JP5866507B1 - Microbial composition - Google Patents

Microbial composition Download PDF

Info

Publication number
JP5866507B1
JP5866507B1 JP2015534706A JP2015534706A JP5866507B1 JP 5866507 B1 JP5866507 B1 JP 5866507B1 JP 2015534706 A JP2015534706 A JP 2015534706A JP 2015534706 A JP2015534706 A JP 2015534706A JP 5866507 B1 JP5866507 B1 JP 5866507B1
Authority
JP
Japan
Prior art keywords
composition
glycerin
soil
sample
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015534706A
Other languages
Japanese (ja)
Other versions
JPWO2016170563A1 (en
Inventor
卓也 安藤
卓也 安藤
清水 巧治
巧治 清水
紀賢 當田
紀賢 當田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Application granted granted Critical
Publication of JP5866507B1 publication Critical patent/JP5866507B1/en
Publication of JPWO2016170563A1 publication Critical patent/JPWO2016170563A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Soil Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

グリセリン、ステアリン酸、炭酸カルシウムを有する微生物用組成物は、チキソ性を有するため地中に注入された際に、ゲル状になり地下水などで拡散しない。そのため、高い徐放性が期待できるものであった。しかし、経年的に数年は効果が継続する予定であったものが、1年足らずで効果が消失する現象が発生した。グリセリンと、炭酸カルシウムを含み、脂肪酸を含まないことによって、実用的に十分な徐放性を有する、土壌・地下水中の有機塩素化合物を浄化することのできる微生物用組成物を提供することができる。The composition for microorganisms having glycerin, stearic acid, and calcium carbonate has a thixotropy, and therefore, when injected into the ground, it becomes a gel and does not diffuse in groundwater or the like. Therefore, a high sustained release property can be expected. However, although the effect was expected to continue for several years over time, a phenomenon that the effect disappeared in less than one year occurred. By containing glycerin and calcium carbonate and not containing fatty acid, it is possible to provide a microbial composition capable of purifying organochlorine compounds in soil and groundwater having practically sufficient sustained release properties. .

Description

本発明は、土壌および地下水中の有機塩素化合物を微生物を利用して分解し、土壌および地下水を浄化するために、土壌および地下水中に注入する微生物用組成物に関するものである。   The present invention relates to a composition for microorganisms that is injected into soil and groundwater in order to decompose organochlorine compounds in soil and groundwater using microorganisms and purify the soil and groundwater.

化学物質によって汚染された土壌および地下水は、人ばかりでなく生物界全体のバランスを崩す問題であり、環境保護的な観点から何らかの対策が必要である。また、汚染された土壌および地下水を放置しておくのは、人の活動領域を制限することに繋がり経済的な観点からも対策が必要である。   Soil and groundwater contaminated with chemical substances is a problem that breaks the balance of not only human beings but also the entire biological world, and some measures are necessary from the viewpoint of environmental protection. In addition, leaving contaminated soil and groundwater will limit the area of human activity, and measures are also needed from an economic point of view.

従来、化学物質で汚染された土壌および地下水を浄化するためには、石灰法、鉄粉法、土壌掘削置換法、土壌湿気式洗浄法、バイオレメディエーション法など様々な方法が提案されている。土壌および地下水の汚染は、広範囲に広がる場合が多く、土壌そのものを置換するといった方法は、規模および経費が莫大となる。   Conventionally, various methods such as a lime method, an iron powder method, a soil excavation and replacement method, a soil moisture cleaning method, and a bioremediation method have been proposed to purify soil and groundwater contaminated with chemical substances. Soil and groundwater contamination is often widespread and methods such as replacing the soil itself are enormous in scale and cost.

大規模な工事を必要とせず、原位置で経済的に土壌および地下水を浄化する方法の1つとしては、バイオレメディエーション法が好適であるといわれる。これは、土壌および地下水中の好気性若しくは嫌気性の微生物に汚染物質である化学物質を分解させる方法である。   Bioremediation is said to be suitable as one of the methods for economically purifying soil and groundwater in situ without requiring large-scale construction. This is a method of decomposing chemical substances that are pollutants into aerobic or anaerobic microorganisms in soil and groundwater.

例えばクロストリジウム属の微生物は嫌気性雰囲気中で、有機物を分解し、酢酸等に分解する。その工程中に水素を放出する。この水素は、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエチレンといった有機塩素系化合物の塩素と置換し、これらの化学物質を浄化することができる。すなわち、嫌気性雰囲気下で発生した水素による還元反応で、有機塩素系化合物を脱塩素化し、化学物質を浄化することができる。   For example, Clostridium microorganisms decompose organic substances into acetic acid and the like in an anaerobic atmosphere. Hydrogen is released during the process. This hydrogen can be replaced with chlorine of organic chlorine compounds such as chloroform, dichloromethane, dichloroethane, and trichloroethylene to purify these chemical substances. In other words, an organic chlorine compound can be dechlorinated and a chemical substance can be purified by a reduction reaction with hydrogen generated in an anaerobic atmosphere.

以上の様に水素を発生させ提供する物質群を水素供与体と言うが、微生物を活性化させるとともに、水素供与体となる物質群(以後「栄養源」と呼ぶ。)を土壌および地下水中に注入する方法が提案されている。このような栄養源には、過剰注入した場合、汚染箇所以外の部分にまで拡散することによる二次汚染の懸念があった。そのため、例えば、特許文献1には、粒状にした直鎖脂肪酸や、グリセリン中に直鎖脂肪酸を混入させ、注入地点から移動しにくいようにした組成物が開示されている。   A group of substances that generate and provide hydrogen as described above is called a hydrogen donor, and while activating microorganisms, a group of substances that become hydrogen donors (hereinafter referred to as “nutrient sources”) are put into soil and groundwater. Injecting methods have been proposed. When such a nutrient source is excessively injected, there is a concern of secondary contamination due to diffusion to a portion other than the contaminated portion. Therefore, for example, Patent Document 1 discloses a composition in which a linear fatty acid granulated or a linear fatty acid is mixed in glycerine so that it is difficult to move from the injection point.

特開2002−370085号公報(特許第3746726号)JP 2002-370085 A (Patent No. 3746726)

特許文献1では、グリセリン100重量部、平均粒径105ミクロンミリのステアリン酸10重量部、平均粒径12ミクロンミリ炭酸カルシウム20重量部の組成の栄養源(微生物用組成物)は、チキソ性を有するため地中に注入された際に、ゲル状になり地下水などで拡散しない。そのため、高い徐放性が期待できるものである。   In Patent Document 1, a nutrient source (a composition for microorganisms) having a composition of 100 parts by weight of glycerin, 10 parts by weight of stearic acid having an average particle diameter of 105 microns and 20 parts by weight of calcium carbonate having an average particle diameter of 12 microns has thixotropy. Because it has, when it is injected into the ground, it becomes a gel and does not diffuse in groundwater. Therefore, a high sustained release property can be expected.

しかし、経年的に数年は効果が継続する予定であったものが、1年足らずで効果が消失する現象が発生した。   However, although the effect was scheduled to continue for several years over time, a phenomenon that the effect disappeared in less than one year occurred.

本発明は上記の課題に鑑み想到されたものであり、上記の現象は、地中に注入された栄養源のゲル化が進みすぎ、グリセリンも脂肪酸も放出できない状態になったことが原因であることを突き止めた結果想到されたものである。   The present invention has been conceived in view of the above-mentioned problems, and the above phenomenon is caused by the fact that the nutrient source injected into the ground is too gelled so that neither glycerin nor fatty acids can be released. As a result of ascertaining this, it was conceived.

より具体的に本発明に係る微生物用組成物は、グリセリンと、炭酸カルシウムのみを含み、前記炭酸カルシウムが前記微生物用組成物全量に対して5質量%以上9質量%以下であることを特徴とする。 More specifically, the composition for microorganisms according to the present invention contains only glycerin and calcium carbonate, and the calcium carbonate is 5% by mass or more and 9% by mass or less based on the total amount of the composition for microorganisms. To do.

本発明に係る微生物用組成物は、地中に注入された後、ゲル状態になってその場に留まり、長期間栄養源を放出し続けることのできる微生物用組成物(栄養源)を提供することができる。   The composition for microorganisms according to the present invention provides a composition for microorganisms (nutrient source) that, after being injected into the ground, becomes a gel state, stays in place, and can continuously release the nutrient source for a long period of time. be able to.

予備実験に用いた装置の構成を示す図である。It is a figure which shows the structure of the apparatus used for the preliminary experiment. 予備実験の装置において容器内の土壌の上から水を入れ、底板の下に配置した受け皿に落ちる水を採取する様子を示す図である。It is a figure which shows a mode that water is poured from the top of the soil in a container in the apparatus of a preliminary experiment, and the water which falls on the saucer arrange | positioned under the bottom plate is extract | collected. 予備実験の結果を表す図である。It is a figure showing the result of a preliminary experiment.

以下に本発明に係る微生物用組成物について説明する。以下の説明は、本発明の実施形態および実施例の一部を例示するものであり、本発明は以下の説明に限定されるものではない。本発明の主旨を逸脱しない限りにおいて下記の実施形態は変更することができる。   The composition for microorganisms according to the present invention will be described below. The following description exemplifies a part of the embodiments and examples of the present invention, and the present invention is not limited to the following description. The following embodiments can be modified without departing from the gist of the present invention.

本発明に係る微生物用組成物は、土壌および地下水中の微生物を活性させるための材料を含み、注入箇所からあまり拡散せず、その場に留まり、長期間にわたって、栄養成分を放出することを目的とする。したがって、注入された際に、地中でゲル化し、地下水や浸透で拡散しない状態にする。   The composition for microorganisms according to the present invention includes a material for activating microorganisms in soil and groundwater, and does not diffuse so much from the injection site, and remains in place, and aims to release nutrient components over a long period of time. And Therefore, when injected, it gels in the ground and does not diffuse due to groundwater or infiltration.

つまり、栄養成分を含んだゲルが注入された地点に形成され、そこから栄養成分は放出される。一方、ゲル自体は拡散することはない。言い換えると、微生物用組成物(栄養源)とは、ゲル骨格中に栄養成分が含まれた状態のゲルを地中に形成させるものである。   That is, it is formed at the point where the gel containing the nutrient component is injected, and the nutrient component is released therefrom. On the other hand, the gel itself does not diffuse. In other words, the composition for microorganisms (nutrient source) is to form a gel in the ground in which nutrient components are contained in the gel skeleton.

微生物の栄養成分としては、多価アルコールである糖アルコールやグリセリンが利用することができる。これらの物質は、水にも容易に溶け、拡散しやすいからである。特に保湿性の点ではグリセリンが優れている。   As a nutrient component of the microorganism, sugar alcohol or glycerin, which is a polyhydric alcohol, can be used. This is because these substances are easily dissolved in water and easily diffuse. In particular, glycerin is excellent in terms of moisture retention.

また、栄養成分としては、脂肪酸も利用できる。炭素数の多い脂肪酸は、水に不溶であるため、一気に拡散することはない。僅かずつ微生物によって分解され長期間にわたる水素供与体として働くことができる。しかし、本発明に係る微生物用組成物には、脂肪酸は用いない。   Moreover, a fatty acid can also be utilized as a nutrient component. Fatty acids having a large number of carbon atoms are insoluble in water and therefore do not diffuse at a stretch. It can be degraded by microorganisms little by little and can act as a long-term hydrogen donor. However, fatty acids are not used in the composition for microorganisms according to the present invention.

液状のものをゲルにするには、チキソ性を付与する。これには、フィラ成分を含ませることで実現できる。フィラ成分は、混合される溶媒同士を架橋する仲立ちとなり、溶媒全体にネットワークを構築する。すなわち、静止状態において、高い粘度を有する。しかし、そもそも化学的に結合したわけではないので、せん断力がかかると、ばらばらにされ、低い粘度となる。   To make a liquid into a gel, thixotropy is imparted. This can be realized by including a filler component. The filler component serves as an intermediary for cross-linking the mixed solvents and builds a network throughout the solvent. That is, it has a high viscosity in a stationary state. However, since they are not chemically bonded in the first place, when shearing force is applied, they are separated and become low in viscosity.

フィラ成分としては、環境負荷の少ない元素からなるものがよい。例えばカルシウムは大きな環境負荷にはならず、また、水に難溶性であるので、好適に利用できる。なかでも炭酸カルシウムはコストの点からも廉価で入手でき好適である。   As a filler component, what consists of an element with little environmental impact is good. For example, calcium can be suitably used because it is not a large environmental burden and is hardly soluble in water. Among these, calcium carbonate is preferable because it is available at a low price from the viewpoint of cost.

また、フィラ成分の大きさは、20μm以上200μm以下が好ましい。小さすぎると、チキソ性付与剤としての効果が低くなり、微生物用組成物としてチキソ体にならない。また、フィラが小さいと、地中を拡散してしまう。また大きすぎると同じくチキソ性付与剤としての効果が低くなる。また、粒径が大きすぎると地中への供給口を詰まらせる原因にもなる。   The size of the filler component is preferably 20 μm or more and 200 μm or less. If it is too small, the effect as a thixotropic agent will be low, and it will not become a thixotropic body as a composition for microorganisms. Also, if the filler is small, it will diffuse in the ground. If it is too large, the effect as a thixotropic agent is lowered. Moreover, if the particle size is too large, it may cause clogging of the supply port to the ground.

特許文献1で示された微生物用組成物は、注入されると地中でゲル状体を形成する。しかし、後述する実施例でも示すように、ゲル骨格を形成するカルシウム化合物と脂肪酸を混合し攪拌しながら地中に注入すると、非常に強いチキソ性付与剤となることがわかった。   The microbial composition disclosed in Patent Document 1 forms a gel-like body in the ground when injected. However, as shown in the examples described later, it was found that when a calcium compound forming a gel skeleton and a fatty acid were mixed and poured into the ground while stirring, a very strong thixotropic agent was obtained.

したがって、栄養成分である糖アルコール等が放出されると、ゲル化が進み、栄養成分が放出されない程のゲルとなってしまう。つまり、一定期間を経過すると、水素の供給量が極端に減少し、浄化が進まなくなってしまう。   Accordingly, when sugar alcohol or the like, which is a nutrient component, is released, gelation progresses, resulting in a gel that does not release the nutrient component. That is, after a certain period of time, the supply amount of hydrogen is extremely reduced and purification does not proceed.

これを回避するには、結局脂肪酸を添加させず、栄養成分とフィラ成分だけの混合組成物とするのが最も効果的であった。また、界面活性剤、pH調整剤といった添加剤を加えてもより。   In order to avoid this, it was most effective to use a mixed composition of only the nutritional component and the filler component without adding any fatty acid. It is also possible to add additives such as surfactants and pH adjusters.

以下に本発明に係る微生物用組成物の実施例を示す。予備的な実験として、組成の異なる微生物用組成物を調製し、土壌中での挙動を確認した。図1に実験に用いた装置を示す。容器10は、内径130mm、肉厚10mm、長さ500mmのアクリル管を用いた。一方の端部を、貫通孔を複数個形成した底板11で閉じた。地下7mの透水層から掘り出した土壌12を底板11から400mmの高さまで、およそ3リットル分だけ充填した。   Examples of the composition for microorganisms according to the present invention are shown below. As a preliminary experiment, compositions for microorganisms having different compositions were prepared, and their behavior in soil was confirmed. FIG. 1 shows the apparatus used in the experiment. The container 10 was an acrylic tube having an inner diameter of 130 mm, a wall thickness of 10 mm, and a length of 500 mm. One end was closed with a bottom plate 11 having a plurality of through holes. The soil 12 excavated from the water-permeable layer 7 m underground was filled from the bottom plate 11 to a height of 400 mm by about 3 liters.

微生物用組成物のサンプル30は、容器10内の土壌の表面から100mmの深さの地点にシリンジポンプ14を用いて100cc注入した。その後、1日放置した。   100 microliters of the sample 30 of the composition for microorganisms was inject | poured into the point of the depth of 100 mm from the surface of the soil in the container 10 using the syringe pump 14. FIG. Then, it was left for one day.

次に、図2を参照して、容器10内の土壌12の上から水20を入れ、底板11の下に配置した受け皿16に落ちる水25を採取した。この水をGC(ガスクロマトグラフ)で測定し、栄養成分の溶出量を定期的に測定した。なお、図2において、符号18は出口を下向きにした水20のタンクであり、水20の液面は常に同じ位置にある。また、符号30はゲル化したサンプルである。各サンプルの組成を以下に示す。   Next, referring to FIG. 2, water 20 was poured from above the soil 12 in the container 10, and water 25 falling on the receiving tray 16 disposed under the bottom plate 11 was collected. This water was measured by GC (gas chromatograph), and the elution amounts of nutrient components were measured periodically. In FIG. 2, reference numeral 18 denotes a tank of water 20 with the outlet facing downward, and the liquid level of the water 20 is always at the same position. Reference numeral 30 denotes a gelled sample. The composition of each sample is shown below.

<サンプル1>
サンプル1は、グリセリンが76.9質量%、平均粒径100μmの炭酸カルシウムが7.7質量%、平均粒径12μmのステアリン酸が15.4質量%の組成である。組成を表1に示す。
<Sample 1>
Sample 1 has a composition of 76.9% by mass of glycerin, 7.7% by mass of calcium carbonate having an average particle size of 100 μm, and 15.4% by mass of stearic acid having an average particle size of 12 μm. The composition is shown in Table 1.

<サンプル2>
サンプル2は、グリセリンが91質量%、平均粒径100μmの炭酸カルシウムが3質量%、平均粒径12μmのステアリン酸が6質量%の組成である。サンプル2は、炭酸カルシウムとステアリン酸の量を同じ比率のまま少なくした組成である。組成を表1に示す。
<Sample 2>
Sample 2 is composed of 91% by mass of glycerin, 3% by mass of calcium carbonate having an average particle size of 100 μm, and 6% by mass of stearic acid having an average particle size of 12 μm. Sample 2 has a composition in which the amounts of calcium carbonate and stearic acid are reduced in the same ratio. The composition is shown in Table 1.

<サンプル3>
サンプル3は、グリセリンが91質量%、平均粒径100μmの炭酸カルシウムが6質量%、平均粒径12μmのステアリン酸が3質量%の組成である。サンプル3は、サンプル2に対して炭酸カルシウムの量とステアリン酸の量を逆転させた組成である。組成を表1に示す。
<Sample 3>
Sample 3 is composed of 91% by mass of glycerin, 6% by mass of calcium carbonate having an average particle size of 100 μm, and 3% by mass of stearic acid having an average particle size of 12 μm. Sample 3 has a composition in which the amount of calcium carbonate and the amount of stearic acid are reversed with respect to sample 2. The composition is shown in Table 1.

<サンプル4>
サンプル4は、グリセリンが91質量%、平均粒径100μmの炭酸カルシウムが9質量%の組成である。サンプル4はステアリン酸を含まない組成である。組成を表1に示す。
<Sample 4>
Sample 4 has a composition of 91% by mass of glycerin and 9% by mass of calcium carbonate having an average particle size of 100 μm. Sample 4 has a composition not containing stearic acid. The composition is shown in Table 1.

<サンプル5>
サンプル5は、グリセリンが100質量%の組成である。サンプル5はコントロールとして加えたものである。組成を表1に示す。
<Sample 5>
Sample 5 has a composition of 100% by mass of glycerin. Sample 5 was added as a control. The composition is shown in Table 1.

Figure 0005866507
Figure 0005866507

土壌表面に注ぐ水は、容器10の土壌から5cm程の高さまで一気にそそぎ、後はその水位を保持するようにタンク18から補給した。各サンプルが注入された容器10からは、水を注いでからほぼ同じ時間で受け皿16に水25が出始めた。受け皿16に水25が出始めた時を測定開始時とし、測定開始時から30分毎に受け皿16に溜まった水25をサンプリングし、GCでグリセリン量を測定した。グリセリン量の測定値は、受け皿16に溜まった水の重量を基に、30分で流れ落ちたグリセリンの総量に換算した。   The water poured on the soil surface was poured from the soil in the container 10 to a height of about 5 cm at a time, and then was replenished from the tank 18 so as to maintain the water level. From the container 10 into which each sample was poured, water 25 started to come out on the saucer 16 in approximately the same time after pouring water. The time when the water 25 began to appear in the tray 16 was set as the start of measurement. The water 25 accumulated in the tray 16 was sampled every 30 minutes from the start of the measurement, and the amount of glycerin was measured by GC. The measured value of the amount of glycerin was converted to the total amount of glycerin that flowed down in 30 minutes based on the weight of the water accumulated in the tray 16.

図3に結果を示す。図3を参照して、横軸は時間であり、縦軸は流れ落ちたグリセリン総量である。なお、サンプル間を比較するため縦軸はサンプル5の最初の測定値を100として規格化してある。図3の結果を見ると、グリセリン単体(サンプル5:白丸)のものは、最もよく流れ落ちている。しかし、24時間後には、ほぼ検出限界以下となった。   The results are shown in FIG. Referring to FIG. 3, the horizontal axis is time, and the vertical axis is the total amount of glycerin that has flowed down. In order to compare samples, the vertical axis is normalized with the first measured value of sample 5 as 100. When the result of FIG. 3 is seen, the thing of glycerin single-piece | unit (sample 5: white circle) has flowed down most. However, after 24 hours, it was almost below the detection limit.

グリセリンに炭酸カルシウムとステアリン酸を混入させたサンプル1(黒丸)、2(白三角)、3(白逆三角)では、測定開始時からサンプル5(グリセリンのみ)の半分ほどしか流れ落ちてこなかった。その後は持続的に流れ落ちていたが、8時間後に突然減少した。   In samples 1 (black circles), 2 (white triangles), and 3 (white inverted triangles) in which calcium carbonate and stearic acid were mixed with glycerin, only about half of sample 5 (only glycerin) flowed down from the start of measurement. After that, it flowed continuously, but suddenly decreased after 8 hours.

これに対してステアリン酸が含まれていないサンプル4(白四角)は、グリセリンは、添加物なしのサンプル5よりはゆっくりと流れ落ちた。そして、18時間後に、サンプル5の流出量よりも多くなった。   In contrast, in sample 4 (white squares) containing no stearic acid, glycerin flowed more slowly than sample 5 without additives. Then, after 18 hours, the amount of sample 5 was larger than the outflow amount.

実験終了後、サンプル1から4を容器10毎縦に切断してみたところ、サンプル1か3までは、ほぼ同じように、注入された部分でゲル状態になっていた。一方、サンプル4は、ゲル状体ではあったが、ゲル状態を認められる部分は、サンプル1乃至3より広かった。   When the samples 1 to 4 were cut longitudinally for each container 10 after the experiment was completed, the samples 1 and 3 were in a gel state at the injected portion in substantially the same manner. On the other hand, Sample 4 was a gel-like body, but the portion where the gel state was recognized was wider than Samples 1 to 3.

以上の結果より、炭酸カルシウムとステアリン酸が共存すると、今回実験した範囲内では含有量に関らず、強力なゲル促進剤として働き、グリセリン量が一定以上流れると、それ以上の流れ出しを許容しないほどしっかりしたゲルになると考えられる。   From the above results, when calcium carbonate and stearic acid coexist, it works as a powerful gel accelerator regardless of the content within the range tested this time, and if the glycerin amount flows above a certain level, it does not allow further outflow It seems to be a firm gel.

次に実際のフィールドで確認を行った。実施例1は、表1のサンプル4と同じ組成で、グリセリンが91質量%で、平均粒径100μmの炭酸カルシウムが9質量%のものである。実施例2は、サンプル4に近い組成で、グリセリンが95質量%で、平均粒径100μmの炭酸カルシウムが5質量%のものである。比較例1は、サンプル1と同じ組成である。具体的には、グリセリンが76.9質量%で、平均粒径100μmの炭酸カルシウムが7.7質量%、平均粒径12μmのステアリン酸が15.4質量%である。   Next, the actual field was checked. Example 1 has the same composition as Sample 4 in Table 1, 91% by mass of glycerin, and 9% by mass of calcium carbonate having an average particle size of 100 μm. Example 2 has a composition close to that of sample 4, with 95% by mass of glycerin and 5% by mass of calcium carbonate having an average particle size of 100 μm. Comparative Example 1 has the same composition as Sample 1. Specifically, glycerin is 76.9% by mass, calcium carbonate having an average particle size of 100 μm is 7.7% by mass, and stearic acid having an average particle size of 12 μm is 15.4% by mass.

これらの組成の微生物用組成物45kgを攪拌しながら、12mに掘った井戸に全量を注入した。なお、この土壌には、トリクロロエチレンが1.0mg/L含有されていることが調べられていた。   While stirring 45 kg of the microbial composition having these compositions, the whole amount was poured into a well dug in 12 m. In addition, it was investigated that this soil contains 1.0 mg / L of trichlorethylene.

実施例1、2および比較例1の各井戸は、50m以上離れた地点に設け、互いに影響はないようにした。それぞれの井戸から5m離れた地点観測井戸を掘り、トリクロロエチレンの量を計測した。各サンプルの組成と、トリクロロエチレンの除去率を表2に示す。なお、表2では、トリクロロエチレンの除去率を「VOC除去率(%)」表示した。また、除去率は、測定値を初期値である1.0mg/Lで割り、1から引いた値に100を乗じた値とした。より具体体には(1)式で示す。
除去率=(1−測定値/1.0}×100 ・・・(1)
The wells of Examples 1 and 2 and Comparative Example 1 were provided at points separated by 50 m or more so as not to affect each other. A point observation well 5 m away from each well was dug, and the amount of trichlorethylene was measured. Table 2 shows the composition of each sample and the removal rate of trichlorethylene. In Table 2, the removal rate of trichlorethylene is indicated as “VOC removal rate (%)”. The removal rate was a value obtained by dividing the measured value by the initial value of 1.0 mg / L and subtracting 1 from 100. A more specific body is represented by formula (1).
Removal rate = (1−measured value / 1.0} × 100 (1)

Figure 0005866507
Figure 0005866507

表2を参照して、井戸を設置して1ヶ月経過後には、観測地点でのトリクロロエチレンの除去率は、それぞれの井戸で、ほぼ同じ程度であった。一方、10ヶ月経過後では、実施例1および2の井戸の観測点では、ほぼ同じようにトリクロロエチレンは除去できていたが、比較例1の井戸の観測点では、除去率はゼロになっていた。また、観測点でのグリセリンを測定してみると、実施例1および2の観測点では、グリセリンを観測することができたが、比較例1の井戸の観測点ではグリセリンを検出できなかった。   Referring to Table 2, one month after the installation of the wells, the removal rate of trichlorethylene at the observation point was almost the same for each well. On the other hand, after 10 months, trichlorethylene was removed in the same manner at the well observation points of Examples 1 and 2, but the removal rate was zero at the well observation point of Comparative Example 1. . When glycerin was measured at the observation point, glycerin could be observed at the observation points of Examples 1 and 2, but glycerin could not be detected at the observation point of the well of Comparative Example 1.

以上のように、炭酸カルシウムと脂肪酸を共存させた場合、強力なチキソ性促進剤として働くため、グリセリンの流れ出しが阻止されると結論付けられた。また、炭酸カルシウムを少なくとも5質量%以上9質量%以下含ませることで、長期間に渡って、広範囲へ栄養源を供給し続けることができることがわかった。   As described above, when calcium carbonate and a fatty acid were allowed to coexist, it was concluded that glycerin was prevented from flowing out because it acted as a strong thixotropic promoter. Further, it was found that the nutrient source can be continuously supplied over a long period of time by containing calcium carbonate at least 5 mass% to 9 mass%.

本発明に係る微生物用組成物は、土壌および地下水中の有機塩素化合物を土壌および地下水中の微生物を利用して分解・浄化する際の栄養源として好適に利用することができる。   The composition for microorganisms according to the present invention can be suitably used as a nutrient source for decomposing and purifying organochlorine compounds in soil and groundwater using microorganisms in soil and groundwater.

10 容器
11 底板
12 土壌
14 シリンジポンプ
16 受け皿
18 (水の)タンク
10 container 11 bottom plate 12 soil 14 syringe pump 16 saucer 18 (water) tank

Claims (1)

土壌、地下水中の有機塩素化合物を浄化することのできる微生物用組成物であって、
グリセリンと、
炭酸カルシウムのみを含み、
前記炭酸カルシウムが前記微生物用組成物全量に対して5質量%以上9質量%以下であることを特徴とする微生物用組成物。
A composition for microorganisms capable of purifying organochlorine compounds in soil and groundwater,
Glycerin,
Contains only calcium carbonate,
The composition for microorganisms, wherein the calcium carbonate is 5% by mass to 9% by mass with respect to the total amount of the composition for microorganisms.
JP2015534706A 2015-04-24 2015-04-24 Microbial composition Active JP5866507B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002250 WO2016170563A1 (en) 2015-04-24 2015-04-24 Composition for microorganisms

Publications (2)

Publication Number Publication Date
JP5866507B1 true JP5866507B1 (en) 2016-02-17
JPWO2016170563A1 JPWO2016170563A1 (en) 2017-04-27

Family

ID=55347029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015534706A Active JP5866507B1 (en) 2015-04-24 2015-04-24 Microbial composition

Country Status (3)

Country Link
JP (1) JP5866507B1 (en)
CN (1) CN105940098B (en)
WO (1) WO2016170563A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275378B (en) * 2020-02-19 2022-10-21 和协工程股份有限公司 Slow-release carbon-releasing gel matrix and soil remediation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267086A (en) * 1996-01-29 1997-10-14 Nec Corp Method for purifying contaminated soil
JP2000015239A (en) * 1998-06-29 2000-01-18 Ohbayashi Corp Purification of polluted soil by microorganism
JP2011218251A (en) * 2010-04-05 2011-11-04 Ohbayashi Corp Cleaning method of contaminated ground
JP2012125706A (en) * 2010-12-15 2012-07-05 Ohbayashi Corp Material and method for cleaning contaminated ground
JP2014188481A (en) * 2013-03-28 2014-10-06 Panasonic Corp Injection device of nutrient for microbe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60230211D1 (en) * 2001-04-13 2009-01-22 Panasonic Corp Process for the reduction of nitrate nitrogen and volatile organic compounds in soils and groundwater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267086A (en) * 1996-01-29 1997-10-14 Nec Corp Method for purifying contaminated soil
JP2000015239A (en) * 1998-06-29 2000-01-18 Ohbayashi Corp Purification of polluted soil by microorganism
JP2011218251A (en) * 2010-04-05 2011-11-04 Ohbayashi Corp Cleaning method of contaminated ground
JP2012125706A (en) * 2010-12-15 2012-07-05 Ohbayashi Corp Material and method for cleaning contaminated ground
JP2014188481A (en) * 2013-03-28 2014-10-06 Panasonic Corp Injection device of nutrient for microbe

Also Published As

Publication number Publication date
JPWO2016170563A1 (en) 2017-04-27
CN105940098A (en) 2016-09-14
CN105940098B (en) 2017-09-08
WO2016170563A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
Baumgarten et al. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole
CN1323033C (en) Process and apparatus for oil eliminating by pressure dissolved air floatation with nitrogen as gaseous source
CN109332343B (en) A kind of injection covering process in solid pollution source
CN106085440A (en) A kind of heavy-metal contaminated soil is combined eluent
JP3746726B2 (en) Methods for reducing nitrate nitrogen and volatile organic compounds in soil and groundwater
CN101417287B (en) Chemical repair method for cyanide polluted soil
JP5866507B1 (en) Microbial composition
JP3640286B2 (en) Purification method for soil, etc. in situ
CN108328856A (en) A kind of in-situ immobilization technique of low concentration organic contamination underground water and its application
JP5776175B2 (en) Purification material and purification method for contaminated ground
RU2479364C1 (en) Reclamation of lands occupied by slime pits caused by oil-and-gas production
Singh et al. Toxicity and treatability of leachate: application of UASB reactor for leachate treatment from Okhla landfill, New Delhi
CN104843865A (en) Liquid carbon source material for in-situ remediation of groundwater nitrate and Cr&lt;6+&gt; pollution
TWI548743B (en) Composition for microbiological use
JP5654170B1 (en) Foaming agent for bubble shield method and bubble shield method
KR100909082B1 (en) Restoration methods of contaminated soil by heavy metal using organic waste
JP3815464B2 (en) Soil and groundwater purification composition
JP4428125B2 (en) Pollution purification method
JP5545441B2 (en) Method for treating surfactant in excavated soil
CN205856279U (en) One is volatile organic matter segregation apparatus be applicable to Treated sewage reusing
JP6631945B2 (en) Purification promoting material for oil-contaminated soil and purification treatment method using the same
CN107936975A (en) A kind of reparation medicament for the soil containing beryllium pollution
JP2006007058A (en) Injection method of nutrient source
JP2013022585A (en) Method for purifying environmental contamination by organochlorine pesticides
JP5163235B2 (en) In-situ purification method for contaminated ground or groundwater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

R151 Written notification of patent or utility model registration

Ref document number: 5866507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151