WO2016167412A1 - 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법 - Google Patents

고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법 Download PDF

Info

Publication number
WO2016167412A1
WO2016167412A1 PCT/KR2015/006757 KR2015006757W WO2016167412A1 WO 2016167412 A1 WO2016167412 A1 WO 2016167412A1 KR 2015006757 W KR2015006757 W KR 2015006757W WO 2016167412 A1 WO2016167412 A1 WO 2016167412A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive patterns
conductive
semiconductor device
bidirectional
circuit board
Prior art date
Application number
PCT/KR2015/006757
Other languages
English (en)
French (fr)
Inventor
이은주
Original Assignee
주식회사 이노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노 filed Critical 주식회사 이노
Priority to JP2017512624A priority Critical patent/JP2017517863A/ja
Publication of WO2016167412A1 publication Critical patent/WO2016167412A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention relates to a bidirectional conductive socket for a high frequency device test, a bidirectional conductive module for a high frequency device test, and a method of manufacturing the same, and in particular, a disadvantage of a pogo-pin type semiconductor test socket, and a PCR socket type semiconductor test socket.
  • the present invention relates to a bidirectional conductive socket for testing a high frequency device, a bidirectional conductive module for testing a high frequency device, and a method of manufacturing the same.
  • the semiconductor device After the semiconductor device is manufactured, the semiconductor device performs a test to determine whether the electrical performance is poor.
  • the positive test of the semiconductor device is performed by inserting a semiconductor test socket (or a contactor or a connector) formed between the semiconductor device and the test circuit board so as to be in electrical contact with a terminal of the semiconductor device.
  • the semiconductor test socket is also used in a burn-in test process during the manufacturing process of the semiconductor device, in addition to the final positive inspection of the semiconductor device.
  • the perforated pattern is formed in the vertical direction on the silicon body made of an elastic silicon material, and then filled with conductive powder inside the perforated pattern to form a conductive pattern PCR socket type is widely used.
  • the conventional semiconductor test apparatus 1 includes a support plate 30 and a semiconductor test socket 10 of a PCR socket type.
  • the support plate 30 supports the semiconductor test socket 10 when the semiconductor test socket 10 moves between the semiconductor device 3 and the test circuit board 5.
  • a main through hole (not shown) is formed in the center of the support plate 30, and coupling through holes are formed to be spaced apart from each other at a position spaced apart from an edge along an edge forming the main through hole.
  • the semiconductor test socket 10 is fixed to the support plate 30 by the peripheral support part 50 joined to the upper and lower surfaces of the support plate 30.
  • a perforated pattern is formed in an insulating silicon body, and conductive patterns are formed in the vertical direction by the conductive powder 11 filled in the perforated pattern.
  • the PCR socket has a merit of enabling fine pitch, but due to the pressure generated when the conductive powder 11 filled in the perforated pattern is contacted between the semiconductor element 3 and the test circuit board 5.
  • the conductivity is formed, there is a disadvantage in that the thickness is formed in the vertical direction.
  • the PCR socket has a disadvantage of being limited in thickness in the height direction.
  • Korean Patent Publication No. 10-2009-0030190 discloses a socket for semiconductor chip inspection.
  • the present invention compensates for the shortcomings of the pogo-pin type semiconductor test socket and the shortcomings of the PCR socket type semiconductor test socket.
  • An object of the present invention is to provide a bidirectional conductive module for testing a high frequency device and a bidirectional conductive module for testing a high frequency device that can easily assemble a socket.
  • an object of the present invention is to provide a bidirectional conductive socket for testing a high frequency device that can be easily assembled by using a modular bidirectional conductive module for testing a high-frequency device having a structure in which a plurality of terminal contacts are arranged in a line. .
  • Bidirectional conductive module for testing a high frequency device is a substrate portion having a structure bent so that one side toward the semiconductor device and the other side toward the test circuit board; A plurality of first conductive patterns electrically connected to terminals of the semiconductor device on one surface of the substrate; A plurality of second conductive patterns electrically connected to the terminals of the test circuit board and the plurality of first conductive patterns on the other surface of the substrate; And an elastic support portion connected to the substrate portion to elastically support the substrate portion, which is provided between the semiconductor element and the test circuit board to electrically connect the terminal of the semiconductor element and the terminal of the test circuit board.
  • the substrate portion may include: a first bump portion formed on the surfaces of the plurality of first conductive patterns; And a second bump portion formed on the surfaces of the plurality of second conductive patterns, wherein the first bump portion and the second bump portion are formed of conductive powder.
  • the substrate part may include: a first bump part formed on the surface of the plurality of first conductive patterns; A second bump part formed on the surfaces of the plurality of second conductive patterns; And a plating layer plated on the plurality of first conductive patterns and the plurality of second conductive patterns to electrically connect the plurality of first conductive patterns and the plurality of second conductive patterns, wherein the first bump part and the second bump part It is preferred that it is formed of a non-conductive powder.
  • the substrate portion the insulating sheet having a flexible bending structure; A plurality of first conductive patterns formed by plating one surface of the insulating sheet and patterning the insulating sheet; And a plurality of second conductive patterns formed by plating and patterning another surface of the insulating sheet.
  • the plurality of first conductive patterns are formed so as to be arranged in a line spaced apart from each other at a constant pitch interval on one surface of the insulating sheet, the plurality of second conductive patterns are mutually on the other surface of the insulating sheet It is preferable that the plurality of first conductive patterns and the plurality of second conductive patterns are electrically connected by plating.
  • the plurality of first conductive patterns and the plurality of second conductive patterns are electrically connected to each other by conductive lines.
  • the bidirectional conductive socket for high-frequency device test is at least one bidirectional conductive module for high-frequency device test; And a housing for fixing the installation position of the at least one high frequency device test bidirectional conductive module such that the at least one unitized bidirectional conductive module for testing the high frequency device is in contact with the terminal of the semiconductor device according to the terminal direction of the semiconductor device. It is preferable to test whether the semiconductor device is in poor condition by being electrically connected to the semiconductor device and the test circuit board.
  • a method for manufacturing a bidirectional conductive module for testing a high frequency device includes: (A) providing an insulating sheet; (B) plating the insulating sheet to form a base plating layer on the surface of the insulating sheet; (C) On one surface of the insulating sheet, the base plating layer is patterned to form a plurality of first conductive patterns electrically connected to the terminals of the semiconductor element, and on the other side of the insulating sheet, the base plating layer is patterned to form the test circuit board.
  • the substrate portion includes a semiconductor device and an inspection circuit board.
  • the plurality of first conductive patterns are electrically connected to the terminals of the semiconductor device, and the plurality of second conductive patterns are electrically connected to the terminals of the test circuit board, thereby electrically connecting the semiconductor device and the test circuit board. It is desirable to.
  • the conductive powder is attached to the surfaces of the plurality of first conductive patterns to form a first bump, and is attached to the surfaces of the plurality of second conductive patterns to form a first bump. It is preferable to further include the step of forming two bumps.
  • the plurality of first conductive patterns and the plurality of second conductive patterns are nickel plated; And gold plating a plurality of nickel plated first conductive patterns and a plurality of second conductive patterns, wherein the plurality of first conductive patterns and the plurality of second conductive patterns are electrically connected by nickel plating and gold plating. It is preferable.
  • the plurality of first conductive patterns and the plurality of second conductive patterns may further include a step of being electrically connected to each other by conductive lines.
  • the present invention compensates for the shortcomings of the pogo-pin type semiconductor test socket and the shortcomings of the PCR socket type semiconductor test socket.
  • the socket can be easily assembled.
  • a portion of the semiconductor device contacting the plurality of terminals and a portion of the inspection circuit board contacting the plurality of terminals by using a method for patterning a conductive pattern on the FPCB can be implemented in a single module with a fine size Due to the development of technology, it is possible to easily manufacture a bidirectional conductive socket for testing a high frequency device that can test a small semiconductor device that is difficult to test in a pogo pin type or a PCR socket type that is conventionally used for testing a semiconductor device.
  • the present invention does not electrically connect the plurality of terminals provided in the semiconductor device and the plurality of terminals of the test circuit board, but by patterning a plurality of conductive patterns on a FPCB having a flexible structure, and having a unit module structure.
  • a bidirectional conductive socket for high frequency device testing may be assembled by manufacturing a bidirectional conductive module for device testing and assembling a unit modularized bidirectional conductive module for high frequency device testing in a housing. Therefore, the present invention can increase the assembly efficiency by simplifying the assembly process of the bidirectional conductive socket for high frequency device testing, and at the same time reduce the work time required during assembly, and can also increase the work efficiency of the operator. have.
  • FIG. 1 is a cross-sectional view of a semiconductor test apparatus to which a conventional PCR socket is applied.
  • FIG. 2 schematically illustrates an installation state in which a bidirectional conductive socket for testing a high frequency device according to an embodiment of the present invention is installed between a semiconductor device and an inspection circuit board.
  • FIGS. 3 (b) and 3 (c) test a defect of the SOP type semiconductor device.
  • FIGS. 4 (a) schematically shows a plane of a QFP type semiconductor device
  • FIGS. 4 (b) and 4 (c) are bidirectional for high frequency device testing used to test a defect of an SOP type semiconductor device.
  • Top and bottom views of the conductive socket are shown schematically.
  • FIG. 5 is a schematic cross-sectional view taken along the line A-A of FIG.
  • FIG. 6 schematically illustrates a perspective view of a bidirectional conductive module for testing a high frequency device according to an embodiment of the present invention.
  • FIG. 7A schematically illustrates the top view of FIG. 6, and FIG. 7B schematically illustrates the bottom view of FIG. 6.
  • 8A to 8C illustrate examples of various shapes of a bidirectional conductive module for testing a high frequency device.
  • 9 and 10d schematically illustrate an assembly process diagram of a bidirectional conductive module for testing a high frequency device according to an embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of a bidirectional conductive module for testing a high frequency device in which a nickel plated layer and a gold plated layer are formed.
  • the bidirectional conductive socket 100 for testing a high frequency device electrically connects the semiconductor device 10 and the test circuit board 20 to test whether the semiconductor device 10 is defective or not. will be.
  • a bidirectional conductive socket 100 for testing a high frequency device is provided between the semiconductor device 10 and the test circuit board 20.
  • the bidirectional conductive socket 100 for the high frequency device test is electrically connected to the semiconductor device 10 and the test circuit board 20 by the bidirectional conductive module 110 for the high frequency device test.
  • the bidirectional conductive socket 100 for a high frequency device test includes at least one bidirectional conductive module 110 and a housing 190 for a high frequency device test.
  • the semiconductor device 10 has a variety of structures depending on the purpose used in electronic products.
  • the semiconductor device 10 has a single in-line package (SIP) structure in which a terminal protrudes in one direction from a package, and a SOP (Sma high frequency device) in which a terminal protrudes in two directions from a package as shown in FIG.
  • SIP single in-line package
  • SOP Sma high frequency device
  • Various types are used, such as a test bidirectional conductive socket outline package (QD) structure or a quad flat package (QFP) structure in which terminals protrude in four directions from the package as shown in FIG.
  • QD test bidirectional conductive socket outline package
  • QFP quad flat package
  • the structure of the semiconductor device disclosed in this embodiment is merely exemplary, and the bidirectional conductive socket 100 for high frequency device testing according to the present invention uses various types and sizes not disclosed herein by using the bidirectional conductive module for high frequency device testing. Of course, it can be manufactured to test the semiconductor device 10 having an excitation.
  • the semiconductor device 10 has various terminal arrangements, and according to the terminal arrangement structure of the semiconductor device, the bidirectional conductive socket 100 for a high frequency device test may be used.
  • the structure may be variously varied as shown in FIGS. 3 (b) and 4 (b).
  • the bidirectional conductive socket 100 for a high frequency device test is formed by assembling at least one bidirectional conductive module 110 for a high frequency device test in a housing 190 according to a terminal arrangement of a semiconductor device.
  • the bidirectional conductive socket 100 for high frequency device testing has the same structure as the terminal arrangement structure of the SOP type semiconductor device.
  • two high-frequency conductive module bi-directional conductive modules 110a and 110b are assembled and manufactured to the housing 190 so as to face each other.
  • the reference numerals indicating the bidirectional conductive module for testing a high frequency device are divided into 110a and 110b, but this is merely for convenience of description, and the two bidirectional conductive modules 110a and 110b for testing a high frequency device are the same. Has a structure.
  • the bidirectional conductive socket 100 for high frequency device testing has the same structure as the terminal arrangement structure of the QFP type semiconductor device.
  • four bi-directional conductive modules 110a, 110b, 110c, and 110d for testing a high frequency device are fabricated in a rectangular structure in the housing 190.
  • the four high-frequency device test bidirectional conductive modules 110a, 110b, 110c, and 110d have the same structure with each other, but the plurality of first conductive patterns 113 and the second according to the number of terminals 11 of the semiconductor device.
  • the number of conductive patterns 114 may vary.
  • the bidirectional conductive module 110 for testing a high frequency device is a unit modular terminal connection member used to manufacture the bidirectional conductive socket 100 for a high frequency device test.
  • the bidirectional conductive module 110 for testing a high frequency device is for electrically connecting the terminal 11 of the semiconductor device and the terminal 21 of the test circuit board.
  • the bidirectional conductive module 110 for testing a high frequency device is not individually connected to each of a plurality of very small terminals provided in the semiconductor device 10, but a plurality of conductive patterns are patterned on the FPCB substrate so that the terminals 11 of the semiconductor device are patterned. It is modularized into a structure in contact with
  • the unit modularized high-frequency device test bidirectional conductive module 110 has a structure in which the high-frequency device test bidirectional conductive socket 100 described above is electrically connected to a plurality of terminals provided on one side of the semiconductor device 10 once. It may have a structure connected to. With this structure, the high-frequency device test bidirectional conductive module 110 is fitted to the housing 190 having a predetermined frame or connected to each other by an adhesive, thereby assembling the bidirectional conductive socket 100 for high-frequency device testing Can be simplified.
  • Bidirectional conductive module for testing high frequency devices
  • the bidirectional conductive module 110 for testing a high frequency device includes a substrate 111 and an elastic support 119.
  • the substrate 111 is a portion that electrically connects the semiconductor device 10 and the test circuit board 20.
  • the substrate portion 111 has a flexible structure. Thus, the substrate 111 may be bent such that one surface thereof faces the semiconductor device 10 and the other surface thereof faces the test circuit board 20.
  • the substrate portion 111 bent in this manner forms an upper contact portion 111a in contact with the semiconductor device 10 and a lower contact portion 111b in contact with the test circuit board 20.
  • the upper contact portion 111a is a portion provided on one surface of the substrate portion 111
  • the lower contact portion 111b is a portion provided on the other surface of the substrate portion 111.
  • the substrate part 111 includes an insulating sheet 112, a plurality of first conductive patterns 113, a plurality of second conductive patterns 114, a first bump part 115, and a second bump part 116. After both surfaces of the insulating sheet 112 are plated, the substrate 111 has a plurality of first conductive patterns 113 formed on one surface thereof as a patterning process is performed on both surfaces thereof, and a plurality of second conductive surfaces on the other surface thereof. As the pattern 114 is formed, it is made.
  • the insulating sheet 112 is made of a material that can be flexibly flexed without electricity.
  • a PI film may be used as the insulating sheet 112 . Due to the material property, the insulating sheet 112 may have a shape that may be bent according to the pressure pressed in the test process of the semiconductor device 10.
  • a plurality of first conductive patterns 113 are provided on one surface of the insulating sheet 112, and a plurality of second conductive patterns 114 are provided on the other surface of the insulating sheet 112.
  • the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 are portions that electrically connect the semiconductor device 10 and the test circuit board 20.
  • the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 are made through a process in which an insulating substrate is plated and then patterned.
  • the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 may be formed to the same standard.
  • the plurality of first conductive patterns 113 are formed on one surface of the insulating substrate.
  • the plurality of first conductive patterns 113 are formed to be spaced apart at the same pitch interval.
  • the plurality of first conductive patterns 113 are arranged in a line in the horizontal direction of the insulating sheet 112.
  • the plurality of first conductive patterns 113 are connected to each of the terminals 11 of the semiconductor device.
  • the plurality of first conductive patterns 113 is a portion for applying a current applied to the test circuit board 20 to the terminals of the terminal 11 of the semiconductor device when the first conductive pattern 113 contacts the terminal 11 of the semiconductor device.
  • the bidirectional conductive module for testing the high frequency device is used to increase the contact efficiency between the plurality of first conductive patterns 113 and the terminal 11 of the semiconductor device, that is, the plurality of first conductive patterns 113
  • the first bumps 115 may be formed in the upper contact portion 111a. It is attached to the first conductive pattern 113.
  • the first bump part 115 is attached to the surface of the plurality of first conductive patterns 113 in an uneven manner.
  • the first bump part 115 may be formed of conductive powder.
  • the first bump part 115 may be non-conductive powder placed on the surface of the plurality of first conductive patterns 113, and then nickel-plated and / or gold plated to form the surfaces of the plurality of first conductive patterns 113. Can be attached.
  • the plating layers 117a and 117b formed on the surface of the first bump part 115 are illustrated in FIG. 11.
  • the first bump part 115 has a structure capable of stably performing electrical contact between the first conductive pattern 113 and the terminal 11 of the semiconductor device, using the conductive powder as disclosed herein.
  • the surface of the first conductive pattern 113 may be formed of a plated layer in a sharply protruding structure such as a crown structure.
  • the plurality of second conductive patterns 114 are provided on the other surface of the insulating sheet 112 in the same manner as the plurality of first conductive patterns 113 described above.
  • the pitch intervals of the plurality of second conductive patterns 114 are preferably formed at the same intervals as the pitch intervals of the plurality of first conductive patterns 113.
  • the plurality of second conductive patterns 114 are in contact with the terminals 21 of the test circuit board and pass through the current when the current is applied.
  • a second bump portion 116 is formed on the plurality of second conductive patterns 114.
  • the lower contact portion 111b is a portion where the plurality of second conductive patterns 114 and the terminal 21 of the test circuit board come into contact with each other.
  • the second bump part 116 performs the same structure and role as the first bump part 115, and thus description thereof will be omitted in this embodiment to avoid repetition of the description.
  • the bidirectional conductive module 110 for testing a high frequency device has a structure in which a plurality of first conductive patterns 113 and a plurality of second conductive patterns 114 formed on different surfaces are electrically connected to each other.
  • the bidirectional conductive module 110 for the high frequency device test includes a plurality of first conductive patterns 113 and a plurality of second conductive patterns 114 in a patterning process after plating of the insulating sheet 112. The patterning process may be performed so that the plating is not removed at the portion to be connected, and thus the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 may be electrically connected to each other.
  • the bidirectional conductive module for testing a high frequency device may include a plurality of first conductive patterns 113 and a plurality of vias after forming via holes communicating the first and second conductive patterns 113 and 114.
  • the second conductive patterns 114 may be plated and connected to each other through a via hole filling plating process, so that the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 may be electrically connected to each other. have.
  • the first conductive pattern 113 and the plurality of second conductive patterns 114 may be electrically connected by conductive lines 118.
  • conductive lines 118 may have.
  • a conductive wire is used as the conductive line 118.
  • the first conductive pattern 113 and the second conductive pattern 114 are provided on different surfaces of the bidirectional conductive module 110 for testing the high frequency device according to the present embodiment, the first conductive pattern The 113 and the second conductive pattern 114 are electrically connected by the plating connection or the conductive line 118, and are energized when the current is applied, so that the current applied from the terminal 21 of the test circuit board is transferred to the terminal of the semiconductor device. (11) can be provided.
  • the bidirectional conductive module 110 for testing a high frequency device may elastically support the substrate 111 having a structure that is easily bent as described above using the elastic support 119.
  • the elastic support 119 is made of a material which is elastic to some extent and does not pass current when pressed. In the present invention, it is assumed that the elastic support 119 is made of a silicon material.
  • the elastic support part 119 is used when the bidirectional conductive module 110 for high frequency device test is applied to the bidirectional conductive socket 100 for high frequency device test to be used for the actual test of the semiconductor device 10.
  • the elastic support part 119 is a substrate part such that the first bump part 115 and the second bump part 116 are exposed to the upper contact part 111a and the lower contact part 111b without being affected by the elastic support part 119. It is preferable to bind to (111).
  • the elastic support part 119 surrounds one surface of the substrate part 111 except for the upper contact part 111a and the other surface of the substrate part 111 except for the lower contact part 111b, as shown in FIG. 6. May be coupled to the substrate unit 111 in a block structure.
  • the elastic paper portion 119 may have a block structure having a structure in which the contact surface with the substrate portion 111 is flat, as shown in FIG. 8 (a), and in FIGS. 8 (b) and 8 (c). It may have a block-like structure as shown.
  • FIGS. 9 and 10 schematically illustrate an assembly process diagram of a bidirectional conductive module for testing a high frequency device according to an embodiment of the present invention.
  • an insulating sheet 112 is provided (step A).
  • the insulating sheet 112 may be a PI film that is a material through which current does not pass.
  • the insulating sheet 112 is plated, a base plating layer is formed on the surface of the insulating sheet 112 (step B). Thereafter, the base plating layer is patterned on one surface of the insulating sheet 112 to form a plurality of first conductive patterns 113 (step C).
  • the plurality of first conductive patterns 113 may be electrically connected to the terminal 11 of the semiconductor device when the semiconductor device 10 contacts the substrate 111.
  • the base plating layer is patterned on the other surface of the insulating sheet 112 to form a plurality of second conductive patterns 114 (step C).
  • the plurality of second conductive patterns 114 may be electrically connected to the terminals 21 of the test circuit board when the substrate 111 contacts the test circuit board 20.
  • the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 may be patterned on the insulating sheet 112 according to the pitch interval between the plurality of terminals provided in the semiconductor device 10.
  • the pitch interval between the terminals 11 of the semiconductor device may be arbitrarily varied according to the type and size of the semiconductor device 10. In this specification, the pitch interval between the plurality of first conductive patterns 113 and / or the plurality of pitches may be varied.
  • the pitch spacing between the second conductive patterns 114 will not be described in detail.
  • the conductive powder is attached to the surfaces of the plurality of first conductive patterns 113 to form the first bump part 115, and the plurality of second conductive patterns ( It is attached to the surface of the 114 to form a second bump portion 116.
  • the substrate 111 contacts the molding mold 40 to form the molding mold 40. It is curved in the shape of a streamline. By this process, the substrate 111 is bent such that the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 face different directions (step D).
  • the molding mold 40 may have a shape as shown in FIG. 9 (d), which is an exemplary shape limitation, and various block structures within a range obvious to those skilled in the art may be used.
  • the substrate portion 111 is connected to the molding mold mold 50. Thereafter, silicon is injected into the mold mold 50. As the silicon injected into the mold mold 50 is cured, an elastic support 119 is formed (step E).
  • the bidirectional conductive module 110 for testing the high frequency device manufactured by the above steps has a structure in which the substrate 111 and the elastic support 119 are integrally connected.
  • the high-frequency device test bidirectional conductive module 110 is a substrate portion 111 bent so that one surface and the other surface facing in different directions due to the elastic support portion 119 to the pressure applied to the semiconductor device 10 during the inspection. It is elastically supported in the vertical direction by the.
  • the bidirectional conductive module 110 for testing a high frequency device manufactured according to the above process may have a cross section as shown in FIG. 10 (g).
  • the present invention for the stable electrical connection structure of the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114, the following process may be additionally performed.
  • a nickel plating process and gold plating are performed on the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114.
  • a plurality of nickel-plated metals having a high current conductivity are used to increase the current carrying efficiency of the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114.
  • the first conductive pattern 113 and the plurality of second conductive patterns 114 may be plated again.
  • the nickel plating process and the gold plating process are for electrically connecting the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114.
  • the nickel plating process and the gold plating process may be performed through a via hole filling plating process, but are not necessarily limited thereto, and the nickel plating layer may be formed only on each of the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114. If the 117a) and / or the gold plated layer 117b can be formed, various plating processes can be applied within a range apparent to those skilled in the art.
  • a bidirectional conductive module 110 for testing high frequency devices in which a nickel plated layer 117a and a gold plated layer 117b is formed is shown in FIG.
  • the plurality of first conductive patterns 113 and the plurality of second conductive patterns 114 may be respectively connected through the conductive lines 118 without performing the nickel plating process and / or gold plating process as described above. . This is preferably done after step E.
  • the bidirectional conductive module 110 for testing a high frequency device manufactured as described above may be finely integrated and patterned with a conductive pattern contactable with a plurality of terminals provided on one surface of the semiconductor device 10, thereby resulting in defects of existing pogo pins.
  • the electrical short between the terminal 11 of the semiconductor device and the terminal 21 of the test circuit board can be prevented, thereby increasing the test efficiency of the semiconductor device 10.
  • the present invention uses a method of patterning a conductive pattern on the FPCB, the portion of the semiconductor device 10 in contact with the plurality of terminals and the portion of the inspection circuit board 20 in contact with a plurality of fine size High frequency device that can be implemented in the module of the test, because the development of the technology can test the small semiconductor device 10 is difficult to test in the pogo pin type or PCR socket type that is conventionally used for testing the semiconductor device 10
  • the test bidirectional conductive socket 100 can be easily manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Connecting Device With Holders (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈은 일면이 반도체소자를 향하고 다른 일면이 검사회로기판을 향하도록 절곡된 구조를 가진 기판부; 기판부의 일면에 반도체소자의 단자에 각각 전기적으로 연결되는 복수의 제 1 도전성패턴; 기판부의 다른 일면에 검사회로기판의 단자와 복수의 제 1 도전성패턴에 각각 전기적으로 연결되는 복수의 제 2 도전성패턴; 및 기판부를 탄성지지토록 기판부에 연결된 탄성지지부를 포함하여, 반도체소자와 검사회로기판 사이에 설치되어, 반도체소자의 단자와 검사회로기판의 단자를 전기적으로 연결하는 것이 바람직하다.

Description

고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
본 발명은 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법에 관한 것이며, 상세하게는 포고-핀 타입의 반도체 테스트 소켓이 갖는 단점과, PCR 소켓 타입의 반도체 테스트 소켓이 갖는 단점을 보완하여, 미세 패턴의 구현이 가능하면서도 반도체소자의 테스트에 사용되는 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법에 관한 것이다.
반도체 소자는 제조 과정을 거친 후 전기적 성능의 양불을 판단하기 위한 검사를 수행하게 된다. 반도체 소자의 양불 검사는 반도체 소자의 단자와 전기적으로 접촉될 수 있도록 형성된 반도체 테스트 소켓(또는 콘텍터 또는 커넥터)을 반도체 소자와 검사회로기판 사이에 삽입한 상태에서 검사가 수행된다. 그리고, 반도체 테스트 소켓은 반도체 소자의 최종 양불 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.
반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 간격도 미세화되는 추세이고, 그에 따라 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다. 따라서, 기존의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하기 위한 반도체 테스트 소켓을 제작하는데 한계가 있었다.
이와 같은 반도체 소자의 집적화에 부합하도록 제안된 기술이, 탄성 재질의 실리콘 소재로 제작되는 실리콘 본체 상에 수직 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 분말을 충진하여 도전 패턴을 형성하는 PCR 소켓 타입이 널리 사용되고 있다.
도 1은 PCR 소켓 타입의 종래의 반도체 테스트 장치(1)의 단면을 도시한 도면이다. 도 1을 참조하여 설명하면, 종래의 반도체 테스트 장치(1)는 지지 플레이트(30) 및 PCR 소켓 타입의 반도체 테스트 소켓(10)을 포함한다.
지지 플레이트(30)는 반도체 테스트 소켓(10)이 반도체 소자(3) 및 검사회로기판(5) 사이에서 움직일 때 반도체 테스트 소켓(10)을 지지한다. 여기서, 지지 플레이트(30)의 중앙에는 진퇴 가이드용 메인 관통홀(미도시)이 형성되어 있고, 메인 관통홀을 형성하는 가장자리를 따라 가장자리로부터 이격되는 위치에 결합용 관통홀이 상호 이격되게 형성된다. 그리고, 반도체 테스트 소켓(10)은 지지 플레이트(30)의 상면 및 하면에 접합되는 주변 지지부(50)에 의해 지지 플레이트(30)에 고정된다.
PCR 소켓 타입의 반도체 테스트 소켓(10)은 절연성의 실리콘 본체에 타공 패턴이 형성되고, 해당 타공 패턴 내에 충진되는 도전성 분말(11)에 의해 상하 방향으로 도전 패턴들이 형성된다.
이와 같은, PCR 소켓은 미세 피치의 구현이 가능하다는 장점이 있으나, 타공 패턴에 충진된 도전성 분말(11)이 반도체 소자(3)와 검사회로기판(5) 사이에서의 접촉시 발생하는 압력에 의해 도전성이 형성되는 방식이라는 점에서, 상하 방향으로의 두께 형성에 제한을 받는 단점이 있다.
즉, 상하 방향으로의 압력에 의해 도전성 분말(11)이 상호 접촉되어 도전성이 형성되는데, 두께가 증가하는 경우 도전성 분말(11)의 내부로 전달되는 압력이 약해져 도전성이 형성되지 않은 경우가 있다. 따라서, PCR 소켓은 높이 방향으로의 두께의 제약을 받는 단점이 있다.
한국공개특허 제10-2009-0030190호에는 반도체 칩 검사용 소켓이 개시되어 있다.
본 발명은 포고-핀 타입의 반도체 테스트 소켓이 갖는 단점과, PCR 소켓 타입의 반도체 테스트 소켓이 갖는 단점을 보완하여, 미세 패턴의 구현이 가능하면서도 반도체소자의 테스트에 사용되는 고주파 디바이스 테스트용 양방향 도전성 소켓을 용이하게 조립할 수 있는 고주파 디바이스 테스트용 양방향 도전성 모듈 및 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법을 제공하는 것을 목적으로 한다.
아울러, 본 발명은 복수의 단자 접촉부가 일렬로 배치된 구조가 마련된 단위모듈화된 고주파 디바이스 테스트용 양방향 도전성 모듈을 이용하여 간단하게 조립될 수 있는 고주파 디바이스 테스트용 양방향 도전성 소켓을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈은 일면이 반도체소자를 향하고 다른 일면이 검사회로기판을 향하도록 절곡된 구조를 가진 기판부; 기판부의 일면에 반도체소자의 단자에 각각 전기적으로 연결되는 복수의 제 1 도전성패턴; 기판부의 다른 일면에 검사회로기판의 단자와 복수의 제 1 도전성패턴에 각각 전기적으로 연결되는 복수의 제 2 도전성패턴; 및 기판부를 탄성지지토록 기판부에 연결된 탄성지지부를 포함하여, 반도체소자와 검사회로기판 사이에 설치되어, 반도체소자의 단자와 검사회로기판의 단자를 전기적으로 연결하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, 기판부는 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프부; 및 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프부를 더 포함하고, 제 1 범프부와 제 2 범프부는 도전성 분말에 의해 형성된 것이 바람직하다.
또는, 기판부는 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프부; 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프부; 및 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴에 도금되어, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴을 전기적으로 연결하는 도금층을 포함하고, 제 1 범프부와 제 2 범프부는 비도전성 분말에 의해 형성된 것이 바람직하다.
본 발명의 일 실시예에 있어서, 기판부는, 유연하게 휘어지는 구조를 가진 절연시트; 절연시트의 일면이 도금처리된 후 패터닝되어 형성된 복수의 제 1 도전성패턴; 및 절연시트의 다른 일면이 도금처리된 후 패터닝되어 형성된 복수의 제 2 도전성패턴으로 이루어진 것이 바람직하다.
본 발명의 일 실시예에 있어서, 복수의 제 1 도전성패턴은 절연시트의 일면에서 상호 간에 일정한 피치간격으로 이격되어 일렬로 나열되게 형성되고, 복수의 제 2 도전성패턴은 절연시트의 다른 일면에서 상호 간에 일정한 피치간격으로 이격되어 일렬로 나열되게 형성되고, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴은 도금처리에 의해 전기적으로 연결된 구조를 가지는 것이 바람직하다.
본 발명의 일 실시예에 있어서, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴은 도전성 라인에 의해 각각 전기적으로 연결되는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 소켓은 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈; 및 반도체소자의 단자방향에 따라, 단위모듈화된 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈가 반도체소자의 단자와 접촉되도록, 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈의 설치위치를 고정하는 하우징을 포함하고, 반도체소자와 검사회로기판에 전기적으로 연결되어, 반도체소자의 양호불량여부를 테스트하는 것이 바람직하다.
다른 한편, 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법은, (A) 절연시트가 마련되는 단계; (B) 절연시트가 도금되어, 절연시트의 표면에 베이스도금층이 형성되는 단계; (C) 절연시트의 일면에서, 베이스도금층이 패터닝처리되어 반도체소자의 단자와 전기적으로 연결되는 복수의 제 1 도전성패턴이 형성되고, 절연시트의 다른 일면에서 베이스도금층이 패터닝처리되어 검사회로기판의 단자와 전기적으로 연결되는 복수의 제 2 도전성패턴이 형성된 기판부가 마련되는 단계; (D) 기판부가 성형금형에 접촉되어 성형금형의 형상대로 유선형으로 휘어지면서, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 서로 다른 방향을 향하도록 절곡되는 단계; 및 (E) 기판부가 성형금형몰드에 연결되고, 실리콘이 성형금형몰드로 주입된 후 경화되어 형성되어, 기판부를 탄성지지하는 탄성지지부가 마련되는 단계를 포함하고, 기판부가 반도체소자와 검사회로기판 사이에 위치되면, 복수의 제 1 도전성패턴은 반도체소자의 단자와 전기적으로 연결되고, 복수의 제 2 도전성패턴은 검사회로기판의 단자에 전기적으로 연결되어, 반도체소자와 검사회로기판을 전기적으로 연결하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, C 단계후, 도전성분말이 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 부착되어 제 1 범프부를 형성하고, 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 부착되어 제 2 범프부를 형성하는 단계를 더 포함하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, C단계후, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 니켈도금되는 단계; 및 니켈도금된 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 금도금되는 단계를 더 포함하고, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴은 니켈도금 및 금도금에 의해 전기적으로 연결되는 것이 바람직하다.
본 발명의 일 실시예에 있어서, E 단계후, 복수의 제 1 도전성패턴와 복수의 제 2 도전성패턴는 도전성 라인에 의해 각각 전기적으로 연결되는 단계를 더 포함하는 것이 바람직하다.
본 발명은 포고-핀 타입의 반도체 테스트 소켓이 갖는 단점과, PCR 소켓 타입의 반도체 테스트 소켓이 갖는 단점을 보완하여, 미세 패턴의 구현이 가능하면서도 반도체소자의 테스트에 사용되는 고주파 디바이스 테스트용 양방향 도전성 소켓을 용이하게 조립할 수 있다.
또한, 본 발명은 FPCB에 도전성패턴을 패터닝하는 방식을 이용하여, 반도체소자의 복수의 단자에 접촉되는 부분과 검사회로기판의 복수의 단자에 접촉되는 부분을 미세한 크기로 하나의 모듈에 구현할 수 있어, 기술의 발전으로 인해 기존에 반도체소자를 테스트하기 위해 사용되는 포고핀 타입 또는 PCR소켓 타입에서는 테스트하기 어려운 초소형의 반도체소자를 테스트할 수 있는 고주파 디바이스 테스트용 양방향 도전성 소켓을 용이하게 제작할 수 있다.
아울러, 본 발명은, 반도체소자에 마련된 복수의 단자와 검사회로기판의 복수의 단자를 일일이 전기적으로 연결하는 것이 아니라, 플렉시블한 구조를 가진 FPCB에 복수의 도전성패턴을 패터닝하여 단위모듈구조를 가진 고주파 디바이스 테스트용 양방향 도전성 모듈을 제조하고, 단위 모듈화된 고주파 디바이스 테스트용 양방향 도전성 모듈을 하우징에 조립하는 방식으로 고주파 디바이스 테스트용 양방향 도전성 소켓을 조립할 수 있다. 이로 인해, 본 발명은 고주파 디바이스 테스트용 양방향 도전성 소켓의 조립공정의 단순화를 통해 조립효율을 증대시키는 동시에, 조립시 소요되는 작업시간을 단축할 수 있고, 이와 더불어, 작업자의 작업능률을 증대시킬 수 있다.
도 1은 종래의 PCR 소켓이 적용된 반도체 테스트 장치의 단면을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 소켓이 반도체소자와 검사회로기판 사이에 설치된 설치상태도를 개략적으로 도시한 것이다.
도 3(a)는 본 발명의 일 실시예의 일예에 따른 SOP타입의 반도체소자의 평면을 개략적으로 도시한 것이며, 도 3(b) 및 도 3(c)는 SOP타입의 반도체소자의 불량을 테스트하기 위해 사용되는 고주파 디바이스 테스트용 양방향 도전성 소켓의 평면도와 저면도를 개략적으로 도시한 것이며,
도 4(a)는 QFP타입의 반도체소자의 평면을 개략적으로 도시한 것이며, 도 4(b) 및 도 4(c)는 SOP타입의 반도체소자의 불량을 테스트하기 위해 사용되는 고주파 디바이스 테스트용 양방향 도전성 소켓의 평면도와 저면도를 개략적으로 도시한 것이다
도 5는 도 2의 A-A선을 따라 절취한 단면을 개략적으로 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈의 사시도를 개략적으로 도시한 것이다.
도 7(a)는 도 6의 평면도를 개략적으로 도시한 것이고, 도 7(b)는 도 6의 저면도를 개략적으로 도시한 것이다.
도 8(a) 내지 도 8(c)는 고주파 디바이스 테스트용 양방향 도전성 모듈의 다양한 형상의 예를 예시적으로 도시한 것이다.
도 9 및 도 10d에는 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈의 조립공정도를 개략적으로 도시한 것이다.
도 11에는 니켈도금층과 금도금층이 형성된 고주파 디바이스 테스트용 양방향 도전성 모듈의 단면도를 개략적으로 도시한 것이다.
이하에서는 첨부도면을 참조하여, 본 발명의 바람직한 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈, 고주파 디바이스 테스트용 양방향 도전성 소켓 및 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법에 대해 설명하기로 한다.
고주파 디바이스 테스트용 양방향 도전성 소켓
도 2 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 소켓(100)에 대해 설명하면 다음과 같다.
본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자(10)와 검사회로기판(20)을 전기적으로 연결하여, 반도체소자(10)의 양호불량여부를 테스트하기 위한 것이다. 도 2에 도시된 바와 같이, 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자(10)와 검사회로기판(20) 사이에 설치된다. 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 고주파 디바이스 테스트용 양방향 도전성 모듈(110)에 의해, 반도체소자(10)와 검사회로기판(20)에 전기적으로 연결된다. 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈(110)과 하우징(190)로 이루어진다.
시판 중인 반도체소자(10)는 전자제품에 사용되는 목적에 따라 다양한 구조가 사용되고 있다. 예컨대, 반도체소자(10)는 패키지에서 단자가 한방향으로 돌출된 SIP(Single In-line Package) 구조, 도 3(a)에 도시된 바와 같이 패키지에서 단자가 두방향으로 돌출된 SOP(Sma고주파 디바이스 테스트용 양방향 도전성 소켓 Outline Package)구조, 또는 도 4(a)에 도시된 바와 같이 패키지에서 단자가 4방향으로 돌출된 QFP(Quad Flat Package) 구조 등 다양한 종류가 사용되고 있다. 본 실시예에 개시된 반도체소자의 구조는 예시적인 것에 불과하며, 본 발명인 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 고주파 디바이스 테스트용 양방향 도전성 모듈을 이용하여 본 명세서에 개시되지 않는 다양한 종류 및 크기를 가진 반도체소자(10)를 테스트하기 위해 제작될 수 있음은 물론이다.
도 3(a) 또는 도 4(a)에 도시된 바와 같이, 반도체소자(10)는 단자배치가 다양하게 이루어지는바, 반도체소자의 단자배치구조에 따라 고주파 디바이스 테스트용 양방향 도전성 소켓(100)의 구조도 도 3(b) 및 도 4(b)에 도시된 바와 같이 다양하게 가변될 수 있다. 이를 위해, 본 발명은 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자의 단자배치에 따라, 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈(110)이 하우징(190)에 조립되어 형성된다.
도 3(a)에 도시된 SOP 타입의 반도체소자(10)의 양호불량여부를 테스트할 때에, 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 SOP 타입의 반도체소자의 단자배치구조와 동일한 구조로, 도 3(b) 및 도 3(c)에 도시된 바와 같이 두 개의 고주파 디바이스 테스트용 양방향 도전성 모듈(110a, 110b)이 서로 마주보게 배치되도록 하우징(190)에 조립되어 제작된다. 본 명세서에서는 고주파 디바이스 테스트용 양방향 도전성 모듈을 지징하는 도면번호를 110a와 110b로 구분하였으나, 이는 설명의 편의를 위한 것에 불과하며, 두 개의 고주파 디바이스 테스트용 양방향 도전성 모듈(110a, 110b)은 서로 동일한 구조를 가진다.
또는, 도 4(a)에 도시된 QFP 타입의 반도체소자(10)의 양호불량여부를 테스트할 때에, 고주파 디바이스 테스트용 양방향 도전성 소켓(100)은 QFP 타입의 반도체소자의 단자배치구조와 동일한 구조로, 도 4(b) 및 도 4(c)에 도시된 바와 같이, 하우징(190)에 4개의 고주파 디바이스 테스트용 양방향 도전성 모듈(110a, 110b, 110c, 110d)이 사각구조로 조립되어 제작된다. 여기서, 4개의 고주파 디바이스 테스트용 양방향 도전성 모듈(110a, 110b, 110c, 110d)은 상호간에 동일한 구조를 가지나, 반도체소자의 단자(11) 개수에 따라 복수의 제 1 도전성패턴(113)과 제 2 도전성패턴(114)의 개수가 가변될 수 있다.
본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 고주파 디바이스 테스트용 양방향 도전성 소켓(100)을 제조하는데 사용되는 단위모듈화된 단자연결부재이다. 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체소자의 단자(11)와 검사회로기판의 단자(21)를 전기적으로 연결하기 위한 것이다.
고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체소자(10)에 마련된 크기가 매우 작은 복수의 단자 각각에 개별적으로 연결되는 것이 아니라, FPCB기판에 복수의 도전성패턴이 패터닝되어 반도체소자의 단자(11)와 접촉되는 구조로 단위모듈화된다. 단위모듈화된 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 상술한 고주파 디바이스 테스트용 양방향 도전성 소켓(100)에 개시된 구조와 같이, 반도체소자(10)의 일측에 마련된 복수의 단자와 한번의 접촉되는 전기적으로 연결되는 구조를 가질 수 있다. 이러한 구조에 의해, 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 일정틀을 가진 하우징(190)에 끼움결합되거나 접착체에 의해 상호 간에 연결되어, 고주파 디바이스 테스트용 양방향 도전성 소켓(100)의 조립공정을 단순화시킬 수 있다.
고주파 디바이스 테스트용 양방향 도전성 모듈
이하에서는 도 5 내지 도 7을 참조하여, 고주파 디바이스 테스트용 양방향 도전성 모듈을 이루는 세부 구성에 대해 설명하기로 한다.
도 5 및 도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 기판부(111)와 탄성지지부(119)로 이루어진다.
기판부(111)는 반도체소자(10)와 검사회로기판(20)을 전기적으로 연결하는 부분이다. 기판부(111)는 플렉시블한 구조를 가진다. 이에, 기판부(111)는 일면이 반도체소자(10)를 향하고 다른 일면이 검사회로기판(20)을 향하도록 절곡될 수 있다.
이와 같이 절곡된 기판부(111)는 반도체소자(10)와 접하는 상부접촉부(111a)와 검사회로기판(20)에 접하는 하부접촉부(111b)를 형성한다. 여기서, 상부접촉부(111a)는 기판부(111)의 일면에 마련된 부분이며, 하부접촉부(111b)는 기판부(111)의 다른 일면에 마련된 부분이다.
기판부(111)는 절연시트(112), 복수의 제 1 도전성패턴(113), 복수의 제 2 도전성패턴(114), 제 1 범프부(115)와 제 2 범프부(116)로 이루어진다. 기판부(111)는 절연시트(112)의 양면이 도금된 후, 양면에서 각각 패터닝과정이 수행됨에 따라 일면에 복수의 제 1 도전성패턴(113)이 형성되고, 다른 일면에 복수의 제 2 도전성패턴(114)이 형성됨에 따라 만들어진다.
본 실시예에서, 절연시트(112)는 전기가 통하지 않고 유연하게 휘어질 수 있는 재질로 이루어진다. 절연시트(112)로는 예를 들어 PI필름이 사용될 수 있다. 절연시트(112)는 재질적 특성으로 인해, 반도체소자(10)의 테스트 과정에서 눌러지는 압력에 따라 휘어질 수 있는 형태가 될 수 있다. 절연시트(112)의 일면에는 복수의 제 1 도전성패턴(113)이 마련되고, 절연시트(112)의 다른 일면에는 복수의 제 2 도전성패턴(114)이 마련된다.
복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)은 반도체소자(10)와 검사회로기판(20)을 전기적으로 연결하는 부분이다. 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)은 절연기판이 도금된 후 패터닝되는 과정을 통해 만들어진다. 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)은 상호 간에 동일한 규격으로 형성될 수 있다.
도 6 및 도 7(a)에 도시된 바와 같이, 복수의 제 1 도전성패턴(113)은 절연기판의 일면에 형성된다. 복수의 제 1 도전성패턴(113)은 동일한 피치간격으로 이격되어 형성된다. 이때, 복수의 제 1 도전성패턴(113)은 절연시트(112)의 가로방향으로 일렬로 배치된다. 복수의 제 1 도전성패턴(113)은 반도체소자의 단자(11) 각각에 연결된다. 복수의 제 1 도전성패턴(113)은 반도체소자의 단자(11)와의 접촉시, 검사회로기판(20)으로 인가된 전류를 반도체소자의 단자(11)의 단자로 전류를 인가하는 부분이다.
본 실시예에서, 고주파 디바이스 테스트용 양방향 도전성 모듈은 복수의 제 1 도전성패턴(113)과 반도체소자의 단자(11)와의 접촉효율을 증대시키기 위해, 즉, 복수의 제 1 도전성패턴(113)의 표면을 거칠게 형성하여, 반도체소자의 단자(11)와 복수의 제 1 도전성패턴(113)의 전기적 접촉을 안정적으로 보장하기 위해, 상부접촉부(111a)에서, 제 1 범프부(115)가 복수의 제 1 도전성패턴(113)에 부착된다.
제 1 범프부(115)는 복수의 제 1 도전성패턴(113)의 표면에서 오돌토돌하게 부착된다. 제 1 범프부(115)는 도전성 분말에 의해 형성될 수 있다. 또는 제 1 범프부(115)는 비도전성 분말이 복수의 제 1 도전성패턴(113)의 표면에서 오돌토돌하게 놓인 후, 니켈도금 및/또는 금도금되어, 복수의 제 1 도전성패턴(113)의 표면에 부착될 수 있다. 제 1 범프부(115)의 표면에 도금층(117a, 117b)이 형성된 것은 도 11에서 도시된다.
또한, 제 1 범프부(115)는 제 1 도전성패턴(113)과 반도체소자의 단자(11)와의 전기적 접촉을 안정적으로 수행할 수 있는 구조라면, 본 명세서에 개시된 것과 같이 도전성 분말을 사용하는 것 이외에, 제 1 도전성패턴(113)의 표면을 크라운 구조와 같이 뾰족뾰족하게 돌출된 구조로 도금층으로 형성될 수도 있다.
한편, 본 실시예에서, 복수의 제 2 도전성패턴(114)은 상술한 복수의 제 1 도전성패턴(113)과 동일한 방식으로 절연시트(112)의 다른 일면에 마련된다. 복수의 제 2 도전성패턴(114)의 피치간격은 복수의 제 1 도전성패턴(113)의 피치간격과 동일한 간격으로 형성된 것이 바람직하다.
복수의 제 2 도전성패턴(114)은 검사회로기판의 단자(21)와 접촉되고, 전류인가시 전류가 통하는 부분이다. 하부접촉부(111b)에서, 복수의 제 2 도전성패턴(114)에는 제 2 범프부(116)가 형성된다. 상술했듯이, 하부접촉부(111b)는 복수의 제 2 도전성패턴(114)과 검사회로기판의 단자(21)가 접촉되는 부분이다.
본 실시예에서, 제 2 범프부(116)는 제 1 범프부(115)와 동일한 구조 및 역할을 수행하는 바, 본 실시예에서는 설명의 반복을 피하기 위해 이에 대한 설명은 생략하기로 한다.
본 실시예에서, 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 서로 다른 면에 형성된 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)이 상호 간에 전기적으로 연결된 구조를 가진다. 이러한 구조를 형성하기 위해, 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 절연시트(112)의 도금 후 패터닝공정에서, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)이 연결되는 부분에서 도금이 제거되지 않도록 패터닝처리되어, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)이 상호 간에 전기적으로 연결된 구조를 가질 수 있다.
다른 예로, 고주파 디바이스 테스트용 양방향 도전성 모듈은 제 1 도전성패턴(113)과 제 2 도전성패턴(114)을 연통하는 비아홀(via hole)을 형성한 후에, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)이 비아홀 메움 도금 공정을 통해 상호 간에 도금 연결되어, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)이 상호 간에 전기적으로 연결된 구조를 가질 수 있다.
또 다른 예로, 도 8(a) 내지 도 8(c)에 도시된 바와 같이, 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)은 도전성 라인(118)에 의해 전기적으로 연결될 수 있다. 본 발명에서는 도전성 라인(118)으로 도전성 와이어가 사용되는 것을 예로 한다.
상기와 같은 구조를 통해, 본 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 제 1 도전성패턴(113)과 제 2 도전성패턴(114)이 서로 다른 면에 마련되었더라도, 제 1 도전성패턴(113)과 제 2 도전성패턴(114)이 도금연결 또는 도전성 라인(118)에 의해 전기적으로 연결되어, 전류인가시 통전되어, 검사회로기판의 단자(21)에서 인가된 전류를 반도체소자의 단자(11)로 제공할 수 있다.
본 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 탄성지지부(119)를 이용하여, 상술한 바와 같이 휘어지기 쉬운 구조를 가진 기판부(111)를 탄성지지할 수 있다.
탄성지지부(119)는 가압시 어느 정도의 탄성이 있고, 전류가 통하지 않는 재질로 이루어진다. 본 발명에서, 탄성지지부(119)가 실리콘 재질로 마련되는 것을 예로 한다. 탄성지지부(119)는 고주파 디바이스 테스트용 양방향 도전성 모듈(110)이 고주파 디바이스 테스트용 양방향 도전성 소켓(100)에 적용되어 실제 반도체소자(10)의 테스트에 사용될 때, 반도체소자(10)의 접촉을 탄성적으로 지지하게 된다. 탄성지지부(119)는 제 1 범프부(115)와 제 2 범프부(116)가 탄성지지부(119)에 영향을 받지 않고, 상부접촉부(111a)와 하부접촉부(111b)에서 노출되도록, 기판부(111)에 결합된 것이 바람직하다.
예컨대, 탄성지지부(119)는 도 6에 도시된 바와 같이, 상부접촉부(111a)를 제외한 기판부(111)의 일면을 둘러싸고, 하부접촉부(111b)를 제외한 기판부(111)의 다른 일면을 둘러싸는 블럭구조로 기판부(111)에 결합될 수 있다.
또는, 탄성지부(119)는 도 8(a)에 도시된 바와 같이 기판부(111)와의 접촉면이 판판한 구조를 가진 블럭 구조를 가질 수도 있고, 도 8(b) 및 도 8(c)에 도시된 바와 같이 블럭형 구조를 가질 수 있다.
고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법
이하에서는 도 9 및 도 10을 참조하여, 고주파 디바이스 테스트용 양방향 도전성 모듈(110)을 제조하는 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법에 대해 설명하기로 한다. 도 9 및 도 10d에는 본 발명의 일 실시예에 따른 고주파 디바이스 테스트용 양방향 도전성 모듈의 조립공정도를 개략적으로 도시한 것이다.
우선, 도 9(a)에 도시된 바와 같이, 절연시트(112)가 마련된다(A 단계). 절연시트(112)는 상술했듯이 전류가 통하지 않는 재질인 PI필름이 사용될 수 있다.
다음으로, 도 9(b)에 도시된 바와 같이, 절연시트(112)가 도금되어, 절연시트(112)의 표면에 베이스도금층이 형성된다(B 단계). 이후, 절연시트(112)의 일면에서 베이스도금층이 패터닝처리되어 복수의 제 1 도전성패턴(113)이 형성된다(C 단계). 복수의 제 1 도전성패턴(113)은 기판부(111)의 반도체소자(10)의 접촉시 반도체소자의 단자(11)와 전기적으로 연결되는 부분이다.
그리고, 절연시트(112)의 다른 일면에서 베이스도금층이 패터닝처리되어 복수의 제 2 도전성패턴(114)이 형성된다(C 단계). 복수의 제 2 도전성패턴(114)은 기판부(111)의 검사회로기판(20)과의 접촉시, 검사회로기판의 단자(21)와 전기적으로 연결되는 부분이다.
여기서, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)은 반도체소자(10)에 마련된 복수의 단자 간의 피치간격에 따라 절연시트(112)에 패터닝될 수 있다. 반도체소자의 단자(11) 간의 피치간격은 반도체소자(10)의 종류 및 크기에 따라 임의적으로 가변될 수 있는 바, 본 명세서에서는 복수의 제 1 도전성패턴(113) 간의 피치간격 및/또는 복수의 제 2 도전성패턴(114) 간의 피치간격에 대해서는 구체적인 언급을 생략하기로 한다.
이후, 도 9(c)에 도시된 바와 같이, 도전성분말이 복수의 제 1 도전성패턴(113)의 표면에 오돌토돌하게 부착되어 제 1 범프부(115)를 형성하고, 복수의 제 2 도전성패턴(114)의 표면에 오돌토돌하게 부착되어 제 2 범프부(116)를 형성한다.
이후, 상부와 하부가 절곡된 구조를 가진 성형금형(40)이 준비되면, 도10(e)에 도시된 바와 같이, 기판부(111)가 성형금형(40)에 접촉되어 성형금형(40)의 형상대로 유선형으로 휘어진다. 이러한 과정에 의해, 기판부(111)는 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)이 서로 다른 방향을 향하도록 절곡된다(D 단계). 성형금형(40)은 도 9(d)에 도시된 바와 같은 형상을 가질 수도 있는데, 이는 예시적인 형상한정이며, 당업자의 입장에서 자명한 범위 내의 다양한 블럭구조가 사용될 수 있음은 물론이다.
다음으로, 도10(f)에 도시된 바와 같이, 기판부(111)가 성형금형몰드(50)에 연결된다. 이후, 실리콘이 성형금형몰드(50)로 주입된다. 성형금형몰드(50)로 주입된 실리콘이 경화되면서, 탄성지지부(119)가 형성된다(E 단계).
상술한 바와 같은 단계에 의해 제작된 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 기판부(111)와 탄성지지부(119)가 일체형으로 연결된 구조를 가진다. 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 탄성지지부(119)로 인해, 일면과 다른 일면이 서로 다른 방향을 향하도록 절곡된 기판부(111)가 반도체소자(10)의 검사시 가해지는 압력에 의해 상하방향으로 탄성지지된다. 상기 공정에 따라 제작된 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 도10(g)에 도시된 바와 같은 단면을 가질 수 있다.
한편, 상기와 같은 공정 외에, 본 발명은 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)의 안정적인 전기적 연결구조를 위해, 다음과 같은 과정이 추가적으로 수행될 수 있다.
C단계후, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)에는 니켈도금공정과 금도금정이 수행된다. 일차적으로 니켈공정이 수행된 후에, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)의 통전효율을 증대시키기 위해, 전류전도도가 높은 재질인 금을 니켈도금된 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)에 다시 도금할 수 있다.
니켈도금공정과 금도금공정은 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)을 전기적으로 연결하기 위한 것이다. 니켈도금공정과 금도금공정은 비아홀 메꿈 도금공정을 통해 수행될 수 있으나, 반드시 이에 한정되는 것은 아니며, 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)의 각각에만 니켈도금층(117a) 및/또는 금도금층(117b)을 형성할 수 있다면, 당업자의 입장에서 자명한 범위 내에서 다양한 도금 공정이 적용될 수 있음은 물론이다. 니켈도금층(117a)과 금도금층(117b)이 형성된 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 도 11에 도시된다.
한편, 상술한 바와 같은 니켈도금공정 및/또는 금도금공정을 수행하지 않고, 도전성 라인(118)을 통해 복수의 제 1 도전성패턴(113)과 복수의 제 2 도전성패턴(114)을 각각 연결할 수 있다. 이는, E 단계후 수행되는 것이 바람직하다.
상기와 같은 방식으로 제작된 고주파 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체소자(10)의 일면에 마련된 복수의 단자와 접촉가능한 도전성패턴을 미세하게 집적화하여 패터닝함으로써, 기존의 포고핀 의 불량으로 인한 반도체소자의 단자(11)와 검사회로기판의 단자(21) 간의 전기적 단락을 방지하여, 반도체소자(10)의 테스트 효율을 증대시킬 수 있다.
아울러, 본 발명은 FPCB에 도전성패턴을 패터닝하는 방식을 이용하여, 반도체소자(10)의 복수의 단자에 접촉되는 부분과 검사회로기판(20)의 복수의 단자에 접촉되는 부분을 미세한 크기로 하나의 모듈에 구현할 수 있어, 기술의 발전으로 인해 기존에 반도체소자(10)를 테스트하기 위해 사용되는 포고핀 타입 또는 PCR소켓 타입에서는 테스트하기 어려운 초소형의 반도체소자(10)를 테스트할 수 있는 고주파 디바이스 테스트용 양방향 도전성 소켓(100)을 용이하게 제작할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.

Claims (11)

  1. 일면이 반도체소자를 향하고 다른 일면이 검사회로기판을 향하도록 절곡된 구조를 가진 기판부;
    상기 기판부의 일면에 상기 반도체소자의 단자에 각각 전기적으로 연결되는 복수의 제 1 도전성패턴;
    상기 기판부의 다른 일면에 상기 검사회로기판의 단자와 상기 복수의 제 1 도전성패턴에 각각 전기적으로 연결되는 복수의 제 2 도전성패턴; 및
    상기 기판부를 탄성지지토록 상기 기판부에 연결된 탄성지지부를 포함하여,
    상기 반도체소자와 상기 검사회로기판 사이에 설치되어, 상기 반도체소자의 단자와 상기 검사회로기판의 단자를 전기적으로 연결하는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈.
  2. 제 1 항에 있어서, 상기 기판부는
    상기 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프부; 및
    상기 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프부를 더 포함하고,
    상기 제 1 범프부와 상기 제 2 범프부는 도전성 분말에 의해 형성된 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈.
  3. 제 1 항에 있어서, 상기 기판부는
    상기 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프부;
    상기 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프부; 및
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴에 도금되어, 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴을 전기적으로 연결하는 도금층을 포함하고,
    상기 제 1 범프부와 상기 제 2 범프부는 비도전성 분말에 의해 형성된 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈.
  4. 제 1 항에 있어서, 상기 기판부는,
    유연하게 휘어지는 구조를 가진 절연시트;
    상기 절연시트의 일면이 도금처리된 후 패터닝되어 형성된 상기 복수의 제 1 도전성패턴; 및
    상기 절연시트의 다른 일면이 도금처리된 후 패터닝되어 형성된 상기 복수의 제 2 도전성패턴으로 이루어진 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈.
  5. 제 4 항에 있어서,
    상기 복수의 제 1 도전성패턴은 상기 절연시트의 일면에서 상호 간에 일정한 피치간격으로 이격되어 일렬로 나열되게 형성되고,
    상기 복수의 제 2 도전성패턴은 상기 절연시트의 다른 일면에서 상호 간에 일정한 피치간격으로 이격되어 일렬로 나열되게 형성되고,
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴은 상기 도금처리에 의해 전기적으로 연결된 구조를 가지는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈.
  6. 제 4 항에 있어서,
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴은 도전성 라인에 의해 각각 전기적으로 연결되는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈.
  7. 제 1 항의 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈; 및
    반도체소자의 단자방향에 따라, 단위모듈화된 상기 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈가 상기 반도체소자의 단자와 접촉되도록, 상기 적어도 하나의 고주파 디바이스 테스트용 양방향 도전성 모듈의 설치위치를 고정하는 하우징을 포함하고,
    상기 반도체소자와 검사회로기판에 전기적으로 연결되어, 상기 반도체소자의 양호불량여부를 테스트하는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 소켓.
  8. (A) 절연시트가 마련되는 단계;
    (B) 상기 절연시트가 도금되어, 상기 절연시트의 표면에 베이스도금층이 형성되는 단계;
    (C) 상기 절연시트의 일면에서, 상기 베이스도금층이 패터닝처리되어 반도체소자의 단자와 전기적으로 연결되는 복수의 제 1 도전성패턴이 형성되고, 상기 절연시트의 다른 일면에서 상기 베이스도금층이 패터닝처리되어 검사회로기판의 단자와 전기적으로 연결되는 복수의 제 2 도전성패턴이 형성된 기판부가 마련되는 단계;
    (D) 상기 기판부가 성형금형에 접촉되어 상기 성형금형의 형상대로 유선형으로 휘어지면서, 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 서로 다른 방향을 향하도록 절곡되는 단계; 및
    (E) 상기 기판부가 성형금형몰드에 연결되고, 실리콘이 상기 성형금형몰드로 주입된 후 경화되어 형성되어, 상기 기판부를 탄성지지하는 탄성지지부가 마련되는 단계를 포함하고,
    상기 기판부가 상기 반도체소자와 상기 검사회로기판 사이에 위치되면, 상기 복수의 제 1 도전성패턴은 상기 반도체소자의 단자와 전기적으로 연결되고, 상기 복수의 제 2 도전성패턴은 상기 검사회로기판의 단자에 전기적으로 연결되어, 상기 반도체소자와 상기 검사회로기판을 전기적으로 연결하는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  9. 제 8 항에 있어서, 상기 C 단계후,
    도전성분말이 상기 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 부착되어 제 1 범프부를 형성하고, 상기 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 부착되어 제 2 범프부를 형성하는 단계를 더 포함하는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  10. 제 8 항에 있어서, 상기 C단계후,
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 니켈도금되는 단계; 및
    니켈도금된 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 금도금되는 단계를 더 포함하고,
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴은 상기 니켈도금 및 상기 금도금에 의해 전기적으로 연결되는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  11. 제 8 항에 있어서, 상기 E 단계후,
    상기 복수의 제 1 도전성패턴와 상기 복수의 제 2 도전성패턴는 도전성 라인에 의해 각각 전기적으로 연결되는 단계를 더 포함하는 것을 특징으로 하는 고주파 디바이스 테스트용 양방향 도전성 모듈 제조방법.
PCT/KR2015/006757 2015-04-17 2015-07-01 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법 WO2016167412A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017512624A JP2017517863A (ja) 2015-04-17 2015-07-01 高周波デバイスのテスト用両方向導電性ソケット、高周波デバイスのテスト用両方向導電性モジュール及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150054280A KR20160124347A (ko) 2015-04-17 2015-04-17 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
KR10-2015-0054280 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016167412A1 true WO2016167412A1 (ko) 2016-10-20

Family

ID=57126882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006757 WO2016167412A1 (ko) 2015-04-17 2015-07-01 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법

Country Status (3)

Country Link
JP (1) JP2017517863A (ko)
KR (1) KR20160124347A (ko)
WO (1) WO2016167412A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447833B1 (ko) * 2018-02-09 2022-09-27 주성엔지니어링(주) 전력 인터페이스
KR102446242B1 (ko) * 2022-07-13 2022-09-21 강경훈 플렉시블 단말부 보호구조를 갖는 전자모듈 검사용 테스트 소켓
KR102651424B1 (ko) * 2023-12-19 2024-03-26 주식회사 피엠티 칩 테스트 소켓

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471151A (en) * 1990-02-14 1995-11-28 Particle Interconnect, Inc. Electrical interconnect using particle enhanced joining of metal surfaces
JP2003185700A (ja) * 2001-12-14 2003-07-03 Advantest Corp Icソケット
JP2004171905A (ja) * 2002-11-20 2004-06-17 Dainippon Printing Co Ltd 電子デバイス検査用コンタクトシートおよびその製造方法
KR20090008475A (ko) * 2006-06-12 2009-01-21 가부시키가이샤후지쿠라 소켓과 그 제조방법 및 반도체 장치
KR101339124B1 (ko) * 2012-12-28 2013-12-09 에이케이이노텍주식회사 반도체 테스트 소켓 및 그 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304806A (ja) * 1999-04-20 2000-11-02 Mitsubishi Electric Corp 半導体機器のテスト用ソケット
JP2007027093A (ja) * 2005-07-12 2007-02-01 Alps Electric Co Ltd 接続部材及びその製造方法、ならびに前記接続部材を有する接続部材実装構造及びその製造方法
JP2011228215A (ja) * 2010-04-22 2011-11-10 Nhk Spring Co Ltd 接続端子、コネクタ、ソケットおよび半導体パッケージ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471151A (en) * 1990-02-14 1995-11-28 Particle Interconnect, Inc. Electrical interconnect using particle enhanced joining of metal surfaces
JP2003185700A (ja) * 2001-12-14 2003-07-03 Advantest Corp Icソケット
JP2004171905A (ja) * 2002-11-20 2004-06-17 Dainippon Printing Co Ltd 電子デバイス検査用コンタクトシートおよびその製造方法
KR20090008475A (ko) * 2006-06-12 2009-01-21 가부시키가이샤후지쿠라 소켓과 그 제조방법 및 반도체 장치
KR101339124B1 (ko) * 2012-12-28 2013-12-09 에이케이이노텍주식회사 반도체 테스트 소켓 및 그 제조 방법

Also Published As

Publication number Publication date
KR20160124347A (ko) 2016-10-27
JP2017517863A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2013151316A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓 및 그 제조방법
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2014129784A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓
WO2013162343A1 (ko) 위치정렬이 용이한 테스트용 소켓
WO2019216503A1 (ko) 반도체소자 테스트소켓
WO2011087215A2 (ko) 프로브 카드
KR101193556B1 (ko) 피씨비 일체형 테스트 소켓
WO2014204161A2 (ko) 검사용 인서트
WO2011004956A1 (en) Probe card
WO2015046786A1 (ko) 반도체 칩 검사장치
WO2018135674A1 (ko) 양방향 도전성 패턴 모듈
WO2016167412A1 (ko) 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
WO2012169831A2 (ko) 칩 검사용 프로브 장치
WO2015102304A1 (ko) 시트형 커넥터 및 전기적 커넥터 장치
WO2015156653A1 (ko) 검사용 시트의 제조방법 및 검사용 시트
KR101162175B1 (ko) 반도체 테스트 소켓
WO2013100560A1 (ko) 전기적 콘택터 및 전기적 콘택터의 제조방법
WO2017111198A1 (ko) 반도체 테스트용 양방향 컨텍트 모듈 및 이를 이용한 반도체 테스트 소켓
WO2011099822A2 (ko) 테스트 소켓
WO2019245153A1 (ko) 판 스프링 타입의 연결핀
KR101311752B1 (ko) 반도체 테스트용 콘텍터 및 그 제조방법
WO2017061656A1 (ko) 켈빈 테스트용 프로브, 켈빈 테스트용 프로브 모듈 및 그 제조방법
WO2019039628A1 (ko) 레이저 가공 기술이 적용된 양방향 도전성 모듈 및 그 제조방법
KR101391799B1 (ko) 반도체 테스트용 도전성 콘택터
WO2017209357A1 (ko) 양방향 도전성 핀, 양방향 도전성 패턴 모듈 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017512624

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889292

Country of ref document: EP

Kind code of ref document: A1