JP2004188406A - Anaerobic purifying method for soil - Google Patents

Anaerobic purifying method for soil Download PDF

Info

Publication number
JP2004188406A
JP2004188406A JP2003099293A JP2003099293A JP2004188406A JP 2004188406 A JP2004188406 A JP 2004188406A JP 2003099293 A JP2003099293 A JP 2003099293A JP 2003099293 A JP2003099293 A JP 2003099293A JP 2004188406 A JP2004188406 A JP 2004188406A
Authority
JP
Japan
Prior art keywords
soil
saponin
anaerobic
purified
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099293A
Other languages
Japanese (ja)
Inventor
Tsunetaka Yasukagawa
常孝 安カ川
Eiichi Tashiro
榮一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003099293A priority Critical patent/JP2004188406A/en
Publication of JP2004188406A publication Critical patent/JP2004188406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic purifying method for soil to accelerate a decomposition of an organic hardly decomposable substance by anaerobic bacteria in a bio-remediation. <P>SOLUTION: When an organic solvent, oil and other hardly decomposable substance contained in soil or in a landfill site are decomposed and purified by anaerobic bacteria, a saponin-containing substance, nitrogen and phosphorus are supplied together with water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガソリンスタンドや自動車解体工場の跡地など鉱物油に汚染された土壌や、有機溶剤、有機塩素系化合物などの難分解物質に汚染された工場跡地などの汚染土壌を、嫌気性或いは通性嫌気性菌の活性を利用して土壌を浄化する方法に関わり、特に、サポニン含有物を窒素や燐などの栄養分とともに水や増量剤に混合して土壌中に供与して放置しておき、自然に難分解物質を分解して土壌の浄化をなさしめるものに関する。
【0002】
【従来の技術】
様々な経済活動の結果、その排出物である重金属や有機物質が土壌中に蓄積し、これらが環境を悪化させるとして大きな社会問題になっている。現在、これら土壌汚染物質の除去には、汲み上げた地下水中に溶解している成分を曝気や薬品処理で除去したり、地中に空気を吹き込んだり吸い出したりして、該空気中の汚染物質を除去したり、汚染された土壌自体を加熱焼却処理するなど、各種の方法が行われている。
【0003】
しかし、地下水の汲み上げでは、水に溶解しない油分や難分解物質は処理できないし、空気の吸い出しでは、揮発成分以外の処理はできない。また、土壌の加熱焼却処理は手間とコストが掛かる上に、処理した土壌の処分も問題になる。
【0004】
そこで、土中の微生物を利用し、その分解作用により土壌中の有機物を分解する、いわゆるバイオレメディエーションの技術開発が活発に行われている。
【0005】
【発明が解決しようとする課題】
ところで、このバイオレメディエーションには、好気性菌を用いて好気的な雰囲気で処理するものと、嫌気性菌を用いて嫌気的な雰囲気で処理するものとがある。前者は処理速度は早いが、空気の供給などに手間とコストがかかる。また、原位置での処理には限界もある。これに対し、土壌中に生息する嫌気性菌を利用すれば、原則的に原位置での処理ができ、比較的手間をかけず低コストで土壌の浄化処理を行うことが可能となる。
【0006】
【課題を解決するための手段】
しかし、嫌気性菌は好気性菌に比べて一般に増殖速度が遅いし、有機物の分解速度も遅く、土壌浄化に時間がかかる難点がある。
【0007】
本発明は、この嫌気性菌による浄化処理のスピードアップを図るために土壌中にサポニンを添加するものであり、原位置で、菌体及びサポニン含有物を窒素や燐などの栄養分とともに土壌中に注入したり土壌と攪拌混合して土壌浄化をなさしめることを最大の特徴とする。
【0008】
即ち、本発明が対象とする汚染土壌は、ガソリンや軽油、重油などの鉱物油に汚染されたガソリンスタンドや自動車解体工場の跡地、石油コンビナート、海岸などの土壌や、有機溶剤、有機塩素系化合物などの難分解物質に汚染された工場跡地などの土壌である。これら汚染土壌、特に鉱物油汚染のものの中には、油まみれになって油で固められたよう性状を示すものがある。このようになると、土壌は殆ど水を受け付けない。また、有機溶剤や有機塩素系化合物に汚染された土壌も撥水性を示す。これは、土壌自体が吸油機能を有していることによる。
【0009】
このような撥水性土壌に対して、サポニンは二つの面から作用する。まず、サポニンは界面活性作用を有しており、その濃度にもよるが撥水性土壌に水ひいては菌体を土壌中に浸透させる働きをする。一方、サポニン、特にしゃぼんの木から得られたキラヤサポニンは、排水処理(活性汚泥処理)や汚泥処理において、発生汚泥の減少、油分の分解、汚泥分解の促進などに著効を示すことが本発明者らによって明らかにされている。これは、サポニンが有する微生物の生理活性を向上させる作用によるものと推察されている。
【0010】
ところで、微生物の生息活動には、水分が必要である。土壌中の水分には、化合水、吸湿水、毛管水、及び重力によって自由に移動する重力水がある。このうち、前2者は土壌の種類にもよるが1〜15%程度といわれており、100℃程度に熱しても蒸発しないものであるが、バクテリアはこの程度の水分でも生存できる。上記油まみれの土壌も15〜20%程度の水分は存在している。しかし、菌体が繁殖し拡散していくには、通常、30〜50%程度の水分は必要と言われている。そこで、原位置での土壌浄化では、水の注入が必要になる。
【0011】
そこで本発明の第一の方法では、この水中にサポニンを添加しておく。また第二の方法では、あとで散水するなどして土壌の水分を多くするようにする。一方、菌体は土壌中に元々生存しているものを活用する。汚染土壌中には、この汚染物質を資化するバクテリア(油分解菌)が必ずと行ってよいほど存在する。ただ、菌体数が少ないと増殖に時間がかかるので、菌体自体も、サポニンとともに土壌中に供給するようにしてもよい。この場合、被処理土壌中に元々存在するバクテリアを培養して増殖して使用することが最も好ましい。或いは、汚染土壌中の難分解物質に馴致した別種の菌体を使用するようにしてもよい。
【0012】
使用される嫌気性菌や通性嫌気性菌としては、メタン生成菌、硫酸塩還元菌、酸生成菌、油分解菌、バチルス菌等が挙げられる。尚、硫酸塩還元菌とメタン生成菌は競合関係にあると言われている。
【0013】
ところで、菌体が繁殖するためには、C/N比と言って、一般に、C:N:Pが100:5:1の割合で存在することが必要である。ところが、本発明が対象とする汚染物質は、石油由来のものが殆どで、汚染土壌中にNやPは少ない。そこで、窒素や燐などの栄養分を供給することが必要になる。その添加量は、汚染物質の種類や濃度による。更にpH調整剤等の添加剤も必要に応じて添加する。また、増殖にシリカ分を要求するバクテリアの場合、珪酸分の多いスギナ粉末或いはその抽出物を添加してもよい。鉄分、微量元素等の各種ミネラル分を添加してもよい。
【0014】
次にサポニンとは、植物体に含有される配糖体の一種で、セッケンのように著しくアワ立つコロイド水溶液を作るものの総称であり、多くの植物から見出されている。本発明では用いるサポニンの種類は問わないが、コストや安定供給の点から、植物体中の含有量が多く且つその植物が大量に存在し安定して入手できるものが好ましい。この観点から、キラヤサポニンやユッカ、なぎいかだ、大豆、砂糖大根、スギナ等から得られるサポニンが好ましい。この内特に、南米のチリー、ボリビア、ペルー等に自生するシャボンの木(学名:Quilaia saponaria Mol.バラ科)から抽出したキラヤサポニンが好適である。これは、キラヤ酸をアグリコン(配糖体の非糖質部分)とするトリテルペン系の配糖体であり、構造及び分析技術が解明されている数少ないサポニンであるし、比較的サポニン含有濃度の高い抽出液が得られることによる。
【0015】
サポニン含有剤は、植物体から抽出した抽出液(溶媒を含む)をそのまま用いてもよく、それを精製したもの自体でもよい。抽出の方法は通常の方法でよく、エタノール等の低級アルコール等で抽出できる。更に、精製物や抽出液を粉状、顆粒状、又は錠剤に加工したものも用いられる。或いはサポニンを含む植物体の部分を乾燥して粉砕したものでもよい。現在入手可能なキラヤサポニン含有物は、液状抽出物の場合天然サポニンとして4%程度含有している。また、植物体の乾燥粉砕物も同程度の天然サポニンとして4%程度含有している。
【0016】
ところで、本発明者はサポニンが汚水の生物学的処理工程に有効であることを見出したが、これはサポニンが配糖体であるため微生物の栄養分となり、酸素含有量が多いこととあいまって微生物の繁殖を助ける結果、処理効率が向上するものと推察されている。更に、植物体から抽出した抽出液中には、糖類や蛋白質が多く含まれており、これらも微生物の栄養分になる。
【0017】
土壌中に供給するサポニンの濃度は、土壌中の汚染物質の濃度によって増減する。前述した排水処理の場合、BOD成分500ppm に対し、シャボンの木抽出液(天然サポニンとして4%含有)10〜20ppm 程度が望ましいとされる。一方、自動車解体工場の跡地で採取した鉱物油の濃度は2万〜6万ppm にも達する。従って、1000ppm 以上は必要となるが、土壌中では水中と異なり移動や拡散も起こりにくいので、サポニン含有物はこの数倍は必要と思われる。
【0018】
次に、サポニン含有物などを汚染土壌中に供給する方法について説明する。本発明が処理対象にする汚染物質は、鉱物油や有機溶剤、有機塩素系化合物などの難分解物質であるが、これらは比重が軽くまた水に不溶であるので、土壌の比較的浅い部分に滞留する可能性が大きい。従って、通常では地下2〜3m程度までの範囲を浄化すればよいと思われる。この場合は、サポニン含有物などを混合溶解した浄化液を、土壌中に圧力をかけて注入し、土壌中に拡散させるとよい。また、汚染が表層部分に限られている場合には、サポニン含有物などを増量剤に混合した粉状浄化剤を、表層土壌に攪拌混合するとよい。
【0019】
前者は、サポニン含有物を窒素や燐などの栄養分とともに、更には必要に応じて菌体をも加えて水に混合溶解した浄化液を、浄化対象土壌の適宜箇所に注入機で圧入することにより行う。まず、注入箇所にボーリングマシンで注入孔を掘削し、この注入孔に注入機で圧入する。浄化液の濃度や注入量、及び注入口の数などは、汚染物質濃度や汚染の深さ、土地面積により適宜選定する。
【0020】
後者では、サポニン含有物を窒素や燐などの栄養分とともに、更には必要に応じて菌体をも加えて増量剤に混合した粉状浄化剤を、スタビライザー等の攪拌機により浄化対象土壌と攪拌混合する。但し、この場合の処理は、地表から50cm程度が限度である。増量剤を使用するのは、菌体等の割合が土壌に比べて少ないため、均等な攪拌混合がしにくいことによる。通常、スタビライザーによる土壌表層の攪拌は、セメント等を土壌に混合して土壌の安定化を図るためのもので、セメント等は土壌に対し10%程度使用する。これに対し、菌体やサポニン含有物等は%以下のオーダーである。そこで、これらを増量する必要がある。増量剤としては、米ぬか、コーヒー滓等の有機物や、タルク等の無機物などが使用できる。尚、スタビライザーによる混合は通常乾燥状態で行われるので、混合処理後、該混合した箇所に散水することが望ましい。
【0021】
スタビライザー等では届かない、より深い地層に粉状浄化剤を混合したい場合には、手間はかかるがブルドーザなどで土壌を掘り起こし、混合、地ならしを行うことも可能である。
【0022】
対象土壌の汚染の状況殊に深さは、掘削やサンプルコアの採取などで分かるので、深さに応じた工法を採用すればよい。本発明の場合、汚染の深さが3mを越えることは少ないと思われるが、浄化液の圧入では対応できない深さまで汚染されている場合には、深層混合工法などで対応するとよい。深層混合工法とは、元来現場における簡略杭成形工法であり、ドリルマシンで穿孔しながら土壌とセメントを混合して地中柱を形成するものである。本発明で利用する場合、セメントの代わりに前記粉状浄化剤を混合すればよい。
【0023】
(実験例)
自動車廃車工場から採取した油汚染土壌(油分3.1%)と市販のマサ土を混合し、油分が約2%になるように調整した。この実験土壌は、全炭素:77000ppm、COD(マンガン法):6600ppm、全窒素:730ppm、全燐:500ppm、灼熱減量:10%、含水率:15.5 ppmであった。これに、市販の窒素肥料(硫安、尿素)を、実験土壌の全窒素が約3850ppmになるように添加した。この添加量は、実験土壌の密度を2.25g/cm として産出した。同様に、市販の燐肥料(燐酸塩)を、全燐が770ppmとなるように添加した。
【0024】
ブランクは、この土壌を、2Lメスシリンダーに充填し、空気と水分の出入りがないように、開口部を被覆した。サポニン添加は、キラヤサポニン含有物(液状、サポニンを4%含有)を、対土壌2500及び3500ppmになるように添加した。更に、油分解菌3500ppm、バチルス菌3500ppmをサポニン添加の内の一部に添加した。
【0025】
2ケ月経過後、ブランク、サポニン入り、油分解菌入り、バチルス菌入りの各メスシリンダーの土壌を観察したところ、ブランクは、油の臭いが当初よりも激しく、また、指で摘むと油が付着した。これに対し、それ以外のものは、土壌がサラサラし、油分の臭いも当初より少なかった。
【0026】
そして、非常に驚くべきことに、油分約2%のはずが、ブランク以外は約6%に増加していた。ブランクも油分は増加していた。これは、当初土壌粒子の微細孔に含浸保持されていた油分が、サポニンの作用で溶出し、測定ができる状態になったためと思われる。尚、ブランクの場合や、水分の添加や肥料添加により菌体の働きがよくなり、その結果油分の溶出がよられたものと思われる。
【0027】
本発明におけるサポニン含有物の添加割合は、本発明らの従来の経験から、割り出したものであるが、油分濃度が2〜3倍にもなったため、計算上必要と思われるサポニン含有物の量が不足することになる。そこで、本発明では、サポニン含有物添加後1〜4ケ月後に、油分濃度を再測定し、不足分のサポニン含有物の補充を行うようにすると、処理が迅速且つ完全に行われることになる。或いは、当初計算量の半分程度を添加し、同程度のサポニン含有物を数回に渡って添加するようにしてもよい。
【0028】
【実施例】
次に、本発明を実施例に基づいて、更に詳細に説明する。
(実施例 1)
あるガソリンスタンドの跡地(面積200m )は、ガソリンや灯油、軽油などの石油製品に汚染されていた。汚染深さ2〜3mで、汚染物質濃度は場所により1000〜3000ppm であった。そこで、3000ppm の場所に20m のところに、ボーリングマシンで3箇所の注入孔を掘削し、処理液を注入機で圧入する。処理液は、ガソリンスタンドの跡地で採取した油分解菌を、米ぬかとキラヤサポニン含有物(液状)を混合した培養地で10 個/mg〜1011程度に増殖させたもの3500ppm 、サポニン含有物3500ppm を、窒素3.85Kg、燐0.77Kgを水にとかし、全量を1m としたものである。この処理液を、1箇所に200リットル注入した。この注入で、処理液は、満遍なく土中に浸透した。
【0029】
その結果、土壌中の嫌気性微生物の活動が4〜5倍にも促進された。ことにより、土壌中の難分解有機物の分解が速やかに行われ、処理に要する時間の短縮が図られ、処理費用が大幅に低減する結果となる。
【0030】
(実施例 2)
同じくガソリンスタンドの跡地で汚染深さが比較的浅い(40cm)場所を選び、菌体及びサポニン含有物を、窒素や燐などの栄養分とともに、増量剤としての米ぬかに混合して粉状浄化剤としたものをスタビライザーで土壌と混合した。混合割合は約10%である。その後、散水した状態で放置した。
【0031】
【発明の効果】
本発明は、以上詳述したように、嫌気性菌による浄化処理のスピードアップを図るために土壌中にサポニンを添加するものであり、原位置で、サポニン含有物を窒素や燐などの栄養分とともに土壌中に注入したり土壌と攪拌混合して土壌浄化をなさしめるものである。更に、必要に応じて、培養増殖させたり、被処理物に純化させた菌体を、サポニン含有物とともに用いてもよい。
【0032】
従って、好気菌を用いた場合に比べて処理に時間はかかるが、嫌気菌のみを用いた場合に比べて数倍も処理が迅速化される。しかも、当初に処理液の圧入、粉状浄化剤の混合と言う操作のみで手間も殆どかからず、処理コストが極めて低い特徴を有するものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention anaerobically or contaminates soil contaminated with mineral oil, such as the site of a gas station or an automobile dismantling plant, or the site of a factory, which is contaminated with hardly decomposable substances such as organic solvents and organochlorine compounds. Involved in the method of purifying the soil using the activity of anaerobic bacteria, especially saponin-containing materials and nutrients such as nitrogen and phosphorus mixed with water and bulking agent, and left in the soil, The present invention relates to a substance which decomposes hardly decomposable substances and purifies soil.
[0002]
[Prior art]
As a result of various economic activities, heavy metals and organic substances, which are discharged, accumulate in the soil, and these are detrimental to the environment, which has become a major social problem. At present, to remove these soil pollutants, the components dissolved in the pumped groundwater are removed by aeration or chemical treatment, or air is blown or sucked into the ground to remove pollutants in the air. Various methods have been used, such as removal of the soil and heat incineration of the contaminated soil itself.
[0003]
However, pumping groundwater cannot treat oils and hardly decomposable substances that do not dissolve in water, and suctioning air cannot treat other than volatile components. In addition, the heat incineration of the soil is troublesome and costly, and the disposal of the treated soil becomes a problem.
[0004]
Therefore, so-called bioremediation technology, in which microorganisms in the soil are used to decompose organic substances in the soil by its decomposing action, is being actively developed.
[0005]
[Problems to be solved by the invention]
By the way, there are two types of bioremediation in which the treatment is performed in an aerobic atmosphere using aerobic bacteria, and in the anaerobic atmosphere using an anaerobic bacteria. The former has a high processing speed, but requires labor and cost for air supply and the like. Also, there is a limit to the processing at the original position. On the other hand, if anaerobic bacteria that inhabit the soil are used, the treatment can be performed in situ in principle, and the soil can be purified at a low cost without relatively much effort.
[0006]
[Means for Solving the Problems]
However, an anaerobic bacterium generally has a slower growth rate than an aerobic bacterium, a slower rate of decomposing organic substances, and has a disadvantage that it takes a longer time for soil purification.
[0007]
The present invention is to add saponin to the soil in order to speed up the purification treatment by the anaerobic bacterium.In situ, cells and saponin-containing substances are added to the soil together with nutrients such as nitrogen and phosphorus in the soil. The greatest feature is that the soil is purified by pouring or mixing with the soil.
[0008]
That is, the contaminated soil targeted by the present invention is a soil of a gas station or a car dismantling plant, a petroleum complex, a coast, etc., which is contaminated with mineral oil such as gasoline, light oil, or heavy oil, an organic solvent, an organic chlorine-based compound. Soil such as a factory site contaminated with hard-to-decompose substances such as. Some of these contaminated soils, particularly those contaminated with mineral oil, have properties that appear oily and solidified with oil. When this happens, the soil receives very little water. Further, soil contaminated with an organic solvent or an organic chlorine compound also shows water repellency. This is because the soil itself has an oil absorbing function.
[0009]
Saponin acts on such water-repellent soil from two aspects. First, saponin has a surface-active effect and, depending on its concentration, acts to penetrate the water-repellent soil and eventually the cells into the soil. On the other hand, saponins, especially Kiraya saponins obtained from shabon trees, have a significant effect in wastewater treatment (activated sludge treatment) and sludge treatment, such as reducing generated sludge, decomposing oil, and promoting sludge decomposition. It has been made clear by the inventors. This is presumed to be due to the action of saponin to improve the biological activity of the microorganism.
[0010]
By the way, water is necessary for the inhabiting activity of microorganisms. Moisture in the soil includes chemical water, hygroscopic water, capillary water, and gravity water that moves freely due to gravity. Among them, the former two are said to be about 1 to 15%, depending on the type of soil, and do not evaporate even when heated to about 100 ° C., but bacteria can survive even with this much water. The oily soil also contains about 15 to 20% of water. However, it is said that about 30 to 50% of water is usually required for the propagation and diffusion of the cells. Therefore, in-situ soil purification requires water injection.
[0011]
Therefore, in the first method of the present invention, saponin is added to this water. In the second method, the water content of the soil is increased by sprinkling water later. On the other hand, the cells utilize those originally living in the soil. Bacteria (oil-decomposing bacteria) that assimilate the pollutants are present in the contaminated soil to a certain extent. However, if the number of microbial cells is small, it takes a long time to grow. Therefore, the microbial cells themselves may be supplied to the soil together with saponin. In this case, it is most preferable to culture and proliferate bacteria originally existing in the soil to be treated before use. Or you may make it use another kind of microbial cells adapted to the hardly decomposable substance in the contaminated soil.
[0012]
Examples of anaerobic bacteria and facultative anaerobic bacteria used include methane-producing bacteria, sulfate-reducing bacteria, acid-producing bacteria, oil-degrading bacteria, and Bacillus bacteria. It is said that the sulfate-reducing bacteria and the methane-producing bacteria are in a competitive relationship.
[0013]
By the way, in order for bacterial cells to propagate, it is generally necessary that C: N: P be present in a ratio of 100: 5: 1, in terms of C / N ratio. However, most of the pollutants targeted by the present invention are petroleum-derived, and N and P are low in contaminated soil. Therefore, it is necessary to supply nutrients such as nitrogen and phosphorus. The amount added depends on the type and concentration of the pollutant. Further, additives such as a pH adjuster are added as needed. In the case of bacteria requiring a silica content for growth, powdered horsetail powder or an extract thereof may be added, which contains a large amount of silicic acid. Various minerals such as iron and trace elements may be added.
[0014]
Next, saponin is a kind of glycoside contained in a plant, and is a general term for producing a colloid aqueous solution that is extremely whisker-like, and is found in many plants. In the present invention, the type of saponin used is not limited, but from the viewpoint of cost and stable supply, a saponin having a large content in a plant body, a large amount of the plant, and being stably available is preferred. From this viewpoint, saponin obtained from Kiraya saponin, yucca, squid, soybean, sugar beet, horsetail, and the like are preferable. Among them, particularly preferred is Kiraya saponin extracted from a soap tree (scientific name: Quiliaia saponaria Mol. Rosaceae) native to Chilly, Bolivia, Peru and the like in South America. This is a triterpene-based glycoside that uses quilayanic acid as an aglycone (the non-saccharide part of the glycoside), and is one of the few saponins whose structure and analytical techniques have been elucidated, and has a relatively high saponin-containing concentration. This is because an extract is obtained.
[0015]
As the saponin-containing agent, an extract (including a solvent) extracted from a plant body may be used as it is, or a purified per se may be used. The extraction may be carried out by a usual method, for example, by extraction with a lower alcohol such as ethanol. Furthermore, those obtained by processing purified products or extracts into powder, granules, or tablets are also used. Alternatively, a plant part containing saponin may be dried and ground. Currently available Kiraya saponin-containing substances contain about 4% as a natural saponin in the case of a liquid extract. In addition, a dried and ground plant material also contains about 4% of the same natural saponin.
[0016]
By the way, the present inventor has found that saponin is effective in the biological treatment process of sewage, but this is a nutrient for microorganisms because saponin is a glycoside, and in combination with the high oxygen content, microorganisms It is presumed that the treatment efficiency is improved as a result of helping breeding. Furthermore, the extract extracted from the plant contains a large amount of sugars and proteins, which also become nutrients of microorganisms.
[0017]
The concentration of saponin supplied to the soil increases or decreases depending on the concentration of contaminants in the soil. In the case of the above-mentioned wastewater treatment, it is considered that a soap tree extract (containing 4% as a natural saponin) is preferably about 10 to 20 ppm with respect to 500 ppm of the BOD component. On the other hand, the concentration of mineral oil collected at the site of an automobile dismantling plant can reach 20,000 to 60,000 ppm. Therefore, 1000 ppm or more is necessary, but unlike water, migration and diffusion are unlikely to occur in soil.
[0018]
Next, a method of supplying a saponin-containing substance or the like into contaminated soil will be described. The contaminants to be treated by the present invention are hardly decomposable substances such as mineral oils, organic solvents, and organochlorine compounds, and since these have a low specific gravity and are insoluble in water, they are used in relatively shallow parts of soil. It is likely to stay. Therefore, it seems that it is usually sufficient to purify the area up to about 2 to 3 m underground. In this case, it is preferable to inject the purified liquid obtained by mixing and dissolving the saponin-containing substance and the like into the soil under pressure and to diffuse the soil. When the contamination is limited to the surface layer, a powdery purifying agent obtained by mixing a saponin-containing substance or the like with a bulking agent may be mixed with the surface soil by stirring.
[0019]
In the former, a saponin-containing substance is added together with nutrients such as nitrogen and phosphorus, and, if necessary, a fungus body is added thereto. Do. First, an injection hole is excavated at the injection point using a boring machine, and the injection hole is press-fitted into the injection hole. The concentration, the injection amount, the number of injection ports, etc. of the purifying liquid are appropriately selected depending on the concentration of the pollutant, the depth of the contamination, and the land area.
[0020]
In the latter, a saponin-containing substance is added to nutrients such as nitrogen and phosphorus, and, if necessary, a bacterial purifier mixed with a bulking agent is added to the soil to be purified with a stirrer or the like. . However, the processing in this case is limited to about 50 cm from the ground surface. The use of the bulking agent is due to the fact that it is difficult to perform uniform stirring and mixing because the proportion of the cells is smaller than that of the soil. Normally, the stirring of the soil surface layer by the stabilizer is for mixing the cement or the like with the soil to stabilize the soil, and the cement or the like is used at about 10% with respect to the soil. In contrast, bacterial cells and saponin-containing substances are on the order of% or less. Therefore, it is necessary to increase these. Organic substances such as rice bran and coffee grounds, and inorganic substances such as talc can be used as the extender. It should be noted that since mixing by a stabilizer is usually performed in a dry state, it is desirable to sprinkle water after the mixing treatment.
[0021]
When it is desired to mix a powdery purifying agent into a deeper stratum that cannot be reached with a stabilizer or the like, it is possible to dig up the soil with a bulldozer or the like, and perform mixing and leveling.
[0022]
Since the state of contamination of the target soil, particularly the depth, can be determined by excavation, sampling of a sample core, etc., a construction method according to the depth may be employed. In the case of the present invention, it is considered that the depth of the contamination rarely exceeds 3 m. However, in the case where the contamination is carried out to a depth that cannot be accommodated by the injection of the purified liquid, it is preferable to cope with the depth mixing method. The deep mixing method is originally a simple pile forming method at a site, where soil and cement are mixed while drilling with a drill machine to form an underground pillar. When used in the present invention, the powdery purifying agent may be mixed instead of cement.
[0023]
(Experimental example)
Oil-contaminated soil (oil content: 3.1%) collected from an automobile scrap car factory was mixed with commercially available masa soil, and the oil content was adjusted to about 2%. In this experimental soil, total carbon: 77000 ppm, COD (manganese method): 6600 ppm, total nitrogen: 730 ppm, total phosphorus: 500 ppm, loss on ignition: 10%, and water content: 15.5 ppm. To this, a commercially available nitrogen fertilizer (ammonium sulfate, urea) was added so that the total nitrogen in the experimental soil was about 3850 ppm. This amount of addition yielded an experimental soil density of 2.25 g / cm 3 . Similarly, a commercially available phosphorus fertilizer (phosphate) was added so that the total phosphorus was 770 ppm.
[0024]
The blank was filled with the soil in a 2 L measuring cylinder, and the opening was covered so that air and moisture did not enter or leave. The saponin was added in such a manner that a substance containing Kiraya saponin (liquid, containing 4% of saponin) became 2500 and 3500 ppm with respect to soil. Further, 3500 ppm of oil-decomposing bacteria and 3500 ppm of Bacillus bacteria were added to a part of the saponin addition.
[0025]
Two months later, when the soil of each measuring cylinder containing blank, saponin, oil-degrading bacteria, and Bacillus bacteria was observed, the smell of the oil on the blank was more intense than at the beginning. did. On the other hand, in the others, the soil was smooth and the oily odor was less than at the beginning.
[0026]
And, very surprisingly, the oil content should have been about 2%, but increased to about 6% except for the blank. The blank also had an increased oil content. This is presumably because the oil initially impregnated and held in the micropores of the soil particles was eluted by the action of saponin and became ready for measurement. In the case of a blank, or by adding water or fertilizer, the action of the bacterial cells was improved, and as a result, it is considered that the elution of oil was caused.
[0027]
The addition ratio of the saponin-containing material in the present invention was determined based on the conventional experience of the present invention, but since the oil concentration was 2-3 times, the amount of the saponin-containing material considered to be necessary in the calculation was calculated. Will be insufficient. Therefore, in the present invention, when the oil concentration is re-measured 1 to 4 months after the addition of the saponin-containing substance, and the shortage of the saponin-containing substance is replenished, the processing is performed quickly and completely. Alternatively, about half of the initially calculated amount may be added, and the same amount of saponin-containing substance may be added several times.
[0028]
【Example】
Next, the present invention will be described in more detail based on examples.
(Example 1)
The site of a gas station (area 200 m 2 ) was contaminated with petroleum products such as gasoline, kerosene, and light oil. At a contamination depth of 2-3 m, the concentration of the contaminants was 1000-3000 ppm depending on the location. Therefore, three injection holes are excavated by a boring machine at a place of 20 m 2 at a place of 3000 ppm, and the processing liquid is injected by the injection machine. The treatment liquid was 3500 ppm of oil-degrading bacteria collected at the site of a gas station and grown to about 10 9 / mg to 10 11 in a culture site where rice bran and quillaja saponin-containing material (liquid) were mixed. 3,500 ppm of nitrogen, 3.85 kg of nitrogen and 0.77 kg of phosphorus are dissolved in water to make the total amount 1 m 3 . 200 liters of this treatment liquid was injected into one place. With this injection, the treatment liquid permeated the soil evenly.
[0029]
As a result, the activity of the anaerobic microorganisms in the soil was promoted 4 to 5 times. Thereby, the decomposition of the hardly decomposable organic matter in the soil is promptly performed, the time required for the treatment is reduced, and the treatment cost is significantly reduced.
[0030]
(Example 2)
Similarly, select the place where the pollution depth is relatively shallow (40 cm) at the site of the gas station, and mix the bacterial cells and saponin-containing materials with rice bran as a bulking agent, along with nutrients such as nitrogen and phosphorus, to obtain a powdery purifying agent. The mixture was mixed with the soil with a stabilizer. The mixing ratio is about 10%. Then, it was left in a sprinkled state.
[0031]
【The invention's effect】
The present invention, as described in detail above, is to add saponin to soil in order to speed up the purification treatment by anaerobic bacteria, and in situ, saponin-containing substances together with nutrients such as nitrogen and phosphorus. Injection into the soil or mixing with the soil to achieve soil purification. Further, if necessary, cells grown or cultured or purified to be treated may be used together with the saponin-containing substance.
[0032]
Therefore, the processing takes longer time than when using anaerobic bacteria, but the processing is several times faster than when only anaerobic bacteria are used. In addition, it is characterized by extremely low processing costs, with only the operation of press-fitting the processing liquid and mixing of the powdery purifying agent at first.

Claims (8)

土壌中に含まれる有機溶剤、油分、その他の難分解物質を嫌気性或いは通性嫌気性菌の活性を利用して浄化する場合において、サポニン含有物を窒素や燐などの栄養分とともに水に溶解した浄化液を、浄化対象土壌の適宜箇所に注入機で圧入することを特徴とする土壌の嫌気的浄化方法。When purifying organic solvents, oils, and other hardly decomposable substances contained in soil using the activity of anaerobic or facultative anaerobic bacteria, the saponin-containing material was dissolved in water together with nutrients such as nitrogen and phosphorus. An anaerobic purification method for soil, wherein a purification liquid is injected into an appropriate portion of the soil to be purified with an injection machine. 土壌中に含まれる有機溶剤、油分、その他の難分解物質を嫌気性或いは通性嫌気性菌の活性を利用して浄化する場合において、サポニン含有物を窒素や燐などの栄養分とともに増量剤に混合した粉状浄化剤を、スタビライザー等の攪拌機により浄化対象土壌と混合し、次いで該混合した箇所に散水することを特徴とする土壌の嫌気的浄化方法。When purifying organic solvents, oils, and other hardly decomposable substances contained in soil using the activity of anaerobic or facultative anaerobic bacteria, mix saponin-containing substances with bulking agents together with nutrients such as nitrogen and phosphorus. Anaerobic purification method for soil, comprising mixing the powdered purification agent with the soil to be purified using a stirrer such as a stabilizer, and then watering the mixed portion. 浄化対象土壌中に含まれる汚染物質の濃度を測定し、サポニン含有物の使用濃度を決定するものである、請求項1又は請求項2記載の土壌の嫌気的浄化方法。The soil anaerobic purification method according to claim 1 or 2, wherein a concentration of a contaminant contained in the soil to be purified is measured to determine a use concentration of the saponin-containing substance. 浄化対象土壌中に含まれる汚染物質の濃度を、1〜4ケ月後に再度測定し、サポニン含有物を該濃度に合わせて追加添加するものである、請求項1又は請求項2記載の土壌の嫌気的浄化方法。The soil anaerobic according to claim 1 or 2, wherein the concentration of the contaminant contained in the soil to be purified is measured again after 1 to 4 months, and a saponin-containing substance is additionally added in accordance with the concentration. Purification method. サポニン含有物とともに、菌体を混合するものである、請求項1又は請求項2記載の土壌の嫌気的浄化方法。The anaerobic purification method for soil according to claim 1 or 2, wherein the cells are mixed with the saponin-containing substance. 菌体は、対象汚染土壌中から採取した菌体を増殖して使用するものである請求項5記載の土壌の嫌気的浄化方法。The anaerobic purification method for soil according to claim 5, wherein the cells are used by multiplying cells collected from the target contaminated soil. 難分解物質に馴致した菌体を使用するものである、請求項5又は請求項6記載の土壌の嫌気的浄化方法。The method for anaerobic purification of soil according to claim 5 or 6, wherein the cells are adapted to a hardly decomposable substance. サポニンは、キラヤサポニンである、請求項1又は2記載の土壌の嫌気的浄化方法。The method for anaerobic purification of soil according to claim 1 or 2, wherein the saponin is Kiraya saponin.
JP2003099293A 2002-04-02 2003-04-02 Anaerobic purifying method for soil Pending JP2004188406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099293A JP2004188406A (en) 2002-04-02 2003-04-02 Anaerobic purifying method for soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002099496 2002-04-02
JP2002300942 2002-10-15
JP2003099293A JP2004188406A (en) 2002-04-02 2003-04-02 Anaerobic purifying method for soil

Publications (1)

Publication Number Publication Date
JP2004188406A true JP2004188406A (en) 2004-07-08

Family

ID=32776723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099293A Pending JP2004188406A (en) 2002-04-02 2003-04-02 Anaerobic purifying method for soil

Country Status (1)

Country Link
JP (1) JP2004188406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159132A (en) * 2004-12-09 2006-06-22 Ohbayashi Corp Cleaning method of contaminated soil or water, and additive
JP2008215852A (en) * 2007-02-28 2008-09-18 Nippon Steel Corp Evaluation method of corrosion resistance of iron or iron containing alloy
JP2008296094A (en) * 2007-05-29 2008-12-11 Ritsumeikan Method and system for bioremediation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504300A (en) * 1990-12-24 1993-07-08 イーエムシー サービシィズ Biological composition for the remediation of contaminated soil, methods and devices for using this composition
JPH09234484A (en) * 1996-02-29 1997-09-09 Shimizu Corp Restoration method for polluted ground water and soil
JPH09234491A (en) * 1996-02-29 1997-09-09 Shimizu Corp Restoration method for polluted ground water and soil
JPH09295000A (en) * 1996-04-30 1997-11-18 Eiichi Tashiro Anaerobic digestion of sludge or raw excretion
JPH10225677A (en) * 1995-02-06 1998-08-25 Inland Consultants Inc Composition and method for bioremediation of halogen polluted soil
JP2001276802A (en) * 2000-03-31 2001-10-09 Taiheiyo Cement Corp Cleaning method for pcbs- and/or dioxins-containing soil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504300A (en) * 1990-12-24 1993-07-08 イーエムシー サービシィズ Biological composition for the remediation of contaminated soil, methods and devices for using this composition
JPH10225677A (en) * 1995-02-06 1998-08-25 Inland Consultants Inc Composition and method for bioremediation of halogen polluted soil
JPH09234484A (en) * 1996-02-29 1997-09-09 Shimizu Corp Restoration method for polluted ground water and soil
JPH09234491A (en) * 1996-02-29 1997-09-09 Shimizu Corp Restoration method for polluted ground water and soil
JPH09295000A (en) * 1996-04-30 1997-11-18 Eiichi Tashiro Anaerobic digestion of sludge or raw excretion
JP2001276802A (en) * 2000-03-31 2001-10-09 Taiheiyo Cement Corp Cleaning method for pcbs- and/or dioxins-containing soil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159132A (en) * 2004-12-09 2006-06-22 Ohbayashi Corp Cleaning method of contaminated soil or water, and additive
JP4529667B2 (en) * 2004-12-09 2010-08-25 株式会社大林組 Purification method and additive for contaminated soil and contaminated water
JP2008215852A (en) * 2007-02-28 2008-09-18 Nippon Steel Corp Evaluation method of corrosion resistance of iron or iron containing alloy
JP2008296094A (en) * 2007-05-29 2008-12-11 Ritsumeikan Method and system for bioremediation

Similar Documents

Publication Publication Date Title
US6699707B1 (en) Microbial enzyme-enhanced organic-inorganic solid-chemical composition and methods for anaerobic bioremediation
CN105772499A (en) In-situ combined remediation method for petroleum contaminated site soil
KR20100066540A (en) Method for the bioremediation of soil and/or water contaminated by organic and/or inorganic compounds
Vásquez-Murrieta et al. Approaches for removal of PAHs in soils: Bioaugmentation, biostimulation and bioattenuation
CN108893419B (en) Microbial strain, screening method thereof and application of microbial strain in treatment of heavy metal contaminated soil
CN101745525A (en) Carbamide peroxide used for in-situ restoration of organic pollution of soil
KR100258781B1 (en) Use of metalic peroxides in bioremediation
GB2296494A (en) Process for the in situ bioremediation of Cr(VI)-bearing solids
CN108114978B (en) A kind of method of the efficient rehabilitating soil of chemistry-microorganism
JP5155619B2 (en) Soil and groundwater purification promoter and purification method
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
JP2003053324A (en) Restoration method for soil polluted with petroleum
JP2004188406A (en) Anaerobic purifying method for soil
Brown et al. The evolution of a technology: hydrogen peroxide in in situ bioremediation
Selberg et al. Biodegradation and leaching of surfactants during surfactant-amended bioremediation of oil-polluted soil
RU2322312C1 (en) Method to recover soil and ground contaminated with oil and oil product
Elshaeva et al. Environmental aspects of the use of sewage sludge as fertilizer materials
Butnariu et al. Viability of in situ and ex situ bioremediation approaches for degradation of noxious substances in stressed environs
Butnariu et al. Bioremediation: A viable approach for degradation of petroleum hydrocarbon
RU2475314C1 (en) Method of detoxication of soil contaminated by oil products
Ivanov et al. Biotechnological improvement of construction ground and construction materials
Suryatmana et al. The potential of the mushroom log waste (MLW) and Azotobactervinelandii to improve hydrocarbon biodegradation for rehabilitation of petroleum contaminated soil
JP2003334536A (en) Method for purifying oil-contaminated soil by microorganism
US9962747B2 (en) Biomolecular zonal compositions and methods
RU2175580C2 (en) Composition for cleaning soil to remove oil pollutions and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622