JP4529667B2 - Purification method and additive for contaminated soil and contaminated water - Google Patents

Purification method and additive for contaminated soil and contaminated water Download PDF

Info

Publication number
JP4529667B2
JP4529667B2 JP2004356829A JP2004356829A JP4529667B2 JP 4529667 B2 JP4529667 B2 JP 4529667B2 JP 2004356829 A JP2004356829 A JP 2004356829A JP 2004356829 A JP2004356829 A JP 2004356829A JP 4529667 B2 JP4529667 B2 JP 4529667B2
Authority
JP
Japan
Prior art keywords
contaminated
additive
contaminated soil
water
gluconic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004356829A
Other languages
Japanese (ja)
Other versions
JP2006159132A (en
Inventor
博 久保
瑞世 四本
浩基 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004356829A priority Critical patent/JP4529667B2/en
Publication of JP2006159132A publication Critical patent/JP2006159132A/en
Application granted granted Critical
Publication of JP4529667B2 publication Critical patent/JP4529667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機ハロゲン化合物に汚染された汚染土壌・汚染水を嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法及び添加剤に関する。   The present invention relates to a contaminated soil / polluted water purification method and an additive for purifying contaminated soil / polluted water contaminated with an organic halogen compound by anaerobic microorganisms.

近年、有機ハロゲン化合物に汚染された汚染土壌・汚染水を嫌気性微生物によって浄化する浄化方法としては、汚染土壌・汚染水に、電子供与体である乳糖やポリ乳酸エステル等の有機酸を添加剤として加える技術がある(例えば、特許文献1,2参照)。   In recent years, as a purification method to purify contaminated soil and contaminated water contaminated with organic halogen compounds with anaerobic microorganisms, organic acids such as lactose and polylactic acid esters, which are electron donors, are added to the contaminated soil and contaminated water. (See, for example, Patent Documents 1 and 2).

そして、このような従来の技術によれば、嫌気性微生物による還元的脱ハロゲン化反応によって、汚染土壌・汚染水を浄化することが可能となる。
特開2003−251331号公報 特許第3538643号
And according to such a conventional technique, it becomes possible to purify contaminated soil and contaminated water by the reductive dehalogenation reaction by anaerobic microorganisms.
JP 2003-251331 A Japanese Patent No. 3538643

しかしながら、従来の汚染土壌・汚染水の浄化方法では、浄化速度が遅いという問題がある。また、従来の添加剤は高価であるため、浄化コストが高いという問題もある。   However, there is a problem that the conventional purification method for contaminated soil and contaminated water has a slow purification rate. Moreover, since the conventional additive is expensive, there also exists a problem that the purification cost is high.

本発明は、上記の点に鑑みてなされたものであり、汚染土壌・汚染水の浄化速度を向上させるとともに、浄化コストを低減させることができる汚染土壌・汚染水の浄化方法及び添加剤を提供することを目的とする。   The present invention has been made in view of the above points, and provides a method for purifying contaminated soil and contaminated water and an additive capable of improving the purification rate of contaminated soil and contaminated water and reducing the purification cost. The purpose is to do.

上記課題を解決するために、本発明は、有機ハロゲン化合物に汚染された汚染土壌・汚染水を、該有機ハロゲン化合物の分解活性を有し、前記汚染土壌・前記汚染水に存在する嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法であって、前記汚染土壌及び/又は前記汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を加えることを特徴とする。 In order to solve the above problems, the present invention has been contaminated soil and contaminated water contaminated by organic halogen compounds, have a degrading activity of the organic halogen compounds, anaerobic microorganisms present in the contaminated soil and the contaminated water A method for purifying contaminated soil and / or contaminated water, wherein gluconic acid derivatives such as gluconic acid and gluconate, gluconic acid amide, gluconic acid ester, and gluconic anhydride are added to the contaminated soil and / or the contaminated water. Of these, an additive containing at least one of them is added.

また、上記課題を解決するために、本発明は、有機ハロゲン化合物に汚染された汚染土壌・汚染水を、該有機ハロゲン化合物の分解活性を有し、前記汚染土壌・前記汚染水に存在する嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法であって、前記汚染土壌及び/又は前記汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を水素供与体として加え、嫌気環境下で生成される有機酸によって前記嫌気性微生物を活性化することを特徴とする。 In order to solve the above problems, the present invention has been contaminated soil and contaminated water contaminated by organic halogen compounds, have a degrading activity of the organic halogen compound is present in said contaminated soil and the contaminated water anaerobic A method for purifying contaminated soil and / or contaminated water to be purified by a microorganism, wherein the contaminated soil and / or the contaminated water contains glucones such as gluconic acid and gluconate, gluconate amide, gluconate ester, gluconate anhydride, etc. An additive containing at least one of acid derivatives is added as a hydrogen donor, and the anaerobic microorganism is activated by an organic acid generated in an anaerobic environment .

また、上記課題を解決するために、本発明は、有機ハロゲン化合物に汚染された汚染土壌・汚染水を、該有機ハロゲン化合物の分解活性を有し、前記汚染土壌・前記汚染水に存在する嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法であって、前記汚染土壌及び/又は前記汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を水素供与体として加え、エアレーションなしの嫌気環境下で生成される有機酸によって前記嫌気性微生物を活性化することを特徴とする。 In order to solve the above problems, the present invention has been contaminated soil and contaminated water contaminated by organic halogen compounds, have a degrading activity of the organic halogen compound is present in said contaminated soil and the contaminated water anaerobic A method for purifying contaminated soil and / or contaminated water to be purified by a microorganism, wherein the contaminated soil and / or the contaminated water contains glucones such as gluconic acid and gluconate, gluconate amide, gluconate ester, gluconate anhydride, etc. An additive containing at least one of acid derivatives is added as a hydrogen donor, and the anaerobic microorganism is activated by an organic acid generated in an anaerobic environment without aeration .

上記添加剤は、グルコン酸ナトリウム、グルコン酸カリウム、グルコン酸カルシウムのうち少なくとも1種以上を主成分として含有するとともに、窒素源及びリン源を含有することが好ましい。そして、上記添加剤に含まれるC:N:Pの重量比(%)は、34:3:0.3であることが好ましい。また、上記浄化方法において、汚染土壌、汚染水、添加剤のうち少なくとも1つにpH調整剤を加えることが好ましい。The additive preferably contains at least one or more of sodium gluconate, potassium gluconate, and calcium gluconate as a main component, and also contains a nitrogen source and a phosphorus source. The weight ratio (%) of C: N: P contained in the additive is preferably 34: 3: 0.3. Moreover, in the said purification method, it is preferable to add a pH adjuster to at least 1 among contaminated soil, contaminated water, and an additive.

また、本発明は、上記の汚染土壌・汚染水の浄化方法に用いられる添加剤であることを特徴とする。   Moreover, this invention is an additive used for the purification method of said contaminated soil and contaminated water, It is characterized by the above-mentioned.

本発明によれば、汚染土壌・汚染水の浄化速度を向上させるとともに、浄化コストを低減させることができる。   According to the present invention, it is possible to improve the purification speed of contaminated soil / contaminated water and reduce the purification cost.

以下、本発明の一実施形態に係る汚染土壌・汚染水の浄化方法を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the method for purifying contaminated soil and contaminated water according to an embodiment of the present invention will be described.

まず、本発明は、有機ハロゲン化合物に汚染された汚染土壌・汚染水を嫌気性微生物によって浄化するにあたり、汚染土壌及び/又は汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を加えるという構成を有する。   First, in purifying contaminated soil and contaminated water contaminated with an organic halogen compound by anaerobic microorganisms, the present invention provides gluconic acid and gluconate, gluconic acid amide, and gluconic acid ester to contaminated soil and / or contaminated water. And an additive containing at least one of gluconic acid derivatives such as gluconic acid anhydride.

上記構成の本発明において、有機ハロゲン化合物は、脂肪族炭化水素又は芳香族炭化水素の水素とハロゲン(例えば、フッ素,塩素,臭素,ヨウ素等)とが置換した化合物であり、このような有機ハロゲン化合物としては、例えば、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、シス−1,2−ジクロロエチレン(cis−1,2−DCE)、塩化ビニル(VC)等の脂肪族有機塩素化合物が挙げられる。   In the present invention having the above structure, the organic halogen compound is a compound in which hydrogen of an aliphatic hydrocarbon or aromatic hydrocarbon is substituted with a halogen (for example, fluorine, chlorine, bromine, iodine, etc.). Examples of the compound include aliphatic organic chlorine compounds such as tetrachloroethylene (PCE), trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), and vinyl chloride (VC).

また、上記の嫌気性微生物は、有機ハロゲン化合物の分解活性を有する嫌気性微生物であり、このような嫌気性微生物としては、例えば、メタノバクテリウム(Methanobacterium)属、メタノサルシナ(Methanosarcina)属、メタノロブス(Methanolobus)属等の嫌気性古細菌、アセトバクテリウム(Acetobacterium)属、デスルフォバクテリウム(Desulfobacterium)属、デスルフォモニル(Desulfomonile)属、デハロスピリルム(Dehalospirillum)属、デハロバクター(Dehalobacter)属、デハロバクテリウム(Dehalobacterium)属、デハロコッコイデス(Dehalococcoides)属、クロストリジウム(Clostridium)属等が挙げられる。   The above-mentioned anaerobic microorganisms are anaerobic microorganisms having the activity of decomposing organic halogen compounds. Examples of such anaerobic microorganisms include the genus Methanobacterium, the genus Methanosarcina, and the methanolobus ( Anaerobic archaea such as Methanolobus, Acetobacterium, Desulfobacterium, Desulfomonile, Dehalospirillum, Dehalobacter, Dehalobacter (Dehalobacter) Examples include the genus Dehalobacterium, the genus Dehalococcoides, and the genus Clostridium.

また、上記の添加剤は、グルコン酸及びグルコン酸誘導体のうち少なくとも1種以上含有しており、嫌気性微生物による有機ハロゲン化合物の分解活性を向上させて、有機ハロゲン化合物の脱ハロゲン化反応を促進させる水素供与体として機能する。すなわち、有機ハロゲン化合物であるテトラクロロエチレン(PCE)は、水素をエレクトロンドナーとし、PCE等をエレクトロンアクセプターとする還元脱ハロゲン反応により、増殖エネルギー(ATP)を獲得する「有機ハロゲン呼吸(脱ハロゲン化呼吸)菌」によってトリクロロエチレン(TCE)に分解される。さらにトリクロロエチレン(TCE)は、シス−1,2−ジクロロエチレン(cis−1,2−DCE)に分解され、最終的にはエチレンにまで分解されることで無害化される。嫌気性微生物を活性化させるためには、水素の供給が不可欠であるため、水素供与体であるグルコン酸及びグルコン酸誘導体を含有する添加剤が汚染土壌・汚染地下水に加えられる。なお、グルコン酸誘導体としては、例えば、グルコン酸塩、グルコン酸アミド、グルコン酸エステル、グルコン酸無水物等があり、これらのグルコン酸誘導体のうち、グルコン酸塩が好ましい。   Moreover, said additive contains at least 1 or more types among gluconic acid and a gluconic acid derivative, improves the decomposition activity of the organic halogen compound by an anaerobic microorganism, and accelerates | stimulates the dehalogenation reaction of an organic halogen compound. Function as a hydrogen donor. That is, tetrachloroethylene (PCE), which is an organic halogen compound, acquires growth energy (ATP) by a reductive dehalogenation reaction using hydrogen as an electron donor and PCE as an electron acceptor. “Organic halogen respiration (dehalogenated respiration) ) Fungus "to be decomposed into trichlorethylene (TCE). Furthermore, trichlorethylene (TCE) is decomposed into cis-1,2-dichloroethylene (cis-1,2-DCE) and finally detoxified by being decomposed into ethylene. Since the supply of hydrogen is indispensable for activating the anaerobic microorganism, an additive containing gluconic acid and a gluconic acid derivative as a hydrogen donor is added to the contaminated soil / contaminated groundwater. Examples of the gluconic acid derivative include gluconate, gluconate amide, gluconate, gluconic anhydride, etc. Among these gluconate derivatives, gluconate is preferable.

上記の添加剤としては、グルコン酸ナトリウム、グルコン酸カリウム、グルコン酸カルシウムのうち少なくとも1種以上を主成分として含有するとともに、窒素源及びリン源を含有するものが好ましく、pH調整剤を含有するものであってもよい。   As said additive, while containing at least 1 or more types among sodium gluconate, potassium gluconate, and calcium gluconate as a main component, what contains a nitrogen source and a phosphorus source is preferable, and contains a pH adjuster. It may be a thing.

グルコン酸ナトリウム(以下、「グルコン酸ソーダ」という。)は、食品添加物として認められているように毒性が非常に少なく、また、キレート剤等、工業用として幅広く使用されており、非常に安価である。このため、グルコン酸ソーダは、安全性に優れているとともに、浄化コストの低減にも優れている。さらに、グルコン酸ソーダの分子式はC11Naであり、嫌気性微生物を増殖させるための炭素源として、すぐに分解されて吸収されやすいという点でも優れている。 Sodium gluconate (hereinafter referred to as “sodium gluconate”) has very low toxicity as recognized as a food additive, and is widely used for industrial purposes such as chelating agents, so it is very inexpensive. It is. For this reason, sodium gluconate is excellent in safety and excellent in reducing purification costs. Furthermore, the molecular formula of sodium gluconate is C 6 H 11 O 7 Na, which is also excellent in that it is readily decomposed and absorbed as a carbon source for growing anaerobic microorganisms.

また、窒素源及びリン源は、炭素源と共に嫌気性微生物を増殖させるために必要な栄養源であり、グルコン酸ソーダに窒素源及びリン源を配合したものを上記の添加剤として用いることが好ましい。窒素源及びリン源の配合比は、各々、窒素(N)がグルコン酸ソーダの炭素(C)に対して1/10〜1/20量、リン(P)がグルコン酸ソーダの炭素(C)に対して、1/100〜1/200量とする。但し、浄化対象となる地下水等に、予め窒素やリンが含まれる場合には、グルコン酸ソーダのみの添加でよい。添加剤に含まれるC:N:Pの重量比(%)は、34:3:0.3が好ましい。この際、窒素源及びリン源として用いる材料は、特に限定されるものではなく、例えば、窒素源として尿素、リン源としてリン酸二水素カリウムを用い、それぞれグルコン酸ソーダに対して、6%、1%混合すれば、C:N:Pの配合(重量比)が34(%):3(%):0.3(%)となる。   Further, the nitrogen source and the phosphorus source are nutrient sources necessary for growing anaerobic microorganisms together with the carbon source, and it is preferable to use a mixture of sodium gluconate and a nitrogen source and a phosphorus source as the additive. . The mixing ratio of the nitrogen source and the phosphorus source is such that nitrogen (N) is 1/10 to 1/20 of the carbon (C) of sodium gluconate, and phosphorus (P) is the carbon (C) of sodium gluconate. The amount is 1/100 to 1/200. However, when nitrogen or phosphorus is contained in advance in the groundwater to be purified, only sodium gluconate may be added. The weight ratio (%) of C: N: P contained in the additive is preferably 34: 3: 0.3. At this time, materials used as a nitrogen source and a phosphorus source are not particularly limited. For example, urea is used as a nitrogen source, potassium dihydrogen phosphate is used as a phosphorus source, and each is 6% with respect to sodium gluconate, If 1% is mixed, the blending ratio (weight ratio) of C: N: P is 34 (%): 3 (%): 0.3 (%).

また、上記のように水素供与体を含有する添加剤を汚染土壌・汚染地下水に添加する場合には、汚染土壌・汚染地下水の性質により酸性化してしまうこともある。そこで、かかる場合には、中性条件を維持するために、pH調整剤を汚染土壌・汚染地下水に加えることが好ましい。なお、pH調整剤は、汚染土壌・汚染地下水のみならず、添加剤に加えてもよい。このようなpH調整剤としては、アルカリ金属化合物、アルカリ土類金属化合物等があり、例えば、リン酸カリウム、リン酸カルシウム、硫酸カルシウム、酸化マグネシウム、ベンナイト、ゼオライト、石灰石、消石灰、生石灰等が挙げられ、溶液状で添加しても、粉体で添加してもよい。水溶性のpH調整剤としては、リン酸ナトリウム、水酸化ナトリウム、炭酸ナトリウム以外に、例えば、リン酸水素ナトリウムとリン酸水素カリウムを混合したようなpH緩衝液でもよい。   Moreover, when the additive containing a hydrogen donor is added to the contaminated soil / contaminated groundwater as described above, it may be acidified due to the nature of the contaminated soil / contaminated groundwater. Therefore, in such a case, in order to maintain neutral conditions, it is preferable to add a pH adjuster to the contaminated soil / contaminated groundwater. The pH adjuster may be added to the additive as well as the contaminated soil / contaminated groundwater. Examples of such pH adjusters include alkali metal compounds, alkaline earth metal compounds, and the like, for example, potassium phosphate, calcium phosphate, calcium sulfate, magnesium oxide, bennite, zeolite, limestone, slaked lime, quicklime, etc. It may be added as a solution or as a powder. As a water-soluble pH adjuster, in addition to sodium phosphate, sodium hydroxide, and sodium carbonate, for example, a pH buffer solution in which sodium hydrogen phosphate and potassium hydrogen phosphate are mixed may be used.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

===室内試験===
まず、本室内試験においては、VOC(揮発性有機塩素化合物)の実汚染土及び現地地下水を供試サンプルとし、水素供与体としてグルコン酸ソーダを含有する添加剤を用いた。その際の培養条件は、25℃にて静置培養するとともに、週1回の割合で攪拌するものであった。VOCの濃度分析は、ヘッドスペースガスをサンプリングし、VOCをGC(Dry−ELCD)にて分析した後、定期的に試験体を潰してpH、ORP、TOC等の理化学性分析を行った。なお、本室内試験では、グルコン酸ソーダを単独で加えた場合と、グルコン酸ソーダに窒素源及びリン源を配合したものを加えた場合について、VOCの分解速度を比較した。なお、添加剤の添加濃度は、土と地下水の合計量に対する重量%で示した。その試験結果を図1に示す。
=== In-house test ===
First, in this laboratory test, VOC (volatile organic chlorine compound) actual contaminated soil and local groundwater were used as test samples, and an additive containing sodium gluconate as a hydrogen donor was used. The culture conditions at that time were stationary culture at 25 ° C. and stirring at a rate of once a week. The VOC concentration analysis was conducted by sampling the headspace gas and analyzing the VOC by GC (Dry-ELCD), and then periodically crushing the specimen to perform physicochemical analysis such as pH, ORP, and TOC. In this laboratory test, the decomposition rate of VOC was compared between the case where sodium gluconate was added alone and the case where a mixture of nitrogen source and phosphorus source was added to sodium gluconate. In addition, the addition density | concentration of the additive was shown by weight% with respect to the total amount of soil and groundwater. The test results are shown in FIG.

図1は、本室内試験結果を示すグラフであり、(a)はグルコン酸ソーダを単独で添加した場合のVOCの分解速度を示すグラフであり、(b)はグルコン酸ソーダに窒素源及びリン源を配合したものを添加した場合のVOCの分解速度を示すグラフである。   FIG. 1 is a graph showing the results of this laboratory test, (a) is a graph showing the decomposition rate of VOC when sodium gluconate is added alone, and (b) is a graph showing the nitrogen source and phosphorus in sodium gluconate. It is a graph which shows the decomposition | disassembly rate of VOC at the time of adding what mix | blended the source | sauce.

図1(a)に示すように、グルコン酸ソーダを上記の供試サンプルに単独で添加した場合には、VOCであるPCE及びTCEはグルコン酸ソーダを添加してから1週間以内に分解されてcis−1,2−DCEとなる。そして、このcis−1,2−DCEは、145日経過後には完全に分解された。   As shown in FIG. 1 (a), when sodium gluconate is added to the above test sample alone, PCE and TCE which are VOCs are decomposed within one week after the addition of sodium gluconate. cis-1,2-DCE. The cis-1,2-DCE was completely decomposed after 145 days.

他方、図1(b)に示すように、グルコン酸ソーダに窒素源及びリン源を配合したものを上記の供試サンプルに添加した場合には、グルコン酸ソーダを単独で添加した場合と比べ、特に、cis−1,2−DCEの分解速度が速くなった。   On the other hand, as shown in FIG. 1 (b), when a mixture of a nitrogen source and a phosphorus source in sodium gluconate was added to the above test sample, compared with the case where sodium gluconate was added alone, In particular, the decomposition rate of cis-1,2-DCE was increased.

すなわち、cis−1,2−DCEが環境基準値以下になるまでの期間は、グルコン酸ソーダを単独で添加した場合には約145日であったが、グルコン酸ソーダに窒素源及びリン源を配合したものを添加した場合には120日であった。窒素源及びリン源を配合することにより、cis−1,2−DCEの分解日数が1ヶ月ほど短縮した。   That is, the period until cis-1,2-DCE falls below the environmental standard value was about 145 days when sodium gluconate was added alone, but the nitrogen source and phosphorus source were added to sodium gluconate. When the blend was added, it was 120 days. By blending a nitrogen source and a phosphorus source, the number of days of degradation of cis-1,2-DCE was shortened by about one month.

===注入濃度及び注入方法===
次に、添加剤を原位置の地盤に注入する際の注入濃度及び注入方法について説明する。
=== Injection concentration and injection method ===
Next, an injection concentration and an injection method when the additive is injected into the ground in the original position will be described.

本実施例の添加剤は、グルコン酸ソーダを主成分として含有するため、水への溶解性が高く(グルコン酸ソーダの溶解度:59g/100ml)、分解されやすいという性質がある。このため添加剤を高濃度の状態で地盤に注入すると、添加剤が分解されて高濃度の水素が供給され、嫌気性微生物の生育を阻害してしまう。そこで、地盤に注入する際には、添加剤を希釈しておく必要がある。なお、掘削浄化の場合は、上記の嫌気性微生物を含む掘削土壌をスラリー若しくは泥状化して養生する。この場合の添加剤の添加濃度は、間隙水の濃度がおよそ0.04〜1.3%相当となるようにする。   Since the additive of this example contains sodium gluconate as a main component, it has a high solubility in water (solubility of sodium gluconate: 59 g / 100 ml) and is easily decomposed. For this reason, when an additive is injected into the ground in a high concentration state, the additive is decomposed and a high concentration of hydrogen is supplied to inhibit the growth of anaerobic microorganisms. Therefore, it is necessary to dilute the additive when injecting into the ground. In the case of excavation purification, the excavated soil containing the anaerobic microorganisms is cured by slurrying or mud. The additive concentration in this case is such that the pore water concentration is approximately 0.04 to 1.3%.

図2は、添加剤の添加量とVOC濃度の経時的変化との関係を示すグラフであり、添加濃度は、土と地下水の合計量に対する重量%で示した。(a)は対照区のVOC変化を示し、(b)は添加濃度0.025%のVOC変化を示し、(c)は添加濃度0.05%、(d)は添加濃度0.1%、(e)は添加濃度0.2%、(f)は添加濃度0.4%、(g)は添加濃度1%のVOC変化を示す。なお、添加剤として、グルコン酸ソーダのみならず窒素源及びリン源を含有するものを用いた(以下、「グルコン酸Na+N,P」と称す。)。   FIG. 2 is a graph showing the relationship between the amount of additive added and the change over time in the VOC concentration, and the additive concentration is expressed in weight% with respect to the total amount of soil and groundwater. (A) shows the VOC change in the control group, (b) shows the VOC change at the addition concentration of 0.025%, (c) the addition concentration 0.05%, (d) the addition concentration 0.1%, (E) shows a change in VOC at an addition concentration of 0.2%, (f) shows an addition concentration of 0.4%, and (g) shows a change in VOC at an addition concentration of 1%. As the additive, one containing not only sodium gluconate but also a nitrogen source and a phosphorus source was used (hereinafter referred to as “Na + gluconate Na + N, P”).

図2に示すように、添加剤を添加していない対照区の場合には、添加剤を添加してから120日を経過したとしても、VOC濃度はいずれも環境基準値以下とならなかった(図2(a)参照)。これに対し、添加濃度0.025%、0.05%、0.1%、0.2%、0.4%の場合には、添加剤を加えてから約120日が経過すると、基準が定められているVOC濃度はすべて環境基準値以下となった(図2(b)〜(f)参照)。1%の場合でも、約150日後には、VOC濃度はすべて環境基準値以下となった(図2(g)参照)。   As shown in FIG. 2, in the case of the control group to which no additive was added, even if 120 days had elapsed since the addition of the additive, none of the VOC concentrations fell below the environmental standard value ( (See FIG. 2 (a)). On the other hand, when the addition concentration is 0.025%, 0.05%, 0.1%, 0.2%, 0.4%, the standard is All defined VOC concentrations were below the environmental standard value (see FIGS. 2B to 2F). Even in the case of 1%, after about 150 days, the VOC concentrations were all below the environmental standard value (see FIG. 2 (g)).

なお、VCについては、環境基準値はないものの、PCEやTCEよりも毒性が強いとされているため、できる限り分解されることが望ましい(本実施例では、VC濃度の一応の基準値として、0.005mg/l未満とした)。添加濃度0.025%、0.05%、0.1%、0.2%では、120日後までに、検出限界まで分解されることが確認されたが、0.4%、1.0%では、150日後にVCが検出されており、添加濃度が高くなると、浄化速度が遅くなる傾向にあった。添加濃度0.025%〜1%は、地下水濃度に換算すると、およそ0.04〜1.3%に相当し、この範囲であればVOC浄化効果が認められるといえる。但し、0.5%以上の添加は浄化速度が遅い。以上より、添加剤を原位置の地盤に注入する際には、約0.04〜1.0%で希釈したものを注入することが望ましい。   Although there is no environmental standard value for VC, it is said that it is more toxic than PCE and TCE, so it is desirable to decompose as much as possible (in this example, as a temporary standard value for VC concentration, Less than 0.005 mg / l). At addition concentrations of 0.025%, 0.05%, 0.1%, and 0.2%, it was confirmed that they were decomposed to the detection limit by 120 days, but 0.4% and 1.0%. Then, VC was detected after 150 days, and the purification rate tended to be slower as the addition concentration increased. The addition concentration of 0.025% to 1% corresponds to approximately 0.04 to 1.3% in terms of groundwater concentration, and it can be said that the VOC purification effect is recognized within this range. However, addition of 0.5% or more has a slow purification rate. From the above, when injecting the additive into the ground in the original position, it is desirable to inject the additive diluted by about 0.04 to 1.0%.

ところで、添加剤を上記のように希釈する方法としては、次のような希釈方法が効率的である。すなわち、まず30%の高濃度液を作成しておき、これを水道水で希釈して保存する。希釈液は約1週間保存できる。このようにして作成した30%濃度液を、揚水もしくは地下水で適性濃度(0.04〜1.0%)に希釈し、地盤に注入する。揚水もしくは地下水で希釈した場合には、低濃度希釈液はすぐに分解される可能性があるため、その日のうちに地盤に注入することが望ましい。このように希釈を2段階で行うことにより、小型の注入タンクを使用することが可能となる。   By the way, as a method of diluting the additive as described above, the following dilution method is efficient. That is, a high concentration solution of 30% is first prepared and diluted with tap water and stored. The diluted solution can be stored for about one week. The 30% concentration solution thus prepared is diluted to an appropriate concentration (0.04 to 1.0%) with pumped water or groundwater and poured into the ground. When diluted with pumped water or groundwater, the low-concentration diluted solution may be decomposed immediately, so it is desirable to inject it into the ground within the same day. By performing dilution in two stages as described above, a small injection tank can be used.

また、添加剤を原位置の地盤に注入するための注入方法としては、例えば、(A)〜(D)の方法がある。まず、(A)地下水もしくは工業用水に添加剤を溶かし、この溶液をVOCで汚染された浄化対象範囲の帯水層に設置した注入井戸に連続注入し、帯水層に溶液を充填する方法がある。また、(B)浄化対象範囲の帯水層に設置した注入井戸に、添加剤を透水性のパックに詰めてつるすことにより、注入井戸を通過する地下水に添加剤を溶解させて地盤中に拡散させる方法もある。なお、拡散した添加剤の地下水中の濃度が0.025〜1%になるように添加剤パックの個数や形状を調整する。添加剤を充填したパックは定期的に交換する。さらに、(C)添加剤をグラウト装置等により、添加剤の溶液を浄化対象範囲の帯水層に圧入する方法もある。この方法で圧入された溶液は、帯水層の地下水の流れにより除々に薄まって拡散していく。なお、拡散した添加剤の濃度が地盤中で0.025〜1%になるように、圧入する添加剤溶液の濃度を調整する。さらに、(D)比較的透水性の悪い地盤等においては、次のような方法もある。すなわち、浅い帯水層では、浅層混合機械攪拌もしくは高圧噴射攪拌によって浄化対象の帯水層と添加剤溶液とを混合し、他方、深い帯水層では、深層混合機械攪拌もしくは高圧噴射攪拌によって浄化対象の帯水層と添加剤溶液とを混合するという方法である。なお、浅層混合機械としては、バックホウに攪拌用アタッチメントを付けたものなどがあり、深層混合機械としては、オーガーなどがある。高圧噴射攪拌工法としては、CCP(Chemical−Churning−Pile)などがある。この工法は、ロッドの先端に装着したモニターから噴射させ、回転・引き上げすることにより地盤に添加剤を混合させるものである。   Moreover, as an injection | pouring method for inject | pouring an additive into the ground of an original position, there exists the method of (A)-(D), for example. First, there is a method in which (A) an additive is dissolved in ground water or industrial water, and this solution is continuously injected into an injection well installed in an aquifer of a purification target range contaminated with VOC, and the aquifer is filled with the solution. is there. In addition, (B) the injection well installed in the aquifer in the purification target area is suspended by filling the water-permeable pack with the additive, so that the additive is dissolved in the groundwater passing through the injection well and diffused into the ground. There is also a way to make it. The number and shape of the additive pack are adjusted so that the concentration of the diffused additive in the groundwater is 0.025 to 1%. Periodically replace packs filled with additives. Furthermore, there is a method in which (C) the additive solution is pressed into the aquifer in the range to be purified by a grout apparatus or the like. The solution injected by this method gradually dilutes and diffuses due to the flow of groundwater in the aquifer. In addition, the density | concentration of the additive solution to press-fit is adjusted so that the density | concentration of the diffused additive may be 0.025 to 1% in the ground. Further, (D) in the ground having relatively poor water permeability, there are the following methods. That is, in the shallow aquifer, the aquifer to be purified and the additive solution are mixed by shallow mixing mechanical stirring or high-pressure jet stirring, while in the deep aquifer, by deep-mixing mechanical stirring or high-pressure jet stirring. In this method, the aquifer to be purified and the additive solution are mixed. The shallow layer mixing machine includes a backhoe with a stirring attachment, and the deep layer mixing machine includes an auger. Examples of the high-pressure jet stirring method include CCP (Chemical-Churning-Pile). In this construction method, an additive is mixed with the ground by spraying from a monitor attached to the tip of a rod, and rotating and pulling up.

===pH調整剤の添加===
次に、pH調整剤の添加について説明する。pH調整剤を地盤に添加する形態としては、添加剤を地盤に注入する際にこれと同時に添加する場合(初期添加)と、添加剤を添加した後に別途添加する場合(別途添加)とがある。
=== Addition of pH adjusting agent ===
Next, the addition of a pH adjuster will be described. As a form of adding the pH adjuster to the ground, there are a case where the additive is added to the ground at the same time (initial addition) and a case where the additive is added after the additive is added (separate addition). .

<pH調整剤の初期添加>
本実施例の添加剤は、嫌気的に分解される過程で有機酸が発生するため、pHが酸性側に傾く。pHが酸性側に傾くと微生物活性が阻害されるため、VOCの浄化に長時間を要することとなる。そこで、添加剤を水に希釈する際に、予めpHを8〜9に調整しておくことが望ましい(初期添加)。
<Initial addition of pH adjuster>
Since the organic acid is generated in the process of anaerobically decomposing the additive of this example, the pH is inclined to the acidic side. When the pH is inclined toward the acidic side, the microbial activity is inhibited, and thus it takes a long time to purify the VOC. Therefore, when diluting the additive in water, it is desirable to adjust the pH to 8 to 9 in advance (initial addition).

また、pH調整に用いる材料はリン酸水素二ナトリウムとし、添加量は添加剤添加量の15〜30%相当量とする。リン酸水素二ナトリウム水溶液は、弱アルカリ性であるため扱いやすく、リン酸は嫌気性微生物の栄養分として活用できる。   The material used for pH adjustment is disodium hydrogen phosphate, and the amount added is equivalent to 15 to 30% of the amount of additive added. Disodium hydrogen phosphate aqueous solution is weakly alkaline and easy to handle, and phosphoric acid can be used as a nutrient for anaerobic microorganisms.

さらに、本実施例においては、かかるpH調整剤の浄化効果について室内試験を実施した。その試験結果を図3に示す。なお、本室内試験では、リン酸水素二ナトリウムとリン酸水素二カリウムとを混合し、pH7及びpH8の調整したものを添加剤と同時にそれぞれ地盤に添加した。このようにリン酸水素二ナトリウムとリン酸水素二カリウムとを混合することにより、リン酸水素二ナトリウムを単独で用いる場合よりもpH緩衝効果が期待できる。   Furthermore, in the present Example, the laboratory test was implemented about the purification effect of this pH adjuster. The test results are shown in FIG. In this laboratory test, disodium hydrogen phosphate and dipotassium hydrogen phosphate were mixed, and adjusted to pH 7 and pH 8 were added to the ground simultaneously with the additives. Thus, by mixing disodium hydrogen phosphate and dipotassium hydrogen phosphate, a pH buffering effect can be expected as compared with the case where disodium hydrogen phosphate is used alone.

図3は、pH調整剤を初期添加した場合におけるVOC濃度の経時的変化を示すグラフであり、(a)は対照区のVOC変化を示し、(b)はpH調整剤添加区(pH:7)のVOC変化を示し、(c)はpH調整剤添加区(pH:8)のVOC変化を示す。   FIG. 3 is a graph showing the change over time in the VOC concentration when the pH adjuster was initially added. (A) shows the VOC change in the control group, and (b) is the pH adjuster added group (pH: 7). ) Shows the change in VOC, and (c) shows the change in VOC in the pH adjuster addition group (pH: 8).

図3に示すように、添加剤(グルコン酸Na+N,P:0.2%)を添加するのみでpH調整剤を添加していない対照区の場合には、VOC濃度が上記基準値以下となるまで、添加剤を添加してから約120日(4ヶ月)を要した(図3(a)参照)。これに対し、添加剤とともにpH調整剤を添加したpH調整剤添加区の場合には、いずれも約60日(2ヶ月)を経過すると、VOC濃度が基準値以下となった(図3(b)及び(c)参照)。   As shown in FIG. 3, in the case of the control group in which an additive (Na + N gluconate, P: 0.2%) is added but no pH adjuster is added, the VOC concentration is below the reference value. It took about 120 days (4 months) after the additive was added (see FIG. 3A). On the other hand, in the case of the pH adjuster addition section in which the pH adjuster was added together with the additive, the VOC concentration became below the reference value after about 60 days (2 months) (FIG. 3 (b) ) And (c)).

このことから、pH調整剤を添加することにより、VOC濃度が基準値以下となるまでの期間が2ヶ月間ほど短縮されており、VOC浄化速度が向上したといえる。   From this, it can be said that by adding the pH adjuster, the period until the VOC concentration becomes equal to or lower than the reference value is shortened by about two months, and the VOC purification rate is improved.

なお、図4は、各試験区におけるpH変化を示すグラフである。図4に示すように、pH調整をしない場合、すなわちpH調整剤無添加の場合には、14日経過後のpHは6.0に低下した。これに対し、pH調整をした場合、すなわちpH調整剤(pH7及び8)を初期添加した場合には、pHはいずれも6.3以上の値を示した。   In addition, FIG. 4 is a graph which shows the pH change in each test section. As shown in FIG. 4, when pH adjustment was not performed, that is, when no pH adjuster was added, the pH after 14 days had dropped to 6.0. In contrast, when the pH was adjusted, that is, when the pH adjusting agents (pH 7 and 8) were initially added, the pH showed a value of 6.3 or more.

ところで、本室内試験では、pH緩衝能をもたせるために、リン酸水素二ナトリウムとリン酸水素二カリウムとの混合液を使用したが、実際に現場で使用する際に、浄化コストを抑えたい場合には、アルカリ剤であるリン酸水素二ナトリウムのみの使用でもよい。その場合、pH調整剤の添加量は、添加剤を水で希釈する際にpHが8〜9になる程度の添加量とし、かかる添加量の目安として、添加剤添加量の15〜30%相当量とする。   By the way, in this laboratory test, a mixed solution of disodium hydrogen phosphate and dipotassium hydrogen phosphate was used in order to provide pH buffering capacity. In addition, it is possible to use only disodium hydrogen phosphate which is an alkaline agent. In that case, the addition amount of the pH adjusting agent is such that the pH becomes 8-9 when the additive is diluted with water, and as a measure of such addition amount, it corresponds to 15-30% of the additive addition amount. Amount.

<pH調整剤の別途添加>
また、pH調整方法として、添加剤を原位置の地盤に注入する際にこれと同時に添加する場合以外に、添加剤を添加した後に別途添加する場合とがある。すなわち、地盤によっては、地盤自体のpHが高く、或いはpH緩衝能が高い土壌もあり、予めpH調整剤を混合する必要がない場合もある。そこで、微生物処理実施中に地下水のpHをモニタリングしておき、pHが6.3以下となった場合に、別途pH調整剤を添加してpHを中性(7.0〜7.5)付近に戻すものとする。添加剤の添加量とVOC分解速度との関係、及びpH調整剤の添加による影響を表1に示す。

Figure 0004529667
<Additional addition of pH adjuster>
Moreover, as a pH adjustment method, when adding an additive to the ground of an in-situ, it may add separately after adding an additive other than adding simultaneously with this. That is, depending on the ground, there is soil with a high pH of the ground itself or a high pH buffering capacity, and it may not be necessary to mix a pH adjusting agent in advance. Therefore, the pH of groundwater is monitored during microbial treatment, and when the pH falls below 6.3, a pH adjuster is added separately to adjust the pH to around neutral (7.0 to 7.5). Return to Table 1 shows the relationship between the addition amount of the additive and the VOC decomposition rate, and the influence of the addition of the pH adjusting agent.
Figure 0004529667

表1は、添加剤の添加量とVOC分解速度との関係、及びpH調整剤の添加による影響を示す表である。表1に示すように、添加剤の添加量が0.025%、0.05%、0.1%の場合には、cis−1,2−DCEは60日後に環境基準値以下(<0.04mg/l)となり、他方、VCは90日後に上記基準値以下となった(<0.005mg/l)。   Table 1 is a table showing the relationship between the addition amount of the additive and the VOC decomposition rate, and the influence of the addition of the pH adjusting agent. As shown in Table 1, when the additive amount is 0.025%, 0.05%, 0.1%, cis-1,2-DCE is less than the environmental standard value after 60 days (<0 0.04 mg / l), on the other hand, VC was below the reference value after 90 days (<0.005 mg / l).

これに対し、添加剤の添加量が0.2%及び0.4%の場合には、上記基準値以下となるまで、各々、120日(0.2%添加)、145日以上(0.4%添加)の期間を要しており、いずれも長期間となった。しかし、添加剤の添加量が0.2%の添加区において上記のようなpH調整を実施すれば、cis−1,2−DCE及びVCの濃度は、60日で環境基準値以下となった。   On the other hand, when the addition amount of the additive is 0.2% and 0.4%, 120 days (0.2% addition) and 145 days or more (0. 4% addition) was required, both of which were long. However, if the pH adjustment as described above is performed in the addition section where the additive amount is 0.2%, the concentrations of cis-1,2-DCE and VC are below the environmental standard value in 60 days. .

なお、図5は、添加剤の添加量の違いによるpH変化を示すグラフである。図5に示すように、表1において基準値以下となるまでの期間が短期間(60日もしくは90日)の場合、すなわち添加剤の添加量が0.2%及び0.4%以外の場合には、いずれも30日を経過した時点で、pHは6.3以上の値を示した。以上より、VOC浄化速度を向上させるためには、pHを6.3以上となるように調整することが好ましい。   In addition, FIG. 5 is a graph which shows the pH change by the difference in the addition amount of an additive. As shown in FIG. 5, in Table 1, when the period until the reference value or less is short (60 days or 90 days), that is, when the additive amount is other than 0.2% and 0.4% In any case, when 30 days passed, pH showed a value of 6.3 or more. From the above, in order to improve the VOC purification rate, it is preferable to adjust the pH to be 6.3 or higher.

===従来例との比較===
最後に、本実施例の添加剤(グルコン酸ソーダ含有)と、従来例の添加剤(乳糖含有:商品名「EDC」)との比較を示す。
=== Comparison with conventional examples ===
Finally, a comparison between the additive of the present example (containing sodium gluconate) and the additive of the conventional example (containing lactose: trade name “EDC”) is shown.

図6は、本実施例及び従来例におけるVOC濃度の経時的変化を示すグラフであり、(a)はPCE濃度の経時的変化を示し、(b)はTCE濃度の経時的変化を示す。なお、同図において、添加剤を添加していないものを対照区とし、加えて、窒素源及びリン源を含有する添加剤を添加したもの、及び窒素源及びリン源を含有しない添加剤を添加したものを試験区としている。   FIG. 6 is a graph showing the change over time of the VOC concentration in the present example and the conventional example. (A) shows the change over time of the PCE concentration, and (b) shows the change over time of the TCE concentration. In the same figure, the control group is the one with no additive added, and the additive containing the nitrogen source and phosphorus source is added, and the additive not containing the nitrogen source and phosphorus source is added. This is the test area.

図6に示すように、添加剤を添加していない対照区の場合には、PCE及びTCEの濃度はそれ程変化せず、また環境基準値を下回ることもなかった。さらに、従来例の添加剤(乳糖含有:商品名「EDC」)を添加した場合にも、PCE及びTCEの濃度は、添加剤を添加してから7日経過後において、各々、約0.1mg/l及び約10mg/lという高濃度値を示しており、いずれも環境基準値を満たしていない。   As shown in FIG. 6, in the case of the control group to which no additive was added, the concentrations of PCE and TCE did not change so much and did not fall below the environmental standard value. Further, when the conventional additive (lactose content: trade name “EDC”) is added, the concentrations of PCE and TCE are about 0.1 mg / kg after 7 days from the addition of the additive. 1 and high concentration values of about 10 mg / l, both of which do not satisfy the environmental standard value.

これに対し、本実施例の添加剤(グルコン酸ソーダ含有)を添加した場合には、添加剤を添加してから約3日経過すると、いずれの試験区においてもPCEは環境基準値以下(≦0.01mg/l)となった(図6(a)参照)。同様に、TCEについても環境基準値以下(≦0.03mg/l)となった(図6(b)参照)。   On the other hand, when the additive of this example (containing sodium gluconate) was added, after about 3 days had passed since the additive was added, PCE was below the environmental standard value (≦ 0.01 mg / l) (see FIG. 6A). Similarly, TCE was below the environmental standard value (≦ 0.03 mg / l) (see FIG. 6B).

以上のように、本実施例の添加剤(グルコン酸ソーダ含有)を用いた場合には、従来例の添加剤(乳糖含有:商品名「EDC」)を用いた場合と比べ、VOC浄化速度がよりいっそう向上する。   As described above, when the additive of this example (containing sodium gluconate) is used, the VOC purification rate is higher than when the additive of conventional example (containing lactose: trade name “EDC”) is used. Further improve.

また、本実施例の添加剤は極めて安価であるのに対し、従来例の添加剤(乳糖含有:商品名「EDC」)は高価である。よって、本実施例の添加剤を用いた場合には、従来例の添加剤を用いた場合と比べ、浄化コストがよりいっそう低減する。   Further, the additive of the present example is extremely inexpensive, whereas the additive of the conventional example (containing lactose: trade name “EDC”) is expensive. Therefore, when the additive of the present example is used, the purification cost is further reduced as compared with the case of using the additive of the conventional example.

本発明の一実施例における室内試験結果を示すグラフであり、(a)はグルコン酸ソーダを単独で添加した場合のVOC分解速度を示すグラフであり、(b)はグルコン酸ソーダに窒素源及びリン源を配合したものを添加した場合のVOC分解速度を示すグラフである。It is a graph which shows the laboratory test result in one Example of this invention, (a) is a graph which shows the VOC decomposition | disassembly rate at the time of adding sodium gluconate alone, (b) is a nitrogen source and a gluconate soda. It is a graph which shows the VOC decomposition | disassembly rate at the time of adding what mix | blended the phosphorus source. 添加剤の添加量とVOC濃度の経時的変化との関係を示すグラフであり、(a)は対照区のVOC変化を示し、(b)は添加濃度0.025%、(c)は添加濃度0.05%、(d)は添加濃度0.1%、(e)は添加濃度0.2%、(f)は添加濃度0.4%、(g)は添加濃度1%のVOC変化を示す。It is a graph which shows the relationship between the addition amount of an additive and a time-dependent change of a VOC density | concentration, (a) shows the VOC change of a control group, (b) is an addition density | concentration 0.025%, (c) is an addition density | concentration. 0.05%, (d) is 0.1% added concentration, (e) is 0.2% added concentration, (f) is 0.4% added concentration, (g) is VOC change of 1% added concentration. Show. pH調整剤を初期添加した場合におけるVOC濃度の経時的変化を示すグラフであり、(a)は対照区のVOC変化を示し、(b)はpH調整剤添加区(pH:7)のVOC変化を示し、(c)はpH調整剤添加区(pH:8)のVOC変化を示す。It is a graph which shows a time-dependent change of the VOC density | concentration at the time of adding a pH adjuster initially, (a) shows the VOC change of a control group, (b) shows the VOC change of a pH adjuster addition group (pH: 7). (C) shows the VOC change in the pH adjuster addition group (pH: 8). 本発明の一実施例における各試験区のpH変化を示すグラフである。It is a graph which shows the pH change of each test section in one Example of this invention. 本発明の一実施例における添加剤の添加量の違いによるpH変化を示すグラフである。It is a graph which shows the pH change by the difference in the addition amount of the additive in one Example of this invention. 本実施例及び従来例におけるVOC濃度の経時的変化を示すグラフであり、(a)はPCE濃度の経時的変化を示し、(b)はTCE濃度の経時的変化を示す。It is a graph which shows a time-dependent change of the VOC density | concentration in a present Example and a prior art example, (a) shows a time-dependent change of PCE density | concentration, (b) shows a time-dependent change of TCE density | concentration.

Claims (7)

有機ハロゲン化合物に汚染された汚染土壌・汚染水を、該有機ハロゲン化合物の分解活性を有し、前記汚染土壌・前記汚染水に存在する嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法であって、
前記汚染土壌及び/又は前記汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を加えることを特徴とする汚染土壌・汚染水の浄化方法。
It has been contaminated soil and contaminated water contaminated by organic halogen compounds, have a degrading activity of the organic halogen compound, in the purification method of the contaminated soil and contaminated water purifying by anaerobic microorganisms present in the contaminated soil and the contaminated water There,
An additive containing at least one or more gluconic acid derivatives such as gluconic acid and gluconate, gluconic acid amide, gluconic acid ester, and gluconic acid anhydride is added to the contaminated soil and / or the contaminated water. Purification method for contaminated soil and water.
有機ハロゲン化合物に汚染された汚染土壌・汚染水を、該有機ハロゲン化合物の分解活性を有し、前記汚染土壌・前記汚染水に存在する嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法であって、
前記汚染土壌及び/又は前記汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を水素供与体として加え、嫌気環境下で生成される有機酸によって前記嫌気性微生物を活性化することを特徴とする汚染土壌・汚染水の浄化方法。
It has been contaminated soil and contaminated water contaminated by organic halogen compounds, have a degrading activity of the organic halogen compound, in the purification method of the contaminated soil and contaminated water purifying by anaerobic microorganisms present in the contaminated soil and the contaminated water There,
An additive containing at least one of gluconic acid derivatives such as gluconic acid and gluconate, gluconic acid amide, gluconic acid ester, and gluconic acid anhydride in the contaminated soil and / or the contaminated water as a hydrogen donor. In addition, a method for purifying contaminated soil and contaminated water, wherein the anaerobic microorganism is activated by an organic acid generated in an anaerobic environment .
有機ハロゲン化合物に汚染された汚染土壌・汚染水を、該有機ハロゲン化合物の分解活性を有し、前記汚染土壌・前記汚染水に存在する嫌気性微生物によって浄化する汚染土壌・汚染水の浄化方法であって、
前記汚染土壌及び/又は前記汚染水に、グルコン酸及びグルコン酸塩,グルコン酸アミド,グルコン酸エステル,グルコン酸無水物等のグルコン酸誘導体のうち少なくとも1種以上含有する添加剤を水素供与体として加え、エアレーションなしの嫌気環境下で生成される有機酸によって前記嫌気性微生物を活性化することを特徴とする汚染土壌・汚染水の浄化方法。
It has been contaminated soil and contaminated water contaminated by organic halogen compounds, have a degrading activity of the organic halogen compound, in the purification method of the contaminated soil and contaminated water purifying by anaerobic microorganisms present in the contaminated soil and the contaminated water There,
An additive containing at least one of gluconic acid derivatives such as gluconic acid and gluconate, gluconic acid amide, gluconic acid ester, and gluconic acid anhydride in the contaminated soil and / or the contaminated water as a hydrogen donor. In addition, a method for purifying contaminated soil and contaminated water, wherein the anaerobic microorganism is activated by an organic acid generated in an anaerobic environment without aeration .
請求項1から3のいずれか1項に記載の汚染土壌・汚染水の浄化方法において、
前記添加剤は、
グルコン酸ナトリウム、グルコン酸カリウム、グルコン酸カルシウムのうち少なくとも1種以上を主成分として含有するとともに、窒素源及びリン源を含有することを特徴とする汚染土壌・汚染水の浄化方法。
In the purification method of the contaminated soil and contaminated water according to any one of claims 1 to 3 ,
The additive is
A method for purifying contaminated soil and contaminated water, comprising at least one or more of sodium gluconate, potassium gluconate, and calcium gluconate as a main component, and a nitrogen source and a phosphorus source.
請求項に記載の汚染土壌・汚染水の浄化方法において、
前記添加剤に含まれるC:N:Pの重量比(%)は、
34:3:0.3であることを特徴とする汚染土壌・汚染水の浄化方法。
In the purification method of the contaminated soil and contaminated water according to claim 4 ,
The weight ratio (%) of C: N: P contained in the additive is:
The method for purifying contaminated soil / polluted water, wherein the ratio is 34: 3: 0.3.
請求項1からのいずれか1項に記載の汚染土壌・汚染水の浄化方法において、
前記汚染土壌、前記汚染水、前記添加剤のうち少なくとも1つにpH調整剤を加えることを特徴とする汚染土壌・汚染水の浄化方法。
In the purification method of the contaminated soil and contaminated water according to claims 1 to any one of 5,
A method for purifying contaminated soil and contaminated water, comprising adding a pH adjuster to at least one of the contaminated soil, the contaminated water, and the additive.
請求項1からのいずれか1項に記載の汚染土壌・汚染水の浄化方法に用いられる添加剤。 Additives used in purifying method contaminated soil and contaminated water according to any one of claims 1 to 6.
JP2004356829A 2004-12-09 2004-12-09 Purification method and additive for contaminated soil and contaminated water Active JP4529667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356829A JP4529667B2 (en) 2004-12-09 2004-12-09 Purification method and additive for contaminated soil and contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356829A JP4529667B2 (en) 2004-12-09 2004-12-09 Purification method and additive for contaminated soil and contaminated water

Publications (2)

Publication Number Publication Date
JP2006159132A JP2006159132A (en) 2006-06-22
JP4529667B2 true JP4529667B2 (en) 2010-08-25

Family

ID=36661715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356829A Active JP4529667B2 (en) 2004-12-09 2004-12-09 Purification method and additive for contaminated soil and contaminated water

Country Status (1)

Country Link
JP (1) JP4529667B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770767B2 (en) * 2007-03-23 2011-09-14 パナソニック株式会社 Soil and groundwater purification methods
JP4835486B2 (en) * 2007-03-27 2011-12-14 パナソニック株式会社 Soil and groundwater purification methods
JP5023850B2 (en) * 2007-07-05 2012-09-12 パナソニック株式会社 Method for purifying contaminated soil and groundwater
JP4862805B2 (en) * 2007-11-20 2012-01-25 株式会社大林組 Method for insolubilizing heavy metal contaminated ground
JP5163235B2 (en) * 2008-03-31 2013-03-13 株式会社大林組 In-situ purification method for contaminated ground or groundwater
JP4924527B2 (en) * 2008-04-25 2012-04-25 株式会社大林組 Recycling method of glycerin by-product
JP4729758B2 (en) * 2008-10-31 2011-07-20 Adeka総合設備株式会社 Decomposition promoter and method for promoting degradation of volatile organic halogen compounds by microorganisms
JP5667376B2 (en) * 2009-04-07 2015-02-12 東栄化成株式会社 Treatment agent for contaminated soil and method for treating contaminated soil
JP5387109B2 (en) * 2009-04-15 2014-01-15 株式会社大林組 In-situ purification method for high-concentration VOC-contaminated ground
JP2011161372A (en) * 2010-02-09 2011-08-25 Ohbayashi Corp Agitation method of ground and cleaning method of ground
JP5533267B2 (en) * 2010-05-26 2014-06-25 株式会社大林組 Shield tunnel construction system and shield construction method
AU2011292103B2 (en) * 2010-08-18 2014-08-14 Jane A. Hoxsey Mineral-releasing compost and method of using the same for soil remediation
JP5742195B2 (en) * 2010-12-06 2015-07-01 株式会社明電舎 Method and system for processing ammoniacal nitrogen-containing liquid
JP6003377B2 (en) * 2012-08-09 2016-10-05 株式会社大林組 Method for insolubilizing cyan contaminated ground
JP2018175529A (en) * 2017-04-17 2018-11-15 東急建設株式会社 Decomposition accelerator, and environmental cleanup method using the decomposition accelerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287673A (en) * 1999-04-08 2000-10-17 Daiso Co Ltd Decomposition of chlorinated glyceride using microorganism
JP2002300873A (en) * 2001-02-02 2002-10-15 Japan Science & Technology Corp Microorganism degrading organochlorine aromatic compound and method for degrading the same
JP2003053324A (en) * 2001-06-04 2003-02-25 Petroleum Energy Center Restoration method for soil polluted with petroleum
JP2004188406A (en) * 2002-04-02 2004-07-08 Eiichi Tashiro Anaerobic purifying method for soil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566408B2 (en) * 1995-06-26 2004-09-15 キヤノン株式会社 Biodegradation purification method for pollutants released into the environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287673A (en) * 1999-04-08 2000-10-17 Daiso Co Ltd Decomposition of chlorinated glyceride using microorganism
JP2002300873A (en) * 2001-02-02 2002-10-15 Japan Science & Technology Corp Microorganism degrading organochlorine aromatic compound and method for degrading the same
JP2003053324A (en) * 2001-06-04 2003-02-25 Petroleum Energy Center Restoration method for soil polluted with petroleum
JP2004188406A (en) * 2002-04-02 2004-07-08 Eiichi Tashiro Anaerobic purifying method for soil

Also Published As

Publication number Publication date
JP2006159132A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP4529667B2 (en) Purification method and additive for contaminated soil and contaminated water
WO1998034740A1 (en) Processes for purifying substances polluted with organohalogen compounds
CN110303039B (en) Method for in-situ remediation of organochlorine contaminated soil by zero-valent iron and indigenous microorganisms
JP4944157B2 (en) Additives and purification methods for purifying media contaminated with mineral oil
EP2707154B1 (en) In-situ subsurface decontamination
KR20100066540A (en) Method for the bioremediation of soil and/or water contaminated by organic and/or inorganic compounds
US20070017866A1 (en) Methods of enhancing biodegradation of groundwater contaminants
Wu et al. The effect of various reaction parameters on bioremediation of perchlorate-contaminated water
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JP4021511B2 (en) Purification method for organic chlorine compound contaminants
JP3401191B2 (en) Method for purifying contaminants by halogenated organic compounds
Su et al. Anaerobic biodegradation of PAH in river sediment treated with different additives
JP2004202357A (en) Method for purifying organic compound-polluted object
JP5155619B2 (en) Soil and groundwater purification promoter and purification method
JP4557219B2 (en) Additives used to restore contaminated soil, groundwater or sediment
JP2010051930A (en) Oxygen generating agent and method of cleaning one or both of contaminated soil and groundwater
US8178743B2 (en) Method of chemical treatment of soils containing hazardous substances susceptible to nucleophillic attack
JP2007075670A (en) Purification method of soil polluted by organic materials and cyanide
JP5377069B2 (en) Additive and purification method for purifying media contaminated with organochlorine compounds
JP2004130166A (en) Method for restoring polluted soil or the like
Durant et al. Spatial variability in the naphthalene mineralization response to oxygen, nitrate, and orthophosphate amendments in MGP aquifer sediments
JP2003071431A (en) Method for cleaning thing polluted with halogenated organic compound
JP5244321B2 (en) Permeability purification wall and purification method of contaminated groundwater
JP2002001304A (en) Method for decomposing organic chlorine compound in soil and/or underground water
KR101383848B1 (en) Method for stabilizing farmland using agricultural lime and microbe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4