculated from the molecular weights of the nitrogen salt and the phosphorus salt used so that the weight ratio of 100 to 10: 1 is obtained. Further, based on the carbon content of each oil species, the amount of each salt added per 100 g of each oil species is recalculated. Then, a list of the addition amounts of nitrogen salt and phosphorus salt corresponding to each oil type and the amount of oil is prepared. It should be noted that phosphorus salt uses two types of salts to have a pH buffering action so that the pH after the circulating fluid is prepared can be kept at 7, but the phosphorus amount is calculated as the sum of both salts. To do. Next, the actual amount added will be described. First,
Analyze the type and concentration of oil contained in the oil-polluted soil to be purified. When the oil type is determined, select the table corresponding to the oil type from the list created in the above procedure. Calculate the amount of oil in the entire treated contaminated soil based on the concentration analysis results. From the selected table, determine the addition amount of nitrogen salt and phosphorus salt corresponding to the oil amount. For other metal salts and yeast extract, prepare solutions with the concentrations shown in the table before use. Nitrogen salt and phosphorus salt may be directly mixed with the soil, and when the amount is small, they may be dissolved in other metal salts or yeast extract solution before use. Those that may be decomposed over time are added separately at each time.

【0016】水分の供給方法は、最初に微生物栄養源を
含む水溶液を滴下した以降は、蒸発する水分を補う程度
に適宜補給すれば良い。水溶液の流量に特に制限はない
が、0.1〜2000ml/分/土壌−kgとなるよう
に流量を調整するのが望ましい。
As for the method of supplying water, after the aqueous solution containing the microbial nutrient source is first dropped, it may be appropriately replenished to the extent of supplementing the evaporated water. The flow rate of the aqueous solution is not particularly limited, but it is desirable to adjust the flow rate so as to be 0.1 to 2000 ml / min / soil-kg.

【0017】また、微生物の活動に伴って浸出液のPH
が低下する場合には、中性付近のPH5〜9に維持する
ため、必要に応じてアルカリ水溶液を適宜添加すること
ができる。
The pH of the leachate is also increased by the activity of microorganisms.
In the case of decrease in pH, the pH is maintained near neutral pH of 5 to 9, so that an alkaline aqueous solution can be appropriately added if necessary.

【0018】更に、温度が低い環境条件にある場合に
は、浸出液や循環液の温度が15℃以下にならないよう
に保温することが望ましく、石油汚染土壌と循環液との
混合状態を改善する必要がある場合には、石油汚染土壌
と循環液との混合物を時々機械的に攪拌することが望ま
しい。
Further, under low temperature environmental conditions, it is desirable to keep the temperature of the leachate and the circulating fluid so as not to fall below 15 ° C., and it is necessary to improve the mixing state of the petroleum-contaminated soil and the circulating fluid. In some cases, it is desirable to occasionally mechanically stir the mixture of petroleum-contaminated soil and circulating fluid.

【0019】次に、図2に基づいて本発明のもう1つの
好ましい態様を詳しく説明する。汚染現場から掘り出し
た石油汚染土壌を上部が開放された容器に充填して土壌
カラムを形成した後、上部から微生物栄養源を含む水溶
液を滴下し、カラムの下に敷いた防水シートやピットな
どの浸出液回収設備により、カラムからの浸出液を集め
て貯留する。上記した本発明の図1の方法と同様にして
浸出液を循環させ、土壌カラム内に複合微生物群を集積
した後、土壌カラム内の土壌及び/又は浸出液を取り出
し、浄化対象の石油汚染土壌に戻して、ランドファーミ
ング法やバイオパイル法等の従来の生物学的浄化を行
う。なお、土壌カラム内に嫌気性微生物を含む複合微生
物を集積するに当たっては、上記した本発明の図1の方
法と同様の方法を用いることができる。また、微生物栄
養源の組成、水分の管理方法、酸素の供給方法、PHの
維持方法、温度の管理方法、土壌と浸出液等との混合方
法に関しても、上記した本発明の図1の方法と同様に行
うことができる。
Next, another preferred embodiment of the present invention will be described in detail with reference to FIG. After filling the oil-contaminated soil excavated from the pollution site in a container with an open top to form a soil column, drop an aqueous solution containing a microbial nutrient source from the top and add a waterproof sheet or pit under the column. The leachate collection facility collects and stores the leachate from the column. The leachate is circulated in the same manner as in the above-described method of the present invention to accumulate complex microorganisms in the soil column, and then the soil and / or leachate in the soil column is taken out and returned to the petroleum-contaminated soil to be purified. Then, conventional biological purification such as land farming method and biopile method is performed. When accumulating a complex microorganism containing an anaerobic microorganism in the soil column, the same method as the method of FIG. 1 of the present invention described above can be used. Further, regarding the composition of the microbial nutrient source, the method of controlling water, the method of supplying oxygen, the method of maintaining PH, the method of controlling temperature, the method of mixing soil and leachate, etc., the same as the method of FIG. 1 of the present invention described above. Can be done.

【0020】本発明は常在微生物の複合微生物群を活用
することが重要であるが、利用できる微生物製剤と修復
対象土壌との相性が良い場合には、本発明においてこれ
ら微生物製剤を併用することも可能である。なお、本発
明における石油汚染土壌の修復において、修復対象の汚
染物質は石油系炭化水素であり、原油、ガソリン、軽
油、灯油、重油、潤滑油などが例示される。特に、残留
炭素分が0.1重量%以上の重質油である重油や潤滑
油、および汚染後の時間経過により低沸点炭化水素が気
化してしまったために、実質的に残留炭素分が0.1重
量%以上の重質油となった原油、ならびに沸点が330
℃以上の多環芳香族炭化水素類を含有する重質油に対し
て、本発明における石油汚染土壌の修復方法が有効に使
用できる。これらの成分としては、炭素数19以上のノ
ルマルパラフィン及びイソパラフィン、ならびにフェナ
ントレン、アントラセン、フルオランテン、ピレン、ベ
ンゾ(a)ピレン等の多環芳香族炭化水素類及びその誘
導体が例示される。
In the present invention, it is important to utilize a complex microbial group of indigenous microorganisms. However, when the microbial preparations that can be used and the soil to be repaired have a good compatibility, these microbial preparations should be used in combination in the present invention. Is also possible. In the restoration of petroleum-contaminated soil according to the present invention, the pollutants to be restored are petroleum hydrocarbons, and examples thereof include crude oil, gasoline, light oil, kerosene, heavy oil, and lubricating oil. In particular, heavy oil or lubricating oil having a residual carbon content of 0.1% by weight or more, and low-boiling hydrocarbons are vaporized with the lapse of time after pollution, so that the residual carbon content is substantially zero. Crude oil that became 1% by weight or more of heavy oil, and boiling point of 330
The method for remediating petroleum-contaminated soil according to the present invention can be effectively used for heavy oil containing polycyclic aromatic hydrocarbons having a temperature of ℃ or higher. Examples of these components include normal paraffins and isoparaffins having 19 or more carbon atoms, and polycyclic aromatic hydrocarbons such as phenanthrene, anthracene, fluoranthene, pyrene, and benzo (a) pyrene, and derivatives thereof.

【0021】また、石油汚染土壌は、汚染現場から掘り
出した土壌、物理化学的に前処理した土壌等を用いるこ
とができる。
As the oil-contaminated soil, soil excavated from the contamination site, physicochemically pretreated soil, or the like can be used.

【0022】[0022]

【実施例】以下に実施例を挙げて本発明を説明するが本
発明はこれにより何等限定されるものではない。実施例
におけるATPを用いた菌体数の測定方法は下記の手順
によるものである。 (1)集積培養土壌2gと蒸留水2mlとを25mmφ
試験管に入れ、試験管ミキサーにて約5分間振とうさ
せ、土壌表面から菌体を剥離する。 (2)この溶液を65Gで1分間遠心分離し、土壌を分
離する。 (3)遠心分離した上層液1mlを蒸留水9mlが入っ
た18mmφの試験管に入れ、試験管ミキサーにて混合
し、10倍希釈液を作成する。更にこの10倍希釈液1
mlを蒸留水9mlが入った18mmφの試験管に入
れ、試験管ミキサーにて混合し、100倍希釈液を作成
する。この操作を順次行い、10倍希釈までの希釈液
を作成する。 (4)次に、各10から10までの希釈液20μlず
つを96穴黒ウエルにそれぞれ入れる。 (5)菌体外の植物由来等のフリーのATP(アデノシ
ントリフォスフェート)を除去するため、ATP除去液
50μlを各々に添加して30分室温にて反応させる。 (6)次に光量測定装置にこのウエルをセットする。各
ウエルに存在する菌体内のATPを溶出させるために、
菌体細胞膜溶解剤としての抽出液60μlが各ウエルに
自動添加され、室温にて15秒間反応させる。 (7)その後、ルシフェリンとルシフェラーゼの混合用
液である発光試薬50μlが各ウエルに自動添加され、
一定時間後に発光量が自動測定される。各ウエルの光量
はコンピューター処理されアウトプットされる。 (8)各ウエルの光量結果より、光量と菌体数が直線的
に相関する範囲の光量値を選び、予め求めておいた光量
と菌体数との検量線から、菌体数を求める。 (9)更に希釈率をかけて上記(2)の溶液中の菌体濃
度を求める。 (10)サンプリングした集積培養土壌の含水率を乾燥
法等により求め、(9)の結果から単位乾燥土壌(g)
あたりの菌体数を求める。なお、液体培養の場合には単
位液量あたりの菌体数で表示する。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. The method for measuring the number of bacterial cells using ATP in the examples is as follows. (1) 25 mmφ of 2 g of accumulated culture soil and 2 ml of distilled water
Put in a test tube and shake for about 5 minutes with a test tube mixer to separate the bacterial cells from the soil surface. (2) Centrifuge this solution at 65 G for 1 minute to separate the soil. (3) 1 ml of the centrifuged upper layer liquid is put into an 18 mmφ test tube containing 9 ml of distilled water and mixed with a test tube mixer to prepare a 10-fold diluted solution. Furthermore, this 10-fold dilution 1
ml is put into an 18 mmφ test tube containing 9 ml of distilled water and mixed with a test tube mixer to prepare a 100-fold diluted solution. This operation is sequentially performed to prepare a diluted solution up to 10 5 times dilution. (4) Next, 20 μl of 10 to 10 5 dilutions are placed in each 96-well black well. (5) In order to remove free ATP (adenosine triphosphate) derived from plants outside the cells, 50 μl of ATP removing solution is added to each and reacted for 30 minutes at room temperature. (6) Next, set this well in the light quantity measuring device. In order to elute the intracellular ATP present in each well,
60 μl of the extract as a cell membrane lysing agent is automatically added to each well and allowed to react at room temperature for 15 seconds. (7) Thereafter, 50 μl of a luminescent reagent, which is a mixed solution of luciferin and luciferase, is automatically added to each well,
The light emission amount is automatically measured after a certain period of time. The light intensity of each well is processed by computer and output. (8) From the light intensity result of each well, a light intensity value in a range in which the light intensity and the bacterial cell number are linearly correlated is selected, and the bacterial cell number is determined from a calibration curve of the previously obtained light intensity and bacterial cell number. (9) The dilution rate is further applied to obtain the bacterial cell concentration in the solution of (2) above. (10) The water content of the sampled accumulated culture soil was obtained by a drying method or the like, and the unit dry soil (g) was obtained from the result of (9)
Calculate the number of cells per unit. In the case of liquid culture, the number of cells per unit volume is displayed.

【0023】実施例1〜5 図3に示す微生物集積装置を用いて、図2の概念図に示
すようにカラム層に300gの重油汚染土壌(表2にお
ける番号1)あるいは模擬汚染土壌(表2における番号
2、4、5、6)を充填し、表1に示した組成から成る
微生物栄養源の水溶液400mlを連続的に循環して、
微生物の集積及び石油汚染土壌の修復を行った。この過
程において、温度は約22℃に維持し、PHは7となる
ように適宜アルカリ水溶液で調整した。また、循環液の
貯留槽に約5ml/分の流速で空気を供給することによ
り、循環液中の溶存酸素濃度が飽和濃度に近い約8pp
mとなるように維持した。なお、微生物の集積は、土壌
中の微生物濃度(土壌1g当たりの微生物数)をATP
法によって測定し、集積前の微生物濃度を1としたとき
の値(単位:倍)を算出することにより確認した。ま
た、土壌の修復状況は、修復処理前後の土壌を四塩化炭
素で抽出した後、赤外吸収法で全炭化水素濃度(TP
H、単位:ppm)を測定し、処理前後のTPHの減少
率(単位:%)を求めることにより把握した。このよう
にして、連続的に2ヶ月間微生物の集積と石油汚染土壌
の修復を行った結果、表2に示す結果が得られ、本発明
の有効性が確認された。即ち、本発明によってノルマル
パラフィン(番号6)や軽油(番号5)による模擬汚染
土壌は勿論のこと、従来技術では修復が困難とされてい
た重質油汚染土壌(番号1、2、4)においても、TP
Hが顕著に減少し、修復効果が認められた。また、微生
物の集積および石油汚染土壌の修復の過程において、微
生物数の増加が認められたことから、TPHの顕著な減
少が微生物の集積によってもたらされたことは明らかで
ある。更に、比較例として、表1に示した微生物栄養源
の水溶液の代わりに純水を用いた場合(番号3、7)に
は、TPHの顕著な減少及び微生物数の増加が認められ
なかったことから、本発明による石油汚染土壌の修復
が、土壌中の常在微生物の集積によってもたらされたこ
とを確認した。
Examples 1 to 5 Using the microorganism collecting apparatus shown in FIG. 3, 300 g of heavy oil-contaminated soil (No. 1 in Table 2) or simulated contaminated soil (Table 2) was used in the column layer as shown in the conceptual diagram of FIG. Nos. 2, 4, 5, 6) in the above, and 400 ml of an aqueous solution of a microbial nutrient source having the composition shown in Table 1 is continuously circulated,
Accumulation of microorganisms and restoration of oil-contaminated soil were performed. During this process, the temperature was maintained at about 22 ° C., and the pH was adjusted to 7 with an appropriate alkaline aqueous solution. Further, by supplying air to the circulating fluid storage tank at a flow rate of about 5 ml / min, the dissolved oxygen concentration in the circulating fluid is close to the saturated concentration of about 8 pp.
It was maintained to be m. It should be noted that the accumulation of microorganisms is determined by measuring the concentration of microorganisms in the soil (the number of microorganisms per 1 g of soil) by ATP.
It was confirmed by calculating by a method and calculating a value (unit: times) when the microbial concentration before accumulation was 1. In addition, the soil restoration condition is as follows. After extracting the soil before and after the restoration treatment with carbon tetrachloride, the total hydrocarbon concentration (TP
H, unit: ppm) was measured, and the reduction rate (unit:%) of TPH before and after the treatment was calculated to find out. In this way, as a result of continuously accumulating microorganisms and repairing oil-contaminated soil for 2 months, the results shown in Table 2 were obtained, and the effectiveness of the present invention was confirmed. That is, according to the present invention, not only simulated soil contaminated with normal paraffin (No. 6) and light oil (No. 5) but also heavy oil contaminated soil (Nos. 1, 2, and 4) that was difficult to restore by the conventional technique. Also TP
H was significantly reduced, and a repair effect was recognized. In addition, since an increase in the number of microorganisms was observed in the process of accumulation of microorganisms and restoration of oil-contaminated soil, it is clear that a significant decrease in TPH was caused by accumulation of microorganisms. Further, as a comparative example, when pure water was used instead of the aqueous solution of the microbial nutrient source shown in Table 1 (Nos. 3 and 7), a remarkable decrease in TPH and an increase in the number of microorganisms were not observed. From this, it was confirmed that the remediation of the oil-contaminated soil according to the present invention was brought about by the accumulation of resident microorganisms in the soil.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】比較例3 実施例2(表2における番号2)との比較を行うため
に、容量が500mlの三角フラスコを用いて、好気的
な培養を行った。ここで用いた微生物栄養源を含む水溶
液は、表1に示すものであり、土壌には、C重油の濃度
が10,000ppmとなるように調整した実施例2と
同じ模擬汚染土壌50gを用いた。水溶液と模擬汚染土
壌との重量比は、実施例2のカラム層における水溶液と
土壌の比を考慮して30:100とした。また、好気的
条件を維持するため、回転培養器の回転数を220回転
/分として連続的に撹拌を行った。このような好気的条
件で、実施例2と同様に2ヶ月間培養を行った結果、土
壌中TPHの減少率は14%に過ぎず、石油の分解はそ
れほど進行しておらず、実施例2の結果に比べて明らか
に劣っていた。
Comparative Example 3 In order to make a comparison with Example 2 (No. 2 in Table 2), an aerobic culture was carried out using an Erlenmeyer flask having a capacity of 500 ml. The aqueous solution containing the microbial nutrient source used here is shown in Table 1, and 50 g of the same simulated polluted soil as in Example 2 adjusted to have a C heavy oil concentration of 10,000 ppm was used as the soil. . The weight ratio of the aqueous solution to the simulated contaminated soil was set to 30: 100 in consideration of the ratio of the aqueous solution to the soil in the column layer of Example 2. Further, in order to maintain aerobic conditions, the rotation speed of the rotary incubator was set to 220 rotations / minute, and stirring was continuously performed. As a result of carrying out the culture for 2 months under the aerobic condition in the same manner as in Example 2, the reduction rate of TPH in the soil was only 14%, and the decomposition of petroleum did not proceed so much. It was clearly inferior to the result of 2.

【0027】実施例6 重質油で10,000ppmに汚染されている実汚染土
壌(A)400gを、図3に示す微生物集積装置の上部
カラム槽に充填し、下部液貯め槽に表3に示した組成の
微生物栄養源水溶液400mlを入れ、これを図2の要
領で連続的に循環して、2週間微生物集積培養を行っ
た。この2週間培養した土壌を油浄化対象である実汚染
土壌(A)1600gに1〜30wt%添加して混合す
る。そのときの菌体濃度が10個/g乾燥土壌になる
ようにする。これら混合土壌をポリプロピレン製又はス
テンレス製のコンテナ(横230×縦135×高さ12
0mm)に入れる。さらに、これら混合土壌中の汚染油
の炭素重量に対し窒素を10wt%、炭素重量に対し燐
酸を1wt%、表3に示す微生物栄養源水溶液を乾燥土
壌に対し15wt%になるように添加し、30℃のふ卵
器内にて浄化を行った。コンテナ内の土壌を1週間に1
回の割合で撹拌して、土中に空気を供給してランドファ
ーム法による浄化を実施した。
Example 6 400 g of actual contaminated soil (A) contaminated with heavy oil at 10,000 ppm was filled in the upper column tank of the microorganism accumulation apparatus shown in FIG. 400 ml of the microbial nutrient source aqueous solution having the composition shown was put therein, and continuously circulated in the manner shown in FIG. 2 to carry out microbial enrichment culture for 2 weeks. The soil cultivated for two weeks is added to 1600 g of the actual contaminated soil (A), which is an oil purification target, in an amount of 1 to 30 wt% and mixed. The cell concentration at that time should be 10 6 cells / g dry soil. These mixed soils are made of polypropylene or stainless steel container (width 230 x length 135 x height 12
0 mm). Furthermore, nitrogen was added to the mixed oil in the soil in an amount of 10 wt% to the carbon weight, phosphoric acid to the carbon weight was 1 wt%, and the microbial nutrient source solution shown in Table 3 was added to the dry soil to be 15 wt%. Purification was performed in an incubator at 30 ° C. Soil in container 1 per week
It was stirred at a rate of once and air was supplied into the soil to carry out purification by the Land Farm method.

【0028】[0028]

【表3】 [Table 3]

【0029】なお、比較のための対象実験として、カラ
ム集積培養土壌を添加しないランドファーム法を実施し
てカラム集積培養土壌添加効果を比較した。これらの2
種類のランドファーム法を用いた浄化実験の油分減少経
過並びに菌体濃度経過を図4に示す。集積土壌を添加し
たものは集積土壌を添加しないもの(従来の一般に用い
られている方法)に比べ、TPHの分解速度は(TP
H:Total Petroleum Hydroca
rbons)早くなっている。因みに、集積土壌を添加
したものは、ほぼ6週間で微生物難分解性物質のみが残
存する濃度に至っている。カラム集積土壌を添加してい
ないものは20週かかってほぼ同等の分解率に達してい
る。このことは集積期間をも含めて微生物集積技術を用
いて行った本発明では8週間で浄化が終了したことにな
る。一方の微生物集積技術を用いない従来の方法では浄
化に20週間が必要であり、本発明では従来の方法に比
べて工期を半分以上に短縮することができ、経済的にも
有益な方法である。
As a target experiment for comparison, the land farm method without addition of the column-accumulated culture soil was carried out to compare the effects of addition of the column-accumulated culture soil. These two
FIG. 4 shows the oil content reduction process and the bacterial cell concentration process in the purification experiment using various types of land farm method. The decomposition rate of TPH is (TP
H: Total Petroleum Hydroca
rbons) It's getting faster. By the way, in the case where the accumulated soil was added, the concentration reached such that only the hardly-biodegradable substance remained in about 6 weeks. Those without addition of column-accumulated soil reached almost the same decomposition rate in 20 weeks. This means that the purification was completed in 8 weeks in the present invention, which was carried out by using the microorganism accumulation technique including the accumulation period. On the other hand, the conventional method that does not use the microbial accumulation technique requires 20 weeks for purification, and the present invention can reduce the construction period by more than half compared to the conventional method, which is economically beneficial. .

【0030】実施例7 本発明技術と従来微生物集積法として一般的に使用され
ている好気的液体培養法との比較を行うために、下記の
方法により好気的液体培養を行った。具体的には、従来
の好気的液体培養法として500ml容量の肩付フラス
コに、表3に示す組成の微生物栄養源水溶液70mlを
入れ、C重油を7g(10,000mg/ml濃度)添
加した。さらに非汚染土壌0.2gを添加し、30℃、
120振とう/分、70mm振幅の好気的条件下にて2
0週間培養した。一方、本発明による浄化実験は実施例
6と同様の方法で行った。油汚染土壌はC重油で作成し
た模擬汚染土壌(カラム集積培養用土壌、ランドファー
ム用浄化土壌ともC重油濃度10,000ppm)を用
いた。具体的には、カラム集積培養は2週間行い、その
集積培養土壌400gとC重油模擬汚染土壌1600g
を実施例6で記したポリプロピレン製コンテナに入れ、
さらに実施例6と同様な方法で栄養源を添加し、よく混
合した後に30℃の条件下で20週間浄化を行った。な
お、コンテナ内土壌の水分濃度が15wt%になるよう
に2〜3回/週調整を行った。この液体培養並びにコン
テナを使用したランドファーム法の油分(TPH)分解
経過並びに菌体濃度経過を図5に示す。
Example 7 In order to compare the technique of the present invention with an aerobic liquid culture method generally used as a conventional microorganism accumulation method, an aerobic liquid culture was carried out by the following method. Specifically, as a conventional aerobic liquid culture method, 70 ml of a microbial nutrient source aqueous solution having the composition shown in Table 3 was placed in a 500 ml capacity shoulder flask, and 7 g of C heavy oil (10,000 mg / ml concentration) was added. . Furthermore, 0.2g of non-polluted soil was added,
120 shaking / min, 70 mm amplitude under aerobic conditions 2
Cultured for 0 weeks. On the other hand, the purification experiment according to the present invention was performed in the same manner as in Example 6. As the oil-contaminated soil, a simulated contaminated soil prepared with C heavy oil (soil for column accumulation culture and purified soil for land farm, C heavy oil concentration of 10,000 ppm) was used. Specifically, column accumulation culture was carried out for 2 weeks, and 400 g of the accumulated culture soil and 1600 g of C heavy oil simulated contaminated soil.
Into the polypropylene container described in Example 6,
Furthermore, a nutrient source was added in the same manner as in Example 6, and after mixing well, purification was carried out at 30 ° C. for 20 weeks. In addition, adjustment was performed 2 to 3 times / week so that the water content of the soil in the container was 15 wt%. FIG. 5 shows the oil content (TPH) decomposition process and the bacterial cell concentration process of the Landfarm method using the liquid culture and the container.

【0031】両方法の油分の減少はほぼ同様の経過を示
しており、20週目のC重油の分解率はほぼ両者とも同
様であった。油成分の分析を行ったところ両方法とも飽
和炭化水素類のうち直鎖炭化水素類は2週間目ぐらいま
でにほぼ分解され、イソパラフィン類、シクロヘキサン
類もその後、時間と共に減少した。一方、多環芳香族炭
化水素類は2週間目から分解が始まり、時間の経過と共
に分解されていくが、本発明のカラム集積培養土壌を用
いたランドファーム方法では時間の経過と共に環数の少
ないものから順次分解されていた。しかし、好気的な液
体培養法では分解される多環芳香族炭化水素類が限定さ
れていることが判った。20週目の芳香族炭化水素類の
分析結果を図6に示す。このことから、本発明の方法は
浄化達成したかどうかの最終判断の一つである、油膜・
油臭の原因になる常温において液体状態で存在する飽和
炭化水素類並びに多環芳香族炭化水素類(内3環以下の
もの)はほぼ分解されていることがわかった。
The decrease in oil content of both methods showed almost the same course, and the decomposition rate of C heavy oil at the 20th week was almost the same in both cases. When the oil components were analyzed, linear hydrocarbons among the saturated hydrocarbons were almost decomposed by the second week, and isoparaffins and cyclohexanes also decreased with time in both methods. On the other hand, polycyclic aromatic hydrocarbons start to be decomposed from the second week and are decomposed with the passage of time, but the land farm method using the column-accumulated culture soil of the present invention has a small number of rings with the passage of time. It was disassembled sequentially from the thing. However, it was found that polycyclic aromatic hydrocarbons that can be decomposed by the aerobic liquid culture method are limited. The analysis results of aromatic hydrocarbons at 20 weeks are shown in FIG. From this, the method of the present invention is one of the final judgments as to whether or not purification has been achieved.
It was found that saturated hydrocarbons and polycyclic aromatic hydrocarbons (those having 3 or less rings) existing in a liquid state at room temperature, which cause an oily odor, were almost decomposed.

【0032】[0032]

【発明の効果】(1)本請求項1の発明は、好気性微生
物と嫌気性微生物のそれぞれが充分機能することができ
る循環を設定することにより、石油汚染土壌中の微生物
を有効活用した石油汚染土壌を修復する方法を提供でき
た (2)本請求項2の発明では、微生物が有効活用できる
濃度に達するまでに相当の時間を必要とするため、あら
かじめ微生物が所定濃度に達するまでの工程を別途培養
工程として設けることにより、高濃度微生物を反応系に
供給できるようになり、その結果処理時間の大幅短縮に
成功したものである。
EFFECTS OF THE INVENTION (1) The invention of claim 1 is a petroleum which effectively utilizes microorganisms in petroleum-contaminated soil by setting a circulation in which aerobic microorganisms and anaerobic microorganisms can sufficiently function. The method of repairing contaminated soil has been provided (2) In the invention of claim 2, since it takes a considerable amount of time to reach a concentration at which the microorganism can be effectively utilized, a step until the microorganism reaches a predetermined concentration By separately providing as a culturing step, it becomes possible to supply high-concentration microorganisms to the reaction system, and as a result, the processing time has been greatly shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一形態の概念図を示す。FIG. 1 shows a conceptual diagram of one embodiment of the present invention.

【図2】本発明の請求項2の第1工程の一形態の概念図
を示す。
FIG. 2 shows a conceptual diagram of one mode of the first step of claim 2 of the present invention.

【図3】微生物集積装置の概要図を示す。FIG. 3 shows a schematic view of a microorganism accumulation device.

【図4】実施例6の集積培養土壌を添加した本発明のケ
ースと従来法である集積培養土壌を添加しないランドフ
ァーム法との土壌浄化の様子を示すグラフである。
FIG. 4 is a graph showing the state of soil purification in the case of the present invention to which the integrated culture soil of Example 6 is added and the conventional method of the Land Farm method in which no integrated culture soil is added.

【図5】実施例7の集積培養土壌を添加した本発明のケ
ースと従来法である集積培養土壌を添加しないランドフ
ァーム法との土壌浄化の様子を示すグラフである。
FIG. 5 is a graph showing the state of soil purification in the case of the present invention to which the integrated culture soil of Example 7 is added and in the conventional Landfarm method in which no integrated culture soil is added.

【図6】C重油、実施例7による集積培養20週目の土
壌中に含有されている油、および実施例7に記載の従来
式ランドファーム法20週目の土壌に含有されている油
のGC−MSクロマトグラムを示す。
FIG. 6 shows C heavy oil, oil contained in soil at 20 weeks of enrichment culture according to Example 7, and oil contained in soil at 20 weeks of conventional Landfarm method described in Example 7. A GC-MS chromatogram is shown.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000186913 昭和シェル石油株式会社 東京都港区台場二丁目3番2号 (72)発明者 久塚 謙一 東京都港区虎ノ門四丁目三番九号 住友新 虎ノ門ビル 財団法人 石油産業活性化セ ンター内 (72)発明者 山田 健司 東京都港区高輪2丁目18番10号 日本石油 加工株式会社内 (72)発明者 古田 一俊 東京都港区高輪2丁目18番10号 日本石油 加工株式会社内 (72)発明者 鈴木 悦夫 東京都港区芝浦1丁目1番1号 コスモ石 油株式会社内 (72)発明者 松本 孝夫 東京都港区台場2丁目3番2号 昭和シェ ル石油株式会社内 (72)発明者 佐久間 繁徳 東京都港区台場2丁目3番2号 昭和シェ ル石油株式会社内 Fターム(参考) 4B065 AA99 AC20 BA23 BB04 BB40 BC25 CA54 CA56 4D004 AA41 AB02 CA15 CA18 CA19 CA35 CC01 CC03 CC07 CC11 CC15 DA03 DA10 DA20    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000186913             Showa Shell Sekiyu Co., Ltd.             2-3-2 Daiba, Minato-ku, Tokyo (72) Inventor Kenichi Kutsuka             Sumitomo Arata 4-3-9 Toranomon, Minato-ku, Tokyo             Toranomon Building Petroleum Industry Revitalization Center             In the center (72) Inventor Kenji Yamada             2-18-10 Takanawa, Minato-ku, Tokyo Japan Oil             Processing Co., Ltd. (72) Inventor Kazutoshi Furuta             2-18-10 Takanawa, Minato-ku, Tokyo Japan Oil             Processing Co., Ltd. (72) Inventor Suzuki Etsuo             1-1-1 Shibaura, Minato-ku, Tokyo Cosmo stone             Oil Co., Ltd. (72) Inventor Takao Matsumoto             Showa Che, 2-3-2 Daiba, Minato-ku, Tokyo             Within Le Petroleum Co., Ltd. (72) Inventor Shigenori Sakuma             Showa Che, 2-3-2 Daiba, Minato-ku, Tokyo             Within Le Petroleum Co., Ltd. F-term (reference) 4B065 AA99 AC20 BA23 BB04 BB40                       BC25 CA54 CA56                 4D004 AA41 AB02 CA15 CA18 CA19                       CA35 CC01 CC03 CC07 CC11                       CC15 DA03 DA10 DA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 微生物栄養源とともに酸素が補給された
水溶液を石油汚染土壌に供給して常在する微生物により
石油汚染物を浄化することを特徴とする石油汚染土壌の
修復方法。
1. A method for remediating petroleum-contaminated soil, which comprises supplying an aqueous solution supplemented with oxygen together with a microbial nutrient source to petroleum-contaminated soil to purify petroleum pollutants with existing microorganisms.
【請求項2】 (1)微生物栄養源とともに酸素が補給
された水溶液を石油汚染土壌に供給して常在する微生物
を増殖、活性化する工程と(2)集積された好気性微生
物と嫌気性微生物よりなる複合微生物群を含む水及び/
又は土壌を石油汚染土壌に混合して、石油汚染物を浄化
する工程、よりなることを特徴とする石油汚染土壌の修
復方法。
2. A step of (1) supplying an aqueous solution supplemented with oxygen together with a microbial nutrient source to petroleum-contaminated soil to grow and activate resident microorganisms, and (2) accumulated aerobic microorganisms and anaerobic Water and / or containing a complex microorganism group consisting of microorganisms
Alternatively, a method of mixing oil with oil-polluted soil to purify oil pollutants, and a method for repairing oil-polluted soil.
【請求項3】 石油が残留炭素分0.1重量%以上であ
る重質油または沸点330℃以上の多環芳香族炭化水素
類を含有する重質油である請求項1または2記載の石油
汚染土壌の修復方法。
3. The petroleum according to claim 1 or 2, wherein the petroleum is a heavy oil having a residual carbon content of 0.1% by weight or more or a heavy oil containing polycyclic aromatic hydrocarbons having a boiling point of 330 ° C or more. How to repair contaminated soil.
【請求項4】 前記微生物が、好気性微生物と嫌気性微
生物の両方を含むものである請求項1〜3いずれか記載
の石油汚染土壌の修復方法。
4. The method for repairing petroleum-contaminated soil according to claim 1, wherein the microorganism contains both an aerobic microorganism and an anaerobic microorganism.
JP2002163426A 2001-06-04 2002-06-04 Restoration method for soil polluted with petroleum Pending JP2003053324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163426A JP2003053324A (en) 2001-06-04 2002-06-04 Restoration method for soil polluted with petroleum

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-168898 2001-06-04
JP2001168898 2001-06-04
JP2002163426A JP2003053324A (en) 2001-06-04 2002-06-04 Restoration method for soil polluted with petroleum

Publications (1)

Publication Number Publication Date
JP2003053324A true JP2003053324A (en) 2003-02-25

Family

ID=26616334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163426A Pending JP2003053324A (en) 2001-06-04 2002-06-04 Restoration method for soil polluted with petroleum

Country Status (1)

Country Link
JP (1) JP2003053324A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007182A (en) * 2004-06-29 2006-01-12 Ohbayashi Corp In situ bioremediation construction method accompanied by preculture, and system therefor
JP2006159132A (en) * 2004-12-09 2006-06-22 Ohbayashi Corp Cleaning method of contaminated soil or water, and additive
JP2010539943A (en) * 2007-09-28 2010-12-24 ティー.エフ.エイチ.パブリケーションズ、インコーポレーテッド Biodegradable excreta pad or litter containing nutrients that promote microbial populations
JP2011067199A (en) * 2009-08-27 2011-04-07 Ehime Univ New microorganism having petroleum decomposition ability
JP2014231041A (en) * 2013-05-29 2014-12-11 株式会社熊谷組 Polluted soil mix method
CN110695074A (en) * 2019-09-07 2020-01-17 轻工业环境保护研究所 Method for in-situ remediation of polycyclic aromatic hydrocarbon contaminated soil
CN114101318A (en) * 2020-08-26 2022-03-01 中国石油天然气股份有限公司 Treatment method of petroleum-polluted soil
GB2598382A (en) * 2020-08-28 2022-03-02 Epiq Env Ltd Micro-mechanical augmented bioremediation method for treatment of oil contaminated soil
CN115415309A (en) * 2022-08-30 2022-12-02 陇东学院 Method for restoring petroleum-polluted soil

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007182A (en) * 2004-06-29 2006-01-12 Ohbayashi Corp In situ bioremediation construction method accompanied by preculture, and system therefor
JP2006159132A (en) * 2004-12-09 2006-06-22 Ohbayashi Corp Cleaning method of contaminated soil or water, and additive
JP4529667B2 (en) * 2004-12-09 2010-08-25 株式会社大林組 Purification method and additive for contaminated soil and contaminated water
JP2010539943A (en) * 2007-09-28 2010-12-24 ティー.エフ.エイチ.パブリケーションズ、インコーポレーテッド Biodegradable excreta pad or litter containing nutrients that promote microbial populations
JP2011067199A (en) * 2009-08-27 2011-04-07 Ehime Univ New microorganism having petroleum decomposition ability
JP2014231041A (en) * 2013-05-29 2014-12-11 株式会社熊谷組 Polluted soil mix method
CN110695074A (en) * 2019-09-07 2020-01-17 轻工业环境保护研究所 Method for in-situ remediation of polycyclic aromatic hydrocarbon contaminated soil
CN114101318A (en) * 2020-08-26 2022-03-01 中国石油天然气股份有限公司 Treatment method of petroleum-polluted soil
GB2598382A (en) * 2020-08-28 2022-03-02 Epiq Env Ltd Micro-mechanical augmented bioremediation method for treatment of oil contaminated soil
WO2022043688A1 (en) * 2020-08-28 2022-03-03 EPIQ Environment Ltd Micro-mechanical augmented bioremediation method for treatment of oil contaminated soil
GB2613099A (en) * 2020-08-28 2023-05-24 Epiq Env Sal Micro-mechanical augmented bioremediation method for treatment of oil contaminated soil
CN115415309A (en) * 2022-08-30 2022-12-02 陇东学院 Method for restoring petroleum-polluted soil

Similar Documents

Publication Publication Date Title
Devlin et al. The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer
US6268205B1 (en) Subsurface decontamination method
Koolivand et al. Oily sludge biodegradation using a new two-phase composting method: kinetics studies and effect of aeration rate and mode
JP3564574B1 (en) Hexavalent chromium-contaminated soil, groundwater, and sediment purification agent and purification method
Sivakumar et al. Bioremediation studies on reduction of heavy metals toxicity
JP2010269244A (en) Additive and method for cleaning medium contaminated with mineral oil
RU2403103C2 (en) Method of detoxicating soil contaminated by oil products
Wu et al. The effect of various reaction parameters on bioremediation of perchlorate-contaminated water
Höhener et al. Methodology for the evaluation of engineered in situ bioremediation: lessons from a case study
Obire et al. Biodegradation of refined petroleum hydrocarbons in soil
Williams et al. The use of poultry litter as co-substrate and source of inorganic nutrients and microorganisms for the ex situ biodegradation of petroleum compounds
JP2003053324A (en) Restoration method for soil polluted with petroleum
JP4021511B2 (en) Purification method for organic chlorine compound contaminants
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
JPH11253926A (en) Purifycation of polluted substance by halogenated organic compound
JP2007075670A (en) Purification method of soil polluted by organic materials and cyanide
JP2007253075A (en) Soil purifying method
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
Parreira et al. Microbial biodegradation of aromatic compounds in a soil contaminated with gasohol
Selberg et al. Biodegradation and leaching of surfactants during surfactant-amended bioremediation of oil-polluted soil
Vineetha et al. Bioremediation of oil contaminated soil
US6444204B1 (en) Candida maltosa used for the bio-degradation of petroleum product pollutants
RU2475314C1 (en) Method of detoxication of soil contaminated by oil products
JP3346242B2 (en) Biological purification method for oil contaminated soil
Vanbroekhoven et al. Sustainable approach for the immobilization of metals in the saturated zone: In situ bioprecipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310