JP2012125706A - Material and method for cleaning contaminated ground - Google Patents

Material and method for cleaning contaminated ground Download PDF

Info

Publication number
JP2012125706A
JP2012125706A JP2010279761A JP2010279761A JP2012125706A JP 2012125706 A JP2012125706 A JP 2012125706A JP 2010279761 A JP2010279761 A JP 2010279761A JP 2010279761 A JP2010279761 A JP 2010279761A JP 2012125706 A JP2012125706 A JP 2012125706A
Authority
JP
Japan
Prior art keywords
soil layer
starch
glycerin
contaminated ground
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010279761A
Other languages
Japanese (ja)
Other versions
JP5776175B2 (en
Inventor
Hiromoto Ogata
浩基 緒方
Mizuyo Yomoto
瑞世 四本
Kenichi Fukutake
健一 福武
Kaoru Tanaka
薫 田中
Tetsumi Higasayama
徹巳 日笠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010279761A priority Critical patent/JP5776175B2/en
Publication of JP2012125706A publication Critical patent/JP2012125706A/en
Application granted granted Critical
Publication of JP5776175B2 publication Critical patent/JP5776175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material and method for cleaning a contaminated ground, capable of cleaning the ground even if being a cohesive soil layer.SOLUTION: The cleaning material of the contaminated ground is added to the cohesive soil layer of the contaminated ground that is contaminated by an organic chlorine compound to activate microorganisms for decomposing the organic chlorine compound, thereby cleaning the cohesive soil layer of the contaminated ground. The cleaning material of the contaminated ground contains a glycerin and a starch inclusion.

Description

本発明は、有機塩素化合物で汚染された粘性土層を有する汚染地盤の浄化材及び浄化方法に関する。   The present invention relates to a purification material and a purification method for contaminated ground having a viscous soil layer contaminated with an organic chlorine compound.

地盤中に常在する微生物(単に微生物と称する)を活性化することで、トリクロロエチレン(TCE)等の有機塩素化合物(VOCsと称する)を分解させ、VOCsで汚染された汚染地盤を浄化するための浄化材が知られている。   By activating microorganisms resident in the ground (simply referred to as microorganisms), organic chlorine compounds (referred to as VOCs) such as trichlorethylene (TCE) are decomposed, and the contaminated ground contaminated with VOCs is purified. Purifiers are known.

特許文献1の土壌浄化方法では、各種の栄養分を含んだ水溶性の浄化材を汚染地盤に導入することで、微生物によるVOCsの分解を促進して汚染地盤を浄化している。   In the soil purification method of patent document 1, the decomposition | disassembly of VOCs by microorganisms is accelerated | stimulated by introducing the water-soluble purification material containing various nutrients into the contamination ground, and the contamination ground is purified.

特開2007‐268450号公報JP 2007-268450 A

特許文献1の浄化材は水溶性であることから、地盤に導入した場合に、粘性土層の上の帯水層に含まれる地下水に溶解し、分散してしまう虞がある。このため、十分な量の浄化材を長期間にわたって、粘性土層に留まらせることは困難であった。すなわち、前述した浄化材によって、粘性土層を十分に浄化することは困難であった。   Since the purification material of Patent Document 1 is water-soluble, when introduced into the ground, there is a risk that it will dissolve and disperse in the groundwater contained in the aquifer above the viscous soil layer. For this reason, it has been difficult to keep a sufficient amount of the purification material in the viscous soil layer for a long period of time. That is, it has been difficult to sufficiently purify the viscous soil layer with the above-described purification material.

本発明は、このような事情に鑑みてなされたものであり、その目的は、粘性土層であっても浄化することのできる汚染地盤の浄化材及び浄化方法を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the purification material and purification method of the contaminated ground which can be purified even if it is a viscous soil layer.

前記課題を解決するための本発明は、有機塩素化合物によって汚染された汚染地盤の粘性土層に加えられ、前記有機塩素化合物を分解する微生物を活性化させることで、前記汚染地盤の粘性土層を浄化する汚染地盤の浄化材であって、グリセリンと、デンプン含有物とを含有することを特徴とする。   The present invention for solving the above problems is applied to a viscous soil layer of a contaminated ground contaminated with an organic chlorine compound, and activates microorganisms that decompose the organic chlorine compound, thereby causing the viscous soil layer of the contaminated ground to be activated. It is the purification material of the contaminated ground which purifies | cleans, Comprising: Glycerin and a starch containing material are characterized by the above-mentioned.

本発明の汚染地盤の浄化材は、グリセリンと、デンプン含有物とを含有している。グリセリンは、比重が水よりも大きいため、地下水を含む帯水層の下に存在する粘性土層に向かって浸透していくが、水溶性であるため、帯水層において地下水に溶解し、分散しやすい。このグリセリンに対して、デンプン含有物を混合した本発明の浄化材では、例えばデンプン分子の隙間にグリセリンが入り込んだ状態のままで、グリセリンをデンプン含有物と共に粘性土層まで沈降させることができる。   The contaminated soil purification material of the present invention contains glycerin and starch-containing material. Glycerin has a specific gravity greater than that of water, so it penetrates toward the viscous soil layer under the aquifer containing groundwater, but because it is water-soluble, it dissolves and disperses in the groundwater in the aquifer. It's easy to do. In the purification material of the present invention in which a starch-containing material is mixed with the glycerin, for example, glycerin can be precipitated together with the starch-containing material to the viscous soil layer in a state where the glycerin enters a gap between starch molecules.

このため、帯水層においてグリセリンが地下水に溶出してしまうことを防止でき、粘性土層に浄化材をより確実に導入することができる。粘性土層に導入された浄化材のうち、低分子であり土への吸着性が低いグリセリンは汚染土層に速やかに拡散し、有機塩素化合物(VOCs)を分解する微生物(微生物)の栄養分となり微生物を活性化することができる。さらに、この浄化材では、グリセリンよりも分解されにくい高分子からなるデンプン含有物を含有しているため、グリセリンが微生物に消費された後であっても、デンプン含有物によって微生物を活性化することができる。よって、粘性土層の微生物を長期間にわたって持続的に活性化することができ、粘性土層を十分に浄化することができる。   For this reason, it can prevent that glycerin elutes in groundwater in an aquifer, and can introduce | transduce a purification material into a viscous soil layer more reliably. Among the purification materials introduced into the viscous soil layer, glycerin, which is a low molecular weight and has low adsorptivity to the soil, diffuses quickly into the contaminated soil layer and becomes a nutrient for microorganisms (microorganisms) that decompose organic chlorine compounds (VOCs). Microorganisms can be activated. Furthermore, since this purifying material contains a starch-containing material composed of a polymer that is harder to decompose than glycerin, it activates the microorganism with the starch-containing material even after glycerin is consumed by the microorganism. Can do. Therefore, the microorganisms in the viscous soil layer can be activated continuously over a long period of time, and the viscous soil layer can be sufficiently purified.

また、本発明の汚染地盤の浄化材において、前記デンプン含有物は、片栗粉を含有することが好ましい。これによって、汚染地盤に導入するのに適した粘度を有する汚染地盤の浄化材を提供することができ、より容易且つ確実に粘性土層を浄化することができる。   Moreover, in the purification material of the contaminated ground of this invention, it is preferable that the said starch containing material contains potato starch. Thereby, the contaminated ground purification material having a viscosity suitable for introduction into the contaminated ground can be provided, and the viscous soil layer can be purified more easily and reliably.

また、本発明の汚染地盤の浄化材において、前記デンプン含有物は、小麦粉を含有することが好ましい。これによって、浄化材に含有されるグリセリンが地下水へ溶出してしまうことをより効果的に抑制できるため、より確実に粘性土層を浄化することができる。   Moreover, the purification material of the contaminated ground of this invention WHEREIN: It is preferable that the said starch containing material contains wheat flour. Thereby, since it can suppress more effectively that glycerin contained in a purification material will elute to groundwater, a viscous soil layer can be purified more reliably.

また、本発明の汚染地盤の浄化材において、前記デンプン含有物は、片栗粉に加えて、小麦粉又はコーンスターチの何れか一方を更に含有することが好ましい。これによって、グリセリンに対して片栗粉が分散した状態で、浄化材を汚染地盤に導入することができるため、より確実に粘性土層を浄化することができる。   Moreover, in the purification material of the contaminated ground of this invention, it is preferable that the said starch containing material further contains either flour or corn starch in addition to starch. Thereby, since the purification material can be introduced into the contaminated ground in the state where the starch powder is dispersed with respect to glycerin, the viscous soil layer can be more reliably purified.

また、前記課題を解決するための本発明は、有機塩素化合物によって汚染された汚染地盤の粘性土層に、グリセリンと、デンプン含有物とを含有してなる浄化材を導入し、前記有機塩素化合物を分解する微生物を活性化させることを特徴とする汚染地盤の浄化方法である。また、本発明の汚染地盤の浄化方法では、地表から前記汚染地盤の粘性土層に達するように設けられた井戸に前記浄化材を導入することが好ましい。また、本発明の汚染地盤の浄化方法では、前記汚染地盤の粘性土層に、前記浄化材を導入するための導入管を地表から挿入する工程と、前記汚染地盤の粘性土層に挿入した前記導入管を引き上げながら、前記導入管から前記汚染地盤の粘性土層に前記浄化材を導入する工程とを行うことが好ましい。   In addition, the present invention for solving the above-mentioned problems introduces a purification material containing glycerin and starch-containing material into a viscous soil layer of a contaminated ground contaminated with an organic chlorine compound, and the organic chlorine compound It is a purification method for contaminated ground, characterized by activating microorganisms that decompose the soil. Moreover, in the purification method of the contaminated ground of this invention, it is preferable to introduce | transduce the said purification material into the well provided so that it may reach the viscous soil layer of the said contaminated ground from the ground surface. Further, in the method for purifying contaminated ground according to the present invention, a step of inserting an introduction pipe for introducing the purification material into the viscous soil layer of the contaminated ground from the ground surface, and the step of inserting the pipe into the viscous soil layer of the contaminated ground It is preferable to perform the step of introducing the purification material from the introduction pipe to the viscous soil layer of the contaminated ground while pulling up the introduction pipe.

本発明によれば、粘性土層であっても十分に浄化することのできる汚染地盤の浄化材及び浄化方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a viscous soil layer, the purification material and purification method of the contaminated ground which can fully purify can be provided.

(a)は、VOCs汚染現場の地下水を添加した対照区のVOCs濃度と経過日数の関係を表すグラフであり、(b)は、VOCs汚染現場の地下水にグリセリン及び小麦粉を含有する浄化材を添加した場合のVOCs濃度と経過日数の関係を表すグラフであり、(c)は、VOCs汚染現場の地下水にHRC(Hydrogen Release Compound;徐放性栄養剤)を添加した場合のVOCs濃度と経過日数の関係を表すグラフである。(A) is a graph showing the relationship between the VOCs concentration in the control section to which groundwater at the VOCs-contaminated site was added and the number of days elapsed, and (b) is the addition of a purification material containing glycerin and flour to the groundwater at the VOCs-contaminated site. (C) is a graph showing the relationship between the VOCs concentration and the elapsed days when HRC (Hydrogen Release Compound) is added to the groundwater at the VOCs-contaminated site. It is a graph showing a relationship. (a)は、グリセリンの溶出確認試験の工程を説明するための模式図であり、(b)は、グリセリンの溶出確認試験の工程を説明するためのその他の模式図であり、(c)は、グリセリンの溶出確認試験の工程を説明するためのその他の模式図である。(A) is a schematic diagram for demonstrating the process of the elution confirmation test of glycerol, (b) is the other schematic diagram for demonstrating the process of the elution confirmation test of glycerol, (c) is FIG. 5 is another schematic diagram for explaining the process of the glycerin elution confirmation test. (a)は、VOCs分解確認試験の工程を説明するための模式図であり、(b)は、VOCs分解確認試験の工程を説明するためのその他の模式図であり、(c)は、VOCs分解確認試験の工程を説明するためのその他の模式図である。(A) is a schematic diagram for demonstrating the process of a VOCs decomposition | disassembly confirmation test, (b) is the other schematic diagram for demonstrating the process of a VOCs decomposition | disassembly confirmation test, (c) is VOCs. It is the other schematic diagram for demonstrating the process of a decomposition | disassembly confirmation test. (a)は、汚染地盤に形成された井戸の模式図であり、(b)は、(a)に示す井戸に注入された本実施形態に係る浄化材の模式図であり、(c)は、(b)に示す浄化材において粘性土層に拡散したグリセリンを示す模式図であり、(d)は、(b)に示す浄化材において粘性土層に拡散したグリセリン及びデンプン含有物を示す模式図である。(A) is a schematic diagram of the well formed in the contaminated ground, (b) is a schematic diagram of the purification material according to the present embodiment injected into the well shown in (a), (c) It is a schematic diagram which shows the glycerin diffused in the viscous soil layer in the purification material shown in (b), (d) is a schematic diagram showing the glycerin and starch-containing material diffused in the viscous soil layer in the purification material shown in (b). FIG. (a)は、汚染地盤に挿入された導入管の模式図であり、(b)は、(a)に示す導入管から導入される本実施形態に係る浄化材の模式図であり、(c)は、粘性土層に導入された浄化材の模式図であり、(d)は、(c)に示す浄化材において粘性土層に拡散したグリセリンを示す模式図であり、(e)は、(c)に示す浄化材において粘性土層に拡散したグリセリン及びデンプン含有物を示す模式図である。(A) is a schematic diagram of the introduction pipe inserted in the contaminated ground, (b) is a schematic diagram of the purification material according to the present embodiment introduced from the introduction pipe shown in (a), (c ) Is a schematic diagram of the purification material introduced into the viscous soil layer, (d) is a schematic diagram showing glycerin diffused in the viscous soil layer in the purification material shown in (c), (e), It is a schematic diagram which shows the glycerol and starch containing material which were spread | diffused in the viscous soil layer in the purification | cleaning material shown to (c).

<<<汚染地盤の浄化材について>>>
本実施形態にかかる汚染地盤の浄化材は、グリセリンと、デンプン含有物とを含有し、VOCsによって汚染された汚染地盤に導入される。この汚染地盤は、地下水を含有する帯水層の下に粘性土層を有しており、この粘性土層が浄化の対象となる。
<<< About purification material for contaminated ground >>>
The purification material for contaminated ground according to this embodiment contains glycerin and starch-containing material, and is introduced into the contaminated ground contaminated by VOCs. This contaminated ground has a viscous soil layer under an aquifer containing groundwater, and this viscous soil layer is a target for purification.

尚、VOCsには、テトラクロロエチレン(PCE)、TCE、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン(1,1−DCE)、シス−1,2−ジクロロエチレン(Cis−DCE)、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,3−ジクロロプロペン、トランス1,2−ジクロロエチレン、塩化ビニルモノマー等が含まれる。   VOCs include tetrachloroethylene (PCE), TCE, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene (1,1-DCE), cis-1,2-dichloroethylene (Cis-DCE). 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,3-dichloropropene, trans 1,2-dichloroethylene, vinyl chloride monomer and the like.

また、VOCsを分解する微生物としては、嫌気条件下においてPCEやTCEをエチレンにまで分解して無害化できる嫌気性のデハロコッコイデス属細菌が含まれる。尚、この他の微生物としては、メタノバクテリウム属、メタノサルシナ属、メタノロブス属、アセトバクテリウム属、デスルフォバクテリウム属、デスルフォモニル属、デハロスピリルム属、デハロバクター属、デハロバクテリウム属、クロストリジウム属等の嫌気性分解菌が挙げられる。   Microorganisms that degrade VOCs include anaerobic dehalococcide bacteria that can degrade PCE and TCE to ethylene under anaerobic conditions. Other microorganisms include, for example, the genus Methanobacteria, Methanosarcina, Methanolobus, Acetobacteria, Desulfobacterium, Desulfomonyl, Dehalospirylum, Dehalobacter, Dehalobacterium, Clostridium, etc. Anaerobic bacteria can be mentioned.

これらの微生物は、水素を利用してVOCsを脱塩素化する。これによって、微生物はエネルギー(ATP)を獲得して増殖すると共に、TCEをCis−DCE、塩化ビニル(VC)を経てエチレンにまで分解して無害化する。   These microorganisms dehydrogenate VOCs using hydrogen. As a result, microorganisms acquire energy (ATP) and proliferate, and decompose TCE into ethylene through Cis-DCE and vinyl chloride (VC) to be harmless.

浄化材に含まれるグリセリンは、水よりも比重が大きいため、帯水層の下方の粘性土層まで浸透する。そして、土への吸着性が比較的低いため、粘性土層においても拡散する。また、グリセリンの分子量は約92である。すなわち、グリセリンの分子量は、一般的に高分子化合物に分類される分子量(1000)よりも十分に小さい。このため、グリセリンは、低分子化合物に分類される。   Since glycerin contained in the purification material has a specific gravity greater than that of water, it penetrates to the viscous soil layer below the aquifer. And since the adsorptivity to soil is relatively low, it diffuses even in the viscous soil layer. The molecular weight of glycerin is about 92. That is, the molecular weight of glycerin is sufficiently smaller than the molecular weight (1000) generally classified as a polymer compound. For this reason, glycerin is classified as a low molecular compound.

低分子化合物であるグリセリンは、微生物によって容易に分解される性質を備えており、この微生物を活性化する栄養分となる。しかし、グリセリンは水溶性であるため、グリセリン単体を汚染地盤に導入しても、帯水層の下の粘性土層に到達する前に帯水層の地下水に溶解し、分散されてしまう。   Glycerin, which is a low molecular compound, has the property of being easily degraded by microorganisms, and serves as a nutrient that activates the microorganisms. However, since glycerin is water-soluble, even if glycerin alone is introduced into the contaminated ground, it will be dissolved and dispersed in the groundwater of the aquifer before reaching the viscous soil layer below the aquifer.

デンプン含有物は、片栗粉(馬鈴薯デンプン)、小麦粉、コーンスターチ、米粉、きな粉(大豆粉)等のデンプンのうち少なくとも1種以上を含有したものである。このデンプン含有物は、1000以上の分子量を有する高分子化合物であり、低分子化合物のグリセリンよりも分解されにくい。このため、グリセリンよりも長く微生物を活性化することができる。   The starch-containing material contains at least one of starches such as potato starch (potato starch), wheat flour, corn starch, rice flour, and kinako (soybean flour). This starch-containing material is a high molecular compound having a molecular weight of 1000 or more, and is less likely to be decomposed than glycerin, which is a low molecular compound. For this reason, microorganisms can be activated longer than glycerol.

また、粉体状のデンプン含有物をグリセリンと混合することで、浄化材をデンプン含有物の分散液によって構成できる。このように、分散液状の浄化材とすることで、デンプン含有物を汚染地盤へ容易に導入できる。また、この分散液に水を含ませないようにすることで、グリセリンやデンプン含有物を高い濃度で汚染地盤に導入できる。   Moreover, a purification material can be comprised with the dispersion liquid of a starch containing material by mixing a powdery starch containing material with glycerol. Thus, a starch-containing material can be easily introduced into the contaminated ground by using a dispersed liquid purification material. Further, by preventing water from being contained in this dispersion, glycerin and starch-containing substances can be introduced into the contaminated ground at a high concentration.

さらに、本実施形態にかかる浄化材では、デンプン含有物の混合によって、その比重をグリセリンの比重よりも大きくすることができるため、より確実に帯水層の下の粘性土層まで浄化材を導入させることができる。   Furthermore, in the purification material according to the present embodiment, the specific gravity can be made larger than the specific gravity of glycerin by mixing the starch-containing material, so the purification material is more reliably introduced to the viscous soil layer below the aquifer. Can be made.

加えて、本実施形態にかかる浄化材では、デンプン含有物におけるデンプン分子の隙間にグリセリンが入り込むため、グリセリンがデンプン分子に包まれたような状態になる。これにより、汚染地盤に導入した際に、粘性土層よりも上方の帯水層において、グリセリンが地下水に溶出してしまうことを防止できる。よって、粘性土層により確実にグリセリンを浸透させることができる。   In addition, in the purification material according to the present embodiment, since glycerin enters the gaps between the starch molecules in the starch-containing material, the state is such that glycerin is wrapped in the starch molecules. Thereby, when it introduce | transduces into a contaminated ground, it can prevent that glycerin will elute to groundwater in the aquifer above a viscous soil layer. Therefore, glycerin can be reliably infiltrated by the viscous soil layer.

本実施形態にかかる浄化材において、グリセリンとデンプン含有物との割合は、例えば、浄化材全体を100としたときに、デンプン含有物が10〜80となるように配合される。以下、表1に示す材料及び割合で作製した浄化材に関し、水に対するグリセリンの溶出量を確認するための溶出確認試験について説明する。
In the purifying material according to the present embodiment, the ratio of glycerin and starch-containing material is blended so that the starch-containing material is 10 to 80 when the entire purifying material is 100, for example. Hereinafter, the elution confirmation test for confirming the elution amount of glycerin with respect to water is demonstrated regarding the purification | cleaning material produced with the material and ratio shown in Table 1. FIG.

===溶出確認試験について===
溶出確認試験の方法について図2(a)乃至(c)を参照して説明する。溶出確認試験では、図2(a)に示すように、脱イオン水が1900mL添加された2Lの容量を有するメスシリンダー1に、表1の作製条件に基づいて作製した浄化材を投入した。この場合において、メスシリンダー1の水位は、メスシリンダー1の底から36.7cmとなる。そして、図2(b)に示すように、5分間静置したメスシリンダー1内の1500mL部分(メスシリンダー1の底から約26.9cmとなる高さ)の溶液を、ピペット2で採取した。この採取した溶液から、遠心分離もしくはろ過によってデンプン含有物の粉体を除去した後の溶液について、TOC(トータルオーガニックカーボン)を測定した。さらに、図2(c)に示すように、60分間静置した後のメスシリンダー1内から同様に溶液を採取し、デンプン含有物の粉体を除去した後の溶液のTOCを測定した。
=== About the dissolution confirmation test ===
A method for the dissolution confirmation test will be described with reference to FIGS. In the elution confirmation test, as shown in FIG. 2 (a), the purification material prepared based on the preparation conditions shown in Table 1 was put into a graduated cylinder 1 having a capacity of 2L to which 1900 mL of deionized water was added. In this case, the water level of the graduated cylinder 1 is 36.7 cm from the bottom of the graduated cylinder 1. Then, as shown in FIG. 2 (b), a pipette 2 was used to collect a 1500 mL portion (height of about 26.9 cm from the bottom of the graduated cylinder 1) in the graduated cylinder 1 that was allowed to stand for 5 minutes. From this collected solution, TOC (total organic carbon) was measured for the solution after removing the starch-containing powder by centrifugation or filtration. Furthermore, as shown in FIG.2 (c), the solution was similarly extract | collected from the inside of the graduated cylinder 1 after leaving still for 60 minutes, and the TOC of the solution after removing the starch-containing powder was measured.

尚、デンプン含有物は水に溶解しないため、デンプン含有物の粉体を除去した後の溶液のTOCから得られる炭素量はグリセリンに由来する。このため、TOCから得られる炭素量によって、浄化材から水に溶出したグリセリンの量(溶出量)が確認できる。   In addition, since a starch containing material does not melt | dissolve in water, the carbon amount obtained from TOC of the solution after removing the powder of a starch containing material originates in glycerol. For this reason, the amount (elution amount) of glycerin eluted from the purification material into the water can be confirmed by the amount of carbon obtained from the TOC.

また、比較用として、グリセリン単体とHRCについても同様にTOCを測定した。ここでHRCとは、主成分としてグリセリンを含有する市販の浄化材のことである。   For comparison, TOC was also measured for glycerin alone and HRC. Here, HRC is a commercially available purification material containing glycerin as a main component.

===溶出確認試験の結果について===
溶出確認試験のTOCの測定結果を表2に示す。グリセリン単体が水に全溶解した場合のTOCは2200ppmであった。そして、グリセリン単体が水に全溶解した場合のグリセリンの溶出量を100%とし、2200ppmに対する各浄化材のTOCから、グリセリンの溶出率を求めた。
=== About the result of dissolution confirmation test ===
Table 2 shows the TOC measurement results of the dissolution confirmation test. The TOC when glycerin alone was completely dissolved in water was 2200 ppm. And the elution rate of glycerol was calculated | required from the TOC of each purification material with respect to 2200 ppm by making the elution amount of glycerol in the case where glycerin single-piece | unit melt | dissolves completely in water into 100%.

表2に示すように、本実施形態にかかる各浄化材の5分静置後のグリセリンの溶出率は、いずれもグリセリン単体のグリセリンの溶出率及びHRCにおけるグリセリンの溶出率よりも低いことがわかった。また、本実施形態にかかる各浄化材の60分静置後のグリセリンの溶出率は、グリセリン+小麦粉(3)を除いて、グリセリン単体のグリセリンの溶出率及びHRCのグリセリンの溶出率よりも低いことがわかった。   As shown in Table 2, it is found that the elution rate of glycerin after standing for 5 minutes for each purification material according to the present embodiment is lower than the elution rate of glycerin alone and the elution rate of glycerin in HRC. It was. Moreover, the elution rate of glycerin after leaving for 60 minutes of each purification material concerning this embodiment is lower than the elution rate of glycerin of glycerin simple substance, and the elution rate of glycerin of HRC except glycerin + wheat flour (3). I understood it.

以上より、本実施形態にかかる浄化材では、帯水層に含まれる地下水へのグリセリンの溶出を、グリセリン単体やHRCを用いた場合よりも抑制できるといえる。尚、表2から、グリセリンの溶出率は、グリセリンと小麦粉とが40:60の割合で配合された浄化材〔小麦粉:(1)〕において、最も低くなることが確認された。これは、小麦粉がたんぱく質を多く含むためと考えられる。また、本実施形態にかかる浄化材では、デンプン含有物の割合が多いほど、グリセリンの溶出率が低くなる傾向があることがわかった。
From the above, it can be said that the purification material according to the present embodiment can suppress elution of glycerin into the groundwater contained in the aquifer more than when glycerin alone or HRC is used. In addition, from Table 2, it was confirmed that the elution rate of glycerin becomes the lowest in the purification material [wheat flour: (1)] in which glycerin and wheat flour were blended at a ratio of 40:60. This is probably because wheat flour contains a lot of protein. Moreover, in the purification | cleaning material concerning this embodiment, it turned out that there exists a tendency for the elution rate of glycerol to become low, so that there are many ratios of a starch containing material.

===粘度確認試験について===
本実施形態にかかる浄化材を汚染地盤に導入する場合、地盤への浸透性や施工性の観点からすれば、浄化材の粘度は低いほうが好ましい。そこで、表1に示す作製条件に基づいて作製した各浄化材の粘度を確認する粘度確認試験を行った。
=== About the viscosity confirmation test ===
When the purification material according to the present embodiment is introduced into the contaminated ground, it is preferable that the viscosity of the purification material is low from the viewpoint of permeability to the ground and workability. Then, the viscosity confirmation test which confirms the viscosity of each purification material produced based on the production conditions shown in Table 1 was conducted.

この粘度確認試験では、表1の作製条件に基づいて作製した各浄化材の粘度をデジタル粘度計で2回測定し、平均を算出した。尚、粘度の測定は、室温(25℃)において行った。また、比較用として、グリセリン単体及びHRCについても同様に粘度を測定した。   In this viscosity confirmation test, the viscosity of each purification material produced based on the production conditions shown in Table 1 was measured twice with a digital viscometer, and the average was calculated. The viscosity was measured at room temperature (25 ° C.). For comparison, the viscosity of glycerin alone and HRC was also measured.

===粘度確認試験の結果について===
粘度確認試験の結果を表3に示す。表3より、片栗粉のみを用いた浄化材の粘度が一番低く、施工性などの観点からみた浄化材としては、最も適していることがことわかった。尚、片栗粉を用いた浄化材では、小麦粉及びコーンスターチをさらに添加することで、グリセリンに対する片栗粉の分散性をより高められることがわかった。この場合、片栗粉に対する、小麦粉もしくはコーンスターチの配合の割合は、片栗粉:小麦粉もしくはコーンスターチ=9:1〜1:9とすることが好ましいといえる。
=== Viscosity confirmation test results ===
The results of the viscosity confirmation test are shown in Table 3. From Table 3, it was found that the purifying material using only the starch powder had the lowest viscosity and was most suitable as the purifying material from the viewpoint of workability and the like. In addition, it turned out that the dispersibility of potato starch with respect to glycerol can be improved more by adding wheat flour and corn starch in the purification material using potato starch. In this case, it can be said that it is preferable that the ratio of the flour or corn starch to the starch is potato starch: wheat flour or corn starch = 9: 1 to 1: 9.

さらに、グリセリンとデンプン含有物とを60:40の割合で配合し、さらにこのデンプン含有物において片栗粉とコーンスターチとを50:50の割合で配合した浄化材〔片栗粉+コーンスターチ:(2)〕がより好ましいといえる。この浄化材では、粘性を適度な値に調整できると共にグリセリンの溶出を抑制できる。さらに、グリセリンに対するデンプン含有物の分散性を高めることもできる。よって、施工性とVOCsの浄化との両方の観点から粘性土層を効率よく浄化できるといえる。   Furthermore, a purification material [Kagaku flour + corn starch: (2)] in which glycerin and starch-containing material are blended at a ratio of 60:40, and further starch starch and corn starch are blended at a ratio of 50:50 in the starch-containing material. It can be said that it is preferable. In this purification material, the viscosity can be adjusted to an appropriate value and the elution of glycerin can be suppressed. Furthermore, the dispersibility of the starch-containing material with respect to glycerol can also be improved. Therefore, it can be said that the viscous soil layer can be efficiently purified from the viewpoint of both workability and purification of VOCs.

尚、表2及び表3より、たんぱく質を多く含むデンプン含有物質を含有する浄化材ほど、粘度が上昇する傾向がある一方で、グリセリンの溶出防止効果が高いことが確認された。   From Tables 2 and 3, it was confirmed that the purification material containing a starch-containing substance containing a large amount of protein tends to increase in viscosity, but has a high glycerin elution preventing effect.

===VOCs分解確認試験について===
表1に示す、グリセリンが60%であって小麦粉が40%の割合で配合された浄化材〔グリセリン+小麦粉:(2)の浄化材〕について、VOCsを分解する効果を確認するためのVOCs分解確認試験を行った。
=== About VOCs decomposition confirmation test ===
VOCs decomposition for confirming the effect of decomposing VOCs for the purification material [glycerin + flour: (2) purification material] containing 60% glycerin and 40% wheat flour shown in Table 1 A confirmation test was conducted.

VOCs分解確認試験について図3(a)乃至(c)を参照しつつ説明する。VOCs分解確認試験で用いたサンプルは、次の手順で作製した。   The VOCs decomposition confirmation test will be described with reference to FIGS. The sample used in the VOCs decomposition confirmation test was prepared by the following procedure.

先ず、図3(a)に示すように、VOCs汚染現場から採取されたVOCs汚染地下水3(120mL)を100mLのメジューム瓶4に注入した。そして、微生物の成長をより促進するために、TCEの飽和溶液(1mL)をメジューム瓶4に添加した。このメジューム瓶4にさらに、表1に示す小麦粉40%〔グリセリン+小麦粉:(2)〕の浄化材5(0.18〜0.6g)と、pH緩衝剤6(0.18〜0.6g)とを添加した。   First, as shown in FIG. 3A, VOCs-contaminated groundwater 3 (120 mL) collected from a VOCs-contaminated site was poured into a 100-mL medium bottle 4. Then, in order to further promote the growth of microorganisms, a saturated solution of TCE (1 mL) was added to the medium bottle 4. In addition to this medium bottle 4, a purification material 5 (0.18 to 0.6 g) of wheat flour 40% [glycerin + wheat flour: (2)] shown in Table 1 and a pH buffer 6 (0.18 to 0.6 g) ) Was added.

浄化材5を添加することで、メジューム瓶4の内容物のpHは酸性に傾こうとするが、pH緩衝剤6によって中性領域に維持される。内容物のpHを中性領域に維持する理由は、微生物によるVOCsの分解が、pH6より大きくpH9より小さい中性領域において良好に行われるためである。このようなpH緩衝剤6としては、例えば炭酸水素ナトリウムが好適に用いられる。   By adding the purification material 5, the pH of the contents of the medium bottle 4 tends to be acidic, but is maintained in a neutral region by the pH buffer 6. The reason why the pH of the contents is maintained in the neutral region is that the decomposition of VOCs by microorganisms is favorably performed in the neutral region that is greater than pH 6 and less than pH 9. As such a pH buffering agent 6, for example, sodium hydrogen carbonate is preferably used.

次に、図3(b)に示すように、上記のサンプルが封入されたメジューム瓶4を逆さにし、20℃〜22℃で養生した。尚、比較用に、前述したVOCs汚染現場の地下水をメジューム瓶4に注入し、浄化材5は添加しない対照区を作製した。また、前述した浄化材5に代えて、VOCs汚染現場の地下水にHRCを添加した比較例も作製した。そして、これらの対照区及び比較例を上記のサンプルと同様に静置した。尚、上記のサンプル及び比較例において、汚染地下水3に対する浄化材5又はHRCの重量比は0.15%に定めた。   Next, as shown in FIG.3 (b), the said medium bottle 4 with which said sample was enclosed was inverted and it cured at 20 to 22 degreeC. For comparison, the above-described VOCs-contaminated groundwater was injected into the medium bottle 4 and a control group to which the purifying material 5 was not added was prepared. Moreover, it replaced with the purification | cleaning material 5 mentioned above, and also produced the comparative example which added HRC to the groundwater of the VOCs contamination site. And these control groups and the comparative example were left like the said sample. In the sample and the comparative example, the weight ratio of the purification material 5 or HRC to the contaminated groundwater 3 was set to 0.15%.

そして、図3(c)に示すように、作製したサンプルについて、メジューム瓶4におけるヘッドスペースのガスを採取し、VC濃度、Cis−DCE濃度、1,1−DCE濃度及びTCE濃度を所定日数が経過するごとにPID検出器によって測定した。同様に、対照区及び比較例についてもメジューム瓶4におけるヘッドスペースのガスを採取し、VC濃度、Cis−DCE濃度、1,1−DCE濃度及びTCE濃度を測定した。   And as shown in FIG.3 (c), about the produced sample, the gas of the head space in the medium bottle 4 is extract | collected, and VC density | concentration, Cis-DCE density | concentration, 1, 1-DCE density | concentration, and TCE density | concentration are predetermined days. Each time it was measured, it was measured with a PID detector. Similarly, for the control group and the comparative example, the headspace gas in the medium bottle 4 was collected, and the VC concentration, the Cis-DCE concentration, the 1,1-DCE concentration, and the TCE concentration were measured.

===VOCs分解確認試験の結果について===
VOCs分解確認試験の結果を図1に示す。すなわち、対照区の試験結果を図1(a)に、サンプル(本実施形態の浄化材)の試験結果を図1(b)に、比較例の試験結果を図1(c)にそれぞれ示す。
=== VOCs decomposition confirmation test results ===
The result of the VOCs decomposition confirmation test is shown in FIG. That is, FIG. 1A shows the test result of the control group, FIG. 1B shows the test result of the sample (purifying material of this embodiment), and FIG. 1C shows the test result of the comparative example.

対照区については、微生物によってTCEが分解される際の中間生成物であるCis−DCEの濃度がやや上昇しているものの、VCの濃度が全く上昇しておらず、TCEはあまり分解されていないことが確認された。一方、本実施形態の浄化材については、約40日間でTCE、Cis−DCE、VCが分解されることが確認された。また、比較例については、約60日間でTCE、Cis−DCE、VCが分解されることが確認された。   In the control group, the concentration of Cis-DCE, which is an intermediate product when TCE is degraded by microorganisms, is slightly increased, but the concentration of VC is not increased at all, and TCE is not degraded much. It was confirmed. On the other hand, about the purification | cleaning material of this embodiment, it was confirmed that TCE, Cis-DCE, and VC are decomposed | disassembled in about 40 days. Moreover, about the comparative example, it was confirmed that TCE, Cis-DCE, and VC are decomposed | disassembled in about 60 days.

以上より、本実施形態の浄化材によって、効率よくVOCsを分解して汚染地盤を浄化できることが確認された。ここで、小麦粉、片栗粉、コーンスターチ等のデンプン含有物と、グリセリンとを主に含有する本実施形態の浄化材は、HRCよりも安価である。このため、本実施形態の浄化材は、HRCを用いて汚染地盤を浄化するよりも、安価に汚染地盤を浄化できるといえる。   From the above, it was confirmed that the VOCs can be efficiently decomposed and the contaminated ground can be purified by the purification material of the present embodiment. Here, the purification material of the present embodiment mainly containing starch-containing materials such as wheat flour, potato starch and corn starch and glycerin is less expensive than HRC. For this reason, it can be said that the purification material of this embodiment can purify the contaminated ground at a lower cost than purifying the contaminated ground using HRC.

<<<汚染地盤の浄化方法について>>>
===第1の実施形態について===
前述した浄化材を用いた、本実施形態にかかる汚染地盤の浄化方法について、図4(a)乃至(d)を参照しつつ説明する。本実施形態にかかる汚染地盤の浄化方法では、先ず、図4(a)に示すように、汚染地盤に対して、地表から帯水層Aの下に存在する粘性土層Bまで達する井戸7を設ける。尚、この井戸7は、地表から粘性土層Bに達するように設けられたボーリング孔であってもよい。
<<< About the purification method of contaminated ground >>>
=== About the first embodiment ===
A method for purifying the contaminated ground according to the present embodiment using the purification material described above will be described with reference to FIGS. 4 (a) to 4 (d). In the contaminated ground purification method according to the present embodiment, first, as shown in FIG. 4 (a), the well 7 reaching the contaminated ground from the ground surface to the viscous soil layer B existing under the aquifer A is formed. Provide. The well 7 may be a borehole provided so as to reach the viscous soil layer B from the ground surface.

この井戸7に、図4(b)に示すように、前述した浄化材8を導入し、井戸7における粘性土層Bの高さ位置まで浄化材8を充填する。この際、浄化材8は、グリセリンがデンプン含有物のデンプン分子の隙間に入り込んだ状態で、帯水層Aを通過して粘性土層Bまで達する。これによって、浄化材8は、帯水層Aにおいて、グリセリンが地下水に溶出してしまうことを防止できると共に、粉体状のデンプン含有物も容易に井戸7に導入することができる。このため、グリセリンやデンプン含有物が地下水で希釈されることを抑制しつつ、浄化材8を粘性土層Bまで浸透させることができる。さらに、浄化材8は、グリセリン中にデンプン含有物が分散した分散液である。浄化材8に水が含まれていないため、グリセリンやデンプン含有物の濃度を高めることができる。また、この浄化材8は、水よりも比重が大きいため、水中を落下する。その結果、帯水層Aの下の粘性土層Bまで、浄化材8を確実に導入させることができる。   As shown in FIG. 4B, the purification material 8 described above is introduced into the well 7, and the purification material 8 is filled up to the level of the viscous soil layer B in the well 7. At this time, the purification material 8 passes through the aquifer A and reaches the viscous soil layer B in a state where glycerin enters the gaps between starch molecules of the starch-containing material. As a result, the purification material 8 can prevent the glycerin from eluting into the groundwater in the aquifer A and can easily introduce the powdery starch-containing material into the well 7. For this reason, the purification material 8 can be permeated to the viscous soil layer B while suppressing glycerin and starch-containing materials from being diluted with groundwater. Furthermore, the purification material 8 is a dispersion liquid in which a starch-containing material is dispersed in glycerin. Since the purification material 8 does not contain water, the concentration of glycerin or starch-containing material can be increased. Moreover, since this specific purification material 8 has larger specific gravity than water, it falls in water. As a result, the purification material 8 can be reliably introduced to the viscous soil layer B below the aquifer A.

図4(c)に示すように、高濃度の状態で浄化材8が粘性土層Bに導入されると、先ず、低分子化合物であり土への吸着性が比較的低いグリセリンが速やかに拡散していく。このように高濃度のグリセリンが供給されることで、粘性土層Bに常在する微生物が活性化される。これによって、VOCsが分解されるため、粘性土層Bの汚染浄化を速やかに開始できる。また、グリセリンが消費されても、図4(d)に示すように、高分子化合物であるデンプン含有物が粘性土層Bに徐々に浸透して微生物の栄養分となる。このため、粘性土層Bの微生物を長期間にわたって持続的に活性化することができ、十分に粘性土層Bを浄化することができる。   As shown in FIG. 4 (c), when the purification material 8 is introduced into the viscous soil layer B in a high concentration state, first, glycerin, which is a low molecular compound and has a relatively low adsorptivity to the soil, quickly diffuses. I will do it. By supplying a high concentration of glycerin in this way, microorganisms that are resident in the cohesive soil layer B are activated. Thereby, since VOCs are decomposed | disassembled, the contamination purification of the viscous soil layer B can be started rapidly. Moreover, even if glycerin is consumed, as shown in FIG.4 (d), the starch containing material which is a high molecular compound will osmose | permeate the viscous soil layer B gradually, and will become a nutrient of microorganisms. For this reason, the microorganisms of the viscous soil layer B can be continuously activated over a long period of time, and the viscous soil layer B can be sufficiently purified.

ここで、浄化材8がデンプン含有物として小麦粉を含有する場合、粘性土層Bに対応する井戸7の下半部分において、グリセリンに混合された小麦粉が半固化する。これによって、井戸7の形状に応じた縦長状に浄化材8が留まるため、粘性土層Bの全体に浄化材8を供給できる。つまり、小麦粉を含有する浄化材8を用いることで、粘性土層Bをより確実に浄化できるといえる。   Here, when the purification material 8 contains wheat flour as a starch-containing material, the wheat flour mixed with glycerin is semi-solidified in the lower half portion of the well 7 corresponding to the viscous soil layer B. Thereby, since the purifying material 8 stays in a vertically long shape according to the shape of the well 7, the purifying material 8 can be supplied to the entire viscous soil layer B. That is, it can be said that the viscous soil layer B can be more reliably purified by using the purification material 8 containing wheat flour.

===第2の実施形態について===
前述した浄化材を用いた、本実施形態にかかる汚染地盤の浄化方法について、図5(a)乃至(e)を参照しつつ説明する。尚、図5(a)乃至(e)に示す構成のうち、前述した図4(a)乃至(d)に示す構成と同一の構成については、同一の符号を付してその説明を省略する。本実施形態にかかる汚染地盤の浄化方法では、先ず、図5(a)に示すように、導入管9を地表から粘性土層Bに達するまで挿入する。導入管9は、例えば金属性の管状部材であり、導入管9の中空部分から汚染地盤に対し、浄化材8を導入することが可能となる。
=== About the second embodiment ===
A method for purifying the contaminated ground according to the present embodiment using the above-described purification material will be described with reference to FIGS. 5 (a) to 5 (e). Of the configurations shown in FIGS. 5A to 5E, the same configurations as those shown in FIGS. 4A to 4D described above are denoted by the same reference numerals and description thereof is omitted. . In the contaminated ground purification method according to the present embodiment, first, as shown in FIG. 5A, the introduction pipe 9 is inserted until reaching the viscous soil layer B from the ground surface. The introduction pipe 9 is, for example, a metallic tubular member, and the purification material 8 can be introduced from the hollow portion of the introduction pipe 9 to the contaminated ground.

次に、図5(b)に示すように、導入管9を地表まで引き上げつつ導入管9から浄化材8を導入する。これによって、例えば、図5(c)に示すように、粘性土層Bに浄化材8が充填される。この際、浄化材8は、グリセリンがデンプン含有物のデンプン分子の隙間に入り込んだ状態で、粘性土層Bに充填される。このため、浄化材8では、粘性土層Bと接する帯水層Aから、グリセリンが地下水に溶出してしまうことを防止できると共に、粉体状のデンプン含有物も容易に粘性土層Bに導入できる。従って、グリセリンやデンプン含有物が地下水によって希釈され難く、粘性土層Bに浄化材8を効率よく浸透させることができる。   Next, as shown in FIG. 5 (b), the purification material 8 is introduced from the introduction pipe 9 while the introduction pipe 9 is pulled up to the ground surface. Thereby, for example, as shown in FIG. 5 (c), the viscous soil layer B is filled with the purification material 8. At this time, the purification material 8 is filled in the viscous soil layer B in a state where glycerin enters the gaps between the starch molecules of the starch-containing material. For this reason, the purification material 8 can prevent glycerin from eluting into the groundwater from the aquifer A that is in contact with the viscous soil layer B, and can easily introduce a powdery starch-containing material into the viscous soil layer B. it can. Therefore, the glycerin or starch-containing material is not easily diluted with groundwater, and the purifying material 8 can be efficiently infiltrated into the viscous soil layer B.

図5(d)に示すように、粘性土層Bに充填された浄化材8は、先ず、土への吸着性が比較的低いグリセリンが粘性土層Bに速やかに拡散していく。グリセリンが高濃度で供給されることで、粘性土層Bに常在する微生物は活性化される。これによって、VOCsが分解され、汚染地盤の粘性土層Bを速やかに浄化できる。また、グリセリンが分解されても、図5(e)に示すように、デンプン含有物が粘性土層Bに徐々に浸透して微生物の栄養分となる。このため、粘性土層Bの微生物を長期間にわたって持続的に活性化することができ、より確実に粘性土層Bを浄化することができる。   As shown in FIG. 5D, in the purification material 8 filled in the viscous soil layer B, first, glycerin having a relatively low adsorptivity to the soil quickly diffuses into the viscous soil layer B. By supplying glycerin at a high concentration, microorganisms that are resident in the cohesive soil layer B are activated. Thereby, VOCs are decomposed and the viscous soil layer B of the contaminated ground can be quickly purified. Moreover, even if glycerol is decomposed | disassembled, as shown to FIG.5 (e), a starch containing material will osmose | permeate the viscous soil layer B gradually, and will become a nutrient of microorganisms. For this reason, the microorganisms of the viscous soil layer B can be continuously activated over a long period of time, and the viscous soil layer B can be purified more reliably.

さらに、浄化材8がデンプン含有物として小麦粉を含有する場合、前述した井戸7の場合と同様に、粘性土層B中においてグリセリンに混合された小麦粉が半固化するため、粘性土層Bをより確実に浄化することができる。   Furthermore, when the purification material 8 contains flour as a starch-containing material, the flour mixed with glycerin in the viscous soil layer B is semi-solidified in the same manner as in the well 7 described above. It can be reliably purified.

===その他の実施形態について===
前述した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく変更、改良されると共に、本発明にはその等価物も含まれる。
=== About other embodiments ===
The above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The present invention is changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

前述した汚染地盤の浄化材は、グリセリンに対するデンプン含有物の分散液状であることとしたが、特にこれに限定されるものではなく、例えば、デンプン含有物が固化した固体状であってもよい。   The above-described contaminated ground purification material is a dispersion liquid of starch-containing material with respect to glycerin, but is not particularly limited to this, and may be, for example, a solid form in which the starch-containing material is solidified.

また、前述した第1及び第2の実施形態にかかる汚染地盤の浄化方法では、粘性土層Bに対する部分のみに浄化材8を充填することとしたが、特にこれに限定されるものではない。例えば、汚染地盤の粘性土層Bに加え、帯水層Aや他の層に浄化材8を充填してもよい。これによって、汚染地盤全体を長期間にわたって効率よく浄化することができる。   Moreover, in the contaminated ground purification method according to the first and second embodiments described above, the purification material 8 is filled only in the portion with respect to the viscous soil layer B, but is not particularly limited thereto. For example, in addition to the viscous soil layer B of the contaminated ground, the aquifer A and other layers may be filled with the purification material 8. As a result, the entire contaminated ground can be efficiently purified over a long period of time.

1…メスシリンダー,2…ピペット,3…汚染地下水,4…メジューム瓶,5、8…浄化材,6…pH緩衝剤,7…井戸,9…導入管 DESCRIPTION OF SYMBOLS 1 ... Measuring cylinder, 2 ... Pipette, 3 ... Contaminated groundwater, 4 ... Medium bottle, 5, 8 ... Purifier, 6 ... pH buffer, 7 ... Well, 9 ... Introducing pipe

Claims (7)

有機塩素化合物によって汚染された汚染地盤の粘性土層に加えられ、前記有機塩素化合物を分解する微生物を活性化させることで、前記汚染地盤の粘性土層を浄化する汚染地盤の浄化材であって、
グリセリンと、デンプン含有物とを含有することを特徴とする汚染地盤の浄化材。
A purification material for contaminated ground that purifies the viscous soil layer of the contaminated ground by activating microorganisms that are added to the viscous soil layer of the contaminated ground contaminated by organochlorine compounds and decompose the organochlorine compound. ,
A purification material for contaminated ground, comprising glycerin and a starch-containing material.
前記デンプン含有物は、片栗粉を含有することを特徴とする請求項1に記載の汚染地盤の浄化材。   The said starch containing material contains potato starch, The purification | cleaning material of the contaminated ground of Claim 1 characterized by the above-mentioned. 前記デンプン含有物は、小麦粉を含有することを特徴とする請求項1又は2に記載の汚染地盤の浄化材。   The said starch containing material contains flour, The purification material of the contaminated ground of Claim 1 or 2 characterized by the above-mentioned. 前記デンプン含有物は、コーンスターチを更に含有することを特徴とする請求項2に記載の汚染地盤の浄化材。   The said starch containing material further contains corn starch, The purification material of the contaminated ground of Claim 2 characterized by the above-mentioned. 有機塩素化合物によって汚染された汚染地盤の粘性土層に、グリセリンと、デンプン含有物とを含有してなる浄化材を導入し、前記有機塩素化合物を分解する微生物を活性化させることを特徴とする汚染地盤の浄化方法。   A purification material containing glycerin and a starch-containing material is introduced into a viscous soil layer contaminated with an organic chlorine compound, and a microorganism that decomposes the organic chlorine compound is activated. Purification method for contaminated ground. 地表から前記汚染地盤の粘性土層に達するように設けられた井戸に前記浄化材を導入すること、
を特徴とする請求項5に記載の汚染地盤の浄化方法。
Introducing the purification material into a well provided to reach the cohesive soil layer of the contaminated ground from the ground surface,
The method for purifying contaminated ground according to claim 5.
前記汚染地盤の粘性土層に、前記浄化材を導入するための導入管を地表から挿入する工程と、
前記汚染地盤の粘性土層に挿入した前記導入管を引き上げながら、前記導入管から前記汚染地盤の粘性土層に前記浄化材を導入する工程と、
を行うことを特徴とする請求項5に記載の汚染地盤の浄化方法。
Inserting an introduction pipe for introducing the purification material from the ground surface into the viscous soil layer of the contaminated ground;
Introducing the purification material from the introduction pipe to the viscous soil layer of the contaminated ground while pulling up the introduction pipe inserted into the viscous soil layer of the contaminated ground; and
The method for purifying contaminated ground according to claim 5, wherein:
JP2010279761A 2010-12-15 2010-12-15 Purification material and purification method for contaminated ground Active JP5776175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279761A JP5776175B2 (en) 2010-12-15 2010-12-15 Purification material and purification method for contaminated ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279761A JP5776175B2 (en) 2010-12-15 2010-12-15 Purification material and purification method for contaminated ground

Publications (2)

Publication Number Publication Date
JP2012125706A true JP2012125706A (en) 2012-07-05
JP5776175B2 JP5776175B2 (en) 2015-09-09

Family

ID=46643384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279761A Active JP5776175B2 (en) 2010-12-15 2010-12-15 Purification material and purification method for contaminated ground

Country Status (1)

Country Link
JP (1) JP5776175B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207324A1 (en) 2012-05-11 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2014012233A (en) * 2012-07-03 2014-01-23 Ohbayashi Corp Contaminated soil decontaminating additive and decontaminating method of contaminated soil using the same
JP5866507B1 (en) * 2015-04-24 2016-02-17 パナソニックIpマネジメント株式会社 Microbial composition
JP2016193415A (en) * 2015-04-01 2016-11-17 株式会社大林組 Clarifier for contaminated ground, manufacturing method of clarifier for contaminated ground and clarification method of contaminated ground

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797573A (en) * 1993-09-30 1995-04-11 Canon Inc Method for forming carrier for supporting microorganism in soil and method for restoring soil by the method
JPH09271749A (en) * 1996-04-09 1997-10-21 Canon Inc Biological restoration method of polluted soil by microorganism using suitable solute
JP2001225095A (en) * 1999-12-08 2001-08-21 Almighty:Kk Method for treatment of environmental pollutant substance
JP2004016859A (en) * 2002-06-13 2004-01-22 Kajima Corp In situ purification method of polluted soil
JP2004025172A (en) * 2002-05-09 2004-01-29 Nisshin Flour Milling Inc Method of purifying contaminated soil
JP2005525210A (en) * 2001-08-03 2005-08-25 パース・エンバイロメンタル・インコーポレーテツド Media for transporting environmental improvers
JP2006110404A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Method of purifying contamination of soil and ground water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797573A (en) * 1993-09-30 1995-04-11 Canon Inc Method for forming carrier for supporting microorganism in soil and method for restoring soil by the method
JPH09271749A (en) * 1996-04-09 1997-10-21 Canon Inc Biological restoration method of polluted soil by microorganism using suitable solute
JP2001225095A (en) * 1999-12-08 2001-08-21 Almighty:Kk Method for treatment of environmental pollutant substance
JP2005525210A (en) * 2001-08-03 2005-08-25 パース・エンバイロメンタル・インコーポレーテツド Media for transporting environmental improvers
JP2004025172A (en) * 2002-05-09 2004-01-29 Nisshin Flour Milling Inc Method of purifying contaminated soil
JP2004016859A (en) * 2002-06-13 2004-01-22 Kajima Corp In situ purification method of polluted soil
JP2006110404A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Method of purifying contamination of soil and ground water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207324A1 (en) 2012-05-11 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2014012233A (en) * 2012-07-03 2014-01-23 Ohbayashi Corp Contaminated soil decontaminating additive and decontaminating method of contaminated soil using the same
JP2016193415A (en) * 2015-04-01 2016-11-17 株式会社大林組 Clarifier for contaminated ground, manufacturing method of clarifier for contaminated ground and clarification method of contaminated ground
JP5866507B1 (en) * 2015-04-24 2016-02-17 パナソニックIpマネジメント株式会社 Microbial composition
WO2016170563A1 (en) * 2015-04-24 2016-10-27 パナソニックIpマネジメント株式会社 Composition for microorganisms

Also Published As

Publication number Publication date
JP5776175B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
Xiaoyan et al. Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands
You et al. Removal and inactivation of waterborne viruses using zerovalent iron
Bai et al. Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite
Wirasnita et al. Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands
Jin et al. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene
Myers et al. Abiotic and bioaugmented granular activated carbon for the treatment of 1, 4-dioxane-contaminated water
Siggins et al. Simultaneous adsorption and biodegradation of trichloroethylene occurs in a biochar packed column treating contaminated landfill leachate
JP5776175B2 (en) Purification material and purification method for contaminated ground
Tian et al. Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy
Mondal et al. Evaluation of peat and sawdust as permeable reactive barrier materials for stimulating in situ biodegradation of trichloroethene
Yang et al. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process
Zhu et al. Microbial bioavailability of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China
Korotta-Gamage et al. Potential of a biologically activated carbon treatment to remove organic carbon from surface waters
Chang et al. Efficient remediation of river sediments contaminated by polychlorinated biphenyls and hexachlorobenzene by coupling in situ phase-inversion emulsification and biological reductive dechlorination
Shi et al. Challenges of point-of-use devices in purifying tap water: The growth of biofilm on filters and the formation of disinfection byproducts
Brennan et al. Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene
De Marines et al. Degradation of 1, 2-dichloroethane in real polluted groundwater by using enriched bacterial consortia in aerobic and anaerobic laboratory-scale conditions
JP7279400B2 (en) Anaerobic Permeable System, Permeable Anaerobic Biosystem
CN103833145B (en) Method for removing perchlorate in water by combining biomass adsorbent and microbial reduction
Chang et al. Effective removal of Aroclor 1254 and hexachlorobenzene in river sediments by coupling in situ phase-inversion emulsification with biological reductive dechlorination
JP2006272118A (en) Method for cleaning substance contaminated by organic chlorine compound
Ren et al. Tween 80 assisted washing ciprofloxacin-contaminated soil, and recycled it using active chlorines
CN104560798B (en) A kind of preparation method of the Halophiles microbial inoculum containing phenol of degrading
JP2007229601A (en) Cleaning method of viscous soil contaminated with volatile chlorine based organic compound
JP2011025105A (en) Method of decontaminating soil and underground water contaminated with organic chlorine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150