JP2004202357A - Method for purifying organic compound-polluted object - Google Patents

Method for purifying organic compound-polluted object Download PDF

Info

Publication number
JP2004202357A
JP2004202357A JP2002374097A JP2002374097A JP2004202357A JP 2004202357 A JP2004202357 A JP 2004202357A JP 2002374097 A JP2002374097 A JP 2002374097A JP 2002374097 A JP2002374097 A JP 2002374097A JP 2004202357 A JP2004202357 A JP 2004202357A
Authority
JP
Japan
Prior art keywords
organic compound
substance
buffer
purifying
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374097A
Other languages
Japanese (ja)
Other versions
JP4167052B2 (en
Inventor
Yoshiaki Hasebe
吉昭 長谷部
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002374097A priority Critical patent/JP4167052B2/en
Publication of JP2004202357A publication Critical patent/JP2004202357A/en
Application granted granted Critical
Publication of JP4167052B2 publication Critical patent/JP4167052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purifying soil, ground water or the like polluted with an organic compound using a decomposition agent and decomposing the organic compound being a pollutant without lowering the pH of a reaction region and the reactivity of the decomposition agent. <P>SOLUTION: A substance having the decomposition property of the organic compound being the pollutant and a substance having a pH buffering action are added to soil, ground water or the like polluted with the organic compound. As the substance having the decomposition property of the organic compound being the pollutant, for example, peroxodisulfuric acid or a peroxodisulfate can be used. As the substance having the pH buffering action, for example, a carbonic acid type buffer solution or a phosphoric acid type buffer solution can be used. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機化合物に汚染された物質を物理化学的に浄化する方法に関する。本発明に係る有機化合物汚染の浄化方法は、例えば有機塩素化合物に汚染された地質、地下水、排水、底質、飛灰等の浄化に好適に使用される。
【0002】
【従来の技術】
近年、土壌、地下水等の様々な化学物質による汚染が顕在化し、その対策が急がれている。特に、洗浄剤として各種工場やクリーニング店で広く使用されているトリクロロエチレン、テトラクロロエチレン等の有機塩素化合物は、発癌性物質である疑いがあり、そのためこれら有機塩素化合物による汚染には早急に対策を講じる必要がある。
【0003】
従来、有機塩素化合物で汚染された土壌や地下水の処理方法としては、汚染土壌の封じ込め処理、汚染土壌を掘削して分解剤を混合する分解処理、地下水を揚水して曝気処理や活性炭吸着処理を行うポンプ・アンド・トリート法などが主に用いられてきた。
【0004】
しかし、土壌を掘削して分解剤を混合する分解処理法では、掘削に大規模な工事が必要であり、要する費用は多大なものとなる。しかも掘削による方法では、汚染土壌の上に建築物がある場合、建築物の撤去等が必要となるため、浄化が困難なことも多い。また、地下水を揚水した後に処理を施すポンプ・アンド・トリート法では、浄化完了までに数年以上の年月を要する場合も多く、浄化期間の短縮が強く望まれている。
【0005】
これに対し、上記問題点を解決するために、掘削を行うことなく、土壌や地下水に原位置で分解剤を注入することにより、土壌や地下水を浄化する方法が提案されている(例えば、特許文献1、2参照)。これらの浄化法においては、分解剤として過マンガン酸塩、過硫酸塩、過酸化水素等の酸化剤が多く用いられる。
【0006】
【特許文献1】
特開2000−42537号公報
【特許文献2】
特開2000−51834号公報
【0007】
【発明が解決しようとする課題】
しかしながら、汚染有機化合物の種類にもよるが、前述した分解剤による反応は一般に酸性域で優位に働くため、分解剤を使用する場合は酸性条件下で反応を行うことを必要としたり、反応過程で酸性物質を生成したりすることが多く、そのため反応領域のpHが低下することが多い。
【0008】
また、分解剤を地中に直接注入して汚染地下水や汚染土壌を原位置で浄化する場合には、pHの低下は重金属等の溶出を促したり、コンクリート基礎の劣化を早めたりするなどの好ましくない影響を及ぼす。さらに、注入器材や揚水器材等にも耐酸性物質を使用する必要があるため、不慮の事故を引き起こしたり、浄化に要する費用の増加を引き起こしたりする場合がある。
【0009】
反応が反応容器内等の管理容易な領域で行われる場合には、アルカリ剤を添加するなどして反応領域のpHを調整することが可能である。しかし、反応が地中等の管理が難しい領域で行われる場合には、アルカリ剤(特に強アルカリ剤)の添加は反応を阻害することがあり、また、アルカリ剤の拡散が難しいため反応領域のpHを均一にすることが難しいといった問題も生じる。
【0010】
本発明は、前述した事情に鑑みてなされたもので、有機化合物に汚染された物質を分解剤を用いて浄化する方法であって、反応領域のpHを低下させることなく、また分解剤の反応性を低下させることなく、汚染有機化合物を分解することが可能な方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者は、前述した問題点を解決するために鋭意研究を行った結果、pH緩衝作用を有する物質と分解剤とを併用することによって、pHを任意に制御した状態で反応を行うことができ、また、pH緩衝作用を有する物質を適宜選択することにより、分解剤の反応を阻害することなく汚染有機化合物を分解できることを見出し、本発明をなすに至った。
【0012】
本発明は、上記知見に基づいてなされたもので、有機化合物に汚染された物質を浄化するに当たり、前記有機化合物に汚染された物質に、前記有機化合物の分解性を有する物質と、pH緩衝作用を有する物質とを添加することを特徴とする有機化合物汚染の浄化方法を提供する。
【0013】
【発明の実施の形態】
以下、本発明についてさらに詳しく説明する。本発明において浄化対象とする有機化合物に汚染された物質(以下、浄化対象物質という)は、例えば有機化合物に汚染された地質、地下水、排水、底質、飛灰等である。本発明の浄化方法は、種々の有機化合物汚染に広く用いることができるが、特に土壌や地下水などを原位置で浄化する原位置浄化に好適に使用される。汚染有機化合物としては、主にcis−1,2−ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン等の有機ハロゲン化合物を対象としているが、VOC(揮発性の有機化合物)以外の油、ダイオキシン類、芳香族化合物等による種々の有機化合物汚染に本発明は適用可能である。
【0014】
有機化合物の分解性を有する物質(以下、分解剤という)としては、限定されるものではないが、酸化作用を有する物質(酸化剤)、特に過マンガン酸塩、過硫酸塩および過酸化水素から選ばれる少なくとも1種を好適に使用することができる。ただし、過マンガン酸塩を用いた場合には反応生成物として二酸化マンガンを生成して帯水層を閉塞する可能性があること、過マンガン酸塩は土壌中の有機物との反応性が高く酸化剤消費量が増大すること、マンガンは水道法水質基準等で濃度規制されている物質であること、過マンガン酸塩は過硫酸塩に比べて水生生物に対する毒性が高いこと、また、過酸化水素は土壌との反応性が非常に高く注入井戸から地層中へ直接注入を行った場合に影響範囲が非常に小さくなってしまうことなどから、本発明では分解剤として過硫酸または過硫酸塩を用いることが特に適当である。過硫酸塩としては、例えば、過硫酸カリウム、過硫酸ナトリウム等を用いることができる。
【0015】
浄化対象物質中における分解剤の濃度は、汚染有機化合物の種類や浄化対象物質の性状等によって異なるが、概ね反応領域末端(浄化範囲の末端)において10mg/L以上、特に50mg/L以上であることが望ましい。また、浄化対象物質に添加する分解剤の濃度(分解剤溶液中の分解剤濃度)は、汚染有機化合物の濃度や種類によって異なるが、概ね10〜100000mg/Lの範囲とすることが好ましく、分解剤溶液の保管等を考えると100〜50000mg/Lの範囲とすることが望ましい。分解剤は溶液としてタンクに保管し注入することも可能であるが、浄化が長期に渡る場合には固体のまま保存し、分解剤自動溶解装置等を用いて溶液を作成し、連続的に注入を行うことも可能である。
【0016】
過硫酸イオンは、反応により過硫酸イオン1分子につき2分子の硫酸イオンを生じ、反応領域のpHを低下させる。pH低下は過硫酸イオンの分解および汚染有機化合物の分解を促す反面、帯水層中の重金属類の溶出促進、装置配管の腐食、構造物基礎の劣化といった好ましくない影響を及ぼす場合も多い。また、地下水が河川や湖沼へ流入している場合には、水生生物等への負荷も大きなものとなる。そこで、本発明では、分解剤とpH緩衝作用を有する物質とを共存させることにより、分解剤と汚染有機化合物との反応性を大きく下げることなく、pHを中性付近に維持して有機化合物汚染の浄化を行う。
【0017】
pH緩衝作用を有する物質としては、様々な緩衝系が提唱されている。この緩衝系には、例えばクラーク−ルーブズ(Clark−Lubs)の緩衝液、セーレンセン(Sorensen)の緩衝液、コルトフ(Kolthoff)の緩衝液、ミカエリス(Michaelis)の緩衝液、アトキンス−パンチン(Atkins−Pantin)の緩衝液、パリツッヒ(Palitzsch)の緩衝液、マッキルベイン(MacIlvaine)の緩衝液、メンツェル(Menzel)の緩衝液、ワルポール(Walpole)の緩衝液、ハスティング−センドロイ(Hasting−Sendroy)の緩衝液、ブリトン−ロビンソン(Britton−Robinson)の広域緩衝液、ゴモリ(Gomori)の緩衝液、等張緩衝液、ギ酸−ギ酸ナトリウム緩衝液、N−エチルモルホリン−塩酸緩衝液、炭酸水素アンモニウム緩衝液などがあり、様々な物質が用いられる。本発明では、緩衝剤を適宜選択して用いることができるが、分解剤との反応性や環境への負荷を考慮すると、緩衝剤としてはアルカリ性物質を用いることが好ましく、特に炭酸系緩衝液またはリン酸系緩衝液を用いることが望ましい。
【0018】
特にリン酸系緩衝液は、リン酸イオンにラジカルの安定作用があるため、汚染有機化合物と分解剤との反応性を高める点で好適に使用される。リン酸系緩衝液を用いる場合には、通常、緩衝剤としてリン酸、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム等から選ばれる複数の化合物を、制御したいpHに応じて任意の濃度に溶解することによりリン酸系緩衝液を調整することができる。また、コストや地下水中のリン濃度が問題となる場合には、リン酸水素二ナトリウムまたはその水和物を単独で使用することもできる。リン酸系緩衝液の濃度は、併用する分解剤の種類や濃度、制御したいpHによって変化するが、反応領域でのリン酸イオンとして5〜50000mg/L程度の濃度に制御することが望ましい。添加量を増やしても分解剤の分解性に与える影響は少ないので、これ以上の濃度を添加することも可能である。
【0019】
また、炭酸系緩衝液を使用する場合には、緩衝剤として炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸水素カリウム等が使用できるが、コストや溶解度、pHの観点からは炭酸水素ナトリウムを単独で使用することが望ましい。炭酸水素ナトリウムを緩衝剤として使用する場合、炭酸水素ナトリウムの濃度は併用する分解剤の種類や濃度、制御したいpHによって変化するが、反応領域での炭酸イオンとして50〜50000mg/L程度の濃度に制御することが望ましい。
【0020】
本発明において、反応領域のpHとしては、酸性側では重金属の溶出を促進し、また反応領域中に建築物の基礎等が存在する場合にはコンクリート素材を劣化させるため、pH4.0〜9.0、特に6.0〜8.0の範囲で制御することが望ましい。
【0021】
揚水した地下水中に汚染有機化合物が含まれている場合において、その地下水中に分解剤が十分量残存しているときには、揚水後に適当な期間静置しておくだけでも分解が進行し、汚染有機化合物は分解されるが、揚水した地下水に曝気処理、紫外線照射処理、オゾン添加処理等の1種以上の処理を行うことにより、揚水した地下水中に含まれている汚染有機化合物を分解してもよい。
【0022】
また、地下水中は還元雰囲気になっていることが多く、その地下水中には2価の鉄イオンが含まれている場合が多い。この2価の鉄イオンは、揚水により空気と接触したり、酸化剤により酸化されたりすると酸化鉄となり、沈殿を生じる。揚水した地下水中の汚染有機化合物を除いた後にこの地下水をあらためて注入用の水として使用するシステムは効率的であるが、この場合には酸化鉄や微細な土壌等の縣濁物をフィルタ処理や凝集沈殿処理等により除去することが適当である。
【0023】
【実施例】
以下に本発明を用いて行った実施例を示す。なお、この実施例は本発明の範囲を限定するものではない。
【0024】
トリクロロエチレン(TCE)で汚染された汚染現場より採取した地下水20mLを60mL容のバイアル瓶に入れ、そこに酸化剤として過硫酸ナトリウムを1000mg/L、緩衝剤としてリン酸水素二ナトリウム・12水和物を1800mg/Lとなるように添加して、20℃で静置保存した。バイアル瓶内のヘッドスペース部分のガスを所定時間ごとに採取し、光イオン検出器を用いたガスクロマトグラフ(PID/GC)により、ガス中に含まれるトリクロロエチレン濃度の測定を行った。また、比較例としてリン酸緩衝剤を添加しない系についても同様に実験を行った。この場合、リン酸緩衝剤を添加した系については、緩衝剤添加後かつ酸化剤添加前のTCE濃度および液のpH、トリクロロエチレンの完全分解が確認された後(72時間後)のTCE濃度および液のpHを測定した。リン酸緩衝剤を添加しない系については、酸化剤添加前のTCE濃度および液のpH、トリクロロエチレンの完全分解が確認された後(72時間後)のTCE濃度および液のpHを測定した。結果を表1に示す。
【0025】
【表1】

Figure 2004202357
【0026】
表1より、緩衝剤と酸化剤とを併用した場合には、酸化剤と汚染有機化合物との反応性を大きく下げることなく、pHを中性付近に維持して汚染有機化合物を分解できることがわかる。
【0027】
【発明の効果】
以上のように、本発明によれば、pH緩衝作用を有する物質と分解剤とを併用することによって、pHを任意に制御した状態で反応を行うことができ、また、pH緩衝作用を有する物質を適宜選択することにより、分解剤の反応を阻害することなく汚染有機化合物を分解できる。したがって、本発明によれば、有機化合物に汚染された地質、地下水、排水、底質、飛灰等を短期間でかつ安全に浄化することが可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for physicochemically purifying a substance contaminated with an organic compound. The method for purifying organic compound contamination according to the present invention is suitably used for purifying, for example, geology, groundwater, drainage, sediment, fly ash, and the like, which are contaminated with organic chlorine compounds.
[0002]
[Prior art]
In recent years, contamination by various chemical substances such as soil and groundwater has become apparent, and countermeasures are urgently required. In particular, organochlorine compounds such as trichloroethylene and tetrachloroethylene, which are widely used as cleaning agents in various factories and cleaning shops, are suspected to be carcinogenic substances, so it is necessary to take immediate measures against contamination by these organochlorine compounds. There is.
[0003]
Conventionally, methods for treating soil and groundwater contaminated with organochlorine compounds include contaminated soil containment, decomposition of excavated contaminated soil and mixing with a decomposer, aeration and activated carbon adsorption by pumping groundwater. For example, a pump and treat method is mainly used.
[0004]
However, the decomposition treatment method in which soil is excavated and mixed with a decomposing agent requires a large-scale construction for excavation, and the required cost is enormous. In addition, with the excavation method, when a building is present on contaminated soil, it is often necessary to remove the building, so that purification is often difficult. In the pump-and-treat method, in which treatment is performed after pumping groundwater, it often takes several years or more to complete purification, and it is strongly desired to shorten the purification period.
[0005]
On the other hand, in order to solve the above-mentioned problems, a method of purifying soil or groundwater by injecting a decomposing agent into soil or groundwater in situ without excavation has been proposed (for example, Patent References 1 and 2). In these purification methods, oxidizing agents such as permanganate, persulfate, and hydrogen peroxide are often used as decomposing agents.
[0006]
[Patent Document 1]
JP 2000-42537 A [Patent Document 2]
JP 2000-51834 A
[Problems to be solved by the invention]
However, depending on the type of the contaminating organic compound, the above-described reaction with a decomposing agent generally works predominantly in an acidic region. Therefore, when a decomposing agent is used, it is necessary to carry out the reaction under acidic conditions or the reaction process. The reaction often produces an acidic substance, which often lowers the pH of the reaction zone.
[0008]
In addition, when the decomposing agent is directly injected into the ground to purify contaminated groundwater or contaminated soil in situ, a decrease in pH promotes the elution of heavy metals, etc., or accelerates the deterioration of concrete foundations. Has no effect. Furthermore, since it is necessary to use an acid-resistant substance also for the injection equipment and the pumping equipment, it may cause an accident or an increase in the cost required for purification.
[0009]
When the reaction is carried out in an easily controllable region such as in a reaction vessel, the pH of the reaction region can be adjusted by adding an alkali agent or the like. However, when the reaction is performed in an area where it is difficult to control, such as underground, the addition of an alkali agent (particularly a strong alkali agent) may hinder the reaction, and the diffusion of the alkali agent is difficult, so that the pH of the reaction area is low. It is also difficult to make the uniformity.
[0010]
The present invention has been made in view of the circumstances described above, and is a method for purifying a substance contaminated with an organic compound using a decomposing agent, without lowering the pH of a reaction zone and reacting the decomposing agent. It is an object of the present invention to provide a method capable of decomposing contaminating organic compounds without lowering the property.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a substance having a pH buffering action and a decomposing agent together, it is possible to carry out the reaction in a state where the pH is arbitrarily controlled. The present inventors have found that by appropriately selecting a substance having a pH buffering action, it is possible to decompose contaminating organic compounds without inhibiting the reaction of a decomposing agent, and have accomplished the present invention.
[0012]
The present invention has been made on the basis of the above findings.In purifying a substance contaminated with an organic compound, the substance contaminated with the organic compound includes a substance having a decomposability of the organic compound and a pH buffering action. A method for purifying organic compound contamination, characterized by adding a substance having the following formula:
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail. The substance contaminated by the organic compound to be purified in the present invention (hereinafter referred to as the substance to be purified) is, for example, geology, groundwater, drainage, sediment, fly ash and the like contaminated by the organic compound. The purification method of the present invention can be widely used for various kinds of organic compound contamination, and is particularly suitably used for in situ purification of soil, groundwater, and the like. The polluting organic compounds are mainly organic halogen compounds such as cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, etc., but oils other than VOCs (volatile organic compounds), dioxins, aromatic compounds, etc. The present invention is applicable to various organic compound contaminations.
[0014]
The substance having a decomposability of organic compounds (hereinafter, referred to as a decomposer) is not limited, but may be a substance having an oxidizing action (oxidant), particularly permanganate, persulfate and hydrogen peroxide. At least one selected from them can be suitably used. However, if permanganate is used, manganese dioxide may be generated as a reaction product and block the aquifer, and permanganate is highly reactive with organic substances in soil and oxidized. Manganese is a substance whose concentration is regulated by the Water Quality Standards, etc., permanganate is more toxic to aquatic organisms than persulfate, and hydrogen peroxide Because the reactivity with the soil is very high, the range of influence becomes extremely small when direct injection is performed from the injection well into the formation, the persulfate or persulfate is used as a decomposer in the present invention. Is particularly suitable. As the persulfate, for example, potassium persulfate, sodium persulfate and the like can be used.
[0015]
The concentration of the decomposing agent in the substance to be purified varies depending on the type of the contaminated organic compound, the properties of the substance to be purified, and the like, but is generally 10 mg / L or more, particularly 50 mg / L or more at the end of the reaction region (end of the purification range). It is desirable. The concentration of the decomposer added to the substance to be purified (the concentration of the decomposer in the decomposer solution) varies depending on the concentration and type of the contaminating organic compound, but is preferably in the range of about 10 to 100,000 mg / L. Considering the storage of the agent solution and the like, it is desirable to set the range of 100 to 50,000 mg / L. It is possible to store and inject the disintegrant as a solution in the tank, but if purification is to be carried out for a long period of time, store it as a solid and prepare the solution using an automatic dissolving agent for disintegrators, and inject continuously. It is also possible to do.
[0016]
The persulfate ion generates two sulfate ions per molecule of persulfate ion by the reaction, and lowers the pH of the reaction region. While a decrease in pH promotes the decomposition of persulfate ions and the decomposition of contaminating organic compounds, it often has undesirable effects such as promotion of elution of heavy metals in the aquifer, corrosion of equipment piping, and deterioration of the foundation of the structure. When groundwater flows into rivers and lakes, the load on aquatic organisms and the like becomes large. Therefore, in the present invention, by coexisting a decomposing agent and a substance having a pH buffering action, the pH is maintained near neutral without significantly reducing the reactivity between the decomposing agent and the contaminating organic compound, thereby preventing the contamination of the organic compound. Perform purification.
[0017]
Various buffer systems have been proposed as substances having a pH buffering action. Such buffer systems include, for example, Clark-Lubs buffer, Sorensen buffer, Kolthoff buffer, Michaelis buffer, Atkins-Pantin buffer. ) Buffer, Palitzsch buffer, MacIlvaine buffer, Menzel buffer, Walpole buffer, Hasting-Sendroy buffer, Britton-Robinson's global buffer, Gomori's buffer, isotonic buffer, formic acid-sodium formate buffer, N-ethylmorpholine-hydrochloric acid buffer, charcoal Include ammonium hydrogen buffer, various materials are used. In the present invention, a buffer can be appropriately selected and used.However, in consideration of the reactivity with the decomposing agent and the load on the environment, it is preferable to use an alkaline substance as the buffer, and in particular, a carbonate buffer or It is desirable to use a phosphate buffer.
[0018]
In particular, phosphate-based buffers are preferably used in that phosphate ions have a radical stabilizing effect, and thus enhance the reactivity between contaminating organic compounds and decomposers. When a phosphate buffer is used, phosphoric acid, potassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate are generally used as buffers. The phosphate buffer can be adjusted by dissolving a plurality of compounds selected from the above to an arbitrary concentration according to the pH to be controlled. When cost and the concentration of phosphorus in groundwater pose a problem, disodium hydrogen phosphate or a hydrate thereof can be used alone. Although the concentration of the phosphate buffer varies depending on the type and concentration of the decomposing agent used in combination and the pH to be controlled, it is desirable to control the concentration of phosphate ions in the reaction region to about 5 to 50,000 mg / L. Since increasing the amount of addition has little effect on the degradability of the decomposing agent, it is possible to add a higher concentration.
[0019]
In addition, when using a carbonate buffer, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and the like can be used as a buffer, but from the viewpoint of cost, solubility, and pH. It is desirable to use sodium bicarbonate alone. When sodium bicarbonate is used as a buffer, the concentration of sodium bicarbonate varies depending on the type and concentration of the decomposing agent used in combination and the pH to be controlled. However, the concentration of carbonate ions in the reaction region is about 50 to 50,000 mg / L. It is desirable to control.
[0020]
In the present invention, the pH of the reaction zone is set to pH 4.0 to 9.0 to promote the elution of heavy metals on the acidic side and to deteriorate the concrete material when the foundation of a building is present in the reaction zone. It is desirable to control in the range of 0, especially 6.0 to 8.0.
[0021]
When contaminated organic compounds are contained in the pumped groundwater and the decomposing agent remains in the groundwater in a sufficient amount, decomposition proceeds even if the dewatering agent is left standing for an appropriate period after pumping. Although the compounds are decomposed, even if the contaminated organic compounds contained in the pumped groundwater are decomposed by performing at least one treatment such as aeration treatment, ultraviolet irradiation treatment, and ozone addition treatment on the pumped groundwater, Good.
[0022]
Groundwater often has a reducing atmosphere, and the groundwater often contains divalent iron ions. When this divalent iron ion comes into contact with air by pumping or is oxidized by an oxidizing agent, it turns into iron oxide and precipitates. A system that removes contaminating organic compounds from the pumped ground water and then uses the ground water again as water for injection is efficient.However, in this case, suspensions such as iron oxide and fine soil are filtered and processed. It is appropriate to remove by coagulation sedimentation treatment or the like.
[0023]
【Example】
Hereinafter, examples performed using the present invention will be described. Note that this example does not limit the scope of the present invention.
[0024]
20 mL of groundwater collected from a contamination site contaminated with trichloroethylene (TCE) is placed in a 60 mL vial, and sodium persulfate is used as an oxidizing agent at 1000 mg / L, and disodium hydrogen phosphate dodecahydrate is used as a buffering agent. Was added so as to be 1800 mg / L, and stored at 20 ° C. The gas in the headspace portion in the vial was sampled at predetermined time intervals, and the concentration of trichlorethylene contained in the gas was measured by gas chromatography (PID / GC) using a photoion detector. Further, as a comparative example, an experiment was similarly performed for a system to which no phosphate buffer was added. In this case, in the system to which the phosphate buffer was added, the TCE concentration and the pH of the solution after the addition of the buffer and before the addition of the oxidizing agent, and the TCE concentration and the solution after the complete decomposition of trichloroethylene were confirmed (after 72 hours) Was measured. For the system without the addition of the phosphate buffer, the TCE concentration and the pH of the solution before the addition of the oxidizing agent, and the TCE concentration and the pH of the solution after complete decomposition of trichlorethylene was confirmed (after 72 hours) were measured. Table 1 shows the results.
[0025]
[Table 1]
Figure 2004202357
[0026]
From Table 1, it can be seen that when the buffering agent and the oxidizing agent are used in combination, the pH can be maintained near neutral and the contaminating organic compound can be decomposed without greatly reducing the reactivity between the oxidizing agent and the contaminating organic compound. .
[0027]
【The invention's effect】
As described above, according to the present invention, by using a substance having a pH buffering action and a decomposer in combination, it is possible to carry out the reaction in a state where the pH is arbitrarily controlled, and further, a substance having a pH buffering action. By appropriately selecting, the contaminating organic compound can be decomposed without inhibiting the reaction of the decomposing agent. Therefore, according to the present invention, geology, groundwater, drainage, sediment, fly ash, and the like contaminated with organic compounds can be purified in a short period of time and safely.

Claims (7)

有機化合物に汚染された物質を浄化するに当たり、前記有機化合物に汚染された物質に、前記有機化合物の分解性を有する物質と、pH緩衝作用を有する物質とを添加することを特徴とする有機化合物汚染の浄化方法。In purifying a substance contaminated by an organic compound, an organic compound characterized by adding a substance having decomposability of the organic compound and a substance having a pH buffering action to the substance contaminated with the organic compound. How to purify pollution. 前記有機化合物の分解性を有する物質が、酸化作用を有する物質であることを特徴とする請求項1に記載の有機化合物汚染の浄化方法。The method for purifying organic compound contamination according to claim 1, wherein the substance having a decomposability of the organic compound is a substance having an oxidizing action. 前記有機化合物の分解性を有する物質が、過マンガン酸塩、過硫酸塩および過酸化水素から選ばれることを特徴とする請求項1または2に記載の有機化合物汚染の浄化方法。The method for purifying organic compound contamination according to claim 1, wherein the substance having decomposability of the organic compound is selected from permanganate, persulfate, and hydrogen peroxide. 前記pH緩衝作用を持つ物質が、アルカリ性物質であることを特徴とする請求項1〜3のいずれか1項に記載の有機化合物汚染の浄化方法。The method for purifying organic compound contamination according to any one of claims 1 to 3, wherein the substance having a pH buffering action is an alkaline substance. 前記pH緩衝作用を持つ物質が、リン酸またはその塩を含むことを特徴とする請求項1〜4のいずれか1項に記載の有機化合物汚染の浄化方法。5. The method according to claim 1, wherein the substance having a pH buffering action includes phosphoric acid or a salt thereof. 6. 前記pH緩衝作用を持つ物質が、炭酸またはその塩を含むことを特徴とする請求項1〜4のいずれか1項に記載の有機化合物汚染の浄化方法。The method for purifying organic compound contamination according to any one of claims 1 to 4, wherein the substance having a pH buffering action includes carbonic acid or a salt thereof. 反応領域のpHを4.0〜9.0に制御することを特徴とする請求項1〜6のいずれか1項に記載の有機化合物汚染の浄化方法。The method for purifying organic compound contamination according to any one of claims 1 to 6, wherein the pH of the reaction zone is controlled to 4.0 to 9.0.
JP2002374097A 2002-12-25 2002-12-25 Purification method for organic compound contamination Expired - Fee Related JP4167052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374097A JP4167052B2 (en) 2002-12-25 2002-12-25 Purification method for organic compound contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374097A JP4167052B2 (en) 2002-12-25 2002-12-25 Purification method for organic compound contamination

Publications (2)

Publication Number Publication Date
JP2004202357A true JP2004202357A (en) 2004-07-22
JP4167052B2 JP4167052B2 (en) 2008-10-15

Family

ID=32812220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374097A Expired - Fee Related JP4167052B2 (en) 2002-12-25 2002-12-25 Purification method for organic compound contamination

Country Status (1)

Country Link
JP (1) JP4167052B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123574A1 (en) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. Method of purifying soil and/or groundwater
JP2009039662A (en) * 2007-08-09 2009-02-26 Kajima Corp Original position cleaning method
JP2010082600A (en) * 2008-10-02 2010-04-15 Mitsubishi Gas Chemical Co Inc Method of cleaning soil and/or groundwater
JP2010149083A (en) * 2008-12-26 2010-07-08 Japan Organo Co Ltd Cleaning method of chemical pollution
JP2011002424A (en) * 2009-06-22 2011-01-06 Central Res Inst Of Electric Power Ind Method of quantitatively analyzing selenium
JP2011173089A (en) * 2010-02-25 2011-09-08 Kurita Water Ind Ltd Method for purifying polluted soil and/or groundwater
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
JP2013158711A (en) * 2012-02-06 2013-08-19 Taisei Corp Method of cleaning cyanogen compound
CN103991944A (en) * 2014-05-20 2014-08-20 东华大学 Water treatment method for inorganic anionic active persulfate
JPWO2013161936A1 (en) * 2012-04-27 2015-12-24 株式会社Adeka Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same
JP2016002523A (en) * 2014-06-18 2016-01-12 株式会社安藤・間 Method of purifying contaminated soil
JP2017519632A (en) * 2014-04-17 2017-07-20 エピック クリーンテック インコーポレイテッド Waste treatment system
CN106966481A (en) * 2017-05-17 2017-07-21 吉林大学 The method that in-situ reducing repairs Polluted Groundwater

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250975B2 (en) * 2005-05-19 2013-07-31 三菱瓦斯化学株式会社 Soil and / or groundwater purification method
JPWO2006123574A1 (en) * 2005-05-19 2008-12-25 三菱瓦斯化学株式会社 Soil and / or groundwater purification method
WO2006123574A1 (en) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. Method of purifying soil and/or groundwater
KR101290546B1 (en) * 2005-05-19 2013-07-31 미츠비시 가스 가가쿠 가부시키가이샤 Method of purifying soil and/or groundwater
JP2009039662A (en) * 2007-08-09 2009-02-26 Kajima Corp Original position cleaning method
JP2010082600A (en) * 2008-10-02 2010-04-15 Mitsubishi Gas Chemical Co Inc Method of cleaning soil and/or groundwater
JP2010149083A (en) * 2008-12-26 2010-07-08 Japan Organo Co Ltd Cleaning method of chemical pollution
JP2011002424A (en) * 2009-06-22 2011-01-06 Central Res Inst Of Electric Power Ind Method of quantitatively analyzing selenium
JP2011173089A (en) * 2010-02-25 2011-09-08 Kurita Water Ind Ltd Method for purifying polluted soil and/or groundwater
JP2013158711A (en) * 2012-02-06 2013-08-19 Taisei Corp Method of cleaning cyanogen compound
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
JP2013184983A (en) * 2012-03-05 2013-09-19 Seinen:Kk Chemical treatment agent
JPWO2013161936A1 (en) * 2012-04-27 2015-12-24 株式会社Adeka Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same
JP2017519632A (en) * 2014-04-17 2017-07-20 エピック クリーンテック インコーポレイテッド Waste treatment system
US10017405B2 (en) 2014-04-17 2018-07-10 Epic Cleantec Inc. Waste treatment system
US10479708B2 (en) 2014-04-17 2019-11-19 Epic Cleantec Inc. Waste treatment system
CN103991944A (en) * 2014-05-20 2014-08-20 东华大学 Water treatment method for inorganic anionic active persulfate
JP2016002523A (en) * 2014-06-18 2016-01-12 株式会社安藤・間 Method of purifying contaminated soil
CN106966481A (en) * 2017-05-17 2017-07-21 吉林大学 The method that in-situ reducing repairs Polluted Groundwater

Also Published As

Publication number Publication date
JP4167052B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP5042304B2 (en) Method for oxidizing volatile organic compounds in soil
JP5817718B2 (en) Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same
EP2707154B1 (en) In-situ subsurface decontamination
JP2004202357A (en) Method for purifying organic compound-polluted object
JP2015511152A (en) Decomposition of non-volatile halogenated organic compounds
JP4065226B2 (en) Method for purifying contaminated soil and contaminated groundwater
JP2002159959A (en) Method and device for purifying underground polluted region
KR101796239B1 (en) Remediation method for oil-contaminated soil
JP2006341195A (en) Method of clarifying organic contaminant
JP4095490B2 (en) Purification method for contamination by chemical substances
JP2011011167A (en) Wastewater treatment method
JP2002307049A (en) Method of cleaning chemical substance-polluted matter, and method of cleaning underground polluted region
JP2000210683A (en) Method for cleaning soil and/or groundwater
JP5528840B2 (en) Method and apparatus for treating chemical contamination
JP2000301172A (en) Method for cleaning soil and/or ground water
JP2002136961A (en) Decontamination method for soil or underground water
KR20100009704A (en) Remediation method of petroleum contaminated soil with iron salt and hydrogen peroxide
JP2004122049A (en) Purification method of soil and ground water
JP2002119977A (en) Method and apparatus for cleaning polluted ground water
JP2004167426A (en) Cleaning method of contamination due to chemical substance and cleaning system therefor
JP4134796B2 (en) Method for purifying contaminated soil and groundwater
JP5327856B2 (en) Water treatment method
JP4091867B2 (en) Soil and groundwater purification solution and purification method
JPH0523692A (en) Treatment and device for organochlorine compound
JP2006026574A (en) Rust prevention method for pumped well water by improvement of water quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Ref document number: 4167052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees