JP2004202364A - Soil treatment method - Google Patents

Soil treatment method Download PDF

Info

Publication number
JP2004202364A
JP2004202364A JP2002374374A JP2002374374A JP2004202364A JP 2004202364 A JP2004202364 A JP 2004202364A JP 2002374374 A JP2002374374 A JP 2002374374A JP 2002374374 A JP2002374374 A JP 2002374374A JP 2004202364 A JP2004202364 A JP 2004202364A
Authority
JP
Japan
Prior art keywords
soil
treatment
oxidizing agent
microorganisms
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002374374A
Other languages
Japanese (ja)
Inventor
Satoru Shimizu
悟 清水
Yasuko Yao
泰子 八尾
Hideki Nagano
英樹 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002374374A priority Critical patent/JP2004202364A/en
Publication of JP2004202364A publication Critical patent/JP2004202364A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency in decomposition of organic pollutants and treat difficultly-decomposed substances at a low cost in the treatment of soil contaminated by the organic pollutants. <P>SOLUTION: In a soil treatment method, microorganisms are activated, and the components of the organic pollutants which can be decomposed by microorganisms are decomposed, and then the pollutants are further decomposed by using an oxidizing agent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機性汚染物質を含む処理対象土壌を微生物と酸化剤により分解する低コストな土壌浄化方法に関するものである。
【0002】
【従来の技術】
従来、有機性汚染物質汚染土壌における有機性汚染物質の分解浄化方法は、酸化剤による分解や微生物による分解の方法が考え出されている。酸化剤としては過マンガン酸カリウム(特許文献1)、オゾン(特許文献2、特許文献3)、そして過酸化水素と金属触媒を用いたフェントン試薬(特許文献4、特許文献5)等が考えられている。一方、微生物を用いた土壌浄化法では汚染土壌に生息する有機性汚染物質分解菌の動きを活性化させるために栄養源を添加する方法や増殖させた有機性汚染物質分解菌を汚染土壌に添加する方法が考え出されている。
【0003】
また、有機性汚染物質の分解率を上げるために酸化剤による処理を行なった後に微生物による処理を行なう浄化方法が提案されている(例えば特許文献4および特許文献5)。これらは過酸化水素を用いて難分解有機物の一部を分解させその後微生物による分解処理をおこなうものである。また、特許文献6は、オゾン処理の前後に微生物による分解処理を提案している。
【0004】
しかし、上記の従来方法にはそれぞれ以下の問題が挙げられる。
【0005】
(問題点1)酸化剤を使用する処理法は使用する酸化剤の量が処理土壌の体積に比例するため高濃度で狭い範囲の汚染には有効であると考えられるが広範囲の汚染にはコストが高くなり向かない。一方、微生物による処理法では、コストが安いため広範囲の汚染には向いているが有機性汚染物質の分解速度が遅いため時間がかかってしまうことに加え、分解できる有機性汚染物質の成分に制限があるため汚染土壌の完全浄化は難しい。ここで定義する有機性汚染物質は、ハロゲン化有機化合物や原油等のことを言い、特に原油についてはいろいろな物質の混合物であり、低分子のパラフィンから高分子状のアスファルテンなどが存在する状態のものをいう。これらをすべてを微生物が分解するの困難であり、特に、ハロゲン化有機化合物や多環芳香族化合物そして高分子のアスファルテンなどは分解されずに残存してしまう。
【0006】
(問題点2)一般に土壌中の有機性汚染物質は土壌に吸着しているため酸化剤を直接添加しても反応は起こらず、分解効率が低いという問題が生じてしまう。特に汚染が長く続いた土壌では有機性汚染物質の吸着力が強くこの状態で酸化剤を加えてもほとんど酸化されないと考えられる。また、酸化剤をそのまま有機性汚染物質に添加しても接触しないため反応効率が悪くほとんど分解されない。したがって、特許文献4の技術は水に溶解性を持つ有機物にしか適用できない。一方、この問題を解決するために酸化剤処理前に界面活性剤を用いて土壌からの有機性汚染物質の溶出する方法が考え出されている(例えば特許文献5)。
(問題点3)酸化剤処理後に微生物を添加する方法は、通常自然界では微生物はそれぞれ生態系を形成しているため、既に形成されている生態系に新たな菌を導入したとしてもその系で生存させていくのは難しい。
【0007】
(問題点4)また、酸化剤処理後に微生物を添加する方法は、原油のように非常に多くの有機物を含む混合物を処理する場合、微生物で分解可能なものにおいても酸化剤を使用するために非常に効率が悪くコストが高くなってしまうと考えられる。
【0008】
【特許文献1】
特開2001-276799号公報、段落[0017],[0027],[0032]など
【0009】
【特許文献2】
特開2000-325935号公報、請求項1,段落[0008]など
【0010】
【特許文献3】
特開2001-269658号公報、請求項1、段落[0006]など
【0011】
【特許文献4】
特開平7-75772号公報、請求項5,段落[0009]、段落[0010]の▲3▼、▲4▼の記載など
【0012】
【特許文献5】
特開2001-269657号公報、請求項3、段落[0009]の記載など
【0013】
【特許文献6】
特開2001-269658号公報、請求項3,4、段落[0008],[0009]など
【0014】
【発明が解決しようとする課題】
本発明の目的は、酸化剤を用いた化学的処理と微生物処理を組み合わせた有機性汚染物質汚染土壌の浄化方法において、(1)微生物による有機性汚染物質分解の高効率化、(2)酸化剤処理による有機性汚染物質分解の低コスト化、及び(3)酸化剤処理と微生物による分解を組み合わせた処理法の高効率化を図った土壌浄化方法を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するための本発明の有機性汚染物質汚染土壌浄化処理方法は、(1)微生物による易分解性の有機性汚染物質成分の分解を行い、微生物によって分解できなかった難分解有機物は酸化剤によって微生物が利用可能な低分子物質になるまで化学処理を施す浄化方法である。これにより初期の汚染有機性汚染物質中に含まれる微生物が分解可能な低分子物質などに対して、余分な酸化剤の添加を行う必要が無いためコストを抑えることが可能であり、さらに酸化剤を用いることで微生物で処理できなかった難分解性物質を微生物が分解することが可能になり、有機性汚染物質による汚染土壌の浄化が実現される。
【0016】
(2)また、請求項2に示したように土壌に吸着している有機性汚染物質分を界面活性剤を用いて溶出させ、酸化剤と有機性汚染物質の接触効率を高め、効率よく酸化分解する方法である。この方法により、酸化剤の添加量をできるだけ少なくすることができる。前記界面活性剤は、好ましくはTritonX-100(ナカライテスク株式会社製、非イオン性界面活性剤;成分:ポリエチレングリコールモノ−p−イソオクチルフェニルエーテル)が望ましいが、他の合成系界面活性剤や生物由来の界面活性剤でも良い。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。有機性汚染物質で汚染された土壌に栄養源、例えばリンや窒素を添加し、また撹拌して土中の通気性を上げることで、前記土壌に存在する微生物の動きを活性化して、微生物が分解可能な有機性汚染物質を分解させる。微生物は脂肪族化合物では炭素数が23程度まで分解できることが明らかにされており、また多環芳香族化合物では4員環程度まで分解可能であるとされている。界面活性剤は例えばTritonX-100や微生物由来の界面活性剤等、微生物による有機性汚染物質分解の処理の前でもその後に添加しても良いが少なくとも酸化剤を添加する前には添加しておくのが望ましい。微生物による有機性汚染物質分解後、酸化剤剤例えば過酸化水素と2価鉄のフェントン試薬や過酸化水素、オゾンなどを用いて残存有機性汚染物質分を分解する。そして、酸化剤による残存有機性汚染物質分解処理後、栄養源を再び添加して微生物による分解を行うこと、あるいは微生物による分解と酸化剤による残存有機性汚染物質分解処理を繰り返すことも好ましい。
【0018】
(実施例)
以下に本発明の実施例を図面に基づいて説明する。
【0019】
原油で汚染された土壌2kgに対し、水分率を17%に保ち、20℃に保温して栄養源として、リンと窒素を添加した。この土壌の油濃度を2ヶ月に渡り測定した結果を図1に示す。なお原油濃度の測定はジクロロメタンにより抽出した油分の重量を測定することで行った。
【0020】
図1から明らかなように、栄養源を添加した系では、3ヶ月後に初期値の約30%の油分の減少が見られた。一方、栄養源を添加していない系においても油分の減少が見られたが揮発しやすい油分の減少や分解菌によるものと考えられるが、栄養源を添加した系より分解効率が低いことが分かる。
【0021】
図2には微生物処理と酸化剤拠理の組合せにより処理した土壌中残油を測定した結果を示している。微生物処理は、水分率を17%に保ち、20℃に保温して栄養源としてリンと窒素を添加し、1ヶ月後の土壌を用いて分析している。酸化剤処理は、過酸化水素水と金属イオン触媒を用いて原油を分解させた比較を示している。また、酸化剤による処理の際に、土壌中の油分を界面活性剤により溶出させた場合について比較を行っている。具体的には原油汚染土壌25gに水25gを添加し、界面活路剤としてTritonX-100を土壌の重量に対して2%になるように添加、さらに硫酸鉄0.1M、過酸化水素を2Mになるよう添加して24時間撹拌反応させた。図2に示す結果から、微生物処理により元土壌に比べて油濃度が27.5%減少した。また、微生物処理後土壌を酸化剤にて処理した結果、油濃度が55%減少した。一方、酸化剤による処理では、界面活性剤を添加していない系では油濃度は4%の減少しか見られなかったが界面活性剤ありの系では油濃度は37.5%減少した。また、酸化剤処理後土壌を微生物により処理した結果、油農度は47.4%減少した。以上の結果より微生物による処理後に酸化剤処理を組み合わせた処理が有効であることが分かる。
【0022】
図3には、図2で処理した土壌中の油をFD-MSを用いて測定した分子量分布の図を示している。処理前の元土壌(図3の(1))は、FD-MSの結果より分子量600前後の物質を多く含み、分子量200から2000までのものを油を含んでいることが分かる。微生物処理後の油の分子量分布(図3の(2a))では分子量600以下のものが減少しており、メイン分子量が800位にシフトしていた。このことから、微生物は分子量600以下のものを分解可能であるとともにそれ以上の分子量を持つ物質は分解できないことが示された。一方、酸化剤処理後の分子量分布(図3の(3a))では処理前土壌中の油の分子量分布とほぼ違いが見られず、酸化剤が分子量に関係なく作用することが分かる。以上のことから微生物で処理可能な分子量600以下の物質がある場合は微生物により処理を施した後酸化剤処理するほうが効率が良いことが分かる。また、酸化剤処理を行うと、油の分子量分布を低分子側へシフトできる(図3の(2a)から(2b)へのシフト)のでこの後さらに微生物処理を行うと油濃度の減少化が図れる。
【0023】
【発明の効果】
本発明によれば、広範囲に有機性汚染物質で汚染された土壌浄化において、低コストでさらに高効率的に、油汚染土壌を浄化することができる。
【図面の簡単な説明】
【図1】微生物による汚染土壌中油分解を示す図。土壌中の油量を測定したものである。
【図2】酸化剤処理と微生物処理による土壌中油分解を示す図。酸化剤と微生物処理を組み合わせて処理した後の土壌中の油量を測定したものである。
【図3】酸化剤処理と微生物処理による土壌中油の分子量分布の図。図2で処した油をFD-MSにより分子量分布を測定したものである。(1)は処理前土壌における、土壌中油の分子量分布図、(2a)は微生物処理土壌における、土壌中油の分子量分布図、(2b)は微生物処理後酸化剤処理土壌における、土壌中油の分子量分布図、(3a)は酸化剤処理土壌における、土壌中油の分子量分布図、(3b)は酸化剤処理後微生物処理土壌における、土壌中油の分子量分布図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a low-cost soil purification method for decomposing soil to be treated containing organic pollutants with microorganisms and an oxidizing agent.
[0002]
[Prior art]
Conventionally, methods for decomposing and purifying organic contaminants in soil contaminated with organic contaminants include methods using an oxidizing agent or microorganisms. Potassium permanganate (Patent Literature 1), ozone (Patent Literature 2 and Patent Literature 3), Fenton's reagent using hydrogen peroxide and a metal catalyst (Patent Literature 4 and Patent Literature 5) and the like are conceivable as oxidizing agents. ing. On the other hand, in the soil purification method using microorganisms, a method of adding a nutrient source to activate the movement of the organic pollutant-decomposing bacteria living in the contaminated soil, or adding the grown organic pollutant-decomposing bacteria to the contaminated soil A way has been devised.
[0003]
Further, a purification method has been proposed in which a treatment with an oxidizing agent is performed to increase the decomposition rate of organic pollutants, followed by a treatment with a microorganism (for example, Patent Documents 4 and 5). These use hydrogen peroxide to decompose a part of the hardly decomposable organic matter, and then perform a decomposition treatment by a microorganism. Patent Document 6 proposes a decomposition treatment by a microorganism before and after the ozone treatment.
[0004]
However, each of the above-mentioned conventional methods has the following problems.
[0005]
(Problem 1) The treatment method using an oxidizing agent is considered to be effective for high-concentration and narrow-range pollution because the amount of the oxidizing agent used is proportional to the volume of the treated soil, but is costly for a wide range of pollution. Is high and is not suitable. On the other hand, the microbial treatment method is suitable for a wide range of pollution due to its low cost, but the decomposition rate of organic pollutants is slow, so it takes time, and the components of organic pollutants that can be decomposed are limited. Therefore, it is difficult to completely clean contaminated soil. Organic contaminants defined here refer to halogenated organic compounds and crude oil, etc.Particularly for crude oil, it is a mixture of various substances, from low molecular paraffin to high molecular asphaltene. A thing. It is difficult for microorganisms to decompose all of these, and in particular, halogenated organic compounds, polycyclic aromatic compounds, high molecular asphaltenes, and the like remain without being decomposed.
[0006]
(Problem 2) Generally, organic contaminants in the soil are adsorbed on the soil, so that even if an oxidizing agent is directly added, no reaction occurs, and a problem that decomposition efficiency is low occurs. In particular, in soils that have been continuously polluted for a long time, organic pollutants are strongly adsorbed, and even if an oxidizing agent is added in this state, it is considered that they are hardly oxidized. Even if the oxidizing agent is added to the organic contaminant as it is, it does not come into contact with the organic contaminant, so that the reaction efficiency is poor and almost no decomposition occurs. Therefore, the technique of Patent Document 4 can be applied only to organic substances having solubility in water. On the other hand, in order to solve this problem, a method of eluting organic contaminants from soil using a surfactant before treatment with an oxidizing agent has been devised (for example, Patent Document 5).
(Problem 3) In the method of adding microorganisms after treatment with an oxidizing agent, microorganisms usually form an ecosystem in the natural world. Therefore, even if new microorganisms are introduced into an already formed ecosystem, the microorganism is added to the system. It is difficult to survive.
[0007]
(Problem 4) The method of adding microorganisms after treatment with an oxidizing agent involves the use of an oxidizing agent even in the case of treating a mixture containing a large amount of organic substances such as crude oil, even when the mixture can be decomposed by microorganisms. It would be very inefficient and costly.
[0008]
[Patent Document 1]
JP 2001-276799 A, paragraphs [0017], [0027], [0032], etc.
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-325935, Claim 1, paragraph [0008], etc.
[Patent Document 3]
JP 2001-269658 A, Claim 1, paragraph [0006], etc.
[Patent Document 4]
JP-A-7-75772, Claims 5, paragraphs [0009], paragraphs [0010], [3], [4], etc.
[Patent Document 5]
JP 2001-269657 A, Claim 3, paragraph [0009], etc.
[Patent Document 6]
JP-A-2001-269658, claims 3, 4, paragraphs [0008], [0009], etc.
[Problems to be solved by the invention]
An object of the present invention is to provide a method for purifying soil contaminated with organic contaminants by combining chemical treatment with an oxidizing agent and microorganism treatment, (1) increasing the efficiency of decomposition of organic contaminants by microorganisms, and (2) oxidizing. It is an object of the present invention to provide a soil purification method for reducing the cost of organic pollutant decomposition by chemical treatment and (3) increasing the efficiency of a treatment method combining oxidizing agent treatment and microbial decomposition.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the method for remediation of soil contaminated with organic pollutants of the present invention according to the present invention comprises the steps of (1) decomposing a readily decomposable organic pollutant component by a microorganism, and This is a purification method in which an oxidizing agent is subjected to a chemical treatment until the microorganism becomes a usable low-molecular substance. As a result, it is not necessary to add an extra oxidizing agent to low-molecular substances that can be decomposed by microorganisms contained in the initial contaminating organic contaminants. By using, microorganisms can decompose hardly decomposable substances that could not be treated by microorganisms, and purification of contaminated soil by organic pollutants is realized.
[0016]
(2) Further, as described in claim 2, the organic pollutants adsorbed on the soil are eluted by using a surfactant, so that the contact efficiency between the oxidizing agent and the organic pollutants is increased, and the oxidation is efficiently performed. It is a method of decomposing. According to this method, the addition amount of the oxidizing agent can be reduced as much as possible. The surfactant is preferably Triton X-100 (a non-ionic surfactant; manufactured by Nakarai Tesque, Inc .; component: polyethylene glycol mono-p-isooctyl phenyl ether). Biological surfactants may be used.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. A nutrient source, such as phosphorus or nitrogen, is added to soil contaminated with organic contaminants, and stirring is performed to increase air permeability in the soil, thereby activating the movement of microorganisms present in the soil, and causing microorganisms to move. Decomposes degradable organic pollutants. It has been clarified that microorganisms can decompose aliphatic compounds having about 23 carbon atoms, and polycyclic aromatic compounds can decompose up to about four-membered rings. The surfactant may be added before or after the treatment of decomposition of organic pollutants by microorganisms, such as Triton X-100 or a microorganism-derived surfactant, but at least before the oxidizing agent is added. It is desirable. After the decomposition of the organic pollutants by the microorganism, the remaining organic pollutants are decomposed by using an oxidizing agent such as Fenton's reagent of hydrogen peroxide and ferrous iron, hydrogen peroxide, ozone, or the like. Then, after the decomposition treatment of the residual organic pollutant by the oxidizing agent, it is also preferable to add the nutrient again to perform the decomposition by the microorganism, or to repeat the decomposition by the microorganism and the decomposition treatment of the residual organic pollutant by the oxidizing agent.
[0018]
(Example)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
For 2 kg of soil contaminated with crude oil, the moisture content was kept at 17%, the temperature was kept at 20 ° C., and phosphorus and nitrogen were added as nutrient sources. FIG. 1 shows the result of measuring the oil concentration of this soil over two months. The crude oil concentration was measured by measuring the weight of the oil extracted with dichloromethane.
[0020]
As is clear from FIG. 1, in the system to which the nutrient source was added, a decrease in the oil content of about 30% of the initial value was observed after three months. On the other hand, the oil content was also reduced in the system without the addition of nutrients, which is thought to be due to the decrease in oil content and the decomposition bacteria that are easily volatilized. .
[0021]
FIG. 2 shows the results of measuring residual oil in soil treated by a combination of microbial treatment and oxidizing agent. In the treatment with microorganisms, the moisture content is kept at 17%, the temperature is kept at 20 ° C., phosphorus and nitrogen are added as nutrients, and the analysis is performed using soil one month later. The oxidizing agent treatment shows a comparison in which crude oil was decomposed using a hydrogen peroxide solution and a metal ion catalyst. In addition, a comparison is made for the case where the oil content in the soil is eluted with the surfactant during the treatment with the oxidizing agent. Specifically, 25 g of water was added to 25 g of crude oil-contaminated soil, Triton X-100 was added as a surfactant, so as to be 2% of the weight of the soil, and 0.1 M of iron sulfate and 2 M of hydrogen peroxide were added. The reaction was stirred for 24 hours. From the results shown in FIG. 2, the microbial treatment reduced the oil concentration by 27.5% compared to the original soil. Further, as a result of treating the soil with an oxidizing agent after the microorganism treatment, the oil concentration was reduced by 55%. On the other hand, in the treatment with the oxidizing agent, the oil concentration decreased only by 4% in the system to which the surfactant was not added, but the oil concentration decreased by 37.5% in the system with the surfactant. In addition, as a result of treating the soil with microorganisms after the oxidizing agent treatment, the degree of oil agriculture decreased by 47.4%. From the above results, it is found that the treatment combining the oxidizing agent treatment after the treatment with the microorganism is effective.
[0022]
FIG. 3 shows a diagram of the molecular weight distribution of the oil in the soil treated in FIG. 2 measured using FD-MS. From the results of FD-MS, it can be seen that the original soil before the treatment ((1) in FIG. 3) contains a large amount of substances having a molecular weight of about 600 and oils having a molecular weight of 200 to 2000. In the molecular weight distribution of the oil after microbial treatment ((2a) in FIG. 3), those having a molecular weight of 600 or less decreased, and the main molecular weight was shifted to the 800th. This indicates that microorganisms can decompose substances having a molecular weight of 600 or less and cannot decompose substances having a molecular weight higher than 600. On the other hand, the molecular weight distribution after the oxidizing agent treatment (FIG. 3 (3a)) shows almost no difference from the molecular weight distribution of the oil in the soil before the treatment, indicating that the oxidizing agent acts regardless of the molecular weight. From the above, it can be seen that when there is a substance having a molecular weight of 600 or less that can be treated by microorganisms, it is more efficient to treat with an oxidizing agent after treating with microorganisms. Further, when the oxidizing agent treatment is performed, the molecular weight distribution of the oil can be shifted to a lower molecular side (shift from (2a) to (2b) in FIG. 3). I can plan.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in soil purification contaminated with organic contaminants over a wide range, oil-contaminated soil can be purified more efficiently at lower cost.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view showing oil decomposition in contaminated soil by microorganisms. It is a measure of the amount of oil in the soil.
FIG. 2 is a view showing oil decomposition in soil by oxidizing agent treatment and microorganism treatment. This is a measurement of the amount of oil in the soil after the treatment with the combination of the oxidizing agent and the microorganism treatment.
FIG. 3 is a diagram of the molecular weight distribution of oil in soil by oxidizing agent treatment and microorganism treatment. FIG. 2 shows the oil treated in FIG. 2 whose molecular weight distribution was measured by FD-MS. (1) Molecular weight distribution of oil in soil in soil before treatment, (2a) Molecular weight distribution of oil in soil in microorganism-treated soil, (2b) Molecular weight distribution of oil in soil in oxidant-treated soil after microorganism treatment FIG. 3 (a) is a molecular weight distribution map of oil in soil in an oxidant-treated soil, and FIG. 3 (b) is a molecular weight distribution map of soil oil in a microorganism-treated soil after oxidant treatment.

Claims (2)

有機性物質で汚染された土壌に微生物処理を施す工程と、前記微生物処理を施した土壌に酸化剤処理を施す工程とを有することを特徴とする土壌浄化方法。A soil purification method comprising: a step of subjecting soil contaminated with an organic substance to a microorganism treatment; and a step of subjecting the soil subjected to the microorganism treatment to an oxidizing agent treatment. 前記微生物処理を施こす工程および前記酸化剤処理を施す工程のうち少なくとも一方の工程の前に、被処理土壌に界面活性剤を添加することを特徴とする請求項1に記載の土壌浄化方法。The soil purification method according to claim 1, wherein a surfactant is added to the soil to be treated before at least one of the step of performing the microorganism treatment and the step of performing the oxidant treatment.
JP2002374374A 2002-12-25 2002-12-25 Soil treatment method Pending JP2004202364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374374A JP2004202364A (en) 2002-12-25 2002-12-25 Soil treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374374A JP2004202364A (en) 2002-12-25 2002-12-25 Soil treatment method

Publications (1)

Publication Number Publication Date
JP2004202364A true JP2004202364A (en) 2004-07-22

Family

ID=32812419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374374A Pending JP2004202364A (en) 2002-12-25 2002-12-25 Soil treatment method

Country Status (1)

Country Link
JP (1) JP2004202364A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110968A (en) * 2005-10-20 2007-05-10 Matsumoto Sogo Kikaku Kk Microorganism activator, method for environmental clean-up and system for environmental clean-up
JP2007253075A (en) * 2006-03-23 2007-10-04 Nippon Oil Corp Soil purifying method
JP2009148702A (en) * 2007-12-20 2009-07-09 Nippon Oil Corp Soil cleaning method
JP2011167646A (en) * 2010-02-19 2011-09-01 Takenaka Komuten Co Ltd Method for decomposing organic halogen compound
CN108435786A (en) * 2018-05-07 2018-08-24 句容宇发农业发展有限公司 A method of repairing pesticide contaminated soil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110968A (en) * 2005-10-20 2007-05-10 Matsumoto Sogo Kikaku Kk Microorganism activator, method for environmental clean-up and system for environmental clean-up
JP2007253075A (en) * 2006-03-23 2007-10-04 Nippon Oil Corp Soil purifying method
JP2009148702A (en) * 2007-12-20 2009-07-09 Nippon Oil Corp Soil cleaning method
JP2011167646A (en) * 2010-02-19 2011-09-01 Takenaka Komuten Co Ltd Method for decomposing organic halogen compound
CN108435786A (en) * 2018-05-07 2018-08-24 句容宇发农业发展有限公司 A method of repairing pesticide contaminated soil

Similar Documents

Publication Publication Date Title
Jabbar et al. Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review
Myers et al. Abiotic and bioaugmented granular activated carbon for the treatment of 1, 4-dioxane-contaminated water
Chang et al. Anaerobic degradation of tetrabromobisphenol-A in river sediment
KR100285035B1 (en) Halogenated Hydrocarbon Degrading Bacteria and Their Uses
JP3862394B2 (en) Detoxification method of soil
Mora et al. Treatment of PAH-contaminated soil by persulfate: a review
JP4065226B2 (en) Method for purifying contaminated soil and contaminated groundwater
JP2004202364A (en) Soil treatment method
JP2004202357A (en) Method for purifying organic compound-polluted object
JP3538643B1 (en) Additives used to remediate contaminated soil, groundwater or sediment
JP2006341195A (en) Method of clarifying organic contaminant
Hu et al. The contribution of pyrene degrading bacteria and chemical reagents to Scirpus triqueter phytoremediation of pyrene and Ni co-contaminated soil
KR100228993B1 (en) Method for the remediation of polluted soils
Cassidy et al. Combined chemical (ozone) and biological treatment of polychlorinated biphenyls (PCBs) adsorbed to sediments
JP2006116420A (en) Method for treating chemical contaminant
US20030143030A1 (en) Method of treating contaminants in an in situ environment
JP2003251331A (en) Method for biologically restoring polluted soil or underground water, and additive
JP3537054B2 (en) Biological remediation of contaminated soil
JP2005205299A (en) Method for purifying contaminated soil and contaminated water
JP5879703B2 (en) Purification method of soil and groundwater by aerobic microorganisms
JP2009034073A (en) Method for culturing microorganism, and method for cleaning polluted soil and underground water
JP4203546B2 (en) Disassembly method and purification method
KR20080056982A (en) Detoxification method of pahs-polluted soil
JP4462702B2 (en) Soil purification method
JP2006320848A (en) Water environment purification method and additive for water purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225