WO2016167174A1 - 燃料供給装置および燃料供給方法 - Google Patents

燃料供給装置および燃料供給方法 Download PDF

Info

Publication number
WO2016167174A1
WO2016167174A1 PCT/JP2016/061405 JP2016061405W WO2016167174A1 WO 2016167174 A1 WO2016167174 A1 WO 2016167174A1 JP 2016061405 W JP2016061405 W JP 2016061405W WO 2016167174 A1 WO2016167174 A1 WO 2016167174A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
hydraulic
piston
fuel supply
reciprocating
Prior art date
Application number
PCT/JP2016/061405
Other languages
English (en)
French (fr)
Inventor
真 鴻巣
誠一 北村
聯蔵 神田
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to US15/566,688 priority Critical patent/US10012195B2/en
Priority to KR1020177026355A priority patent/KR101858462B1/ko
Priority to CN201680016887.0A priority patent/CN107614863B/zh
Publication of WO2016167174A1 publication Critical patent/WO2016167174A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/12Feeding by means of driven pumps fluid-driven, e.g. by compressed combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/241Acceleration or vibration sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/245Position sensors, e.g. Hall sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/06Feeding by means of driven pumps mechanically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M39/00Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
    • F02M39/02Arrangements of fuel-injection apparatus to facilitate the driving of pumps; Arrangements of fuel-injection pumps; Pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/023Injectors structurally combined with fuel-injection pumps characterised by the pump drive mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/042Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being cams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel supply device and a fuel supply method for supplying fuel to an internal combustion engine such as a diesel engine.
  • a reciprocating pump is driven by changing a rotary motion to a reciprocating motion using a crankshaft.
  • the piston stroke is determined by the crankshaft, so that the piston stroke cannot be freely adjusted.
  • each of the reciprocating pumps cannot be controlled independently.
  • Patent Document 1 describes a device for increasing the pressure of liquid fuel using a reciprocating pump and supplying the fuel to an engine.
  • a piston of a reciprocating pump is driven in the left-right direction, and a “linear hydraulic motor” (hydraulic cylinder unit) is used as a linear actuator for driving the piston.
  • the moving direction of the piston of the reciprocating pump is switched by switching the direction of hydraulic oil supplied from the hydraulic pump to the hydraulic cylinder unit with a direction switching valve.
  • the reciprocating pump can be driven at a lower speed than when the crankshaft is used. Further, there is an advantage that the piston stroke can be controlled so that the piston moves at a constant speed.
  • an object of the present invention is to provide a fuel supply device and a fuel supply method that can suppress cavitation generated in a reciprocating pump.
  • a first aspect of the present invention is a fuel supply device that supplies fuel into a combustion chamber of an internal combustion engine, and includes a linear actuator and a boosting piston that is driven by the linear actuator and reciprocates in an axial direction.
  • a reciprocating pump that alternately repeats the suction of the fuel and the discharge of the fuel whose pressure is higher than that at the time of the suction by reciprocating in the axial direction, and a controller that controls the driving of the linear actuator.
  • the controller is When the amplitude of the boosting piston reciprocating in the axial direction is A (A> 0) and the reciprocating period is T, The maximum value of the acceleration that increases the absolute value of the speed of the boosting piston when the reciprocating pump sucks the fuel is smaller than A ⁇ (2 ⁇ / T) 2 , and The linear actuator is controlled so that the maximum absolute value of acceleration of the boosting piston when the reciprocating pump discharges the fuel is larger than A ⁇ (2 ⁇ / T) 2.
  • a second aspect of the present invention is a fuel supply device that supplies fuel into a combustion chamber of an internal combustion engine, wherein a low-pressure fuel supply pipe that is supplied with low-pressure fuel, and a high-pressure fuel that is supplied into the combustion chamber.
  • a plurality of fuels provided between the high-pressure fuel supply pipe to be supplied, the low-pressure fuel supply pipe, and the high-pressure fuel supply pipe, and pressurize the fuel in the low-pressure fuel supply pipe and supply the fuel to the high-pressure fuel supply pipe, respectively.
  • Each of the fuel supply units A fuel supply device for supplying fuel into a combustion chamber of an internal combustion engine, comprising: a linear actuator; a boosting piston driven by the linear actuator and reciprocating in an axial direction; and the boosting piston reciprocating in an axial direction And a reciprocating pump that alternately repeats the intake of the fuel and the discharge of the fuel whose pressure is higher than that at the time of intake, and a controller that controls the drive of the linear actuator.
  • the controller is When the amplitude of the boosting piston reciprocating in the axial direction is A (A> 0) and the reciprocating period is T, The maximum value of the acceleration that increases the absolute value of the speed of the boosting piston when the reciprocating pump sucks the fuel is smaller than A ⁇ (2 ⁇ / T) 2 , and Controlling the linear actuator such that the maximum value of the acceleration of the boosting piston when the reciprocating pump discharges the fuel is greater than A ⁇ (2 ⁇ / T) 2 ;
  • the control unit controls each of the controllers so that when one of the plurality of fuel supply units boosts the cylinder, the boost cylinder of the other fuel supply unit sucks the fuel. It is characterized by that.
  • the controller is configured such that when the acceleration of the boosting piston when the reciprocating pump sucks the fuel becomes maximum, after the reciprocating pump starts sucking the fuel, It is preferable to control the linear actuator so that a time of 1 ⁇ 4 of the period elapses from when inhalation is started.
  • the reciprocating pump includes a boosting cylinder that accommodates a boosting piston movably in the vertical direction, and the boosting piston moves in the vertical upward direction so that the boosting piston is inside the boosting cylinder. It is preferable that the fuel is sucked into a lower portion of the piston, and the fuel is boosted and discharged by moving the boosting piston vertically downward.
  • the linear actuator is a hydraulic cylinder unit, has a hydraulic oil storage space for storing hydraulic oil, and is arranged so that the axial direction is a vertical direction, and moves in the axial direction within the hydraulic cylinder
  • a hydraulic piston that divides the hydraulic oil storage space into a first chamber and a second chamber; a piston rod that connects the hydraulic piston and the boosting piston; and hydraulic oil to the first chamber.
  • a hydraulic pump that moves the hydraulic piston in a first axial direction by supplying it, and moves the hydraulic piston in a second axial direction by supplying hydraulic oil to the second chamber;
  • An electric motor that drives the hydraulic pump so that the hydraulic piston reciprocates in the axial direction.
  • the controller preferably controls movement of the hydraulic piston in the hydraulic cylinder by controlling the electric motor.
  • the hydraulic cylinder unit has one end connected to the hydraulic pump and the other end connected to the first chamber.
  • the hydraulic cylinder unit supplies all the hydraulic oil discharged from the hydraulic pump to the first chamber.
  • a closed first hydraulic pipe that returns all the hydraulic oil discharged from the hydraulic pump to the hydraulic pump, one end connected to the hydraulic pump, the other end connected to the second chamber, and discharged from the hydraulic pump It is preferable to further include a sealed second hydraulic pipe for supplying all the hydraulic oil to the second chamber and returning all the hydraulic oil discharged from the second chamber to the hydraulic pump.
  • the linear actuator may be an electric cylinder unit.
  • the electric cylinder unit is connected to the boosting piston in a state in which the electric motor, a ball nut rotated by the power of the electric motor, and the ball nut are screwed and the axial direction coincides with the axial direction of the boosting piston.
  • a ball screw that moves in the axial direction by the rotation of the ball nut, and the controller preferably controls the movement of the ball screw in the axial direction by controlling the electric motor.
  • a third aspect of the present invention is a fuel supply method for supplying fuel into a combustion chamber of an internal combustion engine,
  • a reciprocating pump having a boosting piston driven by a linear actuator and reciprocating in the axial direction, wherein the boosting piston reciprocates in the axial direction and alternately repeats the intake of the fuel and the discharge of the boosted fuel as compared with the time of intake.
  • the amplitude of the boosting piston reciprocating in the axial direction is A (A> 0) and the reciprocating period is T.
  • the maximum value of the acceleration that increases the absolute value of the speed of the boosting piston when the reciprocating pump sucks the fuel is smaller than A ⁇ (2 ⁇ / T) 2 , and
  • the linear actuator is controlled so that the maximum absolute value of acceleration of the boosting piston when the reciprocating pump discharges the fuel is larger than A ⁇ (2 ⁇ / T) 2.
  • FIG. 2 is a cross-sectional view of the linear actuator 30 and the reciprocating pump 50 during fuel suction.
  • FIG. 2 is a cross-sectional view of the linear actuator 30 and the reciprocating pump 50 when fuel is discharged.
  • FIG. It is a figure which shows an example of the time change of the speed of the piston 52 for pressure
  • 2 is a view showing a fuel supply unit using an electric cylinder unit as a linear actuator 30.
  • the fuel supply device 10 of the present embodiment is a device that pressurizes and heats liquid fuel and injects it into the combustion chamber of the internal combustion engine 90 at a high pressure.
  • the internal combustion engine 90 is a prime mover that burns fuel in a combustion chamber in a cylinder and works by its thermal energy, such as a reciprocating engine or a gas turbine.
  • a diesel engine that compresses and ignites fuel is preferably used as the internal combustion engine 90.
  • a case where a diesel engine mounted on a ship is used as the internal combustion engine 90 will be described.
  • the present invention can also be applied to a fuel supply apparatus for a diesel engine other than a ship.
  • the fuel supply apparatus 10 includes a liquid fuel tank 11, a low-pressure fuel supply pipe 12, a plurality of fuel supply units 20A, 20B, and 20C, a high-pressure fuel supply pipe 13, and a heat exchanger 14.
  • the high-temperature fuel supply pipe 15, the pressure regulating valve 16, the pressure gauge 17, and the control unit 80 are provided. All these components of the fuel supply device 10 are mounted on a ship.
  • the liquid fuel tank 11 stores the fuel supplied to the internal combustion engine 90 in a liquid state.
  • the liquid fuel stored in the liquid fuel tank 11 for example, liquefied methane, liquefied ethane, liquefied propane, or the like can be used.
  • the liquid fuel tank 11 is connected to the low-pressure fuel supply pipe 12 and supplies the liquid fuel to the fuel supply units 20A, 20B, and 20C via the low-pressure fuel supply pipe 12.
  • the pressure of the liquid fuel in the low-pressure fuel supply pipe 12 at the connection with the fuel supply units 20A, 20B, and 20C is a pressure corresponding to the temperature of the liquid fuel in the liquid fuel tank 11, the liquid level height, and the like. .
  • the liquid fuel tank 11 includes the fuel supply units 20A and 20B. , 20C higher than the position.
  • an effective suction head is secured by increasing the pressure of the liquid fuel in the liquid fuel tank 11 by a booster pump that supplies the liquid fuel to the liquid fuel tank 11. Also good.
  • the fuel supply units 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C are provided in parallel between the low pressure fuel supply pipe 12 and the high pressure fuel supply pipe 13.
  • Each of the fuel supply units 20A, 20B, and 20C includes a controller 21, a linear actuator 30, and a reciprocating pump 50.
  • the reciprocating pump 50 pressurizes the liquid fuel supplied from the low pressure fuel supply pipe 12 and supplies it to the heat exchanger 14 through the high pressure fuel supply pipe 13.
  • the low-pressure fuel pipe 12 and the high-pressure fuel supply pipe 13 are detachable from the fuel supply units 20A, 20B, and 20C.
  • the linear actuator 30 drives the piston of the reciprocating pump 50.
  • the piston of the reciprocating pump 50 is driven at a lower speed than in the case of using the crankshaft.
  • the drive can be controlled so that the piston moves at a constant speed.
  • a hydraulic cylinder unit, an electric cylinder unit, or the like can be used as the linear actuator 30.
  • the controller 21 is controlled by a control signal input from the control unit 80 and controls the linear actuator 30.
  • the controller 21 receives a position signal indicating the position of the piston of the reciprocating pump 50, as will be described later.
  • the controller 21 controls the position of the linear actuator 30 so that the discharge amount of the reciprocating pump 50 is adjusted according to the position signal.
  • three fuel supply units 20A, 20B, and 20C are provided in parallel between the low pressure fuel supply pipe 12 and the high pressure fuel supply pipe 13, but the number of fuel supply parts is not limited thereto. However, it can be arbitrarily changed according to the amount of fuel to be supplied.
  • the heat exchanger 14 has an inlet side connected to the high-pressure fuel supply pipe 13 and an outlet side connected to the high-temperature fuel supply pipe 15.
  • the heat exchanger 14 heats the pressurized liquid fuel supplied through the high-pressure fuel supply pipe 13.
  • a heat source for heating the liquid fuel for example, combustion heat of boil-off gas generated in the liquid fuel tank 11 can be used.
  • the liquid fuel may be heated by heat exchange with warm water heated by the combustion heat of boil-off gas.
  • the high temperature fuel supply pipe 15 is provided with a pressure regulating valve 16, and one end of the high temperature fuel supply pipe 15 is connected to the heat exchanger 14 and the other end is connected to the combustion chamber of the internal combustion engine 90.
  • the liquid fuel heated by the heat exchanger 14 is regulated to a pressure within a predetermined range required by the internal combustion engine 90 by the pressure regulating valve 16, and then is supplied to the combustion chamber of the internal combustion engine 90 through the high temperature fuel supply pipe 15. Supplied.
  • the pressure regulating valve 16 is controlled by the control unit 80.
  • the pressure in a predetermined range required by the internal combustion engine 90 varies depending on the type and performance of the internal combustion engine 90.
  • the pressure in a predetermined range is, for example, 5 to 100 MPa, preferably 20 to 70 MPa, but the present invention is not limited to this.
  • the high temperature fuel supply pipe 15 is provided with a pressure gauge 17.
  • the pressure gauge 17 measures the pressure in the high temperature fuel supply pipe 15 and outputs a measurement signal to the control unit 80.
  • a signal indicating the load on the internal combustion engine 90 is input from the internal combustion engine 90 to the control unit 80.
  • the signal indicating the load of the internal combustion engine 90 is a signal indicating the rotational speed, for example.
  • the control unit 80 adjusts the discharge amount of the reciprocating pump 50 by outputting a control signal to the fuel supply units 20A, 20B, and 20C.
  • the discharge amount of the reciprocating pump 50 is adjusted so that the pressure in the high-temperature fuel supply pipe 15 becomes a pressure corresponding to the required load of the internal combustion engine 90. Note that the number of revolutions of a propulsion propeller (not shown) driven by the internal combustion engine 90 may be measured, and the pressure in the high-temperature fuel supply pipe 15 may be adjusted according to the number of revolutions.
  • the liquid fuel tank 11, the low-pressure fuel supply pipe 12, the linear actuator 30, the reciprocating pump 50, the high-pressure fuel supply pipe 13, the heat exchanger 14, the high-temperature fuel supply pipe 15, the pressure regulating valve 16, and the pressure gauge 17 are arranged in the hazardous area. Is done.
  • the controller 21 and the control unit 80 are generally non-explosion-proof compatible products. However, when the explosion-proof response is not possible, the controller 21 and the control unit 80 are disposed in the non-hazardous area separated from the dangerous area by the explosion-proof partition wall, or are sufficient from the dangerous area. Must be located in a non-explosion-proof area at a distance from each other.
  • the linear actuator 30 is not limited to the hydraulic cylinder unit. 2 and 3, the vertical direction coincides with the vertical direction, and the horizontal direction coincides with the horizontal direction.
  • the upward direction in the vertical direction is referred to as “upper”, the upper portion is referred to as “upper”, the lower portion in the vertical direction is referred to as “lower”, and the lower portion is referred to as “lower”.
  • the linear actuator 30 and the reciprocating pump 50 arranged so that the axial direction is the vertical direction will be described.
  • the present invention is not limited to this, and the case where the axial direction is the horizontal direction and the angle
  • the linear actuator 30 and the reciprocating pump 50 arranged so as to be in the direction in which they are provided may be used.
  • the linear actuator 30 and the reciprocating pump 50 are arranged with the axial direction oriented in the vertical direction. 2 and 3, an example in which the reciprocating pump 50 is disposed below the linear actuator 30 will be described. However, the reciprocating pump 50 may be disposed above the linear actuator 30.
  • the hydraulic cylinder unit (linear actuator 30) includes an electric motor 31, a hydraulic pump 32, a first hydraulic pipe 33, a second hydraulic pipe 34, a fixed portion 40, a hydraulic cylinder 41, A hydraulic piston 42 is provided.
  • the hydraulic cylinder unit is provided on the top plate 101 of the gantry 100.
  • the top plate 101 is supported by legs 102, and the legs 102 are fixed to a structure such as a ship deck or an inner bottom plate.
  • the electric motor 31 is provided on the top of the top plate 101.
  • the electric motor 31 is controlled by the controller 21 and drives the hydraulic pump 23.
  • the hydraulic pump 32 is provided on the top plate 101.
  • the hydraulic pump 32 is driven by the electric motor 31 and supplies hydraulic oil into the hydraulic cylinder 41 to move the hydraulic piston 42 in the vertical direction.
  • the hydraulic oil any hydraulic oil can be employed from petroleum hydraulic oil, synthetic hydraulic oil, water-forming hydraulic oil and the like.
  • the hydraulic pump 32 is connected to the first hydraulic pipe 33 and the second hydraulic pipe 34.
  • the hydraulic pump 32 is driven by an electric motor 31.
  • the electric motor 31 is a servo motor
  • the direction in which the hydraulic oil is discharged from the hydraulic pump 32 is switched according to the forward and reverse rotation directions of the electric motor 31.
  • the hydraulic pump 32 sucks the hydraulic oil in the first hydraulic pipe 33 and discharges the sucked hydraulic oil to the second hydraulic pipe 34 side.
  • the hydraulic pump 32 sucks the hydraulic oil in the second hydraulic pipe 34 and discharges the sucked hydraulic oil to the first hydraulic pipe 33 side.
  • a direction switching valve is not necessary for the first hydraulic pipe 33 and the second hydraulic pipe 34.
  • the electric motor 31 is an inverter motor
  • the direction in which the hydraulic oil flows is changed by a direction switching valve (not shown) provided in the first hydraulic pipe 33 and the second hydraulic pipe 34.
  • the flow rate and pressure of the hydraulic oil in the first hydraulic pipe 33 and the second hydraulic pipe 34 are determined by the discharge amount of the hydraulic pump 32.
  • the electric motor 31 is a servo motor and the electric motor 31 is an inverter motor
  • the flow rate and pressure of the hydraulic oil can be adjusted by the rotational speed of the electric motor 31.
  • the fixing part 40 is fixed to the top plate 101 in a state of being arranged in an opening 101a provided in the top plate 101.
  • a hydraulic cylinder 41 is fixed to the upper part of the fixed part 40, and a reciprocating pump 50 is fixed to the lower part of the fixed part 40.
  • the fixed part 40 has a hollow cylindrical shape, and a cavity part 48 is provided inside.
  • the hydraulic cylinder 41 has a hydraulic oil storage space 43 for storing hydraulic oil, and is placed on the top surface of the top plate 101 so that the axial direction is the vertical direction. Further, an upper through hole 44 that communicates with the upper end portion of the hydraulic oil storage space 43 and a lower through hole 45 that communicates with the lower end portion of the hydraulic oil storage space 43 are provided on the side wall of the hydraulic cylinder 41. The outer opening of the upper through hole 44 is connected to the first hydraulic pipe 33, and the outer opening of the lower through hole 45 is connected to the second hydraulic pipe 34.
  • the piston piston 42b is provided in the hydraulic piston 42.
  • the hydraulic piston 42 has a piston ring 42b in contact with the inner wall surface of the hydraulic oil storage space 43 of the hydraulic cylinder 41, and the rider ring 42a accommodated in the hydraulic oil storage space 43 is movable in the vertical direction. It plays a role of correcting horizontal shake when moving in the vertical direction.
  • the piston ring 42 b serves to close the gap between the hydraulic piston 42 and the inner wall surface of the hydraulic oil storage space 43.
  • the hydraulic piston 42 divides the hydraulic oil accommodating space 43 into an upper chamber 43 a (second chamber) above the hydraulic piston 42 and a lower chamber 43 b (first chamber) below the hydraulic piston 42.
  • the hydraulic piston 42 is a double rod type, and has a piston rod 47 that protrudes from the upper and lower portions of the hydraulic cylinder 41 to the outside. The piston rod 47 moves up and down together with the hydraulic piston 42. Since the hydraulic piston 42 is a double rod type, the amount of decrease in the volume of the upper chamber 43a when the hydraulic piston 42 is raised is equal to the amount of increase in the volume of the lower chamber 43b.
  • the hydraulic piston 42 may be a single rod type.
  • a bush 46 is provided in a portion of the hydraulic cylinder 41 through which the piston rod 47 passes. An oil seal is incorporated in the bush 46. The bush 46 supports the piston rod 47 so as to be movable up and down, and prevents hydraulic oil from leaking from the hydraulic oil storage space 43.
  • a connecting portion 49 for connecting the lower end portion of the piston rod 47 and the upper end portion of the boosting piston 52 of the reciprocating pump 50 is provided in the hollow portion 48.
  • the connecting portion 49 moves up and down in the cavity 48 as the piston rod 47 moves up and down.
  • the connecting portion 49 has a function of adjusting the axial misalignment between the piston rod 47 of the hydraulic cylinder and the piston 52 of the reciprocating pump 50.
  • the room 48 is supplied with room temperature nitrogen gas from the outside from the viewpoint of preventing gas leakage from the return pump 50. Nitrogen gas may be supplied to the rod packing portion 57 of the reciprocating pump 50.
  • Nitrogen gas may be supplied to the rod packing portion 57 of the reciprocating pump 50.
  • the reciprocating pump 50 for example, a reciprocating pump having the same structure as that described in Japanese Patent No. 5519857 can be used.
  • the reciprocating pump 50 includes a boosting cylinder 51, a boosting piston 52, a cylinder liner 53, a cover 54, a valve box 60, and the like.
  • the upper end portion of the boosting cylinder 51 is fixed to the lower end portion of the fixing portion 40.
  • the side wall of the boosting cylinder 51 is fixed to the legs 102 of the gantry 100.
  • a rod packing portion 57 is provided on the upper portion of the boosting cylinder 51.
  • the boosting cylinder 51 has a space for accommodating the boosting piston 52, the cylinder liner 53, and the valve box 60 inside, and a cover 54 is fixed to the lower end portion of the boosting cylinder 51.
  • the cylinder liner 53 and the valve box 60 are fixed in the boosting cylinder 51 by the cover 54.
  • a suction port 55 is provided on the side wall of the boosting cylinder 51 at a height at which the valve box 60 is fixed.
  • the suction port 55 is connected to the low pressure fuel supply pipe 12.
  • the cover 54 is provided with a discharge port 56 penetrating in the vertical direction.
  • the discharge port 56 is connected to the high-pressure fuel supply pipe 13.
  • the valve box 60 is provided below the boosting piston 52, and the fuel is placed inside the boosting cylinder 51 and below the boosting piston 52 by moving the boosting piston 52 vertically upward.
  • the suction port 55 of the reciprocating pump 50 can be arranged at a lower position.
  • the pressure of the liquid fuel in the low-pressure fuel supply pipe 12 at the connection portion with the suction port 55 is a pressure proportional to the difference between the height of the liquid fuel level in the liquid fuel tank 11 and the height of the suction port 55. For this reason, the pressure of the liquid fuel in the low-pressure fuel supply pipe 12 at the connection portion with the suction port 55 can be increased by arranging the suction port 55 at a lower position. As a result, fuel can be easily supplied from the suction port 55 into the pressure-increasing cylinder 51.
  • the upper end of the boosting piston 52 is connected to the lower end of the piston rod 47 by a connecting portion 49, and the boosting piston 52 moves up and down in conjunction with the piston rod 47.
  • a position sensor is provided at the upper end of the boosting piston 52. The position sensor detects the position of the boosting piston 52 in the vertical direction and outputs a position signal to the controller 21. Note that the speed of the boosting piston 52 can be obtained by differentiating the displacement of the boosting piston 52 with time using the position signal. That is, the position sensor can also be used as a speed sensor. Further, the acceleration of the boosting piston 52 can be obtained by differentiating the speed of the boosting piston 52 with respect to time. That is, the position sensor can be used as an acceleration sensor.
  • a position sensor may be attached to the hydraulic cylinder 41.
  • the magnetostrictive position sensor 70 for example, a magnetostrictive position sensor 70 or an ultrasonic sensor can be used.
  • the magnetostrictive position sensor 70 includes a sensor probe 71 (magnetostrictive line), an annular magnet 72, and a detector 73.
  • the sensor probe 71 is provided in the cavity 48 in the vertical direction.
  • the annular magnet 72 is attached to the upper end of the boosting piston 52 so as to move up and down along with the boosting piston 52 along the sensor probe 71 with the sensor probe 71 inserted in the center.
  • One end of the sensor probe 71 is provided with a detector 73 that detects distortion generated in the sensor probe 71.
  • a magnetic field in the circumferential direction around the sensor probe 71 is generated.
  • a magnetic field is applied in the axial direction of the sensor probe 71, so that a combined magnetic field oblique to the axial direction is generated.
  • This causes local torsional distortion in the sensor probe 71.
  • the detector 73 detects the torsional distortion to detect the position of the magnet 72 in the height direction, and outputs a position signal indicating the position of the boosting piston 52 in the height direction to the controller 21.
  • a rider ring 52a and a piston ring 52b are provided below the boosting piston 52.
  • the boosting piston 52 is accommodated in the cylinder liner 53 so as to be movable in the vertical direction while bringing the rider ring 52a and the piston ring 52b into contact with the inner wall surface of the cylinder liner 53.
  • the rod packing portion 57 is also equipped with a rider ring 51a. These rider rings 51a and 52a play a role of correcting horizontal shake when the boosting piston 52 moves in the vertical direction.
  • the piston ring 52b serves to close the gap between the boosting piston 52 and the inner wall surface of the cylinder liner 53 and seal the pressure of the pressurized liquid fuel at the tip.
  • the valve box 60 is fixed to the lower portion of the cylinder liner 53 in the boosting cylinder 51.
  • the valve box 60 is provided with a discharge flow path 61, a discharge valve body 62, a suction flow path 64, a suction valve body 65, and the like.
  • the discharge flow path 61 is provided so as to penetrate the valve box 60 in the vertical direction.
  • a discharge valve element 62 is accommodated in the discharge flow path 61 so as to be movable in the vertical direction.
  • the upper end portion side of the discharge channel 61 is a small diameter portion whose inner diameter is smaller than the outer diameter of the discharge valve body 62.
  • the lower opening of the narrow diameter portion is a valve seat 63 in which the discharge valve body 62 is disposed.
  • the discharge valve element 62 and the valve seat 63 constitute a discharge valve.
  • An opening on the lower side of the valve box 60 of the discharge channel 61 is provided at a position facing the discharge port 56 of the cover 54.
  • the suction flow path 64 is provided at a position communicating with the position of the boosting piston 52 on the upper surface of the valve box 60 from the outer wall of the valve box 60.
  • the opening on the outer wall side of the valve box 60 of the suction flow path 64 is provided at a position facing the suction port 55 of the boosting cylinder 51.
  • the outer peripheral portion of the opening on the upper surface side of the valve box 60 of the suction flow path 64 is a valve seat 66 for the suction valve body 65, and the suction valve body 65 can move in the vertical direction above the valve seat 66. Is provided.
  • the suction valve element 65 and the valve seat 66 constitute a suction valve.
  • the rod packing part 57 is connected to the cavity part 48 and is equipped with a seal ring so as to prevent the gas vaporized by the liquid fuel from leaking to the outside air.
  • the leaked liquid fuel that cannot be sealed by the piston ring 52 b is vaporized under a low pressure and is sealed by the rod packing portion 57.
  • nitrogen gas may be supplied to the rod packing portion 57 instead of supplying it to the cavity portion 48.
  • the rotation direction of the electric motor 31 is switched by the controller 21 and the hydraulic pump 32 is driven in the direction opposite to that in FIG. 2, and the hydraulic oil in the lower chamber 43 b is sent to the lower through hole 45 as shown in FIG. 3.
  • the hydraulic piston 42 descends in the hydraulic oil storage space 43 so that the volume of the lower chamber 43b decreases and the volume of the upper chamber 43a increases. Since the first hydraulic pipe 33 and the second hydraulic pipe do not have a branch or the like, all the hydraulic oil flowing out from the lower chamber 43b is supplied to the upper chamber 43a.
  • the hydraulic oil is alternately passed between the upper chamber 43a and the lower chamber 43b, and the hydraulic piston 42 and the booster pump are increased.
  • the piston 52 can be reciprocated in the vertical direction, and the liquid fuel sucked from the suction port 55 can be pressurized and discharged from the discharge port 56.
  • the hydraulic oil is alternately moved between the upper chamber 43a and the lower chamber 43b by switching the flow direction of the hydraulic oil by the direction switching valve.
  • the hydraulic piston 42 and the boosting piston 52 are reciprocated in the vertical direction, and the liquid fuel sucked from the suction port 55 can be boosted and discharged from the discharge port 56.
  • control is performed so that the pressure in the boosting cylinder 51 does not become lower than the vapor pressure of the fuel. Specifically, by reducing the maximum acceleration of the boosting piston 52 when the reciprocating pump 50 sucks the fuel, the pressure in the boosting cylinder 51 can be prevented from becoming lower than the vapor pressure of the fuel. .
  • the controller 21 controls the linear actuator 30 so that the maximum acceleration of the boosting piston 52 when the reciprocating pump 50 sucks fuel becomes smaller than when the reciprocating pump 50 is driven using a crankshaft.
  • the boosting piston is considered to vibrate with the same period as the crankshaft rotation period and with the same amplitude as the crankshaft rotation radius.
  • the stroke length of the boosting piston at this time is the rotational diameter of the crankshaft (twice the amplitude).
  • the controller 21 is more reciprocal than the case where the boosting piston 52 is simply oscillated with the same amplitude and the same period as when the reciprocating pump is driven using the crankshaft.
  • the linear actuator 30 is controlled so that the maximum acceleration of the boosting piston 52 is reduced when the fuel takes in the fuel.
  • the controller 21 is configured to increase the pressure when the reciprocating pump 50 sucks fuel, where A (A> 0) is the amplitude at which the pressure increasing piston 52 reciprocates in the axial direction, and T is the reciprocating period.
  • a (A> 0) is the amplitude at which the pressure increasing piston 52 reciprocates in the axial direction
  • T is the reciprocating period.
  • the maximum value of the acceleration that increases the absolute value of the speed of the piston 52 is smaller than A ⁇ (2 ⁇ / T) 2 and the acceleration of the boosting piston 52 when the reciprocating pump 50 discharges fuel.
  • the linear actuator 30 is controlled so that the maximum value of the absolute value of becomes greater than A ⁇ (2 ⁇ / T) 2 .
  • the solid line in FIG. 4 is a diagram showing an example of the change over time in the speed of the boosting piston 52 in this embodiment, where the horizontal axis is time, the vertical axis is speed, and the speed of the boosting piston 52 during discharge is positive. Yes. That is, the reciprocating pump 50 discharges fuel from time t0 to t1 when the piston speed is positive, and the reciprocating pump 50 sucks fuel from time t1 to t4 when the piston speed is negative. Also, the alternate long and short dash line in FIG. 4 represents the change over time in the speed of the boosting piston when the boosting piston is crank-driven. When the boosting piston is crank-driven, the boosting piston makes a simple vibration.
  • V A (2 ⁇ / T) sin (2 ⁇ / T) t (1)
  • a A (2 ⁇ / T) 2 cos (2 ⁇ / T) t (2)
  • the period T and the stroke are the same in the case of this embodiment (solid line) and the case of simple vibration (one-dot chain line). That is, the integral value of the velocity from time t0 to t1 (during discharge) is the same in this embodiment (solid line) and in the case of simple vibration (one-dot chain line), which is 2A. Similarly, the integral value of the velocity from time t1 to time t4 (during inhalation) is the same in the case of this embodiment (solid line) and in the case of simple vibration (dashed line), and is ⁇ 2A.
  • the solid line in FIG. 4 accelerates the boosting piston 52 from the start of suction (t1) to t2, moves the boosting piston 52 at a constant speed from t2 to t3, and ends the suction from t3.
  • the pressure increasing piston 52 is decelerated until (t4).
  • acceleration means to increase the absolute value of the speed of the boosting piston 52
  • decelerate means to decrease the absolute value of the speed of the boosting piston 52.
  • the absolute value of the acceleration of the boosting piston 52 may become the maximum value of the absolute value of the acceleration during inhalation from t1 to t2.
  • the maximum value of the absolute value of the acceleration is the maximum value of the absolute value of the gradient from t1 to t2 of the solid line in FIG.
  • the absolute value of the acceleration of the boosting piston 52 reaches the maximum between t1 and t2, it is the start of suction (t1), and the absolute value of the acceleration Is the absolute value of the slope at t1 of the alternate long and short dash line in FIG. 4, and is A (2 ⁇ / T) 2 .
  • the maximum absolute value of the acceleration of the boosting piston 52 at the time of inhalation (the maximum absolute value of the slope from the solid line t1 to t2) is a simple vibration.
  • the linear actuator 30 is controlled to be smaller than the maximum absolute value of acceleration (A (2 ⁇ / T) 2 that is the absolute value of the gradient at t1 of the dashed line). For this reason, it is possible to prevent the pressure in the boosting cylinder 51 from rapidly decreasing and to suppress the occurrence of cavitation.
  • the maximum value of the absolute value of the acceleration of the booster piston 52 at the time of inhalation is preferably smaller than A ( ⁇ / T 1 ) 2 .
  • the boosting piston 52 is set so that the maximum acceleration is at the start of inhalation. There is no need to control the speed.
  • the time when the absolute value of the acceleration of the boosting piston 52 becomes maximum is after the time when the fuel starts to be sucked (t1) and after a time of 1/4 of one cycle has passed since the time when the suction starts (t1). May also be controlled to be in front.
  • the stroke length is the height from the lowest point to the highest point when the boosting piston 52 reciprocates in the vertical direction.
  • the stroke length is set with reference to the lowest position of the boosting piston 52 in the cylinder liner 53.
  • the lowermost position of the boosting piston 52 is a position in the cylinder liner 53 where the volume of the space below the boosting piston 52 is minimized.
  • the solid line in FIG. 5 is a diagram showing another example of the change over time in the speed of the boosting piston 52 in this embodiment.
  • the horizontal axis represents time and the vertical axis represents speed, and the speed of the boosting piston during discharge is positive. It is said. That is, the reciprocating pump 50 discharges fuel from time t0 to t1 when the piston speed is positive, and the reciprocating pump 50 sucks fuel from time t1 to t5 when the piston speed is negative.
  • the alternate long and short dash line in FIG. 5 represents the time change of the speed of the boosting piston 52 when the boosting piston is crank-driven (single vibration).
  • the reciprocating pump 50 discharges fuel from the time t0 to t2 when the piston speed is positive, and the reciprocating pump from time t2 to t5 when the piston speed is negative. 50 inhales fuel.
  • the boosting piston 52 is crank-driven, the boosting piston makes a simple vibration.
  • V A (2 ⁇ / T) sin (2 ⁇ / T) t (1)
  • a A (2 ⁇ / T) 2 cos (2 ⁇ / T) t (2)
  • the period T and the stroke are the same in the case of this embodiment (solid line) and the case of simple vibration (one-dot chain line). That is, the integrated value of the velocity from the time t0 to t1 (during discharge) in the case of the present embodiment (during discharge) is the integrated value of the velocity from the time t0 to t2 in the case of simple vibration (dash line) (during discharge). And 2A.
  • the integral value of speed from time t1 to time t5 is the integral of speed from time t2 to time t5 in the case of simple vibration (dash chain line) (during suction). The value is the same as -2A.
  • the solid line in FIG. 5 accelerates the boosting piston 52 from the start of suction (t1) to t3, moves the boosting piston 52 at a constant speed from t3 to t4, and ends the suction from t4.
  • the pressure increasing piston 52 is decelerated until (t5).
  • the absolute value of the acceleration of the boosting piston 52 may become the maximum absolute value of the acceleration during inhalation from t1 to t3.
  • the maximum value of the absolute value of the acceleration is the maximum value of the absolute value of the gradient from t1 to t3 of the solid line in FIG.
  • the boosting piston vibrates simply (dashed line)
  • the absolute value of the acceleration of the boosting piston 52 becomes maximum, it is at the start of suction (t2), and the maximum absolute value of acceleration is shown in FIG.
  • the absolute value of the slope at t2 of the alternate long and short dash line is A (2 ⁇ / T) 2 .
  • the maximum absolute value of the acceleration of the boosting piston 52 during inhalation (the maximum absolute value of the slope of the solid line from t1 to t3) is a simple vibration.
  • the linear actuator 30 is controlled so as to be smaller than the maximum value of the absolute value of acceleration (A (2 ⁇ / T) 2 which is the absolute value of the gradient at t2 of the one-dot chain line). For this reason, it is possible to prevent the pressure in the boosting cylinder 51 from rapidly decreasing and to suppress the occurrence of cavitation.
  • the maximum value of the absolute value of the acceleration of the booster piston 52 at the time of inhalation is preferably smaller than A ( ⁇ / T 2 ) 2 .
  • the fuel discharge period (between t0 and t1) and the fuel intake period (between t1 and t4) in one cycle (time from t0 to t4) of the boosting piston 52. Between) is equal.
  • the period (t1) during which the fuel is sucked in rather than the period during which the fuel is discharged (between t0 and t1) in one cycle (time from t0 to t5) of the boosting piston 52. To t5) is longer.
  • the period (between t1 and t3) for accelerating the boosting piston 52 at the time of inhalation can be made longer, and the maximum absolute value of the acceleration at the time of inhalation can be further reduced.
  • the speed of the boosting piston 52 at the time of inhalation is set longer than the period (from t0 to t1) during which fuel is sucked (between t1 and t5).
  • the absolute value of the absolute value (maximum value of the absolute value of the velocity between t3 and t4 of the solid line) is made smaller than A (2 ⁇ / T) which is the maximum value of the absolute value of the velocity in the case of simple vibration Can do. For this reason, the maximum value of the absolute value of acceleration for accelerating to the maximum speed can be reduced.
  • fuel may be discharged from the reciprocating pumps 50 of other fuel supply units while the fuel is sucked by the reciprocating pump 50 of one fuel supply unit.
  • the reciprocating pump 50 in each of the three fuel supply units 20A, 20B, and 20C, in order to suck fuel in one reciprocating pump 50, the other two reciprocating pumps 50 discharge fuel. You can use the time you are doing. In other words, when the suction and discharge are performed in one cycle, each reciprocating pump 50 may perform discharge in the time of 1/3 of one cycle and perform the suction in the time of 2/3 of one cycle.
  • each reciprocating pump 50 discharges in 1 / n times of one cycle, and (n ⁇ 1) ) / N.
  • the moving speed of the boosting piston 52 when sucking in the fuel can be made slower than the speed when discharging the fuel, and the pressure in the boosting cylinder 51 is prevented from rapidly decreasing, and cavitation Can be suppressed.
  • the total amount of fuel discharged can be adjusted by adjusting the time of one cycle.
  • the time for sucking the fuel is the same as the time for discharging the fuel (FIG. 4), and the case where the time for sucking the fuel is longer than the time for discharging the fuel (FIG. 5) have been described.
  • the time for inhaling the fuel may be shorter than the time for discharging the fuel.
  • the linear actuator 30 increases the pressure by moving the boosting piston 52 in the vertical direction so that the reciprocating pump 50 sucks fuel when the boosting piston 52 is raised.
  • the gravity of the boosting piston 52 acts on the linear actuator 30 when the piston 52 is raised. For this reason, the speed at which the boosting piston 52 is raised can be reduced, and the occurrence of cavitation can be prevented.
  • the hydraulic piston 42 and the boosting piston 52 are moved in the vertical direction, the hydraulic cylinder 41 and the boosting cylinder 51 also receive vertical force as a reaction. For this reason, even if the hydraulic piston 42 and the boosting piston 52 are driven, the force acting in the horizontal direction does not act on the installation location of the hydraulic cylinder 41 and the boosting cylinder 51. Can be easily fixed. Further, the floor area required for installing the hydraulic cylinder 41 and the boosting cylinder 51 can be reduced.
  • the moving direction of the hydraulic piston 42 can be switched by switching the flow direction of the hydraulic oil supplied into the hydraulic cylinder 41 according to the forward / reverse rotation direction of the hydraulic pump 32.
  • the flow direction of the hydraulic oil is not switched by the direction switching valve, it is not necessary to keep the hydraulic pump 32 operating at the rated rotational speed. For this reason, energy consumption can be reduced compared with the case where the hydraulic pump 32 is continuously operated at the rated rotational speed.
  • the plurality of fuel supply units 20A, 20B, and 20C are provided in parallel between the low pressure fuel supply pipe 12 and the high pressure fuel supply pipe 13, the number of fuel supply parts can be easily changed. Further, even when trouble occurs in any of the plurality of fuel supply units or when maintenance is performed, any one of the fuel supply units can be removed and the other fuel supply units can be continuously driven. Further, since the plurality of fuel supply units 20A, 20B, and 20C can be controlled independently, the number of fuel supply units that operate according to the fuel demand of the internal combustion engine 90 can be changed.
  • the speed and position of the boosting piston 52 can be adjusted reliably.
  • the present invention is not limited to this, and an arbitrary number of fuel supply units can be used.
  • the shape of the reciprocating pump 50 is not limited to the shape shown in FIGS. 2 and 3, and a reciprocating pump having an arbitrary shape can be used.
  • the fuel supply device mounted on the ship has been described, but the present invention is not limited to this.
  • the linear actuator 30 and the reciprocating pump 50 can be installed on an arbitrary structure.
  • the linear actuator 30 and the reciprocating pump 50 may be mounted on the body of an automobile, or the linear actuator 30 and the reciprocating pump 50 may be installed on the floor of a building frame.
  • FIG. 6 is a view showing a fuel supply unit using the electric cylinder unit as the linear actuator 30.
  • the electric cylinder unit includes an electric motor 31, gears 35 a and 35 b, a ball nut 37, and a ball screw 38.
  • the gear 35a is rotated by the power of the electric motor 31, and the rotation of the gear 35a is transmitted to the gear 35b.
  • the gear 35 b is provided integrally with the ball nut 37 and transmits the rotation of the gear 35 a to the ball nut 37.
  • the ball nut 37 is screwed with the ball screw 38 and rotates together with the gear 35b.
  • the lower end of the ball screw 38 is connected to the upper end of the boosting piston 52 by a connecting portion 49.
  • the ball screw 38 moves in the axial direction.
  • the boosting piston 52 also moves in the axial direction.
  • the same effect as the case where a hydraulic cylinder unit is used as the linear actuator 30 can be obtained.
  • the rotation of the electric motor 31 may be transmitted to the ball nut using a pulley and a timing belt instead of the gears 35a and 35b. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

内燃機関の燃焼室内へ燃料を供給する燃料供給装置は、リニアアクチュエータと、リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプと、前記リニアアクチュエータの駆動を制御するコントローラと、を備え、前記コントローラは、前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御する。

Description

燃料供給装置および燃料供給方法
 本発明は、ディーゼルエンジン等の内燃機関に燃料を供給する燃料供給装置および燃料供給方法に関する。
 従来の船舶においては、低速での出力が可能であり、プロペラに直結して駆動することができる、2ストロークサイクルの低速ディーゼルエンジンが用いられている。
 近年、低速ディーゼルエンジンの燃料として、NO、SO、排出量の少ない天然ガスが注目されている。低速ディーゼルエンジンの燃焼室に高圧の天然ガスを燃料として噴射して燃焼させることで、高熱効率で出力が得られる。
 例えばクランク軸を用いて回転運動を往復運動に変えることで、往復式ポンプを駆動することが行われている。クランク軸を用いて往復式ポンプのピストンを駆動する場合、ピストンストロークがクランク軸によって定まるため、ピストンストロークを自由に調整することができない。また、複数の往復式ポンプを同一のクランク軸によって駆動する場合、往復式ポンプのそれぞれを独立して制御することができなかった。
 一方、特許文献1には、液体の燃料を、往復式ポンプを用いて昇圧してエンジンに供給する装置が記載されている。特許文献1の装置では、往復式ポンプのピストンを左右方向に駆動しており、ピストンを駆動するリニアアクチュエータとして、「線形油圧モータ」(油圧シリンダユニット)が用いられている。特許文献1では、油圧シリンダユニットへ油圧ポンプから供給する作動油の方向を方向切替弁で切り替えることにより、往復式ポンプのピストンの移動方向を切り替えている。油圧シリンダユニットを用いる場合、クランク軸を用いる場合よりも、低速で往復式ポンプを駆動することができる。また、ピストンが一定の速度で移動するようにピストン行程を制御することができるという利点がある。
特表2005-504927号公報
 特許文献1のように、油圧シリンダユニットへ供給する作動油の方向を方向切替弁で切り替えることで往復式ポンプのピストンの移動方向を切り替える場合、ピストンに作用する力が吐出時と吸入時とで同一となる。一方、往復式ポンプでは、燃料を高圧で吐出する時に大きな力が必要となる一方、低圧の燃料を吸入するときには負荷が小さい。このため、油圧シリンダユニットを用いて往復式ポンプを駆動する場合には、ピストンの負荷が小さい吸入時にピストンがより高速で移動しやすく、往復式ポンプのシリンダ内の圧力が燃料の蒸気圧よりも低下することによりキャビテーションが生じやすくなる。キャビテーションが生じると、往復式ポンプのピストンやシリンダにエロージョンが発生し寿命が短くなるという問題がある。
 また、クランク軸を用いて往復式ポンプを駆動する場合には、吐出時と吸入時とでピストンの速度は同一であり、吸入時のみの速度は変更できないため、高回転、高出力時においてキャビテーションが発生してしまう。
 そこで、本発明は、往復式ポンプに生じるキャビテーションを抑制することができる燃料供給装置および燃料供給方法を提供することを目的とする。
 本発明の第1の態様は、内燃機関の燃焼室内へ燃料を供給する燃料供給装置であって、リニアアクチュエータと、前記リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプと、前記リニアアクチュエータの駆動を制御するコントローラと、を備える。
 前記コントローラは、
 前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、
 前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、
 前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御する、ことを特徴とする。
 本発明の第2の態様は、内燃機関の燃焼室内へ燃料を供給する燃料供給装置であって、低圧の燃料が供給される低圧燃料供給管と、前記燃焼室内へ供給される高圧の燃料が供給される高圧燃料供給管と、前記低圧燃料供給管と前記高圧燃料供給管との間に設けられ、前記低圧燃料供給管内の燃料を昇圧してそれぞれ前記高圧燃料供給管に供給する複数の燃料供給部と、前記複数の燃料供給部を制御する制御部と、を備える。
 前記燃料供給部のそれぞれは、
 内燃機関の燃焼室内へ燃料を供給する燃料供給装置であって、リニアアクチュエータと、前記リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプと、前記リニアアクチュエータの駆動を制御するコントローラと、を備える。
 前記コントローラは、
 前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、
 前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、
 前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御し、
 前記制御部は、前記複数の燃料供給部のいずれか1つの昇圧用シリンダが燃料を吐出するときに、他の燃料供給部の昇圧用シリンダが燃料を吸入するように前記コントローラのそれぞれを制御する、ことを特徴とする。
 前記コントローラは、前記往復式ポンプが前記燃料を吸入するときの前記昇圧用ピストンの加速度が最大となるときが、前記往復式ポンプが前記燃料の吸入を開始するときよりも後、かつ前記燃料の吸入を開始するときから前記周期の1/4の時間が経過するよりも前となるように前記リニアアクチュエータを制御する、ことが好ましい。
 前記往復式ポンプは、昇圧用ピストンを鉛直方向に移動可能に収容する昇圧用シリンダを有し、前記昇圧用ピストンが鉛直上方向に移動することにより前記昇圧用シリンダの内部であって前記昇圧用ピストンの下部に前記燃料を吸入し、前記昇圧用ピストンが鉛直下方向に移動することにより前記燃料を昇圧して吐出する、ことが好ましい。
 前記昇圧用ピストンの軸方向の速度を検出する速度センサをさらに有する、ことが好ましい。
 前記リニアアクチュエータは、油圧シリンダユニットであって、作動油を収容する作動油収容空間を有し、軸方向が鉛直方向となるように配置された油圧シリンダと、前記油圧シリンダ内で軸方向に移動可能に設けられ、前記作動油収容空間を第1チャンバと第2チャンバとに区画する油圧ピストンと、前記油圧ピストンと前記昇圧用ピストンとを連結するピストンロッドと、前記第1チャンバに作動油を供給することで前記油圧ピストンを軸方向の第1の方向に移動させ、前記第2チャンバに作動油を供給することで前記油圧ピストンを軸方向の第2の方向に移動させる油圧ポンプと、前記油圧ピストンが軸方向に往復するように前記油圧ポンプを駆動する電動モータとを備える。
 前記コントローラは、前記電動モータを制御することで前記油圧ピストンの前記油圧シリンダ内での移動を制御する、ことが好ましい。
 前記油圧シリンダユニットは、一端が前記油圧ポンプと接続され、他端が前記第1チャンバと接続され、前記油圧ポンプから吐出される全ての作動油を前記第1チャンバに供給し、前記第1チャンバから排出される全ての作動油を前記油圧ポンプに戻す密閉された第1の油圧配管と、一端が前記油圧ポンプと接続され、他端が前記第2チャンバと接続され、前記油圧ポンプから吐出される全ての作動油を前記第2チャンバに供給し、前記第2チャンバから排出される全ての作動油を前記油圧ポンプに戻す密閉された第2の油圧配管と、をさらに備える、ことが好ましい。
 また、前記リニアアクチュエータは、電動シリンダユニットであってもよい。電動シリンダユニットは、電動モータと、前記電動モータの動力により回転するボールナットと、前記ボールナットが螺合し、軸方向が前記昇圧用ピストンの軸方向と一致した状態で前記昇圧用ピストンと連結され、前記ボールナットの回転により軸方向に移動するボールねじと、を備え、前記コントローラは、前記電動モータを制御することで前記ボールねじの軸方向の移動を制御する、ことが好ましい。
 本発明の第3の態様は、内燃機関の燃焼室内へ燃料を供給する燃料供給方法であって、
 リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプの前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、
 前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、
 前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御する、ことを特徴とする。
 本発明によれば、昇圧用シリンダ内の圧力が急激に低下することを防ぎ、キャビテーションの発生を抑制することができる。
本実施形態の燃料ガス供給装置の概略の構成図である。 燃料吸引時のリニアアクチュエータ30および往復式ポンプ50の断面図である。 燃料吐出時のリニアアクチュエータ30および往復式ポンプ50の断面図である。 昇圧用ピストン52の速度の時間変化の一例を示す図である。 昇圧用ピストン52の速度の時間変化の他の一例を示す図である。 電動シリンダユニットをリニアアクチュエータ30として用いた燃料供給部を示す図である。
 以下、本発明の実施形態に係る燃料供給装置を図面に基づいて説明する。
 図1に示すように、本実施形態の燃料供給装置10は、液体燃料を昇圧・加熱し、内燃機関90の燃焼室内へ高圧で噴射して供給する装置である。内燃機関90はシリンダ内の燃焼室で燃料を燃焼させ、その熱エネルギーによって仕事をする原動機であり、例えばレシプロエンジン、ガスタービンである。特に、燃料を圧縮着火させるディーゼルエンジンを内燃機関90として用いることが好ましい。以下の実施形態では、内燃機関90として船舶に搭載されるディーゼルエンジンを用いる場合について説明するが、本発明は船舶以外のディーゼルエンジンへの燃料供給装置に適用することもできる。
 燃料供給装置10は、図1に示すように、液体燃料タンク11と、低圧燃料供給管12と、複数の燃料供給部20A、20B、20Cと、高圧燃料供給管13と、熱交換器14と、高温燃料供給管15と、調圧弁16と、圧力計17と、制御部80と、を備える。燃料供給装置10のこれらの構成要素は全て船舶に搭載される。
 液体燃料タンク11は、内燃機関90に供給される燃料を液体の状態で貯留する。液体燃料タンク11に貯留される液体燃料として、例えば、液化メタン、液化エタン、液化プロパン等を用いることができる。液体燃料タンク11は、低圧燃料供給管12と接続されており、低圧燃料供給管12を介して液体燃料を燃料供給部20A、20B、20Cに供給する。
 燃料供給部20A、20B、20Cとの接続部における低圧燃料供給管12内の液体燃料の圧力は、液体燃料タンク11内の液体燃料の温度、液面高さ等に応じた圧力となっている。この圧力を高め有効吸込みヘッド(NPSH:Net Positive Suction Head)を確保し、燃料供給部20A、20B,20Cに液体燃料を供給しやすくするために、液体燃料タンク11は、燃料供給部20A、20B、20Cよりも高い位置に配置されている。
 なお、液体燃料タンク11が高い位置に配置できない場合は、液体燃料タンク11に液体燃料を供給するブースターポンプにより液体燃料タンク11内の液体燃料の圧力を高めることで、有効吸込ヘッドを確保してもよい。
 燃料供給部20A、20B、20Cは、低圧燃料供給管12と高圧燃料供給管13との間に並列に設けられている。燃料供給部20A、20B、20Cは、それぞれ、コントローラ21と、リニアアクチュエータ30と、往復式ポンプ50とを備える。
 往復式ポンプ50は、低圧燃料供給管12から供給される液体燃料を昇圧し、高圧燃料供給管13を介して熱交換器14に供給する。低圧燃料管12および高圧燃料供給管13は、燃料供給部20A、20B、20Cから着脱可能である。
 リニアアクチュエータ30は往復式ポンプ50のピストンを駆動するものである。リニアアクチュエータ30を用いることで、クランク軸を用いる場合よりも往復式ポンプ50のピストンを低速で駆動することや、ピストン行程において往復式ポンプの液流入始め、液昇圧始め、液昇圧終了時以外は、ピストンが一定の速度で移動するように駆動制御することができる。リニアアクチュエータ30として、例えば、油圧シリンダユニット、電動シリンダユニット等を用いることができる。本実施形態では、リニアアクチュエータ30として油圧シリンダユニットを用いる場合について説明する。
 コントローラ21は、制御部80から入力される制御信号により制御され、リニアアクチュエータ30を制御する。また、コントローラ21には、後述するように、往復式ポンプ50のピストンの位置を示す位置信号が入力される。コントローラ21は、位置信号に応じて往復式ポンプ50の吐出量が調節されるようにリニアアクチュエータ30を位置制御する。
 なお、図1においては、3つの燃料供給部20A、20B、20Cが低圧燃料供給管12と高圧燃料供給管13との間に並列に設けられているが、燃料供給部の数はこれに限られず、供給する燃料の量に応じて任意に変更することができる。
 熱交換器14は、入口側が高圧燃料供給管13と接続され、出口側が高温燃料供給管15と接続されている。熱交換器14は、高圧燃料供給管13を介して供給される昇圧後の液体燃料を加熱する。液体燃料を加熱する熱源として、例えば、液体燃料タンク11で発生するボイルオフガスの燃焼熱を用いることができる。例えば、ボイルオフガスの燃焼熱で加熱した温水との熱交換により液体燃料を加熱してもよい。
 高温燃料供給管15には、調圧弁16が設けられており、高温燃料供給管15の一端は熱交換器14と、他端は内燃機関90の燃焼室と接続されている。熱交換器14で加熱後の液体燃料は、調圧弁16により内燃機関90が必要とする所定の範囲の圧力に調圧された後、高温燃料供給管15を介して内燃機関90の燃焼室に供給される。調圧弁16は制御部80により制御される。
 ここで、内燃機関90が必要とする所定の範囲の圧力は、内燃機関90の種類や性能に応じて異なる。内燃機関90が船舶用の2ストロークサイクルの低速ディーゼルエンジンであれば、所定の範囲の圧力は、例えば5~100MPa、好ましくは20~70MPaであるが、本発明はこれに限定されるものではない。
 また、高温燃料供給管15には、圧力計17が設けられている。圧力計17は高温燃料供給管15内の圧力を計測し、計測信号を制御部80に出力する。
 制御部80には、内燃機関90から内燃機関90の負荷を示す信号が入力される。内燃機関90の負荷を示す信号は、例えば、回転数を示す信号である。
 制御部80は、燃料供給部20A、20B、20Cに制御信号を出力することで、往復式ポンプ50の吐出量を調整する。往復式ポンプ50の吐出量は、高温燃料供給管15内の圧力が、必要とされる内燃機関90の負荷に応じた圧力となるように調整される。
 なお、内燃機関90により駆動される推進用プロペラ(図示せず)の回転数を計測し、回転数に応じて高温燃料供給管15内の圧力を調整してもよい。
 液体燃料タンク11、低圧燃料供給管12、リニアアクチュエータ30、往復式ポンプ50、高圧燃料供給管13、熱交換器14、高温燃料供給管15、調圧弁16、圧力計17は、危険区域に配置される。一方、コントローラ21および制御部80は、一般に非防爆対応品であるが、防爆対応が出来ていない場合には、危険区域から防爆隔壁により隔離された非危険区域に配置するか、危険区域から十分に距離を隔てた非防爆区域に配置しなければならない。
 次に、図2、図3を用いて、電動モータにサーボモータを使用したリニアアクチュエータ30および往復式ポンプ50の具体的な構成について詳細に説明する。なお、以下の説明では、リニアアクチュエータ30として油圧シリンダユニットを用いる場合について説明するが、リニアアクチュエータ30は油圧シリンダユニットに限られるものではない。
 図2、図3において、上下方向は鉛直方向と一致し、左右方向は水平方向と一致する。以下の説明では、鉛直方向の上方向を「上方」、上方の部分を「上部」、鉛直方向の下方を「下方」、下方向の部分を「下部」という。なお、以下の説明では、軸方向が鉛直方向となるように配置されたリニアアクチュエータ30および往復式ポンプ50について説明するが、本発明はこれに限らず、軸方向が水平方向となる場合や角度を持たせた方向となるように配置されたリニアアクチュエータ30および往復式ポンプ50を用いてもよい。
 本実施形態においては、リニアアクチュエータ30および往復式ポンプ50が軸方向を鉛直方向に向けて配置される。なお、図2、図3においては、リニアアクチュエータ30の下方に往復式ポンプ50が配置される例について説明するが、リニアアクチュエータ30の上方に往復式ポンプ50が配置されてもよい。
〔油圧シリンダユニット〕
 図2、図3に示すように、油圧シリンダユニット(リニアアクチュエータ30)は、電動モータ31、油圧ポンプ32、第1の油圧配管33、第2の油圧配管34、固定部40、油圧シリンダ41、油圧ピストン42、等を備える。
 油圧シリンダユニットは、架台100の天板101に設けられている。天板101は脚102により支持されており、脚102は船体の甲板や内底板等の構造体に固定される。
 電動モータ31は天板101の上部に設けられている。電動モータ31はコントローラ21によって制御され、油圧ポンプ23を駆動する。電動モータ31には、例えばインバータモータ又はサーボモータが用いられる。
 油圧ポンプ32は天板101の上部に設けられている。油圧ポンプ32は電動モータ31により駆動され、油圧シリンダ41内に作動油を供給することで油圧ピストン42を鉛直方向に移動させる。作動油としては、石油系作動油、合成系作動油、水成形作動油等から任意の作動油を採用することができる。
 油圧ポンプ32は第1の油圧配管33および第2の油圧配管34と接続されている。油圧ポンプ32は電動モータ31によって駆動される。
 電動モータ31がサーボモータである場合、電動モータ31の正逆の回転方向に応じて油圧ポンプ32から作動油が吐出される方向が切り替わる。例えば、電動モータ31の正回転時には、油圧ポンプ32は第1の油圧配管33内の作動油を吸引し、吸引した作動油を第2の油圧配管34側へ吐出する。また、電動モータ31の逆回転時には、油圧ポンプ32は第2の油圧配管34内の作動油を吸引し、吸引した作動油を第1の油圧配管33側へ吐出する。この場合、第1の油圧配管33および第2の油圧配管34に方向切替弁は不要である。
 一方、電動モータ31がインバータモータである場合、作動油が流れる方向は、第1の油圧配管33および第2の油圧配管34に設けられる方向切替弁(図示せず)によって変更する。
 なお、第1の油圧配管33および第2の油圧配管34内の作動油の流量、圧力は、油圧ポンプ32の吐出量によって決定される。電動モータ31がサーボモータである場合、電動モータ31がインバータモータである場合のいずれの場合も、作動油の流量、圧力は電動モータ31の回転数によって調整することができる。
 固定部40は天板101に設けられた開口101a内に配置された状態で天板101に固定されている。固定部40の上部には油圧シリンダ41が固定され、固定部40の下部には往復式ポンプ50が固定されている。固定部40は中空の筒状であり、内部に空洞部48が設けられている。
 油圧シリンダ41は、作動油を収容する作動油収容空間43を有し、軸方向が鉛直方向となるように天板101の上面に載置される。また、油圧シリンダ41の側壁には、作動油収容空間43の上端部に通じる上側貫通孔44、および、作動油収容空間43の下端部に通じる下側貫通孔45が設けられている。上側貫通孔44の外側開口部は第1の油圧配管33と接続されており、下側貫通孔45の外側開口部は第2の油圧配管34と接続されている。
 油圧ピストン42には、ピストンリング42bが設けられている。油圧ピストン42は、ピストンリング42bを油圧シリンダ41の作動油収容空間43の内壁面と接触させながら鉛直方向に移動可能に作動油収容空間43内に収容されているライダーリング42aは油圧ピストン42が鉛直方向に移動するときの水平方向の振れを補正する役割を果たす。ピストンリング42bは油圧ピストン42と作動油収容空間43の内壁面との隙間を塞ぐ役割を果たす。
 油圧ピストン42は作動油収容空間43を油圧ピストン42よりも上側の上側チャンバ43a(第2チャンバ)と油圧ピストン42よりも下側の下側チャンバ43b(第1チャンバ)とに区画する。
 油圧ピストン42はダブルロッド型であり、油圧シリンダ41の上部および下部から外部へ突出するピストンロッド47を有している。ピストンロッド47は油圧ピストン42とともに上下動する。油圧ピストン42がダブルロッド型であるため、油圧ピストン42が上昇したときの上側チャンバ43aの容積の減少量と下側チャンバ43bの容積の増加量とが等しい。油圧ピストン42はシングルロッド型であっても良い。ただし、この場合は移動する作動油の量が変化することによる圧力変動が生じるので脈動防止タンクを設けるのが望ましい。
 油圧シリンダ41のピストンロッド47が貫通する部分には、ブッシュ46が設けられている。ブッシュ46内にはオイルシールが組み込まれている。ブッシュ46はピストンロッド47を上下動可能に支持するとともに、作動油収容空間43から作動油が漏出することを防いでいる。
 空洞部48内には、ピストンロッド47の下端部と、往復式ポンプ50の昇圧用ピストン52の上端部とを連結する連結部49が設けられている。連結部49はピストンロッド47の上下動に伴い、空洞部48内で上下動する。尚、連結部49は、油圧シリンダのピストンロッド47と往復式ポンプ50のピストン52の軸芯ズレ調整機能を持っている。
 空洞部48には、復式ポンプ50からのガス漏れ防止の観点から外部から室温の窒素ガスが供給されている。窒素ガスは往復式ポンプ50のロッドパッキン部57に供給してもよい。空洞部48が設けられることで、往復式ポンプ50内の低温熱源(液体燃料)への熱伝導が抑制され、ピストンロッド47を介して作動油収容空間43内の高温熱源(作動油)が冷却されるのを防ぐことができる。なお、防爆形ヒータや吸熱フィンを設けることで高温熱源が冷却されることを防いでもよい。
〔往復式ポンプ〕
 往復式ポンプ50として、例えば特許第5519857号に記載されているのと同様の構造を有する往復式ポンプを用いることができる。
 具体的には、往復式ポンプ50は、昇圧用シリンダ51と、昇圧用ピストン52と、シリンダライナ53と、カバー54と、弁箱60と、等を有する。
 昇圧用シリンダ51の上端部は固定部40の下端部に固定されている。昇圧用シリンダ51の側壁は架台100の脚102に固定されている。昇圧用シリンダ51の上側部分にはロッドパッキン部57が設けられている。
 昇圧用シリンダ51は内部に昇圧用ピストン52、シリンダライナ53、および弁箱60を収容する空間を有し、昇圧シリンダ51の下端部にはカバー54が固定されている。カバー54によってシリンダライナ53および弁箱60は昇圧用シリンダ51内で固定されている。
 昇圧用シリンダ51の側壁には、内部に弁箱60が固定される高さの位置に、吸入口55が設けられている。吸入口55は低圧燃料供給管12と接続されている。
 カバー54には、鉛直方向に貫通する吐出口56が設けられている。吐出口56は高圧燃料供給管13と接続されている。
 ここで、弁箱60が昇圧用ピストン52よりも下方に設けられており、昇圧用ピストン52を鉛直上方に移動することにより昇圧用シリンダ51の内部であって昇圧用ピストン52の下部に燃料を吸入するため、往復式ポンプ50の吸入口55をより低い位置に配置することができる。吸入口55との接続部における低圧燃料供給管12内の液体燃料の圧力は、液体燃料タンク11内の液体燃料の液面の高さと吸入口55の高さとの差に比例する圧力となる。このため、吸入口55をより低い位置に配置することで、吸入口55との接続部における低圧燃料供給管12内の液体燃料の圧力を高めることができる。これにより、吸入口55から昇圧用シリンダ51内への燃料の供給を容易にすることができる。
 昇圧用ピストン52の上端部は、連結部49によってピストンロッド47の下端部と連結されており、昇圧用ピストン52はピストンロッド47と連動して上下動する。
 また、昇圧用ピストン52の上端部には、位置センサが設けられる。位置センサは、昇圧用ピストン52の鉛直方向の位置を検出し、位置信号をコントローラ21に出力する。なお、位置信号を用いて、昇圧用ピストン52の変位を時間微分することにより、昇圧用ピストン52の速度を求めることができる。すなわち、位置センサを速度センサとしても用いることができる。さらに、昇圧用ピストン52の速度を時間微分することにより、昇圧用ピストン52の加速度を求めることができる。すなわち、位置センサを加速度センサとしても用いることができる。
 なお、位置センサを油圧シリンダ41に取り付けてもよい。
 位置センサとして、例えば、磁歪式位置センサ70や超音波センサを用いることができる。ここでは磁歪式位置センサを使用した場合について説明する。
 具体的には、磁歪式位置センサ70は、センサプローブ71(磁歪線)と、環状マグネット72と、検出器73とを有する。センサプローブ71は空洞部48内に鉛直方向に設けられる。環状マグネット72は中央にセンサプローブ71が挿入された状態で、センサプローブ71に沿って昇圧用ピストン52とともに上下動するように昇圧用ピストン52の上端部に取り付けられる。センサプローブ71の一端にはセンサプローブ71に生じる歪みを検出する検出器73が設けられている。センサプローブ71に電流パルス信号を与えると、センサプローブ71を中心とする円周方向の磁場が生じる。センサプローブ71のマグネット72と同じ高さの位置では、センサプロ-ブ71の軸方向に磁場が与えられるため、軸方向に対して斜め方向の合成磁場が生じる。これにより、センサプローブ71に局部的なねじり歪みが生じる。検出器73はこのねじり歪みを検出することで、マグネット72の高さ方向の位置を検出し、昇圧用ピストン52の高さ方向の位置を示す位置信号をコントローラ21に出力する。
 昇圧用ピストン52の下部にはライダーリング52aおよびピストンリング52bが設けられている。昇圧用ピストン52はライダーリング52aおよびピストンリング52bをシリンダライナ53の内壁面と接触させながら鉛直方向に移動可能にシリンダライナ53内に収納されている。ロッドパッキン部57にもライダーリング51aが装備されている。これらのライダーリング51a、52aは昇圧用ピストン52が鉛直方向に移動するときの水平方向の振れを補正する役割を果たす。ピストンリング52bは昇圧用ピストン52とシリンダライナ53の内壁面との隙間を塞ぎ、先端の昇圧された液体燃料の圧力を封止する役割を果たす。
 弁箱60は昇圧用シリンダ51内でシリンダライナ53の下部に固定されている。弁箱60には、吐出流路61、吐出用弁体62、吸入流路64、吸入用弁体65、等が設けられている。
 吐出流路61は弁箱60を鉛直方向に貫通するように設けられている。吐出流路61の内部には、吐出用弁体62が鉛直方向に移動可能に収容されている。吐出流路61の上端部側は内径が吐出用弁体62の外径よりも小さい細径部となっている。細径部の下側開口は、吐出用弁体62が配置される弁座63となっている。吐出用弁体62および弁座63により吐出弁が構成される。
 吐出流路61の弁箱60の下側の開口はカバー54の吐出口56と対向する位置に設けられている。
 吸入流路64は弁箱60の外側壁から弁箱60の上面であって昇圧用ピストン52の位置に連通する位置に設けられている。吸入流路64の弁箱60の外側壁側の開口は昇圧用シリンダ51の吸入口55と対向する位置に設けられている。
 吸入流路64の弁箱60の上面側の開口の外周部は吸入用弁体65用の弁座66となっており、弁座66の上部に吸入用弁体65が鉛直方向に移動可能に設けられている。吸入用弁体65および弁座66により吸入弁が構成される。
 ロッドパッキン部57は、空洞部48に接続されており、液体燃料が気化したガスを外気へ漏洩させないようシールリングを装備してシールしている。ピストンリング52bによりシールできず漏洩した液体燃料は低圧下で気化し、このロッドパッキン部57でシールされる。液体燃料が気化したガスの外部への漏洩を防止するため、空洞部48に窒素ガスを供給する代わりにこのロッドパッキン部57へ供給してもよい。
〔リニアアクチュエータおよび往復式ポンプの動作〕
 次に、電動モータにサーボモータを使用したリニアアクチュエータ30および往復式ポンプ50の動作について説明する。
 まず、電動モータ31により油圧ポンプ32を駆動し、図2に示すように、上側チャンバ43a内の作動油を上側貫通孔44から排出し、第1の油圧配管33、第2の油圧配管34を経て下側貫通孔45から下側チャンバ43b(第1チャンバ)へ供給する。すると、下側チャンバ43bの容積が大きくなり、上側チャンバ43aの容積が小さくなるように、油圧ピストン42が作動油収容空間43内で上昇する。なお、第1の油圧配管33および第2の油圧配管は分岐等を有さないため、上側チャンバ43aから流出した作動油は全て下側チャンバ43bへ供給される。
 油圧ピストン42が上昇すると、連結部49でピストンロッド47の下端部と連結されている昇圧用ピストン52がシリンダライナ53内で上昇(第1の方向に移動)する。すると、吸入用弁体65が弁座66から離れて上昇し、吸入口55から供給される液体燃料が吸入流路64を通ってシリンダライナ53の内部であって昇圧用ピストン52の下部の空間に流入する。このとき、吐出用弁体62は弁座63を塞いだ状態である。
 次に、コントローラ21により電動モータ31の回転方向を切り替え、油圧ポンプ32を図2とは反対方向に駆動し、図3に示すように、下側チャンバ43b内の作動油を下側貫通孔45から排出し、第2の油圧配管34、第1の油圧配管33を経て上側貫通孔44から上側チャンバ43a(第2チャンバ)へ供給する。すると、下側チャンバ43bの容積が小さくなり、上側チャンバ43aの容積が大きくなるように、油圧ピストン42が作動油収容空間43内で下降する。なお、第1の油圧配管33および第2の油圧配管は分岐等を有さないため、下側チャンバ43bから流出した作動油は全て上側チャンバ43aへ供給される。
 油圧ピストン42が下降すると、連結部49でピストンロッド47の下端部と連結されている昇圧用ピストン52がシリンダライナ53内で下降(第2の方向に移動)する。すると、シリンダライナ53の内部であって昇圧用ピストン52の下部の空間に吸入された液体燃料が吐出用弁体62を押し下げて弁座63から離し、吐出口56から排出される。このとき、吸入用弁体65は弁座66を塞いだ状態である。
 このように、電動モータ31の回転方向を切り替え、油圧ポンプ32の駆動方向を切り替えることで、上側チャンバ43aと下側チャンバ43bとの間で作動油を交互に行き来させ、油圧ピストン42および昇圧用ピストン52を鉛直方向に往復移動させ、吸入口55から吸入した液体燃料を昇圧して吐出口56から吐出することができる。
 なお、電動モータにインバータモータを使用したリニアアクチュエータ30の場合は、方向切替弁により作動油の流れ方向を切り替えることで上側チャンバ43aと下側チャンバ43bとの間で作動油を交互に行き来させ、油圧ピストン42および昇圧用ピストン52を鉛直方向に往復移動させ、吸入口55から吸入した液体燃料を昇圧して吐出口56から吐出することができる。
 本実施形態においては、昇圧用シリンダ51内でのキャビテーションを防ぐために、昇圧用シリンダ51内の圧力が、燃料の蒸気圧以下とならないように制御する。具体的には、往復式ポンプ50が燃料を吸入する時の昇圧用ピストン52の最大加速度を下げることで、昇圧用シリンダ51内の圧力が、燃料の蒸気圧以下となることを防ぐことができる。
 具体的には、コントローラ21は、クランク軸を用いて往復式ポンプを駆動する場合よりも、往復式ポンプ50が燃料を吸入する時の昇圧用ピストン52の最大加速度が小さくなるようにリニアアクチュエータ30を制御する。ここで、クランク軸を用いて往復式ポンプを駆動する場合、昇圧用ピストンはクランク軸の回転周期と同じ周期かつクランク軸の回転半径と同じ振幅で単振動すると考えられる。このときの昇圧用ピストンのストローク長はクランク軸の回転直径(振幅の2倍)となる。
 そこで、本実施形態においては、コントローラ21は、クランク軸を用いて往復式ポンプを駆動する場合の振幅と同じ振幅かつ同じ周期で昇圧用ピストン52を単振動させた場合よりも、往復式ポンプ50が燃料を吸入する時の昇圧用ピストン52の最大加速度が小さくなるように、リニアアクチュエータ30を制御する。
 具体的には、コントローラ21は、昇圧用ピストン52が軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、往復式ポンプ50が燃料を吸入する時の昇圧用ピストン52の速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、往復式ポンプ50が燃料を吐出する時の昇圧用ピストン52の加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように、リニアアクチュエータ30を制御する。
 図4の実線は本実施形態における昇圧用ピストン52の速度の時間変化の一例を示す図であり、横軸が時間、縦軸が速度であり、吐出時の昇圧用ピストン52の速度を正としている。すなわち、ピストン速度が正である時間t0からt1にかけて往復式ポンプ50は燃料を吐出し、ピストン速度が負である時間t1からt4にかけて往復式ポンプ50は燃料を吸入する。
 また、図4の一点鎖線は昇圧用ピストンがクランク駆動される場合の昇圧用ピストンの速度の時間変化である。昇圧用ピストンがクランク駆動されるとき、昇圧用ピストンは単振動をしている。すなわち、昇圧用ピストンの振幅をA、周期をT、昇圧用ピストンの速度をV、時間をtとするとき、Vは以下の式(1)で表すことができる。
V=A(2π/T)sin(2π/T)t   ・・・(1)
 また、昇圧用ピストンが単振動をしているときの加速度をaとするとき、aは以下の式(2)で表すことができる。
a=A(2π/T)cos(2π/T)t   ・・・(2)
 昇圧用ピストンがクランク駆動される場合も、ピストン速度が正である時間t0からt1にかけて往復式ポンプ50は燃料を吐出し、ピストン速度が負である時間t1からt4にかけて往復式ポンプ50は燃料を吸入する。
 なお、対比のために、本実施形態の場合(実線)と単振動の場合(一点鎖線)とで周期Tおよびストローク(振幅Aの2倍)を同一としている。すなわち、時間t0からt1にかけて(吐出時)の速度の積分値は、本実施形態の場合(実線)と単振動の場合(一点鎖線)とで同一であり、2Aである。同様に、時間t1からt4にかけて(吸入時)の速度の積分値は、本実施形態の場合(実線)と単振動の場合(一点鎖線)とで同一であり、-2Aである。
 図4の実線では、吸入開始時(t1)からt2までの間、昇圧用ピストン52を加速し、t2からt3までの間、一定の速度で昇圧用ピストン52を移動させ、t3から吸入終了時(t4)までの間、昇圧用ピストン52を減速している。ここで「加速する」とは昇圧用ピストン52の速度の絶対値を増加させることをいい、「減速する」とは昇圧用ピストン52の速度の絶対値を減少させることをいう。
 図4の実線では、t1からt2までの間に昇圧用ピストン52の加速度の絶対値が吸入時の加速度の絶対値の最大値となるときがある。この加速度の絶対値の最大値は図4の実線のt1からt2までの傾きの絶対値の最大値である。
 一方、昇圧用ピストンが単振動する場合(一点鎖線)、t1からt2までの間に昇圧用ピストン52の加速度の絶対値が最大となるときは吸入開始時(t1)であり、加速度の絶対値の最大値は図4の一点鎖線のt1における傾きの絶対値であり、A(2π/T)である。
 図4の実線に示すように、本実施形態では、吸入時の昇圧用ピストン52の加速度の絶対値の最大値(実線のt1からt2までの傾きの絶対値の最大値)が単振動の場合の加速度の絶対値の最大値(一点鎖線のt1における傾きの絶対値であるA(2π/T))よりも小さくなるように、リニアアクチュエータ30が制御されている。このため、昇圧用シリンダ51内の圧力が急激に低下することを防ぎ、キャビテーションの発生を抑制することができる。
 ここで、往復式ポンプ50が燃料を吸入するt1からt4にかけての吸入時間(t4-t1)をTとするとき、吸入時の昇圧用ピストン52の加速度の絶対値の最大値(実線のt1からt2までの傾きの絶対値の最大値)は、A(π/Tよりも小さいことが好ましい。
 なお、単振動の場合、吸入時の加速度の絶対値が最大となるときは吸入開始時(t1)であるが、本実施形態においては、吸入開始時が最大加速度となるように昇圧用ピストン52の速度を制御する必要はない。例えば、昇圧用ピストン52の加速度の絶対値が最大となるときが、燃料の吸入開始時(t1)よりも後、かつ吸入開始時(t1)から一周期の1/4の時間が経過するよりも前となるように制御してもよい。
 なお、ストローク長は、昇圧用ピストン52が上下方向に往復するときの最下点から最上点までの高さである。ストローク長はシリンダライナ53内における昇圧用ピストン52の最下部の位置を基準として設定される。昇圧用ピストン52の最下部の位置は、シリンダライナ53の内部であって昇圧用ピストン52の下部の空間の容積が最小となる位置である。この位置を基準としてストローク長を調整することで、ストローク長をどのように設定しても、往復式ポンプ50内の液体燃料は各サイクルで全て吐出されることとなる。
 図5の実線は本実施形態における昇圧用ピストン52の速度の時間変化の他の一例を示す図であり、横軸が時間、縦軸が速度であり、吐出時の昇圧用ピストンの速度を正としている。すなわち、ピストン速度が正である時間t0からt1にかけて往復式ポンプ50は燃料を吐出し、ピストン速度が負である時間t1からt5にかけて往復式ポンプ50は燃料を吸入する。
 また、図5の一点鎖線は昇圧用ピストンがクランク駆動される場合(単振動する場合)の昇圧用ピストン52の速度の時間変化である。なお、対比のために、周期Tおよびストローク(=2A)を同一としている。昇圧用ピストン52がクランク駆動される場合(一点鎖線)、ピストン速度が正である時間t0からt2にかけて往復式ポンプ50は燃料を吐出し、ピストン速度が負である時間t2からt5にかけて往復式ポンプ50は燃料を吸入する。昇圧用ピストン52がクランク駆動されるとき、昇圧用ピストンは単振動をしている。すなわち、昇圧用ピストンの振幅をA、周期をT、昇圧用ピストンの速度をV、時間をtとするとき、Vは以下の式(1)で表すことができる。
V=A(2π/T)sin(2π/T)t   ・・・(1)
 また、昇圧用ピストンが単振動をしているときの加速度をaとするとき、aは以下の式(2)で表すことができる。
a=A(2π/T)cos(2π/T)t   ・・・(2)
 なお、対比のために、本実施形態の場合(実線)と単振動の場合(一点鎖線)とで周期Tおよびストローク(振幅Aの2倍)を同一としている。すなわち、本実施形態の場合(実線)の時間t0からt1にかけて(吐出時)の速度の積分値は、単振動の場合(一点鎖線)の時間t0からt2にかけて(吐出時)の速度の積分値と同一であり、2Aである。同様に、本実施形態の場合(実線)の時間t1からt5にかけて(吸入時)の速度の積分値は、単振動の場合(一点鎖線)の時間t2からt5にかけて(吸入時)の速度の積分値と同一であり、-2Aである。
 図5の実線では、吸入開始時(t1)からt3までの間、昇圧用ピストン52を加速し、t3からt4までの間、一定の速度で昇圧用ピストン52を移動させ、t4から吸入終了時(t5)までの間、昇圧用ピストン52を減速している。
 図5の実線では、t1からt3までの間に昇圧用ピストン52の加速度の絶対値が吸入時の加速度の絶対値の最大値となるときがある。この加速度の絶対値の最大値は図5の実線のt1からt3までの傾きの絶対値の最大値である。
 一方、昇圧用ピストンが単振動する場合(一点鎖線)、昇圧用ピストン52の加速度の絶対値が最大となるときは吸入開始時(t2)であり、加速度の絶対値の最大値は図5の一点鎖線のt2における傾きの絶対値であり、A(2π/T)である。
 図5に示すように昇圧用ピストン52を制御する場合でも、吸入時の昇圧用ピストン52の加速度の絶対値の最大値(t1からt3までの実線の傾きの絶対値の最大値)が単振動の場合の加速度の絶対値の最大値(一点鎖線のt2における傾きの絶対値であるA(2π/T))よりも小さくなるように、リニアアクチュエータ30が制御されている。このため、昇圧用シリンダ51内の圧力が急激に低下することを防ぎ、キャビテーションの発生を抑制することができる。
 ここで、往復式ポンプ50が燃料を吸入するt1からt5にかけての吸入時間(t5-t1)をTとするとき、吸入時の昇圧用ピストン52の加速度の絶対値の最大値(実線のt1からt3までの傾きの絶対値の最大値)は、A(π/Tよりも小さいことが好ましい。
 なお、図4の場合は、昇圧用ピストン52の一周期(t0からt4までの時間)における、燃料を吐出する期間(t0からt1までの間)と燃料を吸入する期間(t1からt4までの間)とが等しい。これに対し、図5の場合は、昇圧用ピストン52の一周期(t0からt5までの時間)における、燃料を吐出する期間(t0からt1までの間)よりも、燃料を吸入する期間(t1からt5までの間)のほうが長くなっている。
 このため、吸入時に昇圧用ピストン52を加速する期間(t1からt3までの間)をより長くすることができ、吸入時における加速度の絶対値の最大値をさらに小さくすることができる。
 また、図5に示すように、燃料を吸入する期間(t1からt5までの間)を吐出する期間(t0からt1までの間)よりも長くすることで、吸入時の昇圧用ピストン52の速度の絶対値の最大値(実線のt3からt4までの間の速度の絶対値の最大値)を単振動の場合の速度の絶対値の最大値であるA(2π/T)よりも小さくすることができる。このため、最大速度まで加速するための加速度の絶対値の最大値を小さくすることができる。
 なお、複数の燃料供給部を用いる場合、1つの燃料供給部の往復式ポンプ50で燃料を吸入している間に、他の燃料供給部の往復式ポンプ50から燃料を吐出してもよい。例えば、3つの燃料供給部20A、20B、20Cのそれぞれにおいて往復式ポンプ50を用いることで、1つの往復式ポンプ50において燃料の吸入するために、他の2つの往復式ポンプ50で燃料の吐出をしている時間を用いることができる。すなわち、吸入および吐出を1サイクルとするとき、それぞれの往復式ポンプ50においては、1サイクルの1/3の時間で吐出をし、1サイクルの2/3の時間で吸入をすればよい。同様に、n個の燃料供給部(nは3以上の自然数)を用いる場合、それぞれの往復式ポンプ50においては、1サイクルの1/nの時間で吐出をし、1サイクルの(n-1)/nの時間で吸入をすればよい。このため、燃料を吸入する時の昇圧用ピストン52の移動速度を、燃料を吐出する時の速度よりも遅くすることができ、昇圧用シリンダ51内の圧力が急激に低下することを防ぎ、キャビテーションの発生を抑制することができる。この場合でも、1サイクルの時間を調整することで、燃料の吐出量の合計を調整することができる。
 なお、上記実施形態においては、燃料を吸入する時間と燃料を吐出する時が同じ場合(図4)、燃料を吸入する時間が燃料を吐出する時間よりも長い場合(図5)について説明したが、燃料を吸入する時間が燃料を吐出する時間よりも短くてもよい。
 また、本実施形態においては、昇圧用ピストン52を鉛直方向に移動させ、昇圧用ピストン52を上昇させるときに往復式ポンプ50が燃料の吸入をするように配置することで、リニアアクチュエータ30により昇圧用ピストン52を上昇させるときにリニアアクチュエータ30に昇圧用ピストン52の重力が作用する。このため、昇圧用ピストン52を上昇させる速度を小さくすることができ、キャビテーションの発生を防ぐことができる。
 また、油圧ピストン42および昇圧用ピストン52を鉛直方向に移動させるため、反作用として油圧シリンダ41および昇圧用シリンダ51もまた鉛直方向の力を受ける。このため、油圧ピストン42および昇圧用ピストン52を駆動しても、油圧シリンダ41および昇圧用シリンダ51の設置場所には水平方向に作用する力が働かないため、油圧シリンダ41および昇圧用シリンダ51を容易に固定することができる。また、油圧シリンダ41および昇圧用シリンダ51の設置に必要な床面積を小さくすることができる。
 また、油圧ピストン42および昇圧用ピストン52を鉛直方向に移動させるため、ピストンリング42b、52b、ライダーリング51a、52aが局所的に摩耗することがない。
 また、サーボモータを用いる場合、油圧シリンダ41内へ供給する作動油の流れ方向を油圧ポンプ32の正逆回転方向によって切り替えることで油圧ピストン42の移動方向を切り替えることができる。この場合は、作動油の流れ方向を方向切替弁で切り替えないため、油圧ポンプ32を定格回転数で運転し続ける必要がない。このため、油圧ポンプ32を定格回転数で運転し続ける場合と比較してエネルギー消費を低減することができる。
 また、複数の燃料供給部20A、20B、20Cが低圧燃料供給管12と高圧燃料供給管13との間に並列に設けられているため、燃料供給部の数を容易に変更することができる。また、複数の燃料供給部のうち、いずれかにトラブルが発生したときや、メンテナンスを行うときでも、その何れかの燃料供給部を取り外し、他の燃料供給部を駆動し続けることができる。
 また、複数の燃料供給部20A、20B、20Cは独立して制御可能であるため、内燃機関90の燃料需要に応じて稼動する燃料供給部の数を変更することもできる。
 また、昇圧用ピストン52の位置を検出する位置センサを設けることで、確実に昇圧用ピストン52の速度や位置を調節することができる。
 なお、上記説明においては、3台の燃料供給部20A、20B、20Cを用いる場合について説明したが、本発明はこれに限らず、任意の数の燃料供給部を用いることができる。また、往復式ポンプ50の形状は図2、図3に示される形状のものに限定されることなく、任意の形状の往復式ポンプを用いることができる。
 また、上記説明においては、船舶に搭載する燃料供給装置について説明したが、本発明はこれに限られることはない。リニアアクチュエータ30および往復式ポンプ50は任意の構造体上に設置することができる。例えば、自動車の車体上にリニアアクチュエータ30および往復式ポンプ50を搭載してもよいし、建物の躯体の床上にリニアアクチュエータ30および往復式ポンプ50を設置してもよい。
<変形例>
 図6は、電動シリンダユニットをリニアアクチュエータ30として用いた燃料供給部を示す図である。なお、図2、図3と同様の構成については、同符号を付して説明を割愛する。
 電動シリンダユニットは、電動モータ31、歯車35a、35b、ボールナット37、ボールねじ38を備える。
 歯車35aは電動モータ31の動力で回転し、歯車35aの回転は歯車35bに伝達される。
 歯車35bはボールナット37と一体に設けられており、歯車35aの回転をボールナット37に伝達する。
 ボールナット37はボールねじ38と螺合しており、歯車35bとともに回転する。
 ボールねじ38の下端は連結部49により昇圧用ピストン52の上端と連結されている。ボールナット37が回転することでボールねじ38は軸方向に移動する。ボールねじ38が軸方向に移動することで、昇圧用ピストン52もまた軸方向に移動する。
 本変形例においても、リニアアクチュエータ30として油圧シリンダユニットを用いた場合と同様の効果が得られる。
 なお、ポンプ設置場所が非防爆箇所、あるいは第二種危険場所の場合には、歯車35a、35bの代わりに、プーリおよびタイミングベルトを用いて電動モータ31の回転をボールナットに伝達してもよい。
10  燃料供給装置
11  液体燃料タンク
12  低圧燃料供給管
13  高圧燃料供給管
14  熱交換器
15  高温燃料供給管
16  調圧弁
17  圧力計
20A、20B、20C 燃料供給部
21  コントローラ
30  リニアアクチュエータ
31  電動モータ
32  油圧ポンプ
33  第1の油圧配管
34  第2の油圧配管
35a、35b 歯車
37 ボールナット
38 ボールねじ
41  油圧シリンダ
42  油圧ピストン
42b、52b ピストンリング
43  作動油収容空間
43a 上側チャンバ
43b 下側チャンバ
47  ピストンロッド
48  断熱空洞部
49  連結部
50  往復式ポンプ
51  昇圧用シリンダ
51a、52a  ライダーリング
52  昇圧用ピストン
53  シリンダライナ
54  カバー
55  吸入口
56  吐出口
57  ロッドパッキン部
60  弁箱
61  吐出流路
62  吐出用弁体
63、66  弁座
64  吸入流路
65  吸入用弁体
70  位置センサ
80  制御部
90  内燃機関

Claims (9)

  1.  内燃機関の燃焼室内へ燃料を供給する燃料供給装置であって、
     リニアアクチュエータと、
     前記リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプと、
     前記リニアアクチュエータの駆動を制御するコントローラと、
    を備え、
     前記コントローラは、
     前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、
     前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、
     前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御する、燃料供給装置。
  2.  内燃機関の燃焼室内へ燃料を供給する燃料供給装置であって、
     低圧の燃料が供給される低圧燃料供給管と、
     前記燃焼室内へ供給される高圧の燃料が供給される高圧燃料供給管と、
     前記低圧燃料供給管と前記高圧燃料供給管との間に設けられ、前記低圧燃料供給管内の燃料を昇圧してそれぞれ前記高圧燃料供給管に供給する複数の燃料供給部と、
     前記複数の燃料供給部を制御する制御部と、
    を備え、
     前記燃料供給部のそれぞれは、
     内燃機関の燃焼室内へ燃料を供給する燃料供給装置であって、
     リニアアクチュエータと、
     前記リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプと、
     前記リニアアクチュエータの駆動を制御するコントローラと、
    を備え、
     前記コントローラは、
     前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、
     前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、
     前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御し、
     前記制御部は、前記複数の燃料供給部のいずれか1つの昇圧用シリンダが燃料を吐出するときに、他の燃料供給部の昇圧用シリンダが燃料を吸入するように前記コントローラのそれぞれを制御する、燃料供給装置。
  3.  前記コントローラは、前記往復式ポンプが前記燃料を吸入するときの前記昇圧用ピストンの加速度が最大となるときが、前記往復式ポンプが前記燃料の吸入を開始するときよりも後、かつ前記燃料の吸入を開始するときから前記周期の1/4の時間が経過するよりも前となるように前記リニアアクチュエータを制御する、請求項1又は2に記載の燃料供給装置。
  4.  前記往復式ポンプは、昇圧用ピストンを鉛直方向に移動可能に収容する昇圧用シリンダを有し、
     前記昇圧用ピストンが鉛直上方向に移動することにより前記昇圧用シリンダの内部であって前記昇圧用ピストンの下部に前記燃料を吸入し、前記昇圧用ピストンが鉛直下方向に移動することにより前記燃料を昇圧して吐出する、請求項1~3のいずれか一項に記載の燃料供給装置。
  5.  前記昇圧用ピストンの軸方向の速度を検出する速度センサをさらに有する、請求項1~4のいずれか一項に記載の燃料供給装置。
  6.  前記リニアアクチュエータは、油圧シリンダユニットであって、
     作動油を収容する作動油収容空間を有し、軸方向が鉛直方向となるように配置された油圧シリンダと、
     前記油圧シリンダ内で軸方向に移動可能に設けられ、前記作動油収容空間を第1チャンバと第2チャンバとに区画する油圧ピストンと、
     前記油圧ピストンと前記昇圧用ピストンとを連結するピストンロッドと、
     前記第1チャンバに作動油を供給することで前記油圧ピストンを軸方向の第1の方向に移動させ、前記第2チャンバに作動油を供給することで前記油圧ピストンを軸方向の第2の方向に移動させる油圧ポンプと、
     前記油圧ピストンが軸方向に往復するように前記油圧ポンプを駆動する電動モータとを備え、
     前記コントローラは、前記電動モータを制御することで前記油圧ピストンの前記油圧シリンダ内での移動を制御する、請求項1~5のいずれか一項に記載の燃料供給装置。
  7.  前記油圧シリンダユニットは、
     一端が前記油圧ポンプと接続され、他端が前記第1チャンバと接続され、前記油圧ポンプから吐出される全ての作動油を前記第1チャンバに供給し、前記第1チャンバから排出される全ての作動油を前記油圧ポンプに戻す密閉された第1の油圧配管と、
     一端が前記油圧ポンプと接続され、他端が前記第2チャンバと接続され、前記油圧ポンプから吐出される全ての作動油を前記第2チャンバに供給し、前記第2チャンバから排出される全ての作動油を前記油圧ポンプに戻す密閉された第2の油圧配管と、
    をさらに備える、請求項6に記載の燃料供給装置。
  8.  前記リニアアクチュエータは、電動シリンダユニットであって、
     電動モータと、
     前記電動モータの動力により回転するボールナットと、
     前記ボールナットが螺合し、軸方向が前記昇圧用ピストンの軸方向と一致した状態で前記昇圧用ピストンと連結され、前記ボールナットの回転により軸方向に移動するボールねじと、
    を備え、
     前記コントローラは、前記電動モータを制御することで前記ボールねじの軸方向の移動を制御する、請求項1~5のいずれか一項に記載の燃料供給装置。
  9.  内燃機関の燃焼室内へ燃料を供給する燃料供給方法であって、
     リニアアクチュエータによって駆動され軸方向に往復する昇圧用ピストンを有し、前記昇圧用ピストンが軸方向に往復することにより前記燃料の吸入と吸入時よりも昇圧した燃料の吐出を交互に繰り返す往復式ポンプの前記昇圧用ピストンが軸方向に往復する振幅をA(A>0)、往復する周期をTとしたとき、
     前記往復式ポンプが前記燃料を吸入する時の前記昇圧用ピストンの速度の絶対値を増加させる加速度の絶対値の最大値が、A・(2π/T)よりも小さく、かつ、
     前記往復式ポンプが前記燃料を吐出する時の前記昇圧用ピストンの加速度の絶対値の最大値が、A・(2π/T)よりも大きくなるように前記リニアアクチュエータを制御する、燃料供給方法。
PCT/JP2016/061405 2015-04-13 2016-04-07 燃料供給装置および燃料供給方法 WO2016167174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/566,688 US10012195B2 (en) 2015-04-13 2016-04-07 Fuel supply device and fuel supply method
KR1020177026355A KR101858462B1 (ko) 2015-04-13 2016-04-07 연료 공급 장치 및 연료 공급 방법
CN201680016887.0A CN107614863B (zh) 2015-04-13 2016-04-07 燃料供给装置及燃料供给方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081616A JP5953395B1 (ja) 2015-04-13 2015-04-13 燃料供給装置
JP2015-081616 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167174A1 true WO2016167174A1 (ja) 2016-10-20

Family

ID=56418709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061405 WO2016167174A1 (ja) 2015-04-13 2016-04-07 燃料供給装置および燃料供給方法

Country Status (5)

Country Link
US (1) US10012195B2 (ja)
JP (1) JP5953395B1 (ja)
KR (1) KR101858462B1 (ja)
CN (1) CN107614863B (ja)
WO (1) WO2016167174A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192929A1 (ja) * 2020-03-24 2021-09-30 株式会社日立ハイテク 送液装置および送液方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934409B1 (ja) * 2015-04-13 2016-06-15 三井造船株式会社 燃料供給装置
JP6421767B2 (ja) * 2016-02-12 2018-11-14 株式会社デンソー 燃料ポンプの制御装置
JP6519071B1 (ja) 2018-03-20 2019-05-29 株式会社三井E&Sマシナリー ロッドパッキン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720589U (ja) * 1980-05-30 1982-02-02
JPS6432163A (en) * 1987-07-29 1989-02-02 Shimadzu Corp Pump for liquid chromatogram
JPH11324931A (ja) * 1998-05-13 1999-11-26 Akebono Brake Res & Dev Center Ltd 電動式ポンプの制御方法
JP2004150402A (ja) * 2002-11-01 2004-05-27 Hitachi High-Technologies Corp 液体クロマトグラフ用ポンプ
JP5519857B1 (ja) * 2013-12-26 2014-06-11 三井造船株式会社 低温液化ガスの吸入・吐出用弁体、往復式ポンプ、及び燃料ガス供給装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179056A (en) * 1963-12-19 1965-04-20 Worthington Corp Variable capacity positive displacement pump
US3323461A (en) * 1965-01-21 1967-06-06 Richard A Bennett Metering pump
US4173437A (en) * 1977-08-01 1979-11-06 The Perkin-Elmer Corporation Dual-piston reciprocating pump assembly
JPS5720589A (en) 1980-07-14 1982-02-03 Hitachi Ltd Inverter for electrical fan
CA1186166A (en) * 1982-02-27 1985-04-30 Katsuhiko Saito Liquid chromatograph
DE3785207T2 (de) * 1987-09-26 1993-07-15 Hewlett Packard Gmbh Pumpvorrichtung zur abgabe von fluessigkeit bei hohem druck.
JP3435612B2 (ja) * 1994-06-09 2003-08-11 日産自動車株式会社 内燃機関の弁装置
US5688110A (en) * 1995-06-02 1997-11-18 Stanadyne Automotive Corp. Fuel pump arrangement having cam driven low and high pressure reciprocating plunger pump units
DK173815B1 (da) * 1997-05-28 2001-11-12 Man B & W Diesel As Hydraulisk aktiveret brændselspumpe til en forbrændingsmotor
US6659730B2 (en) * 1997-11-07 2003-12-09 Westport Research Inc. High pressure pump system for supplying a cryogenic fluid from a storage tank
US6213096B1 (en) * 1998-03-25 2001-04-10 Sanshin Kogyo Kabushiki Kaisha Fuel supply for direct injected engine
JP2001041128A (ja) * 1999-07-28 2001-02-13 Toyota Motor Corp 高圧燃料ポンプ
JP4230081B2 (ja) * 2000-02-25 2009-02-25 株式会社イワキ 多連式プランジャポンプ
JP2001263198A (ja) * 2000-03-14 2001-09-26 Bosch Automotive Systems Corp 燃料ポンプ及びこれを用いた燃料供給装置
JP2005054699A (ja) * 2003-08-05 2005-03-03 Nishihara:Kk ピストンポンプ
JP2005146882A (ja) * 2003-11-11 2005-06-09 Toyota Motor Corp 内燃機関の燃料噴射装置
ATE507384T1 (de) 2004-06-30 2011-05-15 Fiat Ricerche Kraftstoffeinspritzsystem für brennkraftmaschine mit common rail
JP2006138264A (ja) 2004-11-12 2006-06-01 Toyota Motor Corp 燃料ポンプの制御装置
JP4711328B2 (ja) * 2005-01-18 2011-06-29 武蔵エンジニアリング株式会社 液体吐出方法および装置
US20090272365A1 (en) * 2008-04-30 2009-11-05 Kunz Timothy W Cam lobe profile for driving a mechanical fuel pump
US10107273B2 (en) * 2008-08-07 2018-10-23 Agilent Technologies, Inc. Synchronization of supply flow paths
JP5003720B2 (ja) * 2009-05-12 2012-08-15 株式会社デンソー 燃料圧送システム
JP2011027041A (ja) * 2009-07-27 2011-02-10 Denso Corp 内燃機関の燃料ポンプ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720589U (ja) * 1980-05-30 1982-02-02
JPS6432163A (en) * 1987-07-29 1989-02-02 Shimadzu Corp Pump for liquid chromatogram
JPH11324931A (ja) * 1998-05-13 1999-11-26 Akebono Brake Res & Dev Center Ltd 電動式ポンプの制御方法
JP2004150402A (ja) * 2002-11-01 2004-05-27 Hitachi High-Technologies Corp 液体クロマトグラフ用ポンプ
JP5519857B1 (ja) * 2013-12-26 2014-06-11 三井造船株式会社 低温液化ガスの吸入・吐出用弁体、往復式ポンプ、及び燃料ガス供給装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192929A1 (ja) * 2020-03-24 2021-09-30 株式会社日立ハイテク 送液装置および送液方法
JPWO2021192929A1 (ja) * 2020-03-24 2021-09-30
JP7307271B2 (ja) 2020-03-24 2023-07-11 株式会社日立ハイテク 送液装置および送液方法

Also Published As

Publication number Publication date
CN107614863A (zh) 2018-01-19
US20180119658A1 (en) 2018-05-03
CN107614863B (zh) 2019-02-19
KR20170109092A (ko) 2017-09-27
JP5953395B1 (ja) 2016-07-20
KR101858462B1 (ko) 2018-05-16
JP2016200085A (ja) 2016-12-01
US10012195B2 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
JP5934409B1 (ja) 燃料供給装置
JP6193291B2 (ja) 燃料供給装置
WO2016167174A1 (ja) 燃料供給装置および燃料供給方法
JP5519857B1 (ja) 低温液化ガスの吸入・吐出用弁体、往復式ポンプ、及び燃料ガス供給装置
KR101798431B1 (ko) 승압용 펌프 및 저온 액체의 승압 방법
JP2019007432A (ja) 可変圧縮装置及びエンジンシステム
JP2016200139A (ja) 燃料供給装置
JP2016200138A (ja) 燃料供給装置
JP2016200140A (ja) 燃料供給装置
JP6932278B1 (ja) 封入特性の向上した燃料ポンプ
JP6586681B2 (ja) 燃料供給装置
JP6450956B1 (ja) 燃料供給装置及び燃料供給方法
JP2018040268A (ja) 燃料供給装置および燃料供給方法
JP2010174899A (ja) 油圧作動排気ガス弁を備えた大型2サイクルディーゼルエンジン
JP4597264B2 (ja) クロスヘッド型大型ユニフロー式2サイクルディーゼル機関
JP2018040267A (ja) 燃料供給装置および燃料供給方法
JP3602492B2 (ja) ボイラー用給水ポンプ
JP6620327B2 (ja) 液化ガス昇圧装置、液化ガスの昇圧方法および燃料供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026355

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779965

Country of ref document: EP

Kind code of ref document: A1