JP3346242B2 - Biological purification method for oil contaminated soil - Google Patents

Biological purification method for oil contaminated soil

Info

Publication number
JP3346242B2
JP3346242B2 JP26986797A JP26986797A JP3346242B2 JP 3346242 B2 JP3346242 B2 JP 3346242B2 JP 26986797 A JP26986797 A JP 26986797A JP 26986797 A JP26986797 A JP 26986797A JP 3346242 B2 JP3346242 B2 JP 3346242B2
Authority
JP
Japan
Prior art keywords
soil
oil
ppm
nitrogen
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26986797A
Other languages
Japanese (ja)
Other versions
JPH11104612A (en
Inventor
幸治 岡村
浩美 神戸
直樹 村上
耕一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26986797A priority Critical patent/JP3346242B2/en
Publication of JPH11104612A publication Critical patent/JPH11104612A/en
Application granted granted Critical
Publication of JP3346242B2 publication Critical patent/JP3346242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は油汚染土壌の生物的
浄化方法に関する。
The present invention relates to a method for biologically remediating oil-contaminated soil.

【0002】[0002]

【従来の技術】従来、炭化水素化合物等で汚染された土
壌から汚染物質を除去する方法として、物理的処理法
(焼却等)、化学的処理法(界面活性剤等による洗浄
等)、生物的処理法(汚染物質の微生物分解)が実施さ
れてきた。なかでも生物的処理法は低コスト、低エネル
ギーという利点から、近年大きく注目されている。油汚
染土壌のバイオレメディエーションでは、汚染された土
壌に栄養(窒素、リン化合物)を添加して土着微生物の
有機物分解能力を高めて浄化する方法が用いられること
が多い。
2. Description of the Related Art Conventionally, as a method for removing contaminants from soil contaminated with a hydrocarbon compound or the like, a physical treatment method (incineration, etc.), a chemical treatment method (washing with a surfactant or the like), a biological treatment method, or the like. Treatment methods (microbial degradation of contaminants) have been implemented. Above all, biological treatment methods have attracted much attention in recent years because of their advantages of low cost and low energy. In bioremediation of oil-contaminated soil, a method of adding nutrients (nitrogen and phosphorus compounds) to contaminated soil to increase the ability of indigenous microorganisms to decompose organic substances is often used for purification.

【0003】特表平9−501841号公報には、好気
性微生物による油汚染土壌の回復方法として、土壌中の
炭素量を基準としてC/N/P=約100/20/1に
なるように親油性のN/P型栄養素等を加える方法が記
載されている。この方法においては、炭素量が多い場合
は、添加される窒素・リンは比例的に増加するが、窒素
・リンはそれ自体が地下水汚染などの原因となることか
ら、可能な限り低濃度で用いることが必要である。しか
しこれまでは最低必要量は検討されていない。
[0003] Japanese Patent Publication No. Hei 9-501841 discloses a method for recovering oil-contaminated soil by aerobic microorganisms so that C / N / P becomes about 100/20/1 based on the carbon content in the soil. A method for adding lipophilic N / P-type nutrients and the like is described. In this method, when the amount of carbon is large, the amount of added nitrogen / phosphorous increases proportionally, but since nitrogen / phosphorus itself causes groundwater pollution, it is used at a concentration as low as possible. It is necessary. However, no minimum requirements have been considered so far.

【0004】特表平7−507208号公報には汚染土
壌中にリン酸エステルとN源を加える方法が記載されて
いる。特表平6−500495号公報にはリン酸塩が土
壌中でpH緩衝能を有することが記載されている。また、
特開昭59−66882号公報には、微生物を培養する
ためにN及びPの栄養源を添加することが記載されてい
る。しかしながら、土着の分解菌を活性化するために添
加される無機塩は、実験者に応じて様々な組成のものが
用いられているが、どの組成が最も効果的かは検討され
ていない。
[0004] Japanese Patent Publication No. 7-507208 describes a method of adding a phosphate ester and an N source to contaminated soil. Japanese Patent Publication No. Hei 6-500495 describes that phosphate has a pH buffering ability in soil. Also,
JP-A-59-66882 describes the addition of N and P nutrients for culturing microorganisms. However, although inorganic salts added to activate indigenous decomposing bacteria have various compositions depending on the experimenter, it has not been studied which composition is most effective.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、油
汚染された土壌に無機栄養源を添加して土壌中の微生物
を活性化することにより汚染土壌を浄化する方法におけ
る、最適の無機窒素源の種類及び添加量を提供しようと
するものである。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a method for purifying contaminated soil by adding inorganic nutrients to oil-contaminated soil to activate microorganisms in the soil. It is intended to provide the type and amount of the source.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく種々検討した結果、土壌pHを6〜8と
し、N/P比(窒素/リンの比)が0.3〜8.5とな
り、土壌の重量に対して窒素の量が100〜500ppm
となるように無機窒素源及び無機リン源を添加すること
により、土壌の油分が効果的に分解されることを見出
し、本発明を完成した。従って、本発明は、油汚染土壌
の生物学的浄化方法であって、土壌のpHを6〜8の状態
で、N/P比が0.3〜8.5となり、土壌の重量に対
するN量が100〜500ppm となるように土壌に無機
窒素源及び/又はリン源を添加することを特徴とする方
法を提供する。
As a result of various studies to solve the above problems, the present inventors have set the soil pH to 6 to 8 and set the N / P ratio (nitrogen / phosphorus ratio) to 0.3. To 8.5, and the amount of nitrogen is 100 to 500 ppm based on the weight of the soil.
It has been found that by adding an inorganic nitrogen source and an inorganic phosphorus source so that the oil content of the soil is decomposed effectively, the present invention has been completed. Accordingly, the present invention is a method for biologically remediating oil-contaminated soil, wherein the N / P ratio is 0.3 to 8.5 when the pH of the soil is 6 to 8, and the amount of N relative to the weight of the soil is To a soil, wherein an inorganic nitrogen source and / or a phosphorus source are added to the soil so as to be 100 to 500 ppm.

【0007】[0007]

【発明の実施の形態】本発明は、油汚染されている種々
の土壌、例えば砂質土、細粒土等に対して適用すること
ができる。実験の方法としては、例えば無機添加物を加
えた土壌を耕す撹拌(耕起)培養法(Landfarm
ing)、無機添加物を加えてそのまま静置し、場合に
よっては通気等を行う装置を付加する静置培養法(Pi
lng)、土壌を水に懸濁して培養を行う半液体(スラ
リー)培養法(Slurry)、及び土壌を大量の水に
懸濁して培養を行う液体培養法(Liquid cul
ture)等の方法があり、土壌の性状、処理すべき土
壌の量、汚染の程度、などを考慮して選択される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be applied to various soils contaminated with oil, for example, sandy soil, fine-grained soil and the like. As a method of the experiment, for example, a stirring (tiling) culture method (Landfarm) in which soil to which an inorganic additive is added is cultivated is used.
static culture method (Pi) in which an inorganic additive is added and the mixture is allowed to stand as it is, and if necessary, a device for performing aeration or the like is added.
lng), a semi-liquid (slurry) culture method in which soil is suspended in water for culture (Slurry), and a liquid culture method in which soil is suspended in a large amount of water for culture (Liquid cul)
The method is selected in consideration of the properties of the soil, the amount of soil to be treated, the degree of contamination, and the like.

【0008】N/Pの比率(元素としての重量比)とし
ては、0.3〜8.5が好ましく、1.5〜1.9がさ
らに好ましい。例えばN/P比はおよそ1.7が最適で
ある。この比率が低すぎる(すなわちリン成分が相対的
に少ない)と、油の浄化能力が低下し、またこの比率が
高すぎる(すなわちリン成分が相対的に多い)と、リン
による土壌汚染の可能性がある。次に、窒素の量は、土
壌重量に対して100〜500ppm 程度であることが好
ましく、特に約250ppm が好ましい。これより多くて
も害は生じないが、量に依存して浄化効果は上昇しない
から、経済的に好ましくない。
The N / P ratio (weight ratio as an element) is preferably from 0.3 to 8.5, more preferably from 1.5 to 1.9. For example, the N / P ratio is optimally about 1.7. If this ratio is too low (ie, the phosphorus content is relatively low), the ability to purify the oil will decrease, and if this ratio is too high (ie, the phosphorus content is relatively high), the potential for soil contamination by phosphorus will be high. There is. Next, the amount of nitrogen is preferably about 100 to 500 ppm, particularly about 250 ppm, based on the weight of the soil. Although no harm will occur even if the amount is more than this, the purification effect does not increase depending on the amount, which is not economically preferable.

【0009】窒素源としては、土壌中の微生物により資
化されるものであればよいが、アンモニア態窒素例えば
塩化アンモニウム、硫酸アンモニウム等又は硝酸態窒素
例えば硝酸ナトリウム、硝酸カリウム等が好ましく、特
にアンモニア態窒素、例えば塩化アンモニウムが好まし
い。無機リン酸化合物としては、土壌中の微生物が資化
できるものであればよく、例えばリン酸塩、過リン酸
塩、メタリン酸塩、ポリリン酸塩等が挙げられ、これら
は同等な浄化促進効果を有する。
The nitrogen source may be any one which can be assimilated by microorganisms in the soil, and is preferably ammonium nitrogen such as ammonium chloride or ammonium sulfate or nitrate nitrogen such as sodium nitrate or potassium nitrate. For example, ammonium chloride is preferred. The inorganic phosphate compound may be any compound that can be assimilated by microorganisms in the soil, and examples thereof include phosphate, superphosphate, metaphosphate, and polyphosphate. Having.

【0010】具体的には、リン酸二水素カリウム、リン
酸水素二カリウム、メタリン酸カリウム、ピロリン酸カ
リウム、トリポリリン酸カリウム等が挙げられ、これら
の内、リン酸二水素カリウムやリン酸水素二カリウムが
経済的観点から好ましい。本発明の方法において、無機
窒素源やリン源の添加効果を生じさせるためには、土壌
のpHが6〜8にあることが必要であり、土壌が酸性であ
る場合には、塩基性剤により中和することが必要であ
り、塩基性剤としては例えば炭素カルシウムが好まし
い。炭酸カルシウムの添加量は、土壌の酸性度によって
も異るが、例えば1%程度である。土壌が塩基性の場合
は、例えば硫酸第1鉄、硫酸カルシウム等の添加により
中和することができる。
Specific examples include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium metaphosphate, potassium pyrophosphate, potassium tripolyphosphate, and the like. Of these, potassium dihydrogen phosphate and dihydrogen phosphate Potassium is preferred from an economic point of view. In the method of the present invention, the pH of the soil needs to be in the range of 6 to 8 in order to produce the effect of adding the inorganic nitrogen source or the phosphorus source, and when the soil is acidic, It is necessary to neutralize, and as the basic agent, for example, calcium carbon is preferable. The amount of calcium carbonate added depends on the acidity of the soil, but is, for example, about 1%. When the soil is basic, it can be neutralized by adding, for example, ferrous sulfate or calcium sulfate.

【0011】[0011]

【発明の効果】含有油分濃度の異なる土壌で効果を検証
した結果、本発明の栄養塩混合物を同一量添加すれば、
炭素量の多少(3000〜35000ppm )に関わらず
高い浄化効率が得られる。従来知見によると30000
ppm の炭素に対し3000〜6000ppm の窒素が必要
とされるが、本発明では500〜100ppm の窒素で浄
化が可能である。従って、本発明の方法では窒素源の多
量添加による二次汚染のおそれが少ない。
As a result of examining the effect on soils having different oil contents, if the same amount of the nutrient mixture of the present invention is added,
High purification efficiency can be obtained regardless of the amount of carbon (3000 to 35000 ppm). According to conventional knowledge, 30000
Although 3000 to 6000 ppm of nitrogen is required for ppm of carbon, the present invention can purify with 500 to 100 ppm of nitrogen. Therefore, in the method of the present invention, the risk of secondary contamination due to the large addition of the nitrogen source is small.

【0012】[0012]

【実施例】次に、実施例により本発明をさらに具体的に
説明する。実施例1 潤滑油で汚染させた土壌を6mmメッシュの篩で礫等を除
いた後、2mmメッシュの篩を用いて分画し、通過画分を
供試土壌とした。本実験には、5000ppm の油分を含
む土壌の他、50000ppm の油分を含む高濃度汚染土
壌を供試した。試験系は100ml容テフロンボトルに土
壌5gおよび培養液5mlを添加したスラリー系で2rpm
で回転旋回培養した。培養は20℃に制御した恒温室内
で行った。培養液の組成として、下記の表1に示すZ
S,NP−S及びYM−A、並びに対照として水を用い
た。
Next, the present invention will be described more specifically with reference to examples. Example 1 Soil contaminated with lubricating oil was removed with a 6 mm mesh sieve to remove gravels and the like, and then fractionated using a 2 mm mesh sieve, and the passing fraction was used as a test soil. In this experiment, a soil containing 5,000 ppm oil and a highly contaminated soil containing 50,000 ppm oil were used. The test system was a slurry system in which 5 g of soil and 5 ml of culture solution were added to a 100 ml Teflon bottle at 2 rpm.
And vortexed. The culture was performed in a constant temperature room controlled at 20 ° C. As the composition of the culture solution, Z shown in Table 1 below was used.
S, NP-S and YM-A, and water as a control.

【0013】[0013]

【表1】 [Table 1]

【0014】油分測定 土壌中油分の分析は、十分乾燥させた土壌を粉砕し、h
−ヘキサンにより抽出を行い、抽出物の蒸発残査の重量
を測定する方法で行った。なお、図中のerror b
arは標準誤差(いずれもn数は3)を表す。結果を図
1に示す。水では低、高濃度汚染土壌ともに浄化は全く
進行しなかった。しかし、ZSでは低、高濃度汚染土壌
ともに最も高い浄化速度がみられた。NPS培地では、
低濃度土壌に対しては2週間まで浄化作用を示したが、
4週間以後の浄化作用はわずかであり、また高濃度汚染
土壌ではほとんど浄化作用を示さなかった。改変YM培
地もNPSと同様の浄化速度を示した。なお、図1にお
いて「High」の記号を付したものは、油分5000
0ppm の高濃度汚染土壌についての結果を示す。
Oil content analysis Oil content in soil is analyzed by crushing sufficiently dried soil
-Extraction was carried out with hexane, and the method was performed by measuring the weight of the evaporation residue of the extract. The error b in the figure
ar represents the standard error (n is 3 for each). The results are shown in FIG. Water purification did not proceed at all in both low and high concentration soils. However, ZS showed the highest purification rates for both low and high concentration contaminated soils. In NPS medium,
It showed a purification effect on low concentration soil for up to 2 weeks,
After 4 weeks, the purification activity was slight, and hardly any purification activity was observed in highly contaminated soil. The modified YM medium also showed the same purification rate as NPS. In FIG. 1, those with a “High” symbol are oil components 5000
The results for the highly contaminated soil at 0 ppm are shown.

【0015】実施例2 無機塩、無機肥料の効果 ステンレス鋼製丸形ポット(直径10cm×高さ6cm、フ
タ付)を培養器として使用し、潤滑油で汚染させた6.
5mmメッシュの篩にかけ、礫等を除いた供試土壌約11
0g(湿土重量)を入れた。この培養器をインキュベー
ター(ヤマト製IC600,Lo−Temp Cham
ber IH16)に入れて静置することにより培養し
た。供試土壌の含水率は、20%に調整した。含水率の
調整、週2回位重量を測定し、乾燥により減少した重量
と同じ量の蒸留水を補充することにより行った。週に1
回、土壌をカップの底面からすくい上げるようにして均
一に混合することにより撹拌した。添加物の添加は、添
加物を容器に加えた後、スパーテルブ撹拌て土壌と均一
に混合することにより行った。
Example 2 Effect of Inorganic Salt and Inorganic Fertilizer A stainless steel round pot (10 cm in diameter × 6 cm in height, with a lid) was used as an incubator, and was contaminated with lubricating oil.
Approximately 11 test soils excluding gravel etc. through a 5mm mesh sieve
0 g (wet soil weight) was added. This incubator is placed in an incubator (IC600 manufactured by Yamato, Lo-Temp Champ).
ber IH16) and cultured by standing still. The moisture content of the test soil was adjusted to 20%. The adjustment was performed by adjusting the water content, measuring the weight about twice a week, and replenishing the same amount of distilled water as the weight reduced by drying. Once a week
Each time, the soil was agitated by being evenly mixed by scooping up from the bottom of the cup. The addition of the additive was performed by adding the additive to the container and then stirring the mixture with the soil by stirring with spatelve.

【0016】サンプルは培養開始時、2週間後、4週間
後、及び8週間後に行った。各培養器につきの3ヶ所か
ら約6gずつの湿土壌(乾土壌重量約5%(4.5〜
5.53)ずつ採取した。また実験土壌の初期油分濃度
は約5000ppm であった。供試土壌へは下記の培地に
含まれる塩のみを添加した。塩の添加量を変えることに
より、土壌に対する窒素の重量比が50,100,25
0又は500ppm となるようにした。
Samples were taken at the start of culturing, two weeks, four weeks, and eight weeks. Approximately 6 g of wet soil (dry soil weight of about 5% (4.5 to
5.53). The initial oil content of the experimental soil was about 5000 ppm. Only the salt contained in the following medium was added to the test soil. By changing the amount of salt added, the weight ratio of nitrogen to soil is 50,100,25.
It was set to 0 or 500 ppm.

【0017】(1)ZS培地(前記表1参照のこと) (2)ZS(N,P);上記ZS培地中の、K2HPO4,KH
2PO4及びNH4Cl のみからなるもの (3)ZS(NO3-N);上記ZS培地中のNH4Cl を等モ
ル量のKNO3に変えたもの 結果を図2に示す。図2に示す通り、窒素量としては土
壌に対して250ppm 程度がよく、また培地としてはZ
S(N,P)培地が最もよかった。
(1) ZS medium (see Table 1 above) (2) ZS (N, P); K 2 HPO 4 , KH in the above ZS medium
2 PO 4 and NH 4 shall only consist Cl (3) ZS (NO 3 -N); Figure 2 shows the results obtained by changing the KNO 3 equimolar amount of NH 4 Cl in the ZS medium. As shown in FIG. 2, the amount of nitrogen is preferably about 250 ppm based on the soil, and the medium is Z
S (N, P) medium was the best.

【0018】実施例3 ZS(N,P)培地を用いたカ
ラム実験 土壌の採取および調整 潤滑油で汚染させた土壌を6mmメッシュで篩い、小石等
を取り除いた。篩い掛け土壌と、篩い掛けせずに大きな
礫を取り除いただけの未篩い掛け土壌を実験に供試し
た。供試土壌の含水率は20%に調整した。水分調節時
に重量を確認し減水分の水を補給する重量法によって週
に1または2回含水率の調整を行った。培養終了後、土
壌カラムの上層、中層、下層各5cmの土壌を採取し油分
を測定した。
Example 3 A method using a ZS (N, P) medium
Sampling of the rum experimental soil and the soil contaminated with the adjusted lubricating oil were sieved with a 6 mm mesh to remove pebbles and the like. The sieved soil and the unsieved soil obtained by removing large gravel without sieving were subjected to the experiment. The moisture content of the test soil was adjusted to 20%. The water content was adjusted once or twice a week by the gravimetric method of confirming the weight at the time of adjusting the water content and supplying water of reduced water content. After completion of the cultivation, 5 cm each of the upper, middle and lower layers of the soil column was collected and the oil content was measured.

【0019】供試土壌へは、実施例2と同様に、250
ppm 相当の窒素源を含むZS(N,P)を添加し、直径
5cmのカラムに800gの土壌を軽く詰めた。この時、
土壌深度は35cmであった。培養は30℃、無撹拌で4
週間行った。また実験土壌の初期油分濃度は約4000
〜5000ppm であった。結果 カラム実験での浄化効果を図3に示す。カラム上部にお
いては油分が60%まで除去されており、下部(深部)
においても油分が70%まで除去されていた。
On the test soil, as in Example 2, 250
ZS (N, P) containing a ppm equivalent of nitrogen source was added and a 5 cm diameter column was lightly packed with 800 g of soil. At this time,
The soil depth was 35 cm. Culture at 30 ° C without stirring for 4 hours.
Went for a week. The initial oil concentration in the experimental soil was about 4000
5,000 ppm. Results The purification effect in the column experiment is shown in FIG. Oil is removed up to 60% at the top of the column, and the bottom (deep)
In this case, the oil was removed up to 70%.

【0020】実施例4 実施例1と同様に調整した土壌を供試した。本土壌は、
粘土質で含水率は約10〜15%、初期油分濃度は約5
000ppmであった。ガラス製の300mlスクリューキ
ャップ付き三角フラスコに土壌5g(fresh we
ight)とNPS培地50mlを添加して20℃100
回/分で2週間往復しんとう培養した。ただし、培養時
にスラッジが器壁にこびりついてくるので、1日1回程
度手動で撹拌してスラッジを落とした。
Example 4 A soil prepared in the same manner as in Example 1 was tested. The soil is
Clay, moisture content about 10-15%, initial oil concentration about 5
000 ppm. 5 g of soil in a 300 ml Erlenmeyer flask with screw cap made of glass
light) and 50 ml of NPS medium at 20.degree.
The culture was reciprocated for 2 weeks at a rate of 2 min / min. However, sludge adhered to the vessel wall during the culturing, so that the sludge was dropped manually by stirring once a day.

【0021】第1の実験ではNPS培地の窒素成分を1
0倍にしたもの(X10N),窒素成分を除いたもの
(−N)を供試した。その結果、窒素成分量を10倍に
してもNPS培地と同様の効果しか見られないが、除く
と著しく阻害された。従って窒素成分は浄化に必須であ
り、そしてNPS培地に含まれる量がほぼ最適値である
と考えられた。
In the first experiment, the nitrogen component of the NPS medium was adjusted to 1
Samples that were made 0 times (X10N) and those without the nitrogen component (-N) were tested. As a result, even when the amount of the nitrogen component was increased by 10 times, only the same effect as that of the NPS medium was observed, but when the amount was removed, it was significantly inhibited. Therefore, it was considered that the nitrogen component was essential for purification, and the amount contained in the NPS medium was almost the optimal value.

【0022】次に、第2の実験では窒素成分のみ添加し
たもの(N)とNPS培地中の窒素成分をNのモル数で
換算して全てアンモニア態(硫酸アンモニウム)のみに
置換したもの(NH4)、同様に全て硝酸態(硝酸カリウ
ム)に置換したもの(NO3)を比較した(図4)。その結
果窒素成分のみでは効果は見られず、NPS培地の窒素
成分以外の協調的な寄与が確認された。実施例2の結果
と比較した場合、窒素成分のほかにリン成分が必要であ
ることがわかる。硝酸態、アンモニア態共にNPS培地
を越える効果は見られなかったが、硝酸態よりアンモニ
ア態の方がわずかに有効であった。
Next, in the second experiment, the sample containing only the nitrogen component (N) and the sample containing the nitrogen component in the NPS medium converted to the number of moles of N (NH 4 ) were all replaced with only ammonia (ammonium sulfate). ) And (NO 3 ), all of which were replaced with nitrate (potassium nitrate) (FIG. 4). As a result, no effect was observed only with the nitrogen component, and a cooperative contribution of the NPS medium other than the nitrogen component was confirmed. When compared with the result of Example 2, it is understood that a phosphorus component is necessary in addition to the nitrogen component. Neither nitrate nor ammonia showed an effect exceeding that of the NPS medium, but ammonia was slightly more effective than nitrate.

【0023】実施例5 実施例2と同様に調製した供試土壌に窒素源として塩化
アンモニウムを窒素換算で250ppm 、リン源としてリ
ン酸2水素カリウム+リン酸水素2カリウム(ZS
(N,P))またはメタリン酸カリウムまたはピロリン
酸カリウムまたはトリポリリン酸カリウムをリン換算で
150ppm になるように添加した。この土壌を30℃の
インキュベーター内で8週間培養した。培養中は、週に
1回含水率を10%に調整すると共に撹拌を行った。土
壌の初期油分濃度は約7500ppm であった。2週間後
に土壌中の油分を測定したところ、どのリン供給態を用
いても約50%浄化していた。結果を図5に示す。
Example 5 In a test soil prepared in the same manner as in Example 2, ammonium chloride was used as a nitrogen source at 250 ppm in terms of nitrogen, and potassium dihydrogen phosphate + dipotassium hydrogen phosphate (ZS) was used as a phosphorus source.
(N, P)) or potassium metaphosphate, potassium pyrophosphate, or potassium tripolyphosphate was added so as to be 150 ppm in terms of phosphorus. This soil was cultured in a 30 ° C. incubator for 8 weeks. During the culture, the water content was adjusted to 10% once a week, and stirring was performed. The initial oil concentration in the soil was about 7500 ppm. Two weeks later, when the oil content in the soil was measured, it was found to be about 50% purified using any phosphorus supply condition. FIG. 5 shows the results.

【0024】実施例6 高濃度汚染土壌への適用 実施例3と同様に調製した供試土壌に潤滑油を添加し、
これを土壌に均一になるように撹拌した。こうして油分
濃度が10000ppm ,20000ppm 及び35000
ppm の土壌を作製した。土壌にZS(N,P)250pp
m(K2HPO4: KH2PO4: NH4Cl =18:12:40の組成で
N分を土壌重量に対して250ppm 添加する)を添加
し、実施例2と同様に30℃のインキュベーター内で静
置培養し、含水量調整は2回/週、撹拌は1回/週の割
合で実施した。
Example 6 Application to highly contaminated soil A lubricating oil was added to a test soil prepared in the same manner as in Example 3,
This was agitated so as to be uniform in the soil. Thus, the oil concentration was 10,000 ppm, 20,000 ppm and 35,000.
ppm soil was prepared. 250pp ZS (N, P) on soil
m (K 2 HPO 4 : KH 2 PO 4 : NH 4 Cl = 18: 12: 40 and 250 ppm of N is added to the soil weight) in the same manner as in Example 2 and an incubator at 30 ° C. The cultivation was carried out at a rate of 2 times / week, and the stirring was performed once / week.

【0025】各試験区から3点ずつ土壌を試料として採
取し乾燥後、n−ヘキサン抽出により土壌中の残留油分
量を求めた。結果を図6及び図7に示す。ZS(N,
P)を添加した場合は、各図からわかるように汚染濃度
を3.5%まで高くしても、浄化速度が低下することは
なかった。また汚染濃度が高くなることで浄化が頭打ち
になることもなかった。汚染濃度が3.5%まで浄化速
度が低下しなかったことは、栄養の添加量が汚染濃度
0.5%の時と同量でも十分であることを示した。
From each test plot, three samples of soil were collected and dried, and the amount of residual oil in the soil was determined by extraction with n-hexane. The results are shown in FIGS. ZS (N,
In the case where P) was added, as can be seen from each figure, even if the contamination concentration was increased to 3.5%, the purification rate did not decrease. In addition, purification did not reach a plateau due to the high concentration of contamination. The fact that the purification rate did not decrease to the contaminant concentration of 3.5% indicated that the same amount of nutrient as in the case of the contaminant concentration of 0.5% was sufficient.

【0026】実施例7 潤滑油で汚染させた様々な物性の土壌7種を用いて、実
施例2と同じ方法で浄化実験を行った。供試した土壌の
性状を次の表2に示す。
Example 7 A purification experiment was carried out in the same manner as in Example 2 using seven types of soils having various physical properties contaminated with lubricating oil. The properties of the tested soil are shown in Table 2 below.

【0027】[0027]

【表2】 [Table 2]

【0028】従来使用した土壌のほかに、これとは種類
の異なる上記土壌7種にZSを添加した場合の油残存率
の経時変化を図8及び9に示す。この時G以外の初期油
分濃度は約3500〜4000ppm であり、Gの濃度は
約10000ppm であった。A及びBではZSの添加効
果が全くないため実験は4週目までで中断した。C,F
では、ZSを添加したものは非常に良好な結果を示し、
8週目では油の残存率が20%まで減少した。またG土
壌は、ZS添加後4週目までに5000ppm 以下まで浄
化することができた。
FIGS. 8 and 9 show the time-dependent changes in the residual oil ratio when ZS is added to the above-mentioned seven different soils in addition to the conventionally used soil. At this time, the initial oil concentration other than G was about 3500 to 4000 ppm, and the concentration of G was about 10000 ppm. In A and B, the experiment was stopped by the fourth week because there was no effect of adding ZS. C, F
In the above, the addition of ZS shows very good results,
At eight weeks, the residual oil rate had dropped to 20%. G soil could be purified to 5000 ppm or less by the fourth week after ZS addition.

【0029】さらに、pHが油汚染土壌の浄化速度に与え
る影響について調べるため、A及びBにZSを添加し、
さらにpHを調整するためにCaCO3 を1%量加えた場合と
加えない場合とでその浄化速度の違いを調べた。この時
のpHを表3に、また浄化率の経時変化を図10に示し
た。CaCO3 を添加することによりA及びB共に浄化が進
むことがわかった。一方、CaCO3 を添加しなかった場合
は浄化が全く進まないことが再現された。
Further, in order to investigate the effect of pH on the purification rate of oil-contaminated soil, ZS was added to A and B,
Further, the difference in the purification rate between the case where CaCO 3 was added in an amount of 1% and the case where CaCO 3 was not added in order to adjust the pH was examined. The pH at this time is shown in Table 3, and the change over time in the purification rate is shown in FIG. It was found that the addition of CaCO 3 promotes purification of both A and B. On the other hand, it was reproduced that purification did not proceed at all when CaCO 3 was not added.

【0030】[0030]

【表3】 [Table 3]

【0031】実施例8 C重油で汚染させた土壌に無機肥料ZS(N,P)を窒
素換算で250ppm になるように添加し、30℃のイン
キュベーター内で8週間培養した。培養中は、週に1回
含水率を10%に調整すると共に撹拌を行った。初期油
分濃度は15000ppm であった。2週間後に土壌中の
油分を測定したところ、土壌中の油分濃度が約40%減
少していた。対象物質がC重油であっても、ZS(N,
P)を添加することで浄化が促進されることが確認され
た。結果を図11に示す。
Example 8 Inorganic fertilizer ZS (N, P) was added to soil contaminated with heavy oil C at a concentration of 250 ppm in terms of nitrogen, and cultured in an incubator at 30 ° C. for 8 weeks. During the culture, the water content was adjusted to 10% once a week, and stirring was performed. The initial oil concentration was 15000 ppm. Two weeks later, when the oil content in the soil was measured, the oil content in the soil was reduced by about 40%. Even if the target substance is C heavy oil, ZS (N,
It was confirmed that the addition of P) promoted purification. The results are shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は種々の培地中での、油汚染土壌中の油の
分解の経時的変化を示すグラフである。
FIG. 1 is a graph showing the time course of the degradation of oil in oil contaminated soil in various media.

【図2】図2は、種々の無機塩培地中での、油汚染土壌
中の油の分解の経時的変化を示すグラフである。
FIG. 2 is a graph showing the time course of the degradation of oil in oil contaminated soil in various inorganic salt media.

【図3】油汚染土壌をカラムに詰めて無機窒素及びリン
を添加した場合の、油の残存率をカラム中の位置(上、
中、下)に分けて示したグラフである。
FIG. 3 shows the residual ratio of oil when oil-contaminated soil was packed in a column and inorganic nitrogen and phosphorus were added.
It is a graph divided into middle and bottom.

【図4】図4は、油汚染土壌の浄化のために無機窒素の
添加が必要であること、及び硝酸態窒素よりもアンモニ
ア態窒素の方が好ましいことを示すグラフである。
FIG. 4 is a graph showing that addition of inorganic nitrogen is required for purification of oil-contaminated soil, and that ammonia-based nitrogen is preferred over nitrate-based nitrogen.

【図5】図5は、油汚染土壌の浄化のために種々の無機
リン酸塩が同等の効果を発揮することを示すグラフであ
る。
FIG. 5 is a graph showing that various inorganic phosphates exert equivalent effects for remediation of oil-contaminated soil.

【図6】図6は、土壌中の汚染油の濃度が5000ppm
及び10000ppm である場合の油残存率及び油残存濃
度の経時変化を示すグラフである。
FIG. 6 shows that the concentration of contaminated oil in soil is 5000 ppm.
5 is a graph showing the change over time in the residual oil ratio and residual oil concentration at 10000 ppm and 10000 ppm.

【図7】図7は、土壌中の汚染油の濃度が20000pp
m 及び35000ppm である場合の油残存率及び油残存
濃度の経時変化を示すグラフである。
FIG. 7 shows that the concentration of contaminated oil in soil is 20,000 pp.
5 is a graph showing the change over time in the residual oil ratio and residual oil concentration when m and 35000 ppm.

【図8】図8は、種々の土壌中の汚染油の濃度の経時変
化を示すグラフである。
FIG. 8 is a graph showing the change over time in the concentration of contaminated oil in various soils.

【図9】図9は、種々の土壌中の汚染油の濃度の経時変
化を示すグラフである。
FIG. 9 is a graph showing the change over time in the concentration of contaminated oil in various soils.

【図10】図10は、油汚染土壌の浄化におけるpH調整
の効果を示すグラフである。
FIG. 10 is a graph showing the effect of pH adjustment on purification of oil-contaminated soil.

【図11】図11は、C重油で汚染された土壌の浄化に
おける窒素源とリン源の添加効果を示すグラフである。
FIG. 11 is a graph showing the effect of adding a nitrogen source and a phosphorus source on purification of soil contaminated with heavy fuel oil C.

フロントページの続き (72)発明者 沼田 耕一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平10−202240(JP,A) 特公 平4−9916(JP,B2) 特表 平9−501841(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09C 1/10 Continuation of the front page (72) Inventor Koichi Numata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-10-202240 (JP, A) JP 4-9916 (JP, B2) Special Table Hei 9-501841 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B09C 1/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 油汚染土壌の生物的浄化方法であって、
土壌のpHを6〜8の状態でN/P比が1.51.9
土壌の重量に対するN量が100〜500ppm となるよ
うに、土壌に無機物N源及び/又はP源を添加すること
を特徴とする方法。
1. A method for biologically purifying oil-contaminated soil, comprising:
When the soil pH is 6 to 8, the N / P ratio is 1.5 to 1.9 ,
A method comprising adding an inorganic N source and / or a P source to soil such that the amount of N relative to the weight of the soil is 100 to 500 ppm.
【請求項2】 Nを提供する無機物がアンモニア態窒素
化合物又は硝酸態窒素化合物である、請求項1に記載の
方法。
A wherein inorganic ammonia nitrogen compounds to provide N or nitrate nitrogen compound, The method of claim 1.
【請求項3】 Pを提供する無機物がリン酸塩、過リン
酸塩、メタリン酸塩又はポリリン酸塩である、請求項1
又は2に記載の方法。
3. The inorganic substance providing P is a phosphate, a superphosphate, a metaphosphate or a polyphosphate.
Or the method of 2 .
JP26986797A 1997-10-02 1997-10-02 Biological purification method for oil contaminated soil Expired - Fee Related JP3346242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26986797A JP3346242B2 (en) 1997-10-02 1997-10-02 Biological purification method for oil contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26986797A JP3346242B2 (en) 1997-10-02 1997-10-02 Biological purification method for oil contaminated soil

Publications (2)

Publication Number Publication Date
JPH11104612A JPH11104612A (en) 1999-04-20
JP3346242B2 true JP3346242B2 (en) 2002-11-18

Family

ID=17478321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26986797A Expired - Fee Related JP3346242B2 (en) 1997-10-02 1997-10-02 Biological purification method for oil contaminated soil

Country Status (1)

Country Link
JP (1) JP3346242B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154152A (en) * 2007-12-07 2009-07-16 Kurita Water Ind Ltd Method for clarifying contaminated soil or ground water
JP2010022978A (en) * 2008-07-23 2010-02-04 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820203B2 (en) * 2002-09-10 2006-09-13 新日本製鐵株式会社 Purification method for contaminated soil
JP2007268401A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154152A (en) * 2007-12-07 2009-07-16 Kurita Water Ind Ltd Method for clarifying contaminated soil or ground water
JP2010022978A (en) * 2008-07-23 2010-02-04 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water

Also Published As

Publication number Publication date
JPH11104612A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
Huesemann Guidelines for land‐treating petroleum hydrocarbon‐contaminated soils
Agarry et al. Kinetic modelling and half-life study on enhanced soil bioremediation of bonny light crude oil amended with crop and animal-derived organic wastes
Maletić et al. Degradation kinetics of an aged hydrocarbon-contaminated soil
Guo et al. Improving benzo (a) pyrene biodegradation in soil with wheat straw-derived biochar amendment: performance, microbial quantity, CO2 emission, and soil properties
KR20100066540A (en) Method for the bioremediation of soil and/or water contaminated by organic and/or inorganic compounds
Sivakumar et al. Bioremediation studies on reduction of heavy metals toxicity
JP3820180B2 (en) Purification method for contaminated soil
Williams et al. The use of poultry litter as co-substrate and source of inorganic nutrients and microorganisms for the ex situ biodegradation of petroleum compounds
JP3346242B2 (en) Biological purification method for oil contaminated soil
Anekwe et al. Application of biostimulation and bioventing system as bioremediation strategy for the treatment of crude oil contaminated soils
JP4288198B2 (en) Purification method for contaminated soil
Olawale et al. Optimisation of diesel polluted soil using response surface methodology
RU2414313C2 (en) Method to clean land from oil and oil products and to recultivate agricultural soils
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
JP2003053324A (en) Restoration method for soil polluted with petroleum
EP1027940A1 (en) Method for purifying contaminated soil
RU2317162C1 (en) Preparation for microbiological treatment of oil slimes and ground polluted by petroleum products
JP2003010834A (en) Bioremediation method for polluted soil
RU2329200C2 (en) Processing method of sewage disposal plants slugs of oil-and- gas and oil-refining industries
RU2322312C1 (en) Method to recover soil and ground contaminated with oil and oil product
Маслобоев et al. Bioremediation of oil product contaminated soils in conditions of North Near-Polar Area
Sun et al. Pilot-scale field studies on activated microbial remediation of petroleum-contaminated soil
RU2780125C1 (en) Solution for cleaning oil contaminated trees and shrubs
Gupta et al. Interrelation of Cd‐lon concentrations and the growth and activities of microorganisms in two growth media
RU2402495C2 (en) Method of processing acid tar (versions)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees