JP3817534B2 - Soil and groundwater purification composition and purification method - Google Patents

Soil and groundwater purification composition and purification method Download PDF

Info

Publication number
JP3817534B2
JP3817534B2 JP2003297491A JP2003297491A JP3817534B2 JP 3817534 B2 JP3817534 B2 JP 3817534B2 JP 2003297491 A JP2003297491 A JP 2003297491A JP 2003297491 A JP2003297491 A JP 2003297491A JP 3817534 B2 JP3817534 B2 JP 3817534B2
Authority
JP
Japan
Prior art keywords
soil
groundwater
purification composition
purification
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003297491A
Other languages
Japanese (ja)
Other versions
JP2005066425A (en
Inventor
浩一郎 村澤
順 川本
芳治 亀井
義弘 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Kao Corp
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Kao Corp
Priority to JP2003297491A priority Critical patent/JP3817534B2/en
Publication of JP2005066425A publication Critical patent/JP2005066425A/en
Application granted granted Critical
Publication of JP3817534B2 publication Critical patent/JP3817534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Description

本発明は、環境汚染物質である、主にテトラクロロエチレン、トリクロロエチレン等の揮発性有機塩素化合物を土壌中の微生物の力で分解するバイオレメーデーションを用いる土壌と地下水の浄化組成物および浄化方法に関する。   The present invention relates to a soil and groundwater purification composition and purification method using bioremediation that decomposes volatile organic chlorine compounds such as tetrachloroethylene and trichlorethylene, which are environmental pollutants, by the power of microorganisms in the soil.

土壌中や地下水中に含まれるテトラクロロエチレン、トリクロロエチレン等の揮発性有機塩素化合物の環境汚染物質を低減する方法としては、土壌中に存在する微生物を用いるバイオレメーデーションという方法がある。このようなバイオレメーデーションにおいて用いる微生物は、水素供与体とリン、窒素などの栄養塩の存在下で効果的に揮発性有機塩素化合物を分解することが知られている。バイオレメーデーションを用いた従来の土壌と地下水の浄化方法としては、微生物の炭素源(水素供与体)としてエタノール等を用いた方法が知られている(例えば、非特許文献1参照。)。   As a method for reducing environmental pollutants such as tetrachlorethylene and trichlorethylene contained in soil and groundwater, there is a method called bioremediation using microorganisms present in soil. Microorganisms used in such bioremediation are known to effectively decompose volatile organochlorine compounds in the presence of hydrogen donors and nutrient salts such as phosphorus and nitrogen. As a conventional soil and groundwater purification method using bioremation, a method using ethanol or the like as a microbial carbon source (hydrogen donor) is known (for example, see Non-Patent Document 1).

また、特許文献1および特許文献2には、水素供与体としてクエン酸やエタノール等の常温で液体または水溶性の有機物を用いた揮発性有機塩素化合物の低減方法が開示されている。   Patent Documents 1 and 2 disclose a method for reducing volatile organic chlorine compounds using a liquid or water-soluble organic substance such as citric acid or ethanol as a hydrogen donor at room temperature.

さらに、特許文献3には特定の炭素数を限定した常温で固体の脂肪酸およびアルコールを用いた土壌と地下水における揮発性有機化合物の低減方法について開示されている。
特開平9−276894号公報 特開平11−90484号公報 特開2002-370085号公報 特許第1954875号明細書 特許第1575294号明細書 特許第2698768号明細書 エリス他(D.E.Ellis,et al.)著、「環境科学と技術(Environmental Science & Technology)」、(米国)、Vol.34、 No.11、 2000、 P2254-2260
Furthermore, Patent Document 3 discloses a method for reducing volatile organic compounds in soil and groundwater using fatty acids and alcohols that are solid at room temperature with a specific number of carbons limited.
Japanese Patent Laid-Open No. 9-276894 Japanese Patent Application Laid-Open No. 11-90484 JP 2002-370085 A Japanese Patent No. 1954875 Japanese Patent No. 1575294 Japanese Patent No. 2698768 "Evironmental Science &Technology" (USA), Vol.34, No.11, 2000, P2254-2260, by DEEllis et al.

前述の従来技術において、特許文献1、2および非特許文献1による揮発性有機塩素化合物の低減方法では、クエン酸やエタノール等の液体状の炭素源を用いているため常時土壌中へ添加し続ける必要があり、作業性およびコストの面で問題があった。
また、炭素数を限定した脂肪酸およびアルコールを用いた特許文献3に開示された従来技術では、炭素源としての水溶性が低いため、比較的流れの遅い地下水や僅かな水分しか存在しない土壌中では有機物の移動距離が限定されるという問題があった。この結果、特許文献3に開示された揮発性有機化合物の低減方法では、広範な汚染範囲を浄化するために数多くの添加ポイント(井戸等の穴)を設ける必要があり、施設の構築や維持管理に莫大な費用を要した。したがって、上記の従来技術における問題を解決し、効果的な土壌と地下水の浄化を行うことは、この分野における達成すべき課題であった。
本発明は従来のバイオレメーデーションによる揮発性有機塩素化合物の低減方法における課題を解決するものであり、一度の添加で長期間炭素を供給することができ、さらには炭素源としての溶解度を向上させ、数少ない添加ポイントで広範な汚染範囲の浄化を行うことができる土壌と地下水の浄化組成物および浄化方法を提供することを目的とする。
In the above-described prior art, the methods for reducing volatile organochlorine compounds according to Patent Documents 1 and 2 and Non-Patent Document 1 always use liquid carbon sources such as citric acid and ethanol, so that they are constantly added to the soil. There was a problem in terms of workability and cost.
Moreover, in the prior art disclosed in Patent Document 3 using fatty acids and alcohols with a limited number of carbons, since water solubility as a carbon source is low, in groundwater with relatively slow flow or in a soil where only a small amount of water exists. There was a problem that the moving distance of the organic matter was limited. As a result, in the method for reducing volatile organic compounds disclosed in Patent Document 3, it is necessary to provide a large number of addition points (holes such as wells) in order to purify a wide range of contamination. Was very expensive. Therefore, solving the problems in the prior art described above and performing effective soil and groundwater purification was a problem to be achieved in this field.
The present invention solves the problem in the conventional method for reducing volatile organochlorine compounds by bioremediation, can supply carbon for a long time by one addition, and further improves the solubility as a carbon source. An object of the present invention is to provide a purification composition and a purification method for soil and groundwater that can purify a wide range of contamination with few addition points.

前述の従来技術における課題を解決するために本発明者らは鋭意研究の結果、特定の炭素数と分子構造とを有する脂肪酸またはアルコール、および特定の物質群から選ばれた界面活性剤を共存させた組成物である浄化組成物を構成したとき、従来技術の課題を極めて効率的に解決することができることを見出し本発明を完成するに至った。
すなわち、本発明に係る土壌と地下水の浄化組成物は、請求項1に記載したように、土壌と地下水のバイオレメーデーションに用いられる固形物状の浄化組成物であって、当該浄化組成物が炭素源と非イオン性界面活性剤とを有し、前記非イオン性界面活性剤は親水性と疎水性の比率を示すH.L.B.値(Hydrophile-lipophile balance)が4以上であり、前記炭素源が下記(i)〜(iii)から選ばれる少なくとも1種である。
(i)炭素数が14以上の脂肪酸
(ii)炭素数が14以上のアルコール
(iii)炭素数が12以上の脂肪族アミン、または炭素数が12以上の脂肪酸アマイド
In order to solve the above-mentioned problems in the prior art, the present inventors have conducted extensive research and found that a fatty acid or alcohol having a specific carbon number and molecular structure and a surfactant selected from a specific group of substances coexist. The present inventors have found that the problems of the prior art can be solved very efficiently when a purification composition, which is a new composition, is constructed.
That is, the soil and groundwater purification composition according to the present invention is a solid purification composition used for bioremediation of soil and groundwater as described in claim 1 , wherein the purification composition is A carbon source and a nonionic surfactant, wherein the nonionic surfactant has a HL value (Hydrophile-lipophile balance) indicating a ratio of hydrophilicity to hydrophobicity of 4 or more, The carbon source is at least one selected from the following (i) to (iii).
(I) a fatty acid having 14 or more carbon atoms (ii) an alcohol having 14 or more carbon atoms (iii) an aliphatic amine having 12 or more carbon atoms, or a fatty acid amide having 12 or more carbon atoms

また、本発明に係る土壌と地下水の浄化組成物は、請求項2に記載したように、請求項1の脂肪酸が直鎖状飽和脂肪酸であることがさらに好ましい。
また、本発明に係る土壌と地下水の浄化組成物は、請求項3に記載したように、請求項1のアルコールが飽和アルコールであることがさらに好ましい。
また、本発明に係る土壌と地下水の浄化組成物は、請求項4に記載したように、請求項1の界面活性剤の添加量が浄化組成物の2重量%以上55重量%以下であることがさらに好ましい。
また、本発明に係る土壌と地下水の浄化組成物は、請求項5に記載したように、請求項1の内容に無機性窒素源をさらに含有させることがさらに好ましい。
また、本発明に係る土壌と地下水の浄化組成物は、請求項6に記載したように、請求項1の内容に無機性リン源をさらに含有させることがさらに好ましい。
また、本発明に係る土壌と地下水の浄化組成物は、請求項7に記載したように、請求項1の内容に比重調整無機材料をさらに含有させることがさらに好ましい。
本発明に係る土壌と地下水の浄化方法においては、請求項8に記載したように、請求項1〜7のいずれかに記載の土壌と地下水の浄化組成物を土壌に添加させている。


In the soil and groundwater purification composition according to the present invention, as described in claim 2, the fatty acid of claim 1 is more preferably a linear saturated fatty acid.
In the soil and groundwater purification composition according to the present invention, as described in claim 3, the alcohol of claim 1 is more preferably a saturated alcohol.
In the soil and groundwater purification composition according to the present invention, as described in claim 4 , the addition amount of the surfactant of claim 1 is 2% by weight or more and 55% by weight or less of the purification composition. Is more preferable.
Further, as described in claim 5 , the soil and groundwater purification composition according to the present invention preferably further contains an inorganic nitrogen source in the contents of claim 1.
Moreover, as described in claim 6 , the soil and groundwater purification composition according to the present invention further preferably contains an inorganic phosphorus source in the contents of claim 1.
Further, as described in claim 7 , the soil and groundwater purification composition according to the present invention further preferably contains a specific gravity adjusting inorganic material in the content of claim 1.
In the soil and groundwater purification method according to the present invention, as described in claim 8 , the soil and groundwater purification composition according to any one of claims 1 to 7 is added to the soil.


さらに、本発明に係る土壌と地下水の浄化方法は、上記の各要件を具備した浄化組成物を土壌に添加することであり、例えば井戸や連続溝に代表される穴を地表から地中の方向に形成し、その穴から浄化組成物を直接土壌中や地下水中へ添加する。   Furthermore, the soil and groundwater purification method according to the present invention is to add a purification composition having the above requirements to the soil. For example, a hole represented by a well or a continuous groove is formed in the direction from the surface to the ground. The purification composition is added directly into the soil or groundwater from the hole.

本発明によれば、浄化組成物を一度添加するだけで、長期間炭素を供給することが可能となり、また炭素源としての溶解度を向上させ、数少ない添加ポイントで広範な汚染範囲の浄化を行うことができる土壌と地下水の浄化組成物および浄化方法を提供することが可能となる。   According to the present invention, it is possible to supply carbon for a long period of time by adding a purification composition once, improve the solubility as a carbon source, and purify a wide range of contamination with few addition points. It is possible to provide a purification composition and a purification method for soil and groundwater that can be used.

以下、本発明に係る土壌と地下水の浄化組成物および浄化方法について説明する。
本発明に係る土壌と地下水の浄化組成物は、生分解性を有し、特定された炭素数と分子構造を有する炭素源と、特定物質から選択される界面活性剤との組成物である。
Hereinafter, the purification composition and purification method for soil and groundwater according to the present invention will be described.
The soil and groundwater purification composition according to the present invention is a composition of a biodegradable carbon source having a specified carbon number and molecular structure, and a surfactant selected from specific substances.

対象とする土壌中や地下水中に生息する微生物は、本発明の土壌と地下水の浄化組成物から供給された炭素源(水素供与体または電子供与体とも表現される)を用いて増殖し、有機塩素化合物の塩素と水素の置換反応を行い、最終的に塩素を全く持たない無害な物質(エチレン、エタン等)に変換し浄化するものである。   Microorganisms that inhabit the target soil or groundwater grow using a carbon source (also expressed as a hydrogen donor or electron donor) supplied from the soil and groundwater purification composition of the present invention, and grow organically. A chlorine and hydrogen substitution reaction of a chlorine compound is performed, and finally it is converted into a harmless substance (ethylene, ethane, etc.) having no chlorine and purified.

本発明の炭素源としては、次に示す(i)〜(iii)の炭素源が挙げられる。
(i)炭素数が14以上の脂肪酸
(ii)炭素数が14以上のアルコール
(iii)炭素数が12以上の脂肪族アミン、または炭素数が12以上の脂肪酸アマイド
(i)の炭素数が14以上の脂肪酸は、好ましくは炭素数が14〜22の脂肪酸であり、より好ましくは炭素数が16〜18の直鎖脂肪酸である。(ii)の炭素数が14以上のアルコールは、好ましくは炭素数が14〜22のアルコールであり、より好ましくは炭素数が14〜18の直鎖アルコールである。(iii)の炭素数が12以上の脂肪族アミン、又は炭素数が12以上の脂肪酸アマイドは、好ましくは炭素数が12〜24の脂肪族アミン、又は炭素数が12〜24の脂肪酸アマイドであり、より好ましくは炭素数が12〜20の直鎖脂肪族アミン、又は炭素数が12〜20の直鎖脂肪族アマイドである。
本発明における上記(i)〜(iii)に示した炭素源は、単独で、あるいは2種以上を混合して含有してもよい。これらの炭素源の中では、生分解性とコスト面から(i)が特に好ましい。
Examples of the carbon source of the present invention include the following carbon sources (i) to (iii).
(I) a fatty acid having 14 or more carbon atoms (ii) an alcohol having 14 or more carbon atoms (iii) an aliphatic amine having 12 or more carbon atoms, or a fatty acid amide having 12 or more carbon atoms (i) having 14 carbon atoms The above fatty acid is preferably a fatty acid having 14 to 22 carbon atoms, more preferably a linear fatty acid having 16 to 18 carbon atoms. The alcohol having 14 or more carbon atoms in (ii) is preferably an alcohol having 14 to 22 carbon atoms, and more preferably a linear alcohol having 14 to 18 carbon atoms. The (iii) aliphatic amine having 12 or more carbon atoms or the fatty acid amide having 12 or more carbon atoms is preferably an aliphatic amine having 12 to 24 carbon atoms or a fatty acid amide having 12 to 24 carbon atoms. More preferably, it is a linear aliphatic amine having 12 to 20 carbon atoms or a linear aliphatic amide having 12 to 20 carbon atoms.
The carbon sources shown in the above (i) to (iii) in the present invention may be contained alone or in admixture of two or more. Among these carbon sources, (i) is particularly preferable from the viewpoint of biodegradability and cost.

炭素数が上記の設定数値未満では、常温で、または土壌中と地下水中で液体として存在するため、結果的に常時炭素源を土壌中へ添加する必要があり、好ましいものではない。   If the carbon number is less than the above set numerical value, it exists as a liquid at room temperature or in soil and groundwater, and as a result, it is necessary to constantly add a carbon source to the soil, which is not preferable.

また、炭素源における不飽和結合の存在は融点を著しく低下させ、炭素源が常温で、または土壌中や地下水中で液体として存在し、結果的に常時炭素源を土壌中へ添加する必要があり、好ましいものではない。   In addition, the presence of unsaturated bonds in the carbon source significantly lowers the melting point, and the carbon source exists as a liquid at room temperature or in soil or groundwater. As a result, it is necessary to constantly add the carbon source to the soil. It is not preferable.

これら特定の炭素源の第1例としては、ベヘン酸、ステアリン酸、パルミチン酸、ミリスチン酸およびこれら物質の任意の混合物、またはこれら炭素源を含有する豚脂、カカオ脂、ヤシ油、パーム油、パーム核油天然物質などが例示できる。   Examples of these specific carbon sources include behenic acid, stearic acid, palmitic acid, myristic acid and any mixture of these substances, or pork fat, cocoa butter, coconut oil, palm oil containing these carbon sources, A palm kernel oil natural substance etc. can be illustrated.

また、特定の炭素源の第2例としては、ベヘニルアルコール、ステアリルアルコール、パルミチルアルコール、ミリスチルアルコールおよびこれら物質の任意の混合物、またはこれら炭素源を含有する豚脂、カカオ脂、ヤシ油、パーム油、パーム核油天然物質などが例示できる。   Further, as a second example of the specific carbon source, behenyl alcohol, stearyl alcohol, palmityl alcohol, myristyl alcohol and any mixture thereof, or pork fat, cocoa butter, coconut oil, palm oil containing these carbon sources And palm kernel oil natural substances.

さらに、特定の炭素源の第3例としては、脂肪族アミンとしてラウリルアミン、ミリスチルアミン、ステアリルアミン、ジパルミチルアミン、ジステアリルアミン、ジメチルベヘニルアミン、パルミチルプロピレンジアミン、ステアリルプロピレンジアミン、ミリスチルアミンアセテート、ステアリルアミンアセテート、ステアリン酸ジエチルアミノエチルアミド、ステアリン酸ジエチルアミノプロピルアミドおよびこれら脂肪族アミンの混合物、および塩などが例示される。また、特定の炭素源の第3例の脂肪酸アマイドとしてはラウリン酸アマイド、ミリスチン酸アマイド、パルミチン酸アマイド、ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド、エチレンビスステアリン酸アマイド、ジパルミチルケトン、ジステアリルケトン、およびこれら脂肪酸アマイドの混合物などが例示される。   Further, as a third example of a specific carbon source, laurylamine, myristylamine, stearylamine, dipalmitylamine, distearylamine, dimethylbehenylamine, palmitylpropylenediamine, stearylpropylenediamine, myristylamine as aliphatic amines Examples include acetate, stearylamine acetate, stearic acid diethylaminoethylamide, stearic acid diethylaminopropylamide and mixtures of these aliphatic amines, and salts. The fatty acid amide of the third example of the specific carbon source includes lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, erucic acid amide, ethylenebisstearic acid amide, dipalmityl ketone, Examples include distearyl ketone and a mixture of these fatty acid amides.

本発明に係る土壌と地下水の浄化組成物において、上記の第1例から第3例の炭素源は、単独で、あるいは2種以上を混合して含有しても良い。これらの炭素源の中では、製造コストの観点から炭素数が14以上の脂肪酸が好ましく、特に融点が季節を通じて常温以上であり、取り扱いや保存の点から炭素数が16以上の脂肪酸が好ましい。
本発明に係る土壌と地下水の浄化組成物中の炭素源の含有量は、10〜95重量%が好ましく、特に55〜95重量%が好ましい。
In the soil and groundwater purification composition according to the present invention, the carbon sources of the first to third examples may be contained alone or in admixture of two or more. Among these carbon sources, fatty acids having 14 or more carbon atoms are preferable from the viewpoint of production cost. Particularly, fatty acids having a melting point of normal temperature or higher throughout the season and 16 or more carbon atoms from the viewpoint of handling and storage are preferable.
The content of the carbon source in the soil and groundwater purification composition according to the present invention is preferably 10 to 95% by weight, particularly preferably 55 to 95% by weight.

本発明に係る浄化組成物に用いる界面活性剤とは、一般に脂肪酸、アルコール類を水中に可溶化させる物質群であり、陰イオン性界面活性剤と非イオン性界面活性剤の中から選択される。   The surfactant used in the purification composition according to the present invention is a group of substances that generally solubilize fatty acids and alcohols in water, and is selected from anionic surfactants and nonionic surfactants. .

本発明においては、非イオン性界面活性剤は、炭素源の可溶化及び本発明の効果の発現の観点から、親水性と疎水性の比率を示すH.L.B.値は4以上が好ましく、特にH.L.B.値は4〜25の範囲が好ましい。H.L.B.値が4未満では脂肪酸などの可溶化能力が不足して好ましいものではない。また、H.L.B.値が25を越えると、組成物である浄化組成物の融点を低下させたり、過剰な溶解性を示すため好ましいものではない。ただし、非イオン性界面活性剤はH.L.B.値が4未満、若しくはH.L.B.値が25を越える範囲のものであっても本発明の効果を完全に阻害するものではなく、本発明の土壌と地下水の浄化組成物を構成することが可能である。なお、H.L.B.値は、Griffin法により算出したものである。   In the present invention, the nonionic surfactant preferably has an HLB value indicating a ratio of hydrophilicity to hydrophobicity of 4 or more from the viewpoint of solubilization of the carbon source and expression of the effects of the present invention. In particular, the H.L.B. value is preferably in the range of 4-25. If the HLB value is less than 4, the solubilizing ability of fatty acids is insufficient, which is not preferable. On the other hand, if the HLB value exceeds 25, the melting point of the cleaning composition as the composition is lowered or excessive solubility is exhibited, which is not preferable. However, the nonionic surfactant does not completely inhibit the effects of the present invention even if the HLB value is less than 4 or the HLB value exceeds 25. It is possible to constitute the soil and groundwater purification composition of the present invention. The HLB value is calculated by the Griffin method.

また、本発明における界面活性剤の添加量は、組成物全体である浄化組成物に対して2重量%以上、55重量%以下が好ましい。界面活性剤の添加量が2重量%より小さいと脂肪酸などの可溶化能力が不足して好ましいものではない。反対に、界面活性剤の添加量が55重量%より大きいと、組成物である浄化組成物としての融点が低下し、常温で、または土壌中や地下水中で液体として存在し、結果的に常時界面活性剤を土壌中へ添加する必要があり、好ましいものではない。ただし、界面活性剤の添加量が2重量%より小さい、若しくは55重量%より大きい範囲であっても本発明の効果を完全に阻害するものではなく、本発明の土壌と地下水の浄化組成物を構成することが可能である。   The addition amount of the surfactant in the present invention is preferably 2% by weight or more and 55% by weight or less with respect to the purification composition as the whole composition. When the addition amount of the surfactant is less than 2% by weight, the solubilizing ability of fatty acid is insufficient, which is not preferable. On the other hand, when the amount of the surfactant added is greater than 55% by weight, the melting point as the purification composition, which is a composition, decreases and exists as a liquid at room temperature or in soil or groundwater. It is necessary to add a surfactant to the soil, which is not preferable. However, even if the addition amount of the surfactant is less than 2% by weight or more than 55% by weight, the effect of the present invention is not completely inhibited, and the soil and groundwater purification composition of the present invention is not used. It is possible to configure.

以上の要件を満たす好適な界面活性剤としては、生分解性および微生物への安全性(ここで安全性とは殺菌作用の少ないことをいう。)の点から陰イオン性界面活性剤または非イオン性界面活性剤である。   Suitable surfactants that satisfy the above requirements are anionic surfactants or nonionic surfactants in terms of biodegradability and safety to microorganisms (herein, safety refers to less bactericidal action). Surfactant.

陰イオン性界面活性剤としては、アルキル硫酸エステル塩であるラウリル硫酸ナトリウム、ラウリル硫酸トリエタノールアミン、およびラウリル硫酸アンモニウムなどが例示され、ポリオキシエチレンアルキルエーテル硫酸エステル塩であるポリオキシエチレンラウリルエーテル硫酸ナトリウムが例示され、アルキルベンゼンスルホン酸塩であるドデシルベンゼンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、およびアルキルジフェニルエーテルジスルフォン酸ナトリウムなどが例示され、脂肪酸石鹸であるステアリン酸ナトリウム石鹸、オレイン酸ナトリウム石鹸、およびヒマシ油カリ石鹸などが例示され、そしてナフタレンスルフォン酸ホルマリン縮合物などが例示される。   Examples of the anionic surfactant include sodium lauryl sulfate, which is an alkyl sulfate salt, triethanolamine lauryl sulfate, and ammonium lauryl sulfate, and polyoxyethylene lauryl ether sodium sulfate, which is a polyoxyethylene alkyl ether sulfate salt. And alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dialkyl sulfosuccinate, and sodium alkyl diphenyl ether disulfonate, and fatty acid soaps such as sodium stearate soap, sodium oleate soap, and castor oil Examples include potash soap, and naphthalene sulfonic acid formalin condensate.

一方、非イオン性界面活性剤としてはポリオキシエチレンアルキルエーテルであるポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンミリスチルエーテル、およびポリオキシエチレンジスチレン化フェニルエーテルなどが例示され、ソルビタン脂肪酸エステルであるソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、およびソルビタンジステアレートなどが例示され、ポリオキシエチレンソルビタン脂肪酸エステルであるポリオキシエチレンソルビタンモノヤシ脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタントリイソステアレート、ポリオキシエチレンソルビタンモノオレエート、およびテトラオレイン酸ポリオキシエチレンソルビットなどが例示される。   On the other hand, nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene Examples include ethylene myristyl ether and polyoxyethylene distyrenated phenyl ether, such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, and sorbitan distearate, which are sorbitan fatty acid esters. Exemplified, polyoxyethylene sorbitan mono-fatty acid ester polyoxyethylene sorbitan fatty acid ester, polyoxyethylene Sorbitan laurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan monooleate, and polytetraoleic acid poly Examples include oxyethylene sorbitol.

これら界面活性剤のうち生分解性および微生物への安全性(少ない殺菌作用)の点からより好ましくは非イオン性界面活性剤であり、このうち特に脂肪酸を可溶化する能力の高いポリオキシエチレンソルビタン脂肪酸エステル、およびソルビタン脂肪酸エステルがより好ましい。   Of these surfactants, nonionic surfactants are more preferable from the viewpoint of biodegradability and safety to microorganisms (less bactericidal action), and among these, polyoxyethylene sorbitan has a particularly high ability to solubilize fatty acids. Fatty acid esters and sorbitan fatty acid esters are more preferred.

これら特定の界面活性剤は本発明に係る浄化組成物に用いる炭素源などを効果的に乳化することにより土壌中と地下水中へ溶解させることができ、添加量を制御することでその溶解量を任意に選択可能である。   These specific surfactants can be dissolved in soil and groundwater by effectively emulsifying the carbon source used in the purification composition according to the present invention, and the amount of dissolution can be controlled by controlling the amount added. It can be arbitrarily selected.

また、同時にこれら界面活性剤は微生物と本発明に用いる炭素源などとの付着性、すなわち親水性を改善する。この結果、界面活性剤は微生物反応の効率を向上させ、疎水性である有機塩素化合物の水系への溶解を促進させるため、特に粘土質中に保持された有機塩素化合物の浄化にも好適である。   At the same time, these surfactants improve adhesion between the microorganism and the carbon source used in the present invention, that is, hydrophilicity. As a result, the surfactant improves the efficiency of the microbial reaction and promotes the dissolution of hydrophobic organochlorine compounds in aqueous systems, and is therefore particularly suitable for the purification of organochlorine compounds retained in clay. .

これら特定の界面活性剤の炭素源への添加量は、組成物全量に対して2重量%以上55重量%以下が好ましい。この界面活性剤の添加量が55重量%を超えると炭素源の過剰溶解を招き、好ましいものではない。一方、界面活性剤の添加量が2重量%未満では所定の汚染地域に炭素源を供給するために多少多くの供給ポイントを形成する必要があるため好ましいものではない。ただし、界面活性剤の炭素源への添加量が2重量%より小さく、若しくは55重量%より大きい範囲であっても本発明の効果を完全に阻害するものではなく、本発明の土壌と地下水の浄化組成物を構成することが可能である。   The amount of the specific surfactant added to the carbon source is preferably 2% by weight or more and 55% by weight or less based on the total amount of the composition. If the amount of the surfactant added exceeds 55% by weight, the carbon source is excessively dissolved, which is not preferable. On the other hand, if the addition amount of the surfactant is less than 2% by weight, it is not preferable because it is necessary to form more supply points in order to supply the carbon source to a predetermined contaminated area. However, even if the amount of the surfactant added to the carbon source is less than 2% by weight or more than 55% by weight, the effect of the present invention is not completely inhibited. It is possible to constitute a purification composition.

以上のように、本発明に係る土壌と地下水の浄化組成物および浄化方法の特徴は、特定分子構造かつ特定炭素数を有する炭素源などと、特定群から選択された界面活性剤とを特定比率で共存させることにより、従来技術の課題を確実に解決することができる点であり、この点が従来技術との相違点である。   As described above, the soil and groundwater purification composition and the purification method according to the present invention are characterized by a specific ratio between a carbon source having a specific molecular structure and a specific number of carbons, and a surfactant selected from a specific group. By coexisting with the above, the problem of the prior art can be surely solved, and this is the difference from the prior art.

本発明に係る土壌と地下水の浄化組成物にあらかじめ微生物の栄養源となる無機性窒素源、無機性リン源を固体として含有させることは好ましい手段である。このように無機性窒素源、無機性リン源を浄化組成物に含有させることにより、本発明に係る浄化組成物が生分解を受ける際に、または界面活性剤により溶解される際に、炭素源とともに無機性窒素源、無機性リン源も徐放され、微生物の増殖に最低限必須である炭素、窒素、リンの三元素を同時に供給することが可能となる。これら無機性窒素源としては硫酸アンモニウム、硝酸アンモニウムなどが例示され、無機性リン源としてはリン酸二水素カリウム、リン酸水素カルシウムなどが例示される。   It is a preferable means that the soil and groundwater purification composition according to the present invention contains an inorganic nitrogen source and an inorganic phosphorus source, which are nutrient sources for microorganisms, as solids in advance. When the purification composition according to the present invention is biodegraded or dissolved by the surfactant, the carbon source is obtained by including the inorganic nitrogen source and the inorganic phosphorus source in the purification composition. At the same time, an inorganic nitrogen source and an inorganic phosphorus source are also released gradually, and it becomes possible to simultaneously supply three elements of carbon, nitrogen and phosphorus which are essential for the growth of microorganisms. Examples of these inorganic nitrogen sources include ammonium sulfate and ammonium nitrate, and examples of inorganic phosphorus sources include potassium dihydrogen phosphate and calcium hydrogen phosphate.

本発明に係る土壌と地下水の浄化組成物にあらかじめ比重を調整するための比重調整無機材料を固体として含有させて浄化組成物に沈降性を持たせ、添加された浄化組成物を沈降させて帯水層深部に確実に供給することは好ましい手段である。好ましい比重調整のための比重調整無機材料としては、炭酸カルシウム、硫酸バリウム、ケイ酸カルシウム、酸化亜鉛、鉄粉などが挙げられ、比重を1以上に調整することにより、特に地下水へ添加する場合には、帯水層の底まで本発明の土壌と地下水の浄化組成物を添加することができる。   The soil and groundwater purification composition according to the present invention contains a specific gravity-adjusting inorganic material for adjusting the specific gravity in advance as a solid so that the purification composition has a settling property, and the added purification composition is allowed to settle. It is a preferable means to surely supply the deep water layer. Specific examples of the specific gravity adjusting inorganic material for adjusting the specific gravity include calcium carbonate, barium sulfate, calcium silicate, zinc oxide, iron powder, and the like, especially when adding to groundwater by adjusting the specific gravity to 1 or more. The soil and groundwater purification composition of the present invention can be added to the bottom of the aquifer.

本発明に係る土壌と地下水の浄化組成物を土壌中や地下水中へ添加する方法としては、地上から地下方向へ穿設された井戸に代表される縦穴、又は地表に対して斜行した穴、若しくは連続溝を形成し、その穴や溝から浄化組成物を直接土壌中や地下水中へ添加する方法がある。地上から穴または溝を設ける手段としては土木工事に広く用いられる穿設手段を用いて容易になし得る。穿設手段の一例としては、穴を穿つ場合にはボーリングマシンを用いたボーリング手段があり、溝を掘る場合にはソイルセメント工法(例えば、特許文献4参照。)や地中鉛直遮水壁工法(例えば、特許文献5および特許文献6参照。)などがある。   As a method of adding the soil and groundwater purification composition according to the present invention into the soil or groundwater, vertical holes represented by wells drilled in the underground direction from the ground, or holes inclined to the ground surface, Alternatively, there is a method in which a continuous groove is formed and the purification composition is directly added to soil or groundwater from the hole or groove. As a means for providing a hole or groove from the ground, a drilling means widely used in civil engineering work can be used easily. As an example of the drilling means, there is a boring means using a boring machine when drilling a hole, and when digging a groove, a soil cement method (for example, see Patent Document 4) or an underground vertical impermeable wall method. (For example, refer to Patent Document 5 and Patent Document 6).

また、建築物や障害物の直下を浄化したい場合には、角度を設けた斜行孔(斜めボーリング)を形成する土木手法を用いることにより、そのような建築物等の地下に水平孔を形成することができ、その孔を通じて本発明の土壌と地下水の浄化組成物を添加することができる。   In addition, if you want to purify directly under buildings and obstacles, use a civil engineering technique to form oblique holes (sloped boring) to form horizontal holes in the basement of such buildings. The soil and groundwater purification composition of the present invention can be added through the pores.

次に実施例によって本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
なお、以下の実施例においては、トリクロロエチレン、テトラクロロエチレン濃度の測定はガスクロマトグラフ(GC−17A、(株)島津製作所製)を用い、検出は電子捕獲検出器(ECD)および水素炎イオン化検出器(FDI)を用いて分析した。測定カラムはDB−624(30m×0.025mmID、膜厚1.45ミクロン)を用い、カラム温度は80℃とした。
トリクロロエチレン、テトラクロロエチレン濃度の除去率は、
(1−(井戸通過後の濃度/井戸通過前の濃度))×100 (%)
により算出した。
また、TOC(全有機体窒素濃度)の測定は、1997年度版下水道試験法の燃焼酸化―赤外線式TOC分析法により行った。このときの測定器には、(株)島津製作所製TOC5000Aを用いた。
また、酸化還元電位は1997年度版下水道試験法により行い、白金基準電極を用いヒドロキノン容積を酸化還元電位標準液として測定した。このときの測定器には(株)堀場製作所製F23を用いた。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
In the following examples, the gas chromatograph (GC-17A, manufactured by Shimadzu Corporation) was used for the measurement of trichlorethylene and tetrachlorethylene concentrations, and the detection was performed by an electron capture detector (ECD) and a flame ionization detector (FDI). ). The measurement column was DB-624 (30 m × 0.025 mm ID, film thickness 1.45 microns), and the column temperature was 80 ° C.
The removal rate of trichlorethylene and tetrachlorethylene concentration is
(1- (concentration after passing through well / concentration before passing through well)) × 100 (%)
Calculated by
The TOC (total organic nitrogen concentration) was measured by the combustion oxidation-infrared TOC analysis method of the 1997 version of the sewerage test method. As a measuring instrument at this time, TOC5000A manufactured by Shimadzu Corporation was used.
The oxidation-reduction potential was measured by a 1997 sewer test method, and the volume of hydroquinone was measured using a platinum reference electrode as the oxidation-reduction potential standard solution. F23 manufactured by Horiba, Ltd. was used as a measuring instrument at this time.

《実施例1》
実施例1の土壌と地下水のための浄化組成物は、以下のように作製した。
Example 1
The purification composition for soil and groundwater of Example 1 was prepared as follows.

炭素源として脂肪酸であるステアリン酸65重量%とパルミチン酸20重量%、および界面活性剤として非イオン性界面活性剤のポリオキシエチレンソルビタンモノオレエート(H.L.B.:15.0)15重量%の組成物を100重量部とし、当該組成物に硫酸アンモニウム2重量部、リン酸二水素カリウム0.5重量部、炭酸カルシウム10重量部を混合し、押出し造粒機にて、直径2mm、長さ5mmのペレット状の実施例1の浄化組成物を作製した。   65% by weight stearic acid as a carbon source and 20% by weight palmitic acid as a carbon source, and a nonionic surfactant polyoxyethylene sorbitan monooleate (HLB: 15.0) 15 as a surfactant The composition of 100% by weight is 100 parts by weight, 2 parts by weight of ammonium sulfate, 0.5 part by weight of potassium dihydrogen phosphate, and 10 parts by weight of calcium carbonate are mixed in the composition. A purification composition of Example 1 in the form of pellets having a length of 5 mm was prepared.

上記のように作製した浄化組成物を地下水の流れている位置に設けた内径150mm、全長22m(うち帯水層部分8m)の井戸に18kgを添加し、帯水層中に全量を浸漬させた。当該井戸が設けられた位置の地下水の上流側と下流側、すなわち当該井戸を通過する前後のトリクロロエチレン濃度を測定し、その変化を計測した。井戸を通過する前後のトリクロロエチレン濃度を測定するために、当該井戸へ到達前(上流側)1m地点と、当該井戸を通過後(下流側)1m地点で採水して実施した。その結果、添加から103日後の井戸通過前後でのトリクロロエチレンの除去率は87%であった。   18 kg was added to a well having an inner diameter of 150 mm and a total length of 22 m (of which the aquifer portion was 8 m) provided at the position where the groundwater was flowing, and the entire amount was immersed in the aquifer. . The trichlorethylene concentration before and after passing through the well in the upstream and downstream sides of the groundwater at the position where the well was provided was measured, and the change was measured. In order to measure the trichlorethylene concentration before and after passing through the well, water was sampled at a point 1 m before reaching the well (upstream side) and at a point 1 m after passing the well (downstream side). As a result, the removal rate of trichlorethylene before and after passing through the well 103 days after the addition was 87%.

実施例1の浄化組成物の添加直後から、有機物成分の地下水中への溶出が十分に認められ、地下水中の酸化還元電位は低下し、添加から11日後には−270mVと嫌気状態が効率的に形成された。この計測には、水素を標準電位とした電極式酸化還元電位測定器を用いた。   Immediately after the addition of the purification composition of Example 1, the elution of organic components into the ground water was sufficiently observed, the redox potential in the ground water decreased, and anaerobic state was effective at −270 mV 11 days after the addition. Formed. For this measurement, an electrode-type redox potential measuring device using hydrogen as a standard potential was used.

また、土壌中には有機物の濃度(TOC)の1/10オーダーの窒素、さらに窒素濃度の1/10オーダーのリンの溶出が同時に観測され、微生物増殖に必要な三元素の供給が速やかに実現していることが確認された。   In addition, elution of 1 / 10th order nitrogen of organic matter concentration (TOC) and phosphorus of 1 / 10th order nitrogen concentration was simultaneously observed in the soil, and the supply of the three elements necessary for microbial growth was realized quickly. It was confirmed that

なお、比較例として、実施例1の浄化組成物から界面活性剤成分を除去した構成の別の組成物を作製し、前述の実施例1の浄化組成物に対する実験地点近傍で同様の実験を行った。その結果、添加から11日後の酸化還元電位は+80mV程度であり、好気状態となっており、103日後のトリクロロエチレン除去率は35%と低い値にとどまっていた。また、比較例においては、窒素およびリンの濃度上昇はほとんど認められなかった。このことから、実施例1の浄化組成物における界面活性剤と脂肪酸の共存により、脂肪酸の溶出性が向上し、トリクロロエチレン除去率が大幅に向上したことが確認できた。   As a comparative example, another composition having a configuration in which the surfactant component was removed from the purification composition of Example 1 was prepared, and a similar experiment was performed in the vicinity of the experimental point for the purification composition of Example 1 described above. It was. As a result, the oxidation-reduction potential 11 days after the addition was about +80 mV and was in an aerobic state, and the trichlorethylene removal rate after 103 days remained at a low value of 35%. Further, in the comparative examples, almost no increase in nitrogen and phosphorus concentrations was observed. From this, it was confirmed that the coexistence of the surfactant and the fatty acid in the purification composition of Example 1 improved the elution of the fatty acid and greatly improved the trichlorethylene removal rate.

《実施例2》
実施例2の土壌と地下水のための浄化組成物は、以下のように作製した。
Example 2
The purification composition for soil and groundwater of Example 2 was prepared as follows.

脂肪酸としてミリスチルアルコール70重量%、パルミチン酸18重量%、および界面活性剤として陰イオン性界面活性剤のポリオキシエチレンラウリルエーテル硫酸ナトリウム5重量%と非イオン性界面活性剤のソルビタンモノステアレート(H.L.B.:4.7)7重量物%の組成物を100重量部とし、当該組成物に硫酸アンモニウム2重量部、リン酸二水素カリウム0.5重量部、炭酸カルシウム20重量部を混合し、前述の実施例1で用いた押出し造粒機にて、直径2mm、長さ5mmのペレット状の実施例2の浄化組成物を作製した。   70% by weight of myristyl alcohol as fatty acid, 18% by weight of palmitic acid, 5% by weight of anionic surfactant sodium polyoxyethylene lauryl ether sulfate as a surfactant, and sorbitan monostearate (H L.B .: 4.7) 100 parts by weight of a 7% by weight composition, and 2 parts by weight of ammonium sulfate, 0.5 parts by weight of potassium dihydrogen phosphate, and 20 parts by weight of calcium carbonate are mixed with the composition. And the purification composition of Example 2 of the pellet form of diameter 2mm and length 5mm was produced with the extrusion granulator used in the above-mentioned Example 1.

上記のように作製した浄化組成物を内径250mm、全長20m(うち帯水層部分13m)の井戸に35kgを添加し、帯水層中に全量を浸漬させた。前述の実施例1と同様に、当該井戸を通過する前後のテトラクロロエチレン濃度を測定し、その変化を計測した。井戸を通過する前後のテトラクロロエチレン濃度を測定するために、当該井戸へ到達前1m地点と、当該井戸を通過後1m地点で採水して実施した。その結果、添加から95日後の井戸通過前後でのテトラクロロエチレンの除去率は95%であった。   35 kg of the purification composition prepared as described above was added to a well having an inner diameter of 250 mm and a total length of 20 m (including aquifer portion 13 m), and the entire amount was immersed in the aquifer. Similar to Example 1 described above, the concentration of tetrachlorethylene before and after passing through the well was measured, and the change was measured. In order to measure the concentration of tetrachlorethylene before and after passing through the well, water was sampled at 1 m before reaching the well and 1 m after passing through the well. As a result, the removal rate of tetrachlorethylene before and after passing through the well 95 days after the addition was 95%.

実施例2の浄化組成物の添加直後から、有機物成分の地下水中への溶出が十分に認められ、地下水中の酸化還元電位は低下し、添加から8日後には−170mVと嫌気状態が効率的に形成された。この計測には、前述の実施例1と同様に水素を標準電位とした電極式酸化還元電位測定器を用いた。   Immediately after the addition of the purification composition of Example 2, elution of organic components into the ground water was sufficiently observed, the redox potential in the ground water decreased, and anaerobic state was effective at −170 mV after 8 days from the addition. Formed. For this measurement, an electrode-type oxidation-reduction potential measuring device using hydrogen as a standard potential was used as in Example 1 described above.

また、土壌中には有機物の濃度(TOC)の1/10オーダーの窒素、さらに窒素濃度の1/10オーダーのリンの溶出が同時に観測され、微生物増殖に必要な三元素の供給が速やかに実現していることが確認された。   In addition, elution of 1 / 10th order nitrogen of organic matter concentration (TOC) and phosphorus of 1 / 10th order nitrogen concentration was simultaneously observed in the soil, and the supply of the three elements necessary for microbial growth was realized quickly. It was confirmed that

なお、比較例として、実施例2の浄化組成物における界面活性剤成分を陽イオン性界面活性剤であるステアリルトリメチルアンモニウムクロライドに全量置換した組成物を作製した。そして、前述の実施例2の浄化組成物に対する実験地点から採取した地下水および土壌を種菌として、バイアル瓶によるテトラクロロエチレンの嫌気分解室内実験(25℃)を実施した。実験条件は、嫌気状態形成のためN、COの混合ガス(9:1)で気層部を10分間パージし、ブチルゴムとアルミ栓により密封した。試験温度は20℃とし、気層部のガスを前記方法により分析した。また、酸化還元電位、標準寒天培地による微生物分析(生菌数測定)も同時に行った。その結果、酸化還元電位の低下は認められたものの、テトラクロロエチレン濃度は殆んど変化しなかった。また、上記比較例の組成物では、バイアル瓶内の全菌数が大幅に低下しており、陽イオン性界面活性剤は生分解および生物分解反応による土壌と地下水の浄化に対しては好適ではないことを確認した。 As a comparative example, a composition was prepared in which the surfactant component in the purification composition of Example 2 was completely replaced with stearyltrimethylammonium chloride, which is a cationic surfactant. Then, an experiment (25 ° C.) of tetrachloroethylene in an anaerobic decomposition chamber using a vial was performed using the groundwater and soil collected from the experimental point for the purification composition of Example 2 as an inoculum. The experimental conditions were that the gas layer was purged with a mixed gas of N 2 and CO 2 (9: 1) for 10 minutes to form an anaerobic state, and sealed with butyl rubber and an aluminum plug. The test temperature was 20 ° C., and the gas in the air layer was analyzed by the above method. In addition, microbiological analysis (viable cell count measurement) using a redox potential and a standard agar medium was simultaneously performed. As a result, although a reduction in redox potential was observed, the tetrachlorethylene concentration hardly changed. Further, in the composition of the above comparative example, the total number of bacteria in the vial is greatly reduced, and the cationic surfactant is suitable for the purification of soil and groundwater by biodegradation and biodegradation reactions. Confirmed that there is no.

《実施例3》
実施例3の土壌と地下水のための浄化組成物は、以下のように作製した。
Example 3
The purification composition for soil and groundwater of Example 3 was prepared as follows.

炭素源としてジパルミチルアミン75重量%、および界面活性剤として陰イオン性界面活性剤のポリオキシエチレンラウリルエーテル硫酸ナトリウム25重量%の組成物を100重量部とし、当該組成物に硫酸アンモニウム2重量部、リン酸二水素カリウム0.5重量部、炭酸カルシウム10重量部を混合し、前述の実施例1で用いた押出し造粒機にて、直径2mm、長さ5mmのペレット状の実施例3の浄化組成物を作製した。   100 parts by weight of a composition containing 75% by weight of dipalmitylamine as a carbon source and 25% by weight of sodium anionic surfactant polyoxyethylene lauryl ether sulfate as a surfactant, and 2 parts by weight of ammonium sulfate in the composition Then, 0.5 parts by weight of potassium dihydrogen phosphate and 10 parts by weight of calcium carbonate were mixed and the pellets of Example 3 in the form of pellets having a diameter of 2 mm and a length of 5 mm were obtained using the extrusion granulator used in Example 1 described above. A purification composition was prepared.

上記のように作製した浄化組成物を内径150mm、全長14m(うち帯水層部分6m)の井戸に18kgを添加し、帯水層中に全量を浸漬させた。前述の実施例1と同様に、当該井戸を通過する前後のトリクロロエチレン濃度を測定し、その変化を計測した。井戸を通過する前後のトリクロロエチレン濃度を測定するために、当該井戸へ到達前1m地点と、当該井戸を通過後1m地点で採水して実施した。その結果、添加から103日後の井戸通過前後でのトリクロロエチレンの除去率は71%であった。   18 kg of the purified composition prepared as described above was added to a well having an inner diameter of 150 mm and a total length of 14 m (including aquifer portion 6 m), and the entire amount was immersed in the aquifer. Similar to Example 1 described above, the trichlorethylene concentration before and after passing through the well was measured, and the change was measured. In order to measure the trichlorethylene concentration before and after passing through the well, water was sampled at 1 m before reaching the well and 1 m after passing through the well. As a result, the removal rate of trichlorethylene before and after passing through the well 103 days after the addition was 71%.

実施例3の浄化組成物の添加直後から、有機物成分の地下水中への溶出が十分に認められ、地下水中の酸化還元電位は低下し、添加から11日後には−190mVと嫌気状態が効率的に形成された。この計測には、前述の実施例1と同様に水素を標準電位とした電極式酸化還元電位測定器を用いた。   Immediately after the addition of the purification composition of Example 3, elution of organic components into the groundwater was sufficiently observed, the redox potential in the groundwater decreased, and anaerobic state was effective at −190 mV 11 days after the addition. Formed. For this measurement, an electrode-type oxidation-reduction potential measuring device using hydrogen as a standard potential was used as in Example 1 described above.

また、土壌中では、有機物の濃度(TOC)の1/10オーダーの窒素、さらに窒素濃度の1/10オーダーのリンの溶出が同時に観測され、微生物増殖に必要な三元素の供給が速やかに実現していることが確認された。   In addition, in the soil, elution of nitrogen of 1/10 order of organic substance concentration (TOC) and phosphorus of 1/10 order of nitrogen concentration is simultaneously observed, and supply of three elements necessary for microbial growth is realized quickly. It was confirmed that

なお、比較例として、実施例3の浄化組成物から界面活性剤成分を除去した別の組成物を作製し、前述の実施例3の浄化組成物に対する実験地点近傍で同様の実験を行った。その結果、添加から11日後の酸化還元電位が+60mV程度で好気状態であり、トリクロロエチレン除去率は22%と低い値にとどまっていた。また、比較例においては、窒素およびリンの濃度上昇はほとんど認められなかった。このことから、実施例3の浄化組成物における界面活性剤と炭素源の共存により、炭素源の溶出性が向上し、トリクロロエチレン除去率が大幅に向上したことが確認できた。   As a comparative example, another composition was prepared by removing the surfactant component from the purification composition of Example 3, and a similar experiment was performed in the vicinity of the experimental point for the purification composition of Example 3 described above. As a result, the oxidation-reduction potential 11 days after the addition was in an aerobic state at about +60 mV, and the trichlorethylene removal rate remained at a low value of 22%. Further, in the comparative examples, almost no increase in nitrogen and phosphorus concentrations was observed. From this, it was confirmed that the coexistence of the surfactant and the carbon source in the purification composition of Example 3 improved the elution of the carbon source and greatly improved the trichlorethylene removal rate.

なお、上記の各実施例で示した各種材料の添加量は一例であり、その値の増減は対象となる環境や許容コストなどの諸条件により、本発明の主眼を損なわない範囲で変更できることはいうまでもない。   In addition, the addition amount of various materials shown in each of the above-mentioned examples is an example, and the increase or decrease in the value can be changed within a range that does not impair the main point of the present invention, depending on various conditions such as the target environment and allowable cost. Needless to say.

また、上記の各実施例では特に示さなかったが、微生物反応を促進する各種添加剤、別途培養した微生物集積培養液、還元状態を進めるための鉄粉などの添加は本発明の主眼を損なわない範囲で任意になし得ることはいうまでもない。   Although not particularly shown in each of the above examples, the addition of various additives for promoting microbial reaction, separately cultured microbial accumulation medium, iron powder for promoting the reduction state, etc. does not impair the gist of the present invention. Needless to say, the range can be arbitrarily set.

本発明に係る土壌と地下水の浄化組成物および浄化方法は、バイオレメーデーションによる揮発性有機塩素化合物の低減方法として有用である。   The soil and groundwater purification composition and purification method according to the present invention are useful as a method for reducing volatile organochlorine compounds by bioremediation.

Claims (8)

土壌と地下水のバイオレメーデーションに用いられる固形物状の浄化組成物であって、当該浄化組成物が炭素源と非イオン性界面活性剤とを有し、前記非イオン性界面活性剤は親水性と疎水性の比率を示すH.L.B.値が4以上であり、前記炭素源が下記(i)〜(iii)から選ばれる少なくとも1種である土壌と地下水の浄化組成物。
(i)炭素数が14以上の脂肪酸
(ii)炭素数が14以上のアルコール
(iii)炭素数が12以上の脂肪族アミン、または炭素数が12以上の脂肪酸アマイド
A solid purification composition used for bioremediation of soil and groundwater, the purification composition having a carbon source and a nonionic surfactant, wherein the nonionic surfactant is hydrophilic The soil and groundwater purification composition has an HLB value of 4 or more, which indicates a hydrophobic ratio, and the carbon source is at least one selected from the following (i) to (iii).
(I) a fatty acid having 14 or more carbon atoms (ii) an alcohol having 14 or more carbon atoms (iii) an aliphatic amine having 12 or more carbon atoms, or a fatty acid amide having 12 or more carbon atoms
脂肪酸が直鎖状飽和脂肪酸である請求項1に記載の土壌と地下水の浄化組成物。 The soil and groundwater purification composition according to claim 1, wherein the fatty acid is a linear saturated fatty acid. アルコールが飽和アルコールである請求項1に記載の土壌と地下水の浄化組成物。 The soil and groundwater purification composition according to claim 1, wherein the alcohol is a saturated alcohol. 界面活性剤の添加量が浄化組成物の2重量%以上55重量%以下である請求項1に記載の土壌と地下水の浄化組成物。 The soil and groundwater purification composition according to claim 1, wherein the amount of the surfactant added is 2% by weight or more and 55% by weight or less of the purification composition. 無機性窒素源をさらに含有する請求項1に記載の土壌と地下水の浄化組成物。 The soil and groundwater purification composition according to claim 1, further comprising an inorganic nitrogen source. 無機性リン源をさらに含有する請求項1に記載の土壌と地下水の浄化組成物。 The soil and groundwater purification composition according to claim 1, further comprising an inorganic phosphorus source. 比重調整無機材料をさらに含有する請求項1に記載の土壌と地下水の浄化組成物。 The soil and groundwater purification composition according to claim 1, further comprising a specific gravity adjusting inorganic material. 請求項1〜7のいずれかに記載の土壌と地下水の浄化組成物を土壌に添加することを特徴とする土壌と地下水の浄化方法。 A method for purifying soil and groundwater, comprising adding the soil and groundwater purification composition according to any one of claims 1 to 7 to the soil.
JP2003297491A 2003-08-21 2003-08-21 Soil and groundwater purification composition and purification method Expired - Lifetime JP3817534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297491A JP3817534B2 (en) 2003-08-21 2003-08-21 Soil and groundwater purification composition and purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297491A JP3817534B2 (en) 2003-08-21 2003-08-21 Soil and groundwater purification composition and purification method

Publications (2)

Publication Number Publication Date
JP2005066425A JP2005066425A (en) 2005-03-17
JP3817534B2 true JP3817534B2 (en) 2006-09-06

Family

ID=34403330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297491A Expired - Lifetime JP3817534B2 (en) 2003-08-21 2003-08-21 Soil and groundwater purification composition and purification method

Country Status (1)

Country Link
JP (1) JP3817534B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049209A (en) * 2006-03-31 2008-03-06 Mitsui Eng & Shipbuild Co Ltd Purification method of organic chlorine compound contaminant
JP5587453B1 (en) * 2013-03-29 2014-09-10 パナソニック株式会社 Microbial composition
JP6104122B2 (en) * 2013-10-02 2017-03-29 ケミカルグラウト株式会社 Contaminated soil purification method
JP6193105B2 (en) * 2013-12-06 2017-09-06 株式会社テルナイト Deformation following type water shielding material

Also Published As

Publication number Publication date
JP2005066425A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Horn et al. Plasticizer metabolites in the environment
JP2007002168A (en) Foaming agent for foam-shielding method
Xu et al. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors
Bayless et al. Biodegradation of six haloacetic acids in drinking water
JP3817534B2 (en) Soil and groundwater purification composition and purification method
EP1155752A1 (en) Method and apparatus for purifying polluted substances containing halogenated organic compound
JP4529667B2 (en) Purification method and additive for contaminated soil and contaminated water
Mohan et al. Bioslurry phase degradation of di-ethyl phthalate (DEP) contaminated soil in periodic discontinuous mode operation: Influence of bioaugmentation and substrate partition
JP2004202357A (en) Method for purifying organic compound-polluted object
JP2009090183A (en) Cleaning method of soil and ground water, cultivation method of microorganism, and nutrient
KR101796239B1 (en) Remediation method for oil-contaminated soil
US5759402A (en) Methods for the remediation of polluted soils
JP4359174B2 (en) Environmental purification method
Marttinen Potential of municipal sewage treatment plants to remove bis (2-ethylhexyl) phthalate
JP2018175529A (en) Decomposition accelerator, and environmental cleanup method using the decomposition accelerator
JP2006116420A (en) Method for treating chemical contaminant
JP3815464B2 (en) Soil and groundwater purification composition
EP2885972A1 (en) Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
JP2011025105A (en) Method of decontaminating soil and underground water contaminated with organic chlorine compound
JP2006150278A (en) Method for decontaminating contaminated soil
JP5587453B1 (en) Microbial composition
JP4547962B2 (en) Method for purifying contaminated soil and groundwater
JP2004202364A (en) Soil treatment method
JP2004195322A (en) Soil or ground water treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Ref document number: 3817534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term