WO2016167168A1 - ブラシレスワイパモータ - Google Patents

ブラシレスワイパモータ Download PDF

Info

Publication number
WO2016167168A1
WO2016167168A1 PCT/JP2016/061295 JP2016061295W WO2016167168A1 WO 2016167168 A1 WO2016167168 A1 WO 2016167168A1 JP 2016061295 W JP2016061295 W JP 2016061295W WO 2016167168 A1 WO2016167168 A1 WO 2016167168A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiper motor
rotor
vehicle
stator
brushless
Prior art date
Application number
PCT/JP2016/061295
Other languages
English (en)
French (fr)
Inventor
正秋 木村
智彦 安中
木村 俊之
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to US15/565,531 priority Critical patent/US10040426B2/en
Priority to CN201680021699.7A priority patent/CN107431422B/zh
Priority to EP16779959.2A priority patent/EP3285378B1/en
Publication of WO2016167168A1 publication Critical patent/WO2016167168A1/ja
Priority to US16/029,989 priority patent/US10442401B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/166Means for transmitting drive characterised by the combination of a motor-reduction unit and a mechanism for converting rotary into oscillatory movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/081Structural association with bearings specially adapted for worm gear drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/043Attachment of the wiper assembly to the vehicle
    • B60S1/0438Attachement of separate wiper motor assembly to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/043Attachment of the wiper assembly to the vehicle
    • B60S1/0441Attachment of the wiper assembly to the vehicle characterised by the attachment means
    • B60S1/0444Attachment of the wiper assembly to the vehicle characterised by the attachment means comprising vibration or noise absorbing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a brushless wiper motor that swings a wiper member provided on a windshield of a vehicle.
  • a wiper motor with a speed reduction mechanism that can obtain a large output while being small is employed as a drive source of a wiper device mounted on a vehicle such as an automobile. This improves the mountability of the wiper device on the vehicle body.
  • a brushless wiper motor that does not include a commutator and a brush may be employed in order to suppress propagation of electrical noise to an in-vehicle device such as a radio. As described above, by adopting the brushless wiper motor, it is possible to suppress the generation of electric noise and to improve the quietness and to reduce the size and weight because the commutator and the brush are not provided.
  • a brushless wiper motor provided with such a reduction mechanism is described in Patent Document 1, for example.
  • the brushless wiper motor described in Patent Document 1 includes a motor unit and a reduction mechanism unit, the motor unit includes a yoke, and the reduction mechanism unit includes a gear housing.
  • a stator (stator) around which U-phase, V-phase, and W-phase coils are wound is fixed inside the yoke, and a rotor is rotatably provided inside the stator.
  • a 6-pole permanent magnet is embedded inside the rotor, and a brushless wiper motor having a so-called IPM (Interior-Permanent-Magnet) structure is employed.
  • the gear housing contains a reduction mechanism comprising a worm and a worm wheel. Then, the worm is rotated by the rotor, and a rotational force with a high torque is output from the output shaft of the worm wheel.
  • FIG. 10 is a diagram for explaining a structure for fixing the brushless wiper motor to the vehicle and its acoustic sensitivity, and the brushless wiper motor is installed in a mounting space as shown.
  • a first bracket 3 and a second bracket 4 to which a brushless wiper motor (not shown) is fixed are provided in the vicinity of the front end portion of the windshield 2 provided in the vehicle 1.
  • One end of the first bracket 3 in the longitudinal direction is fixed to a cowl top panel 5 that extends in the left-right direction of the vehicle 1.
  • the other end side in the longitudinal direction of the first bracket 3 is fixed to a front side member 6 extending in the front-rear direction of the vehicle 1.
  • the second bracket 4 is disposed on the front side of the cowl top panel 5 and is fixed to a dash panel upper 7 that extends in the left-right direction of the vehicle 1.
  • the acoustic sensitivity [dB] in the passenger compartment can be reduced to some extent even with the conventional brushless wiper motor.
  • devising the shape of the vehicle side to make it difficult for the noise generated by the brushless wiper motor to resonate in the passenger compartment causes a reduction in design freedom (designability, etc.) on the vehicle side, which is not realistic.
  • An object of the present invention is to provide a brushless wiper motor with improved quietness so that it can be widely applied from a light car to a luxury car, as well as an electric car and a hybrid car, regardless of the fixing structure on the vehicle side.
  • a brushless wiper motor that swings a wiper member that wipes off deposits adhered to a windshield of a vehicle, the stator being fixed to the inside of a housing, and the stator wound around the stator.
  • Coils six slots provided in the stator, in which the coils are arranged, a rotor rotating with respect to the stator, and provided in the rotor, along the direction of rotation of the rotor 4-pole permanent magnets in which magnetic poles are alternately arranged, a reduction mechanism that is housed in the housing and decelerates rotation of the rotor, an output shaft that transmits rotation of the reduction mechanism to the wiper member, and the housing
  • a plurality of fixed legs, and at least one of the plurality of fixed legs is fixed to a vehicle body fixing portion extending in a left-right direction of the vehicle.
  • the frequency generated by the brushless wiper motor is 500 Hz or less.
  • the speed reduction mechanism includes a worm rotated by the rotor, a worm wheel provided with a tooth portion meshed with the worm, the output shaft being provided at a rotation center,
  • the axial dimension of the rotor is smaller than the axial dimension of the worm.
  • At least one of the plurality of fixed legs is fixed to the vehicle body fixing portion via a buffer member.
  • the stator includes teeth that face each other around the rotor.
  • the shape of the stator can be made mirror-symmetric with respect to the rotor. Therefore, the rotational runout of the rotor can be suppressed.
  • the frequency of magnetic noise generated during rotation can be brought close to the mechanical noise of the speed reduction mechanism (low frequency in the vicinity of about 300 Hz) as the minimum number of poles and the number of slots that can suppress the rotational shake of the rotor.
  • the frequencies of the magnetic noise and mechanical noise generated by the brushless wiper motor can be integrated on the low frequency side, and the acoustic sensitivity [dB] in the passenger compartment can be reduced, thereby improving the quietness. . Therefore, it can be easily applied from a light vehicle to a high-class vehicle, and can also be applied to an electric vehicle, a hybrid vehicle, and the like (improved versatility).
  • the stator is fixed to the vehicle body fixing portion while fixing the stator to the inside of the housing, the stator that is a source of magnetic noise can be fixed to the vehicle body fixing portion only through the housing. . Therefore, for example, the acoustic sensitivity [dB] in the passenger compartment can be easily predicted only by calculating the rigidity of the housing.
  • a brushless wiper motor having a structure advantageous for improving quietness can be designed reliably and easily, and a brushless wiper motor pursuing quietness can be provided.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 6 is a perspective view showing details inside the housing (without gear cover). It is a perspective view which shows a deceleration mechanism, a rotating shaft, and a rotor. It is a disassembled perspective view which shows the inner side of a gear cover.
  • FIG. 6 is a perspective view of a wiper device according to a second embodiment. It is a figure explaining the fixation structure to the vehicle of a brushless wiper motor, and its acoustic sensitivity.
  • FIG. 1 is a schematic view showing a state where the wiper device is mounted on a vehicle
  • FIG. 2 is a perspective view of the DR-side wiper motor of FIG. 1 viewed from the output shaft side
  • FIG. 3 is a partially enlarged cross-sectional view for explaining the structure of the motor unit 4 is a cross-sectional view taken along line AA in FIG. 3
  • FIG. 5 is a perspective view showing details inside the housing (without gear cover)
  • FIG. 6 is a perspective view showing a speed reduction mechanism, a rotating shaft, and a rotor.
  • FIG. 7 is an exploded perspective view showing the inside of the gear cover
  • FIG. 8 is a graph comparing acoustic sensitivities [dB] in the passenger compartments (near the driver's seat) of light cars, intermediate cars, and luxury cars.
  • a windshield (wind shield) 11 is provided on the front side of a vehicle 10 such as an automobile.
  • the DR-side wiper device 20 and the AS-side wiper are provided on the front end side (lower side in the figure) of the windshield 11 and on the driver seat side and the passenger seat side along the vehicle width direction (left-right direction in the figure), respectively.
  • a device 30 is mounted.
  • the wiper device according to the present embodiment employs a counter-wiping wiper device provided with a wiper device on each of the driver seat side and the passenger seat side.
  • the DR side represents the driver seat side
  • the AS side represents the passenger seat side.
  • the DR-side wiper device 20 and the AS-side wiper device 30 include a DR-side wiper motor 21 and an AS-side wiper motor 31, respectively.
  • Each wiper motor 21, 31 swings and drives a DR wiper arm 22 and an AS wiper arm 32 (not shown in detail) provided on the windshield 11 at a predetermined swing angle.
  • each wiper blade (not shown) provided at the tip of each wiper arm 22, 32 performs a reciprocating wiping operation on the windshield 11, and eventually wipes rainwater or the like (attachment) adhered to the windshield 11.
  • each wiper arm 22 and 32 and each wiper blade constitute a wiper member in the present invention.
  • a cowl top panel 12 that forms the vehicle body of the vehicle 10 is provided on the front side of the vehicle 10 and in the vicinity of the front end portion of the windshield 11.
  • the cowl top panel 12 extends between the DR side and the AS side of the vehicle 10, that is, across the left-right direction of the vehicle 10, and constitutes a vehicle body fixing portion in the present invention.
  • front side members 13 that extend in the front-rear direction (vertical direction in the figure) of the vehicle 10 and that form a vehicle body are provided.
  • a dash panel upper 14 is provided on the front side of the cowl top panel 12. The dash panel upper 14 also extends across the left-right direction of the vehicle 10 and constitutes the vehicle body fixing portion in the present invention.
  • both longitudinal sides of the cowl top panel 12 and the dash panel upper 14 are firmly fixed to the front side member 13 on the DR side and AS side by welding or the like.
  • the cowl top panel 12, the front side member 13, and the dash panel upper 14 are all formed in a predetermined shape from a high-tensile steel plate (high-strength member).
  • the DR side wiper device 20 includes a DR side insertion fixing portion 14a fixed to the dash panel upper 14 by welding or the like, a DR side first screw fixing portion 13a fixed to the DR side front side member 13 by welding or the like, DR It is fixed to the side second screw fixing portion 13b.
  • the AS-side wiper device 30 has an AS-side first screw fixing portion 14b fixed to the dash panel upper 14 by welding or the like, and an AS-side second screw fixing fixed to the AS-side front side member 13 by welding or the like. It is fixed to the AS side insertion fixing part 12a fixed to both the part 13c, the AS side front side member 13 and the cowl top panel 12 by welding or the like.
  • the AS side insertion fixing part 12a has the same shape as the first bracket 3 shown in FIG.
  • the DR-side wiper device 20 and the AS-side wiper device 30 are each fixed to the vehicle body of the vehicle 10 with three-point support.
  • the DR-side wiper motor 21 and the AS-side wiper motor 31 are the same as shown in FIG.
  • Each of the wiper motors 21 and 31 includes three attachment portions a, b, and c, and the attachment portion a of the attachment portions a, b, and c is fixed to the vehicle body by insertion.
  • each of the mounting portions b, c among the mounting portions a, b, c is fixed to the vehicle body via a fixing bolt (not shown).
  • the DR-side wiper motor (brushless wiper motor) 21 includes an aluminum housing 40, a plastic motor cover 60, and a plastic gear cover 80.
  • the housing 40, the motor cover 60, and the gear cover 80 are connected to each other by a plurality of fastening screws S (only two are shown in FIG. 2).
  • a seal member such as an O-ring is provided between the housing 40 and the motor cover 60 and between the housing 40 and the gear cover 80, so that the inside of the DR-side wiper motor 21 can be provided. Intrusion of rainwater etc. is prevented.
  • the housing 40 is formed into a predetermined shape by, for example, casting a molten aluminum material, and includes a motor housing portion 41 and a speed reduction mechanism housing portion 42.
  • the motor accommodating part 41 is formed in the bottomed cylindrical shape as shown in FIG. One end side (right side in FIG. 3) of the motor accommodating portion 41 is opened, and a stepped and annular cover mounting portion 41a to which the mounting portion 62a of the motor cover 60 is mounted is provided in the opening portion. It has been.
  • an annular bottom portion 41b is provided on the other axial end side (left side in FIG. 3) of the motor accommodating portion 41, and a through hole through which the rotation shaft 46 is rotatably penetrated in the central portion of the annular bottom portion 41b. 41c is formed.
  • An annular stepped portion 43 is provided inside the motor housing portion 41.
  • the stepped portion 43 includes an annular bottom wall 43a and a cylindrical side wall 43b.
  • a stator (stator) 44 is accommodated inside the stepped portion 43.
  • the stator 44 is formed in a substantially cylindrical shape by laminating a plurality of steel plates 44a made of a magnetic material and bonding them together. Almost half of the outer peripheral portion of the stator 44 on the side of the speed reduction mechanism accommodating portion 42 along the axial direction is press-fitted into the side wall 43b forming the inner peripheral portion of the motor accommodating portion 41, whereby both are firmly fixed.
  • An uneven engagement portion (not shown) is provided between the outer peripheral portion of the stator 44 and the inner peripheral portion of the side wall 43b. Thereby, the stator 44 does not rotate relative to the housing 40 when the DR-side wiper motor 21 is driven.
  • a resin coil bobbin 44b which is an insulator, protrudes from both sides of the stator 44 in the axial direction.
  • a coil 44c of U phase, V phase, and W phase (three phases) is wound around the coil bobbin 44b with a predetermined number of turns. End portions (not shown) of these U-phase, V-phase, and W-phase coils 44c are electrically connected so as to form a star connection (Y connection).
  • the connection method of each coil 44c is not limited to the star connection, and other connection methods such as delta connection (triangular connection) may be adopted.
  • the plurality of steel plates 44a forming the stator 44 includes an annular main body 44d.
  • the outer diameter of the main body 44d is set slightly larger than the inner diameter of the motor housing 41. Thereby, the stator 44 is press-fitted inside the motor housing portion 41.
  • Six teeth 44e around which a coil 44c is wound are integrally provided on the radially inner side of the main body 44d. These teeth 44e are arranged at equal intervals (60-degree intervals) in the circumferential direction of the main body 44d. Further, between the adjacent teeth 44e, six slots SL1 to SL6 in which the coil 44c is disposed are disposed via a coil bobbin 44b which is an insulator.
  • Each coil 44c is electrically connected to a control board 90 (see FIG. 7) fixed to the inside of the gear cover 80 via a wiring unit (not shown) provided inside the housing 40. .
  • a drive current is supplied to each coil 44c from the FET module 96 (see FIG. 7) provided on the control board 90 at a predetermined timing.
  • electromagnetic force is generated in the stator 44, and the rotor 45 inside the stator 44 is rotationally driven in a predetermined rotational direction with a predetermined driving torque (driving force).
  • a rotor (rotor) 45 is rotatably provided on a radially inner side of the stator 44 through a predetermined gap (air gap).
  • the rotor 45 is formed into a substantially cylindrical shape by laminating a plurality of steel plates (not shown) that are magnetic bodies and bonding them together.
  • a permanent magnet 45 a formed in a substantially cylindrical shape is attached to the outer surface of the rotor 45 in the radial direction.
  • the permanent magnet 45a is magnetized in four poles so that the magnetic poles are alternately arranged along the rotation direction of the rotor 45 (N pole ⁇ S pole ⁇ N pole ⁇ S pole).
  • the DR-side wiper motor 21 employs a brushless motor having an SPM (Surface Permanent Magnet) structure in which the permanent magnet 45 a is mounted on the surface of the rotor 45.
  • SPM Surface Permanent Magnet
  • the brushless motor having an IPM structure in which a plurality of permanent magnets are embedded in the rotor 45 is not limited to the brushless motor having an SPM structure.
  • one permanent magnet 45a having a substantially cylindrical shape
  • the DR-side wiper motor 21 uses a 4-pole 6-slot brushless motor as a drive source.
  • the shape of the stator 44 is mirror-symmetric about the rotor 45. Therefore, the magnetic attraction force F generated by the stator 44 when the rotor 45 is rotated acts so as to cancel out along the rotation direction of the rotor 45, as indicated by the thick arrow in FIG. Thereby, the excitation of the rotor 45 is suppressed, and the rotational shake of the rotor 45 and the rotating shaft 46 is suppressed. As a result, the generation of mechanical noise is effectively suppressed.
  • the frequency of the magnetic noise generated when the rotor 45 rotates is a low frequency of approximately 160 Hz to 400 Hz when the DR-side wiper motor 21 is normally operated (Lo operation).
  • Li operation when the DR-side wiper motor 21 is normally operated.
  • sounds with higher frequencies are easier to perceive and are perceived than with lower frequencies.
  • Focusing on the viewpoint of reducing such magnetic noise a 2-pole 3-slot brushless motor is an ideal type.
  • a 4-pole 6-throttle brushless motor is adopted as the minimum combination capable of achieving both suppression of mechanical noise and magnetic noise.
  • the axial end of the rotating shaft 46 is fixed to the axial center of the rotor 45 (the right side in FIG. 6).
  • a worm 46b having a helical tooth portion 46a formed by rolling or the like is integrally provided on the other axial end side (left side in FIG. 6) of the rotating shaft 46.
  • the worm 46b provided on the rotating shaft 46 is disposed closer to the speed reduction mechanism accommodating portion 42 than the through hole 41c, and constitutes the speed reduction mechanism SD together with the worm wheel 50 meshing with the worm 46b.
  • a first ball bearing 47 is provided between the rotor 45 and the worm 46b along the axial direction of the rotary shaft 46.
  • the first ball bearing 47 is formed of an outer ring 47a and an inner ring 47b made of a steel material, and a plurality of steel balls 47c provided between the outer ring 47a and the inner ring 47b.
  • the inner ring 47b is fixed to the rotating shaft 46 by a fixing means (not shown) such as a retaining ring or caulking.
  • the outer ring 47 a is mounted on a first bearing mounting portion 48 between the motor housing portion 41 and the speed reduction mechanism housing portion 42 of the housing 40.
  • the first ball bearing 47 is pressed and fixed to the first bearing mounting portion 48 by an elastic stopper member 48a.
  • the rotation shaft 46 cannot move in the axial direction. Therefore, in the housing 40, the rotating shaft 46 can be smoothly rotated without rattling in the axial direction.
  • a second ball bearing 49 is mounted on the other axial end of the rotating shaft 46.
  • the second ball bearing 49 is formed of an outer ring 49a and an inner ring 49b made of steel, and a plurality of steel balls (not shown) provided between the outer ring 49a and the inner ring 49b. ing.
  • the second ball bearing 49 employs a ball bearing that is smaller than the first ball bearing 47.
  • the first ball bearing 47 has a function of supporting the rotating shaft 46 rotatably and supporting the rotating shaft 46 so as not to move in the axial direction, and is thus made large and sturdy.
  • the second ball bearing 49 since the second ball bearing 49 has only a function of suppressing the rotational vibration on the other axial end side of the rotating shaft 46, the second ball bearing 49 can be small and sufficiently compatible.
  • the DR-side wiper motor 21 is downsized by adopting a brushless motor as the DR-side wiper motor 21 and increasing the reduction ratio of the reduction mechanism SD. Therefore, the pitch of the teeth 46a of the worm 46b is narrow, and the worm 46b rotates at high speed.
  • the second ball bearing 49 is provided in order to increase rotational efficiency while improving the quietness by suppressing the rotational shake of the rotating shaft 46 on the worm 46b side.
  • the second ball bearing 49 may be omitted depending on the required reduction ratio of the reduction mechanism SD (specification of the wiper motor).
  • an annular first sensor magnet MG ⁇ b> 1 is fixed between a worm 46 b along the axial direction of the rotating shaft 46 and the first ball bearing 47. That is, both the worm 46 b and the first sensor magnet MG 1 are provided between the first ball bearing 47 and the second ball bearing 49.
  • the axial dimension L1 of the rotor 45 (permanent magnet 45a) is smaller than the axial dimension L2 of the worm 46b (L1 ⁇ L2).
  • the dimension along the axial direction of the rotating shaft 46 of the DR side wiper motor 21 is made small.
  • the DR-side wiper motor 21 is a brushless motor, the dimension along the axial direction of the rotating shaft 46 of the DR-side wiper motor 21 is reduced from this point as well because the commutator and the brush are not provided.
  • the first sensor magnet MG1 has a plurality of magnetic poles (S pole, N pole) magnetized along the rotation direction of the rotary shaft 46.
  • a first Hall IC 94a, a second Hall IC 94b, and a third Hall IC 94c are disposed on a portion of the control board 90 (see FIG. 7) facing the first sensor magnet MG1. Thereby, the rotation state (rotation speed, rotation direction, etc.) of the rotating shaft 46 is detected by each Hall IC 94a, 94b, 94c.
  • the speed reduction mechanism accommodating portion 42 is formed in a substantially bathtub-shaped bottom.
  • the speed reduction mechanism accommodating portion 42 is provided with a bottom portion 42a and a side wall 42b so as to surround the bottom portion 42a.
  • An opening 42c is provided on the side opposite to the bottom 42a side (upper side in FIG. 5) of the side wall 42b.
  • the bottom 42a and the opening 42c are opposed to each other in the axial direction of the worm wheel 50, and the opening 42c is sealed by a gear cover 80 (see FIG. 7).
  • the bottom portion 42a of the speed reduction mechanism accommodating portion 42 is integrally provided with a boss portion 42d that protrudes toward the outside of the speed reduction mechanism accommodating portion 42 (upper side in FIG. 2). Further, three attachment legs (fixed legs) 42e that project radially from the boss part 42d are integrally provided on the side wall 42b of the speed reduction mechanism accommodating part 42. Two of these mounting legs 42e are fitted with rubber bushes RB through which fixing bolts (not shown) pass. Also, one of the mounting legs 42e is provided with a rubber insertion IR inserted into the DR side insertion fixing portion 14a (see FIG. 1).
  • the DR wiper motor 21 is fixed to the vehicle 10 via each rubber bush RB and the insertion rubber IR, and each rubber bush RB and insertion rubber IR functions as a buffer member. Therefore, when the DR-side wiper motor 21 is fixed to the vehicle 10 (see FIG. 1), the vibration of the DR-side wiper motor 21 becomes difficult to be transmitted to the vehicle 10, and quietness is further improved. On the contrary, the vibration of the vehicle 10 is not easily transmitted to the DR-side wiper motor 21, and the DR-side wiper motor 21 can be protected from the vibration.
  • a worm wheel 50 is rotatably housed inside the speed reduction mechanism housing portion 42.
  • the worm wheel 50 is formed in a substantially disc shape, for example, of POM (polyacetal) plastic or the like, and gear teeth (tooth portions) 50a are formed on the outer peripheral portion.
  • the gear teeth 50a of the worm wheel 50 are engaged with the teeth 46a of the worm 46b.
  • the one end side of the output shaft 51 in the axial direction is fixed to the rotation center of the worm wheel 50, and the output shaft 51 is rotatably supported by the boss portion 42d of the speed reduction mechanism accommodating portion 42.
  • the other axial end side of the output shaft 51 extends to the outside of the speed reduction mechanism accommodating portion 42, and the proximal end portion of the DR-side wiper arm 22 (see FIG. 1) is disposed at the other axial end portion of the output shaft 51. Is fixed.
  • the output shaft 51 is rotated by the rotor 45 (see FIG. 3).
  • the rotational speed of the rotary shaft 46 is reduced by the speed reduction mechanism SD, and the reduced rotational torque is transmitted from the output shaft 51 to the external DR-side wiper arm 22.
  • the speed reduction mechanism SD reduces the rotation of the rotor 45 and transmits the rotational force that has been reduced and increased in torque to the DR-side wiper arm 22.
  • a disc-shaped second sensor magnet MG2 is fixed to the rotation center of the worm wheel 50 and on the side opposite to the side where the output shaft 51 is provided.
  • the second sensor magnet MG2 is magnetized with a plurality of magnetic poles (S pole, N pole) along the rotation direction of the output shaft 51.
  • the second sensor magnet MG2 is provided on one end side in the axial direction of the output shaft 51, and rotates integrally with the output shaft 51 and the worm wheel 50.
  • An MR sensor 95 is disposed at a portion of the control board 90 (see FIG. 7) facing the second sensor magnet MG2. Thereby, the rotation state (rotation direction, rotation position, etc.) of the output shaft 51 and the worm wheel 50 is detected by the MR sensor 95.
  • a second bearing mounting portion 52 is provided on the side wall 42 b of the speed reduction mechanism accommodating portion 42.
  • the second bearing mounting portion 52 is disposed coaxially with the first bearing mounting portion 48 (see FIG. 3), and a second ball bearing 49 is accommodated inside the second bearing mounting portion 52.
  • the second ball bearing 49 is mounted on the second bearing mounting portion 52 in a state where the second ball bearing 49 is mounted on the other axial end of the rotating shaft 46. This is done by allowing the through hole 41c and the first bearing mounting portion 48 to pass through.
  • the second ball bearing 49 is loosely fitted to the second bearing mounting portion 52 with a slight clearance rather than press fitting. Thereby, for example, when the housing 40 is manufactured, even if the first bearing mounting portion 48 and the second bearing mounting portion 52 are slightly misaligned, the rotational resistance of the rotating shaft 46 increases. There is nothing. This also suppresses the generation of mechanical noise generated from the DR-side wiper motor 21 and improves silence.
  • the motor cover 60 is formed in a bottomed cylindrical shape, and has a bottom portion 61 formed in a substantially disc shape, and a cylindrical wall provided so as to surround the bottom portion 61. Part 62.
  • a concave portion 61 a that is recessed toward the cylindrical wall portion 62 is provided at the center portion of the bottom portion 61, and the concave portion 61 a is provided to increase the strength of the bottom portion 61. That is, providing the recess 61a in the bottom 61 makes it difficult for the bottom 61 to bend. This prevents the motor cover 60 from resonating due to vibration during operation of the DR-side wiper motor 21 and improves the quietness of the DR-side wiper motor 21.
  • a mounting portion 62 a that is mounted on the cover mounting portion 41 a of the motor housing portion 41 is provided on the cylindrical wall portion 62 on the motor housing portion 41 side.
  • the mounting portion 62a is formed in a ring shape and is formed in a stepped shape like the cover mounting portion 41a so as to be aligned with the cover mounting portion 41a.
  • the gear cover 80 seals the opening 42c (see FIG. 5) of the speed reduction mechanism housing portion 42, and has the same outer shape as the opening 42c.
  • the gear cover 80 includes a bottom wall portion 81 and a side wall portion 82.
  • a control substrate (substrate) 90 is fixed to the inside of the gear cover 80 and to the bottom wall portion 81 by a first fixing screw SC1.
  • a connector connection portion 82a to which an external connector (not shown) on the vehicle 10 side is connected is integrally provided on the side wall portion 82 of the gear cover 80.
  • a terminal (not shown) on one end side of the plurality of conductive members CM is exposed inside the connector connecting portion 82a.
  • the terminals TM on the other end side of the plurality of conductive members CM are electrically connected to the control board 90.
  • an in-vehicle battery and a wiper switch (not shown) are electrically connected to the external connector on the vehicle 10 side.
  • the control board 90 includes a first surface 91 that faces the side opposite to the bottom wall 81 side of the gear cover 80, that is, the side where the rotation shaft 46 and the output shaft 51 are located (upper side in the drawing),
  • the gear cover 80 includes a second surface 92 that faces the bottom wall 81 side, that is, the side opposite to the first surface 91 side (the lower side in the drawing).
  • a CPU 93 that comprehensively controls the DR-side wiper motor 21, and a first hall IC 94a, a second hall IC 94b, and a third hall that face the first sensor magnet MG1 (see FIG. 6).
  • An IC 94c and an MR sensor 95 facing the second sensor magnet MG2 (see FIG. 5) are provided.
  • the three Hall ICs 94a, 94b, 94c are arranged at a predetermined interval along the rotation direction of the first sensor magnet MG1.
  • the second surface 92 of the control board 90 is provided with an FET module 96 that is an electronic component of the drive system and a capacitor CP that is another electronic component.
  • the FET module 96 includes a plurality of switching elements that switch the energization state of the three-phase coils 44c (see FIG. 4) at high speed. Therefore, the FET module 96 is likely to generate heat. Therefore, in order to improve the heat dissipation of the FET module 96, the FET module 96 is connected to the housing 40 via the heat conductive member 97a and the heat conductive sheet 97b.
  • the FET module 96 is fixed to the bottom wall portion 81 of the gear cover 80 by the pair of second fixing screws SC2 before the control board 90 is mounted on the bottom wall portion 81 of the gear cover 80. . Thereafter, the FET module 96 is mounted on the second surface 92 of the control board 90 by connection means such as soldering.
  • the CPU 93 and the FET module 96 supply drive current to the DR-side wiper motor 21 to control the rotation of the rotor 45 (see FIG. 4). Then, the CPU 93 controls the FET module 96 based on the detection values (rectangular wave signals) detected by the Hall ICs 94a, 94b, 94c and the MR sensor 95. Thereby, rotation of the rotor 45 is controlled.
  • the acoustic sensitivity [dB] is not so different from light cars to luxury cars.
  • the low frequency noise around 150 Hz to 300 Hz is a frequency that hardly echoes in the passenger compartment and is difficult to hear regardless of the rigidity of the vehicle body.
  • the DR-side wiper motor 21 of the present invention is a 4-pole 6-slot brushless motor, and the stator 44 is fixed to a housing 40 fixed to the vehicle 10. Therefore, the magnetic noise of the DR-side wiper motor 21 can be easily adjusted to a low frequency of about 150 Hz to 500 Hz and a low frequency region of about 160 Hz to 400 Hz.
  • both the magnetic noise and mechanical noise generated by the DR-side wiper motor 21 are combined into a low frequency region of approximately 150 Hz to 500 Hz, more preferably a relatively narrow region of approximately 160 Hz to 400 Hz.
  • the difference in acoustic sensitivity [dB] between cars area of shaded area (a) in the figure, difference between the maximum and minimum values of acoustic sensitivity) can be reduced, and it can be used without any problem from light cars to luxury cars. can do. That is, in the DR-side wiper motor 21 of the present invention, versatility can be greatly improved by integrating the frequency region generated by the DR-side wiper motor 21 on the low frequency side.
  • the frequency variation (the width of the frequency region of the entire motor) is reduced, the frequency region for taking noise countermeasures can be limited. Therefore, further noise caused by the buffer member (insertion rubber IR, rubber bush RB, etc.) Countermeasures are easy.
  • a region targeted for buffering such as a countermeasure for high frequency and a countermeasure for low frequency, is determined to some extent by the material used for the buffer member. For this reason, when the variation in the frequency of the target motor (the width of the frequency region of the entire motor) is large, it is difficult to take noise countermeasures for the entire motor.
  • the motor with brushes described as a reference example has a large number of magnetic poles (for example, 4 poles) with a reduction in size and weight, and three brushes are used to change the wiping speed to “Hi” or “Lo”.
  • the magnetic noise of the brushed motor is high-frequency noise, particularly a frequency around 1 kHz. Therefore, the difference in acoustic sensitivity [dB] (lighted area (b) in the figure, the difference between the maximum and minimum values of acoustic sensitivity) between light vehicles and luxury vehicles increases, making it difficult to adopt in light vehicles. It becomes.
  • a brushless motor (6-pole 9-slot type) having a larger number of magnetic poles and slots than the present invention is adopted, and the stator is fixed to a yoke separate from the gear housing.
  • the magnetic noise in the prior art is a higher frequency noise than that of the present invention, in particular, a frequency around 600 Hz. Therefore, the difference in acoustic sensitivity [dB] between the mini vehicle and the luxury vehicle (area of the shaded portion (c) in the figure, difference between the maximum value and the minimum value of the acoustic sensitivity) is larger than that of the present invention.
  • stator since the stator is fixed to the vehicle via two members, a yoke and a gear housing, due to variations in fixing strength between the yoke and the gear housing, the stator is approximately 150 Hz wider than the present invention. Within the frequency range of 775 Hz, the noise generated for each product will vary.
  • the shape of the stator 44 can be made mirror-symmetric with respect to the rotor 45 by using the 4-pole 6-slot type. Therefore, the rotational shake of the rotor 45 can be suppressed. Further, as the minimum necessary number of poles and number of slots that can suppress the rotational shake of the rotor 45, the frequency of the magnetic noise generated during the rotation can be brought close to the mechanical noise of the speed reduction mechanism SD (approximately 150 Hz to 300 Hz). it can. Thereby, the frequencies of the magnetic noise and the mechanical noise generated by the DR-side wiper motor 21 can be integrated on the low frequency side, and the acoustic sensitivity [dB] in the passenger compartment can be reduced, thereby improving the quietness. Can do. Therefore, it can be easily applied from a light vehicle to a high-class vehicle, and can also be applied to an electric vehicle, a hybrid vehicle, and the like (improved versatility).
  • the housing 40 is provided with the mounting legs 42e fixed to the cowl top panel 12, the front side member 13, and the dash panel upper 14, so that a magnetic noise generation source is provided.
  • the stator 44 can be fixed to the vehicle 10 only through the housing 40. Therefore, for example, the acoustic sensitivity [dB] in the passenger compartment can be easily predicted only by calculating the rigidity of the housing 40.
  • a brushless wiper motor having a structure advantageous for improving quietness can be designed reliably and easily, and a brushless wiper motor pursuing quietness can be provided.
  • the speed reduction mechanism SD includes a worm wheel 50 having a worm 46b rotated by the rotor 45 and a gear tooth 50a that is provided with the output shaft 51 at the center of rotation and meshed with the worm 46b.
  • the axial dimension L1 of the rotor 45 is made smaller than the axial dimension L2 of the worm 46b (L1 ⁇ L2).
  • each mounting leg 42e is fixed to the cowl top panel 12, the front side member 13, and the dash panel upper 14 via each rubber bush RB and the insertion rubber IR. Therefore, the vibration of the DR-side wiper motor 21 is hardly transmitted to the vehicle 10, and the acoustic sensitivity [dB] in the passenger compartment can be further reduced. Further, it is possible to protect the DR-side wiper motor 21 from the vibration of the vehicle 10 and prevent the DR-side wiper motor 21 from being damaged early.
  • the frequency region generated by the DR-side wiper motor 21 can be integrated on the low frequency side, versatility can be greatly improved. Furthermore, since the frequency variation (the width of the frequency region of the entire motor) is reduced, the frequency region for taking noise countermeasures can be limited. Therefore, further noise caused by the buffer member (insertion rubber IR, rubber bush RB, etc.) Countermeasures are easy.
  • the frequency generated by the DR-side wiper motor 21 can be integrated on the low-frequency side, so that the influence of the operating noise from the vehicle can be reduced. That is, by reducing the width of the frequency region of the entire motor, the DR-side wiper motor 21 is less susceptible to vibrations from the vehicle. Therefore, the occurrence of resonance and vibration amplification can be suppressed, and as a result, the operating sound of the DR-side wiper motor 21 can be reduced.
  • the calculation formula of the frequency (Hz) of the DR-side wiper motor 21 is calculated as (slot number or teeth number ⁇ output shaft rotational speed (rpm) ⁇ reduction ratio) / 60. .
  • This is a calculation formula that emphasizes the frequency components caused by slots or teeth.
  • Embodiment 2 of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 9 is a perspective view of the wiper device according to the second embodiment.
  • the DR-side wiper device 20 and the AS-side wiper device 30 are respectively arranged on the driver seat side and the passenger seat side along the vehicle width direction of the vehicle 10.
  • a so-called counter-wiping wiper device in which the side wiper arm 22 and the AS side wiper arm 32 are driven to swing at a predetermined swing angle is shown.
  • the brushless wiper motor 100 is applied to a modular wiper device 101.
  • the modular wiper device 101 includes a pipe frame 102. A portion serving as a substantially center of gravity of the brushless wiper motor 100 is fixed to a substantially central portion along the longitudinal direction of the pipe frame 102 (not shown in detail). Therefore, the modular wiper device 101 has an excellent weight balance such that the wiper device can be easily transported by itself.
  • the brushless wiper motor 100 applied to the modular wiper device 101 includes only one mounting leg 42e fixed by a fixing bolt (not shown).
  • the mounting leg 42e is fixed to a dash panel upper 14 (see FIG. 1) as a vehicle body fixing portion via a rubber bush RB. Further, the rubber bush RB provided on the mounting leg 42e may be fixed to the vehicle in place of the insertion rubber IR.
  • the other structure of the brushless wiper motor 100 is the same as that of the DR-side wiper motor 21 of the first embodiment.
  • First and second pivot holders 103a and 103b are fixed to both sides of the pipe frame 102 in the longitudinal direction. These first and second pivot holders 103a and 103b rotate around the first and second pivot shafts 104a and 104b. Supports freely.
  • the first and second pivot holders 103a and 103b are provided with first and second attachment portions 105a and 105b that are respectively fixed to the front side member 13 (see FIG. 1).
  • a link mechanism 106 for transmitting the swinging motion of the output shaft 51 to the first and second pivot shafts 104a and 104b is provided at the base ends of the first and second pivot shafts 104a and 104b.
  • the proximal end portions of the wiper arms 22 and 32 are fixed to the distal end portions of the first and second pivot shafts 104a and 104b. That is, the link mechanism 106 is provided between the output shaft 51 and the wiper arms 22 and 32.
  • the link mechanism 106 includes a crank arm 106a fixed to the output shaft 51, a pair of drive levers 106b and 106c fixed to the base ends of the first and second pivot shafts 104a and 104b, and each drive lever 106b. , 106c and a connecting rod 106d provided between one driving lever 106c and the crank arm 106a.
  • crank arm 106a, the drive levers 106b and 106c, the connecting rod 106d, and the drive rod 106e constituting the link mechanism 106 are each formed into a predetermined shape by pressing a steel plate. The weight is reduced.
  • the DR-side wiper motor 21 is provided with three mounting legs 42e, and one of the three mounting legs 42e is a plug-in type, and the other two are bolt-fixed types.
  • the present invention is not limited to this, and all of the three mounting legs 42e may be bolt-fixed.
  • the DR wiper motor 21 and the brushless wiper motor 100 are driven to drive the DR wiper arm 22 and the AS wiper arm 32 swinging on the windshield 11, respectively.
  • the present invention is not limited to this, and can also be adopted for driving a wiper arm that swings on the rear glass.
  • the inner rotor type brushless wiper motor in which the rotor 45 is rotatably disposed inside the stator 44 is described.
  • the present invention is not limited to this, and the outer rotor type in which the rotor is disposed outside the stator. It can also be applied to other brushless wiper motors.
  • the brushless wiper motor is used as a drive source of a wiper device mounted on a vehicle such as an automobile, and is used for wiping rainwater and the like attached to the windshield by swinging the wiper arm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

4極6スロット型として、ロータ45を中心にステータ44の形状を鏡像対称にしたので、ロータ45の回転振れを抑制できる。ロータ45の回転振れを抑制し得る必要最小限の極数およびスロット数として、磁気ノイズをメカノイズに近付けたので、DR側ワイパモータ21が発生するノイズ全体を低周波数にでき、車室内の音響感度[dB]を小さくできる。ハウジング40の内側にステータ44を固定し、車体固定部に固定される取付脚をハウジング40に設けたので、磁気ノイズの発生源であるステータ44をハウジング40のみを介して車両に固定できる。よって、さらに静粛性を追求したブラシレスワイパモータを容易に設計可能となる。

Description

ブラシレスワイパモータ
 本発明は、車両のウィンドシールド上に設けられるワイパ部材を揺動させるブラシレスワイパモータに関する。
 従来、自動車等の車両に搭載されるワイパ装置の駆動源には、小型でありながら大きな出力が得られる減速機構付きのワイパモータが採用されている。これによりワイパ装置の車体への搭載性を向上させている。また、ラジオ等の車載機器への電気ノイズの伝播を抑制するために、整流子およびブラシを備えないブラシレスワイパモータを採用することがある。このように、ブラシレスワイパモータを採用することで電気ノイズの発生を抑制することができ、かつ整流子やブラシを備えない分、より静粛性を向上させて小型軽量化を図ることができる。
 このような減速機構を備えたブラシレスワイパモータが、例えば、特許文献1に記載されている。特許文献1に記載されたブラシレスワイパモータは、モータ部および減速機構部を有しており、モータ部はヨークを備え、減速機構部はギヤハウジングを備えている。
 ヨークの内側には、U相,V相,W相のコイルが巻かれたステータ(固定子)が固定され、ステータの内側にはロータが回転自在に設けられている。また、ロータの内部には6極の永久磁石が埋設されており、所謂IPM(Interior Permanent Magnet)構造のブラシレスワイパモータを採用している。
 一方、ギヤハウジングの内部には、ウォームおよびウォームホイールより成る減速機構が収容されている。そして、ウォームはロータにより回転されて、ウォームホイールの出力軸からは、高トルク化された回転力が出力される。
特開2013-223317号公報(図3)
 しかしながら、上述の特許文献1に記載されたブラシレスワイパモータにおいては、依然として磁気ノイズの発生が問題となっている。特に、電気自動車やハイブリッド車両等においては、エンジンが停止した状態のもとで、電動モータのみにより走行する場合もあるため、磁気ノイズの発生を抑えて静粛性を向上させることが必要となる。そこで、本発明の発明者は、車室内の音響感度[dB]を測定して、当該測定結果に基づいて車室内の音響感度[dB]を低くし得る構造のブラシレスワイパモータを開発した。
 ここで、図10は、ブラシレスワイパモータの車両への固定構造およびその音響感度を説明する図であり、ブラシレスワイパモータは、図示のような搭載スペースに設置される。より具体的には、車両1に設けられるウィンドシールド2の前端部分の近傍には、ブラシレスワイパモータ(図示せず)が固定される第1ブラケット3および第2ブラケット4が設けられている。そして、第1ブラケット3の長手方向一端側は、車両1の左右方向に延びるカウルトップパネル5に固定されている。また、第1ブラケット3の長手方向他端側は、車両1の前後方向に延びるフロントサイドメンバー6に固定されている。さらに、第2ブラケット4は、カウルトップパネル5の前方側に配置され、かつ車両1の左右方向に延びるダッシュパネルアッパー7に固定されている。
 なお、車両1の車室内により近い側にある第1ブラケット3の近傍において、ブラシレスワイパモータの作動時の音響感度[dB]を測定したところ、図10に示すような結果が得られた。つまり、ブラシレスワイパモータの固定部(A)に対して、カウルトップパネル5側の(B)部においては、特に聞き取り易いオクターブ中心周波数が「1kHz」近傍で最大となった。これに対し、カウルトップパネル5の(B)部よりもフロントサイドメンバー6側の(C)部や、フロントサイドメンバー6により近い(D)部や(E)部においては、(B)部に比して「1kHz」近傍で小さくなった。
 すなわち、ブラシレスワイパモータの車体への固定箇所を、フロントサイドメンバー6により近付けるようにすることで、従前のブラシレスワイパモータであっても、車室内の音響感度[dB]をある程度小さくすることができる。しかしながら、車両側の形状を工夫してブラシレスワイパモータが発生するノイズを車室内に響き難くすることは、車両側の設計自由度(デザイン性等)を低下させる原因となって現実的ではない。
 本発明の目的は、車両側の固定構造に関わらず、軽自動車から高級車さらには電気自動車やハイブリッド車両まで幅広く適用できるように静粛性を向上させたブラシレスワイパモータを提供することにある。
 本発明の一態様によれば、車両のウィンドシールドに付着した付着物を払拭するワイパ部材を揺動させるブラシレスワイパモータであって、ハウジングの内側に固定された固定子と、前記固定子に巻かれたコイルと、前記固定子に設けられ、前記コイルが配置された6つのスロットと、前記固定子に対して回転する回転子と、前記回転子に設けられ、前記回転子の回転方向に沿って磁極が交互に配置された4極の永久磁石と、前記ハウジングに収容され、前記回転子の回転を減速する減速機構と、前記減速機構の回転を前記ワイパ部材に伝達する出力軸と、前記ハウジングに設けられた複数の固定脚と、を備え、前記複数の固定脚のうちの少なくとも1箇所が、前記車両の左右方向に延びる車体固定部に固定される。
 本発明の他の態様によれば、前記ブラシレスワイパモータの発生する周波数を500Hz以下とする。
 本発明の他の態様によれば、前記減速機構は、前記回転子により回転されるウォームと、前記出力軸が回転中心に設けられ、前記ウォームに噛み合わされる歯部を備えたウォームホイールと、を有し、前記回転子の軸方向寸法が、前記ウォームの軸方向寸法よりも小さい。
 本発明の他の態様によれば、前記複数の固定脚のうちの少なくとも1箇所が、緩衝部材を介して前記車体固定部に固定される。
 本発明の他の態様によれば、前記固定子は、前記回転子を中心に互いに対向するティースを備える。
 本発明によれば、4極6スロット型とすることで、回転子を中心として固定子の形状を鏡像対称にすることができる。よって、回転子の回転振れを抑制することができる。また、回転子の回転振れを抑制し得る必要最小限の極数およびスロット数として、回転時に生じる磁気ノイズの周波数を、減速機構のメカノイズ(約300Hz近傍の低周波数)に近付けることができる。これにより、ブラシレスワイパモータが発生する磁気ノイズおよびメカノイズの周波数を、それぞれ低周波数側で統合することができ、ひいては車室内での音響感度[dB]を小さくして、静粛性を向上させることができる。よって、軽自動車から高級車まで容易に対応することができ、さらには電気自動車やハイブリッド車両等にも適用することができる(汎用性向上)。
 また、ハウジングの内側に固定子を固定しつつ、車体固定部に固定される固定脚をハウジングに設けるので、磁気ノイズの発生源である固定子を、ハウジングのみを介して車体固定部に固定できる。よって、例えば、ハウジングの剛性計算のみにより、車室内における音響感度[dB]を容易に予測できるようになる。つまり、静粛性の向上に有利な構造のブラシレスワイパモータを、確実かつ容易に設計できるようになり、さらに静粛性を追求したブラシレスワイパモータを提供できるようになる。
ワイパ装置の車両への搭載状態を示す概要図である。 図1のDR側ワイパモータを出力軸側から見た斜視図である。 モータ部の構造を説明する部分拡大断面図である。 図3のA-A線に沿う断面図である。 ハウジング内の詳細を示す斜視図(ギヤカバー無し)である。 減速機構、回転軸およびロータを示す斜視図である。 ギヤカバーの内側を示す分解斜視図である。 軽自動車、中級車および高級車の車室内(運転席近傍)における音響感度[dB]を比較したグラフである。 実施の形態2に係るワイパ装置の斜視図である。 ブラシレスワイパモータの車両への固定構造およびその音響感度を説明する図である。
 以下、本発明の実施の形態1について、図面を用いて詳細に説明する。
 図1はワイパ装置の車両への搭載状態を示す概要図を、図2は図1のDR側ワイパモータを出力軸側から見た斜視図を、図3はモータ部の構造を説明する部分拡大断面図を、図4は図3のA-A線に沿う断面図を、図5はハウジング内の詳細を示す斜視図(ギヤカバー無し)を、図6は減速機構、回転軸およびロータを示す斜視図を、図7はギヤカバーの内側を示す分解斜視図を、図8は軽自動車、中級車および高級車の車室内(運転席近傍)における音響感度[dB]を比較したグラフをそれぞれ示している。
 図1に示すように、自動車等の車両10の前方側には、フロントガラス(ウィンドシールド)11が設けられている。フロントガラス11の前端部側(図中下側)で、かつ車両10の車幅方向(図中左右方向)に沿う運転席側および助手席側には、それぞれDR側ワイパ装置20およびAS側ワイパ装置30が搭載されている。このように、本実施の形態に係るワイパ装置は、運転席側および助手席側にそれぞれワイパ装置を備えた対向払拭式ワイパ装置を採用している。ここで、DR側は運転席側を、AS側は助手席側をそれぞれ示している。
 DR側ワイパ装置20およびAS側ワイパ装置30は、それぞれDR側ワイパモータ21およびAS側ワイパモータ31を備えている。各ワイパモータ21,31は、フロントガラス11上に設けられたDR側ワイパアーム22およびAS側ワイパアーム32(詳細図示せず)を、それぞれ所定の揺動角度で揺動駆動する。これにより、各ワイパアーム22,32の先端部にそれぞれ設けた各ワイパブレード(図示せず)が、フロントガラス11上を往復払拭動作し、ひいてはフロントガラス11に付着した雨水等(付着物)を払拭して良好な視界が確保される。ここで、各ワイパアーム22,32および各ワイパブレードは、本発明におけるワイパ部材を構成している。
 車両10の前方側で、かつフロントガラス11の前端部分の近傍には、車両10の車体を形成するカウルトップパネル12が設けられている。カウルトップパネル12は、車両10のDR側とAS側との間、つまり車両10の左右方向を横切るようにして延びており、本発明における車体固定部を構成している。また、車両10のDR側およびAS側には、車両10の前後方向(図中上下方向)に延び、かつ車体を形成するフロントサイドメンバー13がそれぞれ設けられている。さらに、カウルトップパネル12の前方側には、ダッシュパネルアッパー14が設けられている。ダッシュパネルアッパー14においても、車両10の左右方向を横切るようにして延びており、本発明における車体固定部を構成している。
 ここで、カウルトップパネル12およびダッシュパネルアッパー14の長手方向両側は、DR側およびAS側のフロントサイドメンバー13にそれぞれ溶接等によって強固に固定されている。なお、カウルトップパネル12、フロントサイドメンバー13およびダッシュパネルアッパー14は、いずれも高張力鋼板(高強度部材)によって所定形状に形成されている。
 DR側ワイパ装置20は、ダッシュパネルアッパー14に溶接等により固定されたDR側差し込み固定部14aと、DR側のフロントサイドメンバー13に溶接等により固定されたDR側第1ねじ固定部13a、DR側第2ねじ固定部13bに固定されている。一方、AS側ワイパ装置30は、ダッシュパネルアッパー14に溶接等により固定されたAS側第1ねじ固定部14bと、AS側のフロントサイドメンバー13に溶接等により固定されたAS側第2ねじ固定部13cと、AS側のフロントサイドメンバー13およびカウルトップパネル12の双方に溶接等により固定されたAS側差し込み固定部12aに固定されている。ここで、AS側差し込み固定部12aは、図10に示す第1ブラケット3と同様の形状を成している。
 このように、DR側ワイパ装置20およびAS側ワイパ装置30は、車両10の車体にそれぞれ3点支持で固定されている。なお、DR側ワイパモータ21およびAS側ワイパモータ31は、図1に示すようにそれぞれ同じものを用いている。そして、各ワイパモータ21,31は、それぞれ3つの取付部a,b,cを備えており、各取付部a,b,cのうちの取付部aは、差し込み式で車体に固定されている。これに対し、各取付部a,b,cのうちの各取付部b,cは、それぞれ固定ボルト(図示せず)を介して車体に固定されている。
 各ワイパモータ21,31は、それぞれ同じものであるため、以下、DR側ワイパモータ21を代表して、その詳細構造について図面を用いて説明する。
 図2ないし図7に示すように、DR側ワイパモータ(ブラシレスワイパモータ)21は、アルミニウム製のハウジング40、プラスチック製のモータカバー60およびプラスチック製のギヤカバー80を備えている。これらのハウジング40、モータカバー60およびギヤカバー80は、互いに複数の締結ねじS(図2において2つのみ示す)によって互いに連結されている。ここで、ハウジング40とモータカバー60との間、およびハウジング40とギヤカバー80との間には、それぞれOリング等のシール部材(図示せず)が設けられ、これによりDR側ワイパモータ21の内部への雨水等の進入が防止される。
 ハウジング40は、溶融したアルミ材料を鋳造成形等することで所定形状に形成され、モータ収容部41と減速機構収容部42とを備えている。モータ収容部41は、図3に示すように有底筒状に形成されている。モータ収容部41の軸方向一端側(図3中右側)は開口されており、当該開口部分には、モータカバー60の装着部62aが装着される段付形状かつ環状のカバー装着部41aが設けられている。一方、モータ収容部41の軸方向他端側(図3中左側)には、環状底部41bが設けられ、当該環状底部41bの中心部分には、回転軸46が回転自在に貫通される貫通孔41cが形成されている。
 モータ収容部41の内側には、環状の段差部43が設けられている。段差部43は、環状の底壁43aと筒状の側壁43bとから構成されている。そして、段差部43の内側には、ステータ(固定子)44が収容されている。ステータ44は、磁性体よりなる複数の鋼板44aを積層して互いに接着することで略円筒形状に形成されている。ステータ44の外周部の軸方向に沿う減速機構収容部42側の略半分が、モータ収容部41の内周部を形成する側壁43bに圧入され、これにより両者は強固に固定されている。なお、ステータ44の外周部と側壁43bの内周部との間には、凹凸係合部(図示せず)が設けられている。これによりDR側ワイパモータ21の駆動時において、ステータ44がハウジング40に対して相対回転することが無い。
 ステータ44の軸方向両側には、絶縁体である樹脂製のコイルボビン44bが突出して設けられている。コイルボビン44bには、U相,V相,W相(3相)のコイル44cが所定の巻き数で巻かれている。これらのU相,V相,W相のコイル44cにおける端部(図示せず)は、スター結線(Y結線)の巻き方となるように電気的に接続されている。ただし、各コイル44cの結線方法としては、スター結線に限らず、例えばデルタ結線(三角結線)等、他の結線方法を採用しても良い。
 また、図4に示すように、ステータ44を形成する複数の鋼板44aは、環状の本体部44dを備えている。本体部44dの外径寸法は、モータ収容部41の内径寸法よりも若干大きく設定されている。これにより、ステータ44は、モータ収容部41の内側に圧入されている。
 本体部44dの径方向内側には、コイル44cが巻かれた6つのティース44eが一体に設けられている。これらのティース44eは、本体部44dの周方向に等間隔(60度間隔)で配置されている。また、隣り合うティース44eの間には、絶縁体であるコイルボビン44bを介してコイル44cが配置された6つのスロットSL1~SL6が配置されている。
 そして、各コイル44cは、ハウジング40の内部に設けられた配線ユニット(図示せず)を介して、ギヤカバー80の内側に固定された制御基板90(図7参照)に電気的に接続されている。各コイル44cには、制御基板90に設けられたFETモジュール96(図7参照)から、所定のタイミングで駆動電流が供給される。これにより、ステータ44に電磁力が発生して、当該ステータ44の内側にあるロータ45が、所定の回転方向に所定の駆動トルク(駆動力)で回転駆動される。
 図3および図4に示すように、ステータ44の径方向内側には、所定の隙間(エアギャップ)を介してロータ(回転子)45が回転自在に設けられている。ロータ45は、磁性体である複数の鋼板(図示せず)を積層して互いに接着することで略円柱形状に形成されている。そして、ロータ45の径方向外側の表面には、略円筒形状に形成された永久磁石45aが装着されている。
 永久磁石45aは、ロータ45の回転方向に沿って磁極が交互に配置(N極→S極→N極→S極)されるように4極に着磁されている。このように、DR側ワイパモータ21は、ロータ45の表面に永久磁石45aが装着されたSPM(Surface Permanent Magnet)構造のブラシレスモータを採用している。ただし、SPM構造のブラシレスモータに限らず、ロータ45に複数の永久磁石を埋め込んだIPM構造のブラシレスモータを採用しても良い。
 また、略円筒形状の1つの永久磁石45aに換えて、ロータ45の軸線と交差する方向の断面形状が略円弧形状に形成された4つの永久磁石を、ロータ45の周方向に沿って磁極が交互に配置されるように等間隔で設けたものを採用しても良い。
 このように、本実施の形態に係るDR側ワイパモータ21は、4極6スロット型のブラシレスモータを駆動源に用いている。これにより、図4に示すように、ロータ45を中心としてステータ44の形状が鏡像対称となる。したがって、ロータ45の回転時に発生するステータ44による磁気吸引力Fが、図4の太線矢印に示すように、ロータ45の回転方向に沿って相殺するように作用することになる。これにより、ロータ45の加振が抑えられて、ロータ45および回転軸46の回転振れが抑制される。その結果、メカノイズの発生が効果的に抑制される。
 さらに、ロータ45の回転時に発生する磁気ノイズの周波数が、DR側ワイパモータ21の通常作動時(Lo作動時)において、概ね160Hz~400Hzの低周波数となる。ここで、磁気ノイズの周波数をより低周波数側にオフセットさせることで、より聞き取り難くすることができる。一般的に人間の聴覚としては、低周波数よりも高周波数の方が音を捉え易く、かつ知覚され易い。このような磁気ノイズの低減という観点に着目すると、2極3スロット型のブラシレスモータが理想型となる。しかしながら、DR側ワイパモータ21においては、上述のようにメカノイズの発生についても抑制する必要がある。そのため、メカノイズの発生抑制および磁気ノイズの発生抑制を両立できる最小の組み合わせとして、4極6スロットル型のブラシレスモータを採用している。
 図3,図4および図6に示すように、ロータ45の軸心には、回転軸46の軸方向一端側(図6中右側)が固定されている。回転軸46の軸方向他端側(図6中左側)には、転造加工等により形成された螺旋状の歯部46aを備えたウォーム46bが一体に設けられている。ここで、回転軸46に設けられるウォーム46bは、貫通孔41cよりも減速機構収容部42側に配置され、ウォーム46bに噛み合うウォームホイール50とともに減速機構SDを構成している。
 回転軸46の軸方向に沿うロータ45とウォーム46bとの間には、第1ボールベアリング47が設けられている。第1ボールベアリング47は、鋼材よりなる外輪47aおよび内輪47bと、外輪47aと内輪47bとの間に設けられる複数の鋼球47cとから形成されている。そして、内輪47bは、回転軸46に止め輪やカシメ等の固定手段(図示せず)によって固定されている。外輪47aは、ハウジング40のモータ収容部41と減速機構収容部42との間にある第1軸受装着部48に装着されている。
 ここで、第1ボールベアリング47は、第1軸受装着部48に対して、弾性を有するストッパ部材48aにより押圧されて固定されている。これにより、第1ボールベアリング47を第1軸受装着部48に固定することで、回転軸46は軸方向へ移動不能となる。したがって、ハウジング40の内部において、回転軸46は軸方向にがたつくこと無くスムーズに回転可能となっている。
 図6に示すように、回転軸46の軸方向他端側には、第2ボールベアリング49が装着されている。第2ボールベアリング49は、第1ボールベアリング47と同様に、鋼材よりなる外輪49aおよび内輪49bと、外輪49aと内輪49bとの間に設けられる複数の鋼球(図示せず)とから形成されている。そして、第2ボールベアリング49は、第1ボールベアリング47よりも小型のボールベアリングを採用している。
 ここで、第1ボールベアリング47は、回転軸46を回転自在に支持し、かつ回転軸46を軸方向に移動不能に支持する機能を有するため、大型として頑丈にしている。一方、第2ボールベアリング49は、回転軸46の軸方向他端側の回転振れを抑制する機能のみを有するため、小型で十分に対応することができる。
 本実施の形態においては、DR側ワイパモータ21にブラシレスモータを採用し、かつ減速機構SDの減速比を大きくすることで、DR側ワイパモータ21の小型化を実現している。したがって、ウォーム46bの歯部46aのピッチは狭く、かつウォーム46bは高速回転するようになっている。そのため、本実施の形態では、回転軸46のウォーム46b側の回転振れを抑えて静粛性を向上させつつ回転効率を上げるために、第2ボールベアリング49を設けている。ここで、必要とされる減速機構SDの減速比(ワイパモータの仕様)によっては、第2ボールベアリング49を省略することもできる。
 図6に示すように、回転軸46の軸方向に沿うウォーム46bと第1ボールベアリング47との間には、環状の第1センサマグネットMG1が固定されている。つまり、ウォーム46bおよび第1センサマグネットMG1は、いずれも第1ボールベアリング47と第2ボールベアリング49との間に設けられている。
 ここで、ロータ45(永久磁石45a)の軸方向寸法L1は、ウォーム46bの軸方向寸法L2よりも小さい寸法とされている(L1<L2)。これにより、DR側ワイパモータ21の回転軸46の軸方向に沿う寸法を小さくしている。また、DR側ワイパモータ21はブラシレスモータであるため、整流子やブラシを備えない分、この点からもDR側ワイパモータ21の回転軸46の軸方向に沿う寸法を小さくしている。
 第1センサマグネットMG1は、回転軸46の回転方向に沿って複数の磁極(S極,N極)が着磁されている。そして、制御基板90(図7参照)の第1センサマグネットMG1との対向部分には、第1ホールIC94a、第2ホールIC94b、第3ホールIC94cが配置されている。これにより、各ホールIC94a,94b,94cによって回転軸46の回転状態(回転数や回転方向等)が検出される。
 図2および図5に示すように、減速機構収容部42は、有底の略バスタブ形状に形成されている。減速機構収容部42は、底部42aおよび当該底部42aを囲うようにして側壁42bが設けられている。また、側壁42bの底部42a側とは反対側(図5中上側)には開口部42cが設けられている。底部42aおよび開口部42cは、ウォームホイール50の軸方向に対向しており、開口部42cは、ギヤカバー80(図7参照)によって密閉される。
 減速機構収容部42の底部42aには、減速機構収容部42の外部(図2中上側)に向けて突出されたボス部42dが一体に設けられている。また、減速機構収容部42の側壁42bには、ボス部42dを中心に放射状に突出された3つの取付脚(固定脚)42eが一体に設けられている。これらの取付脚42eのうちの2つには、固定ボルト(図示せず)が貫通するゴムブッシュRBがそれぞれ装着されている。また、各取付脚42eのうちの1つには、DR側差し込み固定部14a(図1参照)に差し込まれる差し込みゴムIRが装着されている。
 これにより、DR側ワイパモータ21は、各ゴムブッシュRBおよび差し込みゴムIRを介して車両10に固定され、各ゴムブッシュRBおよび差し込みゴムIRが緩衝部材として機能する。よって、DR側ワイパモータ21を車両10(図1参照)に固定した際に、DR側ワイパモータ21の振動が車両10に伝達され難くなって、より静粛性が向上する。また、これとは逆に、車両10の振動もDR側ワイパモータ21に伝達され難くなって、DR側ワイパモータ21を振動から保護することができる。
 図3および図5に示すように、減速機構収容部42の内部には、ウォームホイール50が回転自在に収容されている。ウォームホイール50は、例えばPOM(ポリアセタール)プラスチック等により略円板状に形成され、外周部分にはギヤ歯(歯部)50aが形成されている。そして、ウォームホイール50のギヤ歯50aには、ウォーム46bの歯部46aが噛み合わされている。
 ウォームホイール50の回転中心には、出力軸51の軸方向一端側が固定されており、当該出力軸51は、減速機構収容部42のボス部42dにより回転自在に支持されている。出力軸51の軸方向他端側は、減速機構収容部42の外部に延在しており、出力軸51の軸方向他端部には、DR側ワイパアーム22(図1参照)の基端部が固定されている。これにより、出力軸51はロータ45(図3参照)によって回転される。具体的には、回転軸46の回転速度が減速機構SDによって減速され、減速されて高トルク化された回転力が、出力軸51から外部のDR側ワイパアーム22に伝達される。このように、減速機構SDは、ロータ45の回転を減速して、減速されて高トルク化された回転力をDR側ワイパアーム22に伝達する。
 ウォームホイール50の回転中心であって、かつ出力軸51が設けられる側とは反対側には、図5に示すように、円盤状の第2センサマグネットMG2が固定されている。第2センサマグネットMG2は、出力軸51の回転方向に沿って複数の磁極(S極,N極)が着磁されている。第2センサマグネットMG2は、出力軸51の軸方向一端側に設けられ、出力軸51およびウォームホイール50と一体回転するようになっている。そして、制御基板90(図7参照)の第2センサマグネットMG2との対向部分には、MRセンサ95が配置されている。これにより、MRセンサ95によって出力軸51およびウォームホイール50の回転状態(回転方向や回転位置等)が検出される。
 図5に示すように、減速機構収容部42の側壁42bには、第2軸受装着部52が設けられている。第2軸受装着部52は第1軸受装着部48(図3参照)と同軸上に配置され、第2軸受装着部52の内部には、第2ボールベアリング49が収容されている。ここで、第2ボールベアリング49の第2軸受装着部52への装着は、第2ボールベアリング49を回転軸46の軸方向他端側に装着した状態のもとで、第2ボールベアリング49を貫通孔41cと第1軸受装着部48とを通過させることにより行われる。
 なお、第2ボールベアリング49は、第2軸受装着部52に対して、圧入嵌合させるのでは無く、若干のクリアランスを持って遊嵌させている。これにより、例えば、ハウジング40の製造時等において、第1軸受装着部48と第2軸受装着部52とが若干軸ズレを起こした場合であっても、回転軸46の回転抵抗が増大するようなことが無い。これによっても、DR側ワイパモータ21から発生するメカノイズの発生が抑制されて静粛性が向上する。
 図2,図3および図5に示すように、モータカバー60は有底筒状に形成され、略円盤状に形成された底部61と、当該底部61を囲うようにして設けられた筒状壁部62とを備えている。底部61の中心部分には、筒状壁部62側に窪んだ凹部61aが設けられ、当該凹部61aは、底部61の強度を高めるために設けられている。つまり、底部61に凹部61aを設けることで、底部61が撓み難くなる。これにより、DR側ワイパモータ21の作動時の振動等により、モータカバー60が共振するのを防止して、DR側ワイパモータ21の静粛性を向上させている。
 筒状壁部62のモータ収容部41側には、図3に示すように、当該モータ収容部41のカバー装着部41aに装着される装着部62aが設けられている。この装着部62aは環状に形成され、カバー装着部41aに整合するように、カバー装着部41aと同様に段付き形状に形成されている。
 図7に示すように、ギヤカバー80は、減速機構収容部42の開口部42c(図5参照)を密閉するものであって、開口部42cと同様の外郭形状を成している。ギヤカバー80は、底壁部81および側壁部82を備えている。ギヤカバー80の内側で、かつ底壁部81には、第1固定ねじSC1によって制御基板(基板)90が固定されている。
 また、ギヤカバー80の側壁部82には、車両10側の外部コネクタ(図示せず)が接続されるコネクタ接続部82aが一体に設けられている。コネクタ接続部82aの内側には、複数の導電部材CMの一端側の端子(図示せず)が露出されている。一方、複数の導電部材CMの他端側の端子TMは、制御基板90に電気的に接続される。なお、車両10側の外部コネクタには、車載バッテリやワイパスイッチ(図示せず)が電気的に接続されている。
 図7に示すように、制御基板90は、ギヤカバー80の底壁部81側とは反対側、つまり回転軸46および出力軸51がある側(図中上側)に向けられる第1面91と、ギヤカバー80の底壁部81側、つまり第1面91側とは反対側(図中下側)に向けられる第2面92とを備えている。
 制御基板90の第1面91には、DR側ワイパモータ21を統括的に制御するCPU93と、第1センサマグネットMG1(図6参照)と対向する第1ホールIC94a,第2ホールIC94b,第3ホールIC94cと、第2センサマグネットMG2(図5参照)と対向するMRセンサ95とが設けられている。なお、3つの各ホールIC94a,94b,94cは、第1センサマグネットMG1の回転方向に沿って所定間隔で配置されている。
 一方、制御基板90の第2面92には、駆動系の電子部品であるFETモジュール96と、他の電子部品であるキャパシタCPとが設けられている。ここで、FETモジュール96は、3相の各コイル44c(図4参照)への通電状態を高速で切り替える複数のスイッチング素子によって構成されている。したがって、FETモジュール96は発熱し易くなっている。よって、FETモジュール96の放熱性を向上させるために、当該FETモジュール96は、熱伝導部材97aおよび熱伝導シート97bを介してハウジング40に接続されている。
 なお、図7に示すように、FETモジュール96は、制御基板90をギヤカバー80の底壁部81に装着する前に、一対の第2固定ねじSC2によってギヤカバー80の底壁部81に固定される。その後、FETモジュール96は、はんだ付け等の接続手段によって、制御基板90の第2面92に実装される。
 ここで、CPU93およびFETモジュール96は、DR側ワイパモータ21に駆動電流を供給して、ロータ45(図4参照)の回転を制御するようになっている。そして、CPU93は、各ホールIC94a,94b,94cおよびMRセンサ95で検出された検出値(矩形波信号)に基づいて、FETモジュール96を制御する。これにより、ロータ45の回転が制御される。
 ここで、軽自動車,中級車および高級車の車室内(運転席近傍)における音響感度[dB]を比較すると、通常作動時(Lo作動時)において、図8のグラフに示すような傾向があることが分かった。つまり、軽自動車(車両重量が1t未満等)においては、例えば、軽量化重視で設計されるため、車体剛性が低い箇所が存在する。そのため、特に、1kHz前後の高周波ノイズが、高級車や中級車に比して車室内に響き易くなっている。
 一方、高級車(車両重量が2tクラス等)においては、例えば、車室内の静粛性を重視して設計されるため、高剛性の鋼板を多く採用しつつ防音シートを付加することが多い。そのため、1kHz前後の高周波ノイズは、車室内に響き難くなっている。なお、中級車(車両重量が1.5t未満等)においては、軽自動車と高級車との間の音響感度[dB]となっている。
 これに対し、減速機構SDのメカノイズの周波数である、概ね150Hz~300Hz前後の低周波領域では、軽自動車から高級車まで、それほど変わらない音響感度[dB]となる。つまり、概ね150Hz~300Hz前後の低周波ノイズは、車体剛性等に関わらず、車室内に響き難くかつ聞き取り難い周波数であると言える。
 ここで、本発明のDR側ワイパモータ21は、4極6スロット型のブラシレスモータであり、かつステータ44を車両10に固定されるハウジング40に固定している。したがって、DR側ワイパモータ21の磁気ノイズを、概ね150Hz~500Hz前後の低周波数で、かつ概ね160Hz~400Hzの低周波数領域に容易に合わせ込むことができる。
 よって、DR側ワイパモータ21が発生する磁気ノイズおよびメカノイズの双方を合わせて、概ね150Hz~500Hz、より好ましくは比較的狭い領域の概ね160Hz~400Hz前後の低周波数領域に統合して、軽自動車と高級車とで音響感度[dB]の差(図中網掛部(a)の面積,音響感度の最大値と最小値との差)を小さくすることができ、ひいては軽自動車から高級車まで問題無く対応することができる。つまり、本発明のDR側ワイパモータ21においては、DR側ワイパモータ21が発生する周波数領域を低周波側で統合することで、汎用性を大幅に向上させることができる。
 またさらに、周波数のばらつき(モータ全体としての周波数領域の幅)が少なくなることで、ノイズ対策を施すための周波数領域を限定できるため、緩衝部材(差し込みゴムIRやゴムブッシュRB等)によるさらなるノイズ対策が容易となる。ここで、一般的に緩衝部材としては高周波対策のもの、低周波対策のもの等、緩衝を狙う領域が緩衝部材に使われる材料によりある程度決まっている。そのため、対象となるモータの周波数のばらつき(モータ全体としての周波数領域の幅)が大きい場合、そのモータ全体としてノイズ対策が困難となる。
 また、参考例として記載したブラシ付きのモータは、小型軽量化に伴って磁極数が多く(例えば4極)、かつ払拭速度を「Hi」または「Lo」に可変とするために3つのブラシを備えている。このブラシ付きのモータの磁気ノイズは、高周波ノイズである、特に、1kHz前後の周波数となる。そのため、軽自動車と高級車とで音響感度[dB]の差(図中網掛部(b)の面積,音響感度の最大値と最小値との差)が大きくなり、軽自動車への採用が困難となる。
 さらに、上述した従前の技術においては、本発明よりも磁極数およびスロット数が多いブラシレスモータ(6極9スロット型)を採用しつつ、かつステータがギヤハウジングとは別体のヨークに固定されている。したがって、従前の技術における磁気ノイズは、本発明よりも高周波ノイズである、特に、600Hz前後の周波数となる。そのため、軽自動車と高級車とで音響感度[dB]の差(図中網掛部(c)の面積,音響感度の最大値と最小値との差)が、本発明よりも大きくなる。また、ステータは、ヨークおよびギヤハウジングの2つの部材を介して車両に固定されるため、これらのヨークとギヤハウジングとの固定強度のばらつき等に起因して、本発明よりも広い領域の概ね150Hz~775Hzの周波数領域内で、製品毎に発生するノイズにばらつきが生じることになる。
 以上詳述したように、本実施の形態によれば、4極6スロット型とすることで、ロータ45を中心としてステータ44の形状を鏡像対称にすることができる。よって、ロータ45の回転振れを抑制することができる。また、ロータ45の回転振れを抑制し得る必要最小限の極数およびスロット数として、回転時に生じる磁気ノイズの周波数を、減速機構SDのメカノイズ(概ね150Hz~300Hz近傍の低周波数)に近付けることができる。これにより、DR側ワイパモータ21が発生する磁気ノイズおよびメカノイズの周波数を、それぞれ低周波数側で統合することができ、ひいては車室内での音響感度[dB]を小さくして、静粛性を向上させることができる。よって、軽自動車から高級車まで容易に対応することができ、さらには電気自動車やハイブリッド車両等にも適用することができる(汎用性向上)。
 また、ハウジング40の内側にステータ44を固定しつつ、ハウジング40には、カウルトップパネル12,フロントサイドメンバー13およびダッシュパネルアッパー14に固定される取付脚42eを設けたので、磁気ノイズの発生源であるステータ44を、ハウジング40のみを介して車両10に固定できる。よって、例えば、ハウジング40の剛性計算のみにより、車室内における音響感度[dB]を容易に予測できるようになる。つまり、静粛性の向上に有利な構造のブラシレスワイパモータを、確実かつ容易に設計できるようになり、さらに静粛性を追求したブラシレスワイパモータを提供できるようになる。
 さらに、本実施の形態によれば、減速機構SDは、ロータ45により回転されるウォーム46bと、出力軸51が回転中心に設けられ、ウォーム46bに噛み合わされるギヤ歯50aを備えたウォームホイール50と、を有し、ロータ45の軸方向寸法L1を、ウォーム46bの軸方向寸法L2よりも小さくした(L1<L2)。これにより、DR側ワイパモータ21の回転軸46の軸方向に沿う寸法を小さくして、さらなる小型軽量化を図ることが可能となり、軽自動車にも容易に適用することができる。
 また、本実施の形態によれば、各取付脚42eが、各ゴムブッシュRBおよび差し込みゴムIRを介して、カウルトップパネル12,フロントサイドメンバー13およびダッシュパネルアッパー14に固定されている。したがって、DR側ワイパモータ21の振動が車両10に伝達され難くなって、車室内における音響感度[dB]をより小さくすることができる。また、車両10の振動からDR側ワイパモータ21を保護して、当該DR側ワイパモータ21が早期に損傷するのを防止することができる。
 さらに、本実施の形態によれば、DR側ワイパモータ21が発生する周波数領域を、低周波側で統合することができるため、汎用性を大幅に向上させることができる。またさらに、周波数のばらつき(モータ全体としての周波数領域の幅)が少なくなることで、ノイズ対策を施すための周波数領域を限定できるため、緩衝部材(差し込みゴムIRやゴムブッシュRB等)によるさらなるノイズ対策が容易となる。
 さらに、本実施の形態によれば、DR側ワイパモータ21が発生する周波数を低周波側で統合することができるので、車両による作動音の影響を小さくすることができる。つまり、モータ全体としての周波数領域の幅を狭めることで、DR側ワイパモータ21は、車両からの振動等の影響を受けにくくなる。そのため、共振や振動増幅の発生を抑制し、結果としてDR側ワイパモータ21の作動音を小さくすることができる。
 なお、本実施の形態によれば、DR側ワイパモータ21の周波数(Hz)の算出式としては、(スロット数もしくはティース数×出力軸回転数(rpm)×減速比)/60として算出している。これはスロットもしくはティースに起因する周波数成分に重点を置いた算出式である。
 次に、本発明の実施の形態2について、図面を用いて詳細に説明する。なお、上述した実施の形態1と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。
 図9は実施の形態2に係るワイパ装置の斜視図を示している。
 上述した実施の形態1においては、図1に示すように、車両10の車幅方向に沿う運転席側および助手席側に、それぞれDR側ワイパ装置20およびAS側ワイパ装置30を配置し、DR側ワイパアーム22およびAS側ワイパアーム32を所定の揺動角度でそれぞれ揺動駆動させた、所謂対向払拭式ワイパ装置であるものを示した。これに対し、実施の形態2においては、図9に示すように、ブラシレスワイパモータ100を、モジュラー型ワイパ装置101に適用した場合を示している。
 モジュラー型ワイパ装置101は、パイプフレーム102を備えている。このパイプフレーム102の長手方向に沿う略中央部分には、ブラシレスワイパモータ100の略重心となる部分が固定されている(詳細図示せず)。したがって、モジュラー型ワイパ装置101は、ワイパ装置単体で搬送し易い等、重量バランスに優れたものとなっている。ここで、モジュラー型ワイパ装置101に適用されるブラシレスワイパモータ100は、固定ボルト(図示せず)によって固定される1つの取付脚42eのみを備えている。この取付脚42eは、ゴムブッシュRBを介して、車体固定部としてのダッシュパネルアッパー14(図1参照)に固定される。また、取付脚42eに備えられるゴムブッシュRBを、差し込みゴムIRに換えて車両に固定するようにしても良い。なお、ブラシレスワイパモータ100のその他の構造は、実施の形態1のDR側ワイパモータ21と同じ構造である。
 パイプフレーム102の長手方向両側には、第1,第2ピボットホルダ103a,103bが固定され、これらの第1,第2ピボットホルダ103a,103bは、第1,第2ピボット軸104a,104bを回動自在に支持している。ここで、第1,第2ピボットホルダ103a,103bには、フロントサイドメンバー13(図1参照)にそれぞれ固定される第1,第2取付部105a,105bが設けられている。
 第1,第2ピボット軸104a,104bの基端部には、出力軸51の揺動運動を第1,第2ピボット軸104a,104bに伝達するリンク機構106が設けられている。第1,第2ピボット軸104a,104bの先端部には、各ワイパアーム22,32(図1参照)の基端部が固定されている。つまり、出力軸51と各ワイパアーム22,32との間にリンク機構106が設けられている。
 そして、リンク機構106は、出力軸51に固定されるクランクアーム106aと、第1,第2ピボット軸104a,104bの基端部に固定される一対の駆動レバー106b,106cと、各駆動レバー106b,106cの間に設けられる連結ロッド106dと、一方の駆動レバー106cとクランクアーム106aとの間に設けられる駆動ロッド106eとから構成されている。
 ここで、リンク機構106を構成する、クランクアーム106a,各駆動レバー106b,106c,連結ロッド106d,駆動ロッド106eは、それぞれ鋼板をプレス加工することで所定形状に形成されており、この点においても軽量化が図られている。
 以上のように形成した実施の形態2においても、上述した実施の形態1と同様の作用効果を奏することができる。
 本発明は上記各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記実施の形態1においては、DR側ワイパモータ21に3つの取付脚42eを設け、3つの取付脚42eのうちの1つを差し込み式とし、他の2つをボルト固定式としたが、本発明はこれに限らず、3つの取付脚42eの全てをボルト固定式としても構わない。
 また、上記各実施の形態においては、DR側ワイパモータ21およびブラシレスワイパモータ100を、それぞれフロントガラス11上を揺動するDR側ワイパアーム22およびAS側ワイパアーム32を駆動するものとしたが、本発明はこれに限らず、リヤガラス上を揺動するワイパアームを駆動するものにも採用することができる。
 さらに、上記各実施の形態においては、ステータ44の内側にロータ45を回転自在に配置したインナロータ型のブラシレスワイパモータとしたが、本発明はこれに限らず、ステータの外側にロータを配置したアウタロータ型のブラシレスワイパモータにも適用することができる。
 ブラシレスワイパモータは、自動車等の車両に搭載されるワイパ装置の駆動源として用いられ、ワイパアームを揺動駆動してウィンドシールドに付着した雨水等を払拭するために用いられる。

Claims (5)

  1.  車両のウィンドシールドに付着した付着物を払拭するワイパ部材を揺動させるブラシレスワイパモータであって、
     ハウジングの内側に固定された固定子と、
     前記固定子に巻かれたコイルと、
     前記固定子に設けられ、前記コイルが配置された6つのスロットと、
     前記固定子に対して回転する回転子と、
     前記回転子に設けられ、前記回転子の回転方向に沿って磁極が交互に配置された4極の永久磁石と、
     前記ハウジングに収容され、前記回転子の回転を減速する減速機構と、
     前記減速機構の回転を前記ワイパ部材に伝達する出力軸と、
     前記ハウジングに設けられた複数の固定脚と、
    を備え、
     前記複数の固定脚のうちの少なくとも1箇所が、前記車両の左右方向に延びる車体固定部に固定される、
    ブラシレスワイパモータ。
  2.  請求項1記載のブラシレスワイパモータにおいて、
     前記ブラシレスワイパモータの発生する周波数を500Hz以下とする、
    ブラシレスワイパモータ。
  3.  請求項1記載のブラシレスワイパモータにおいて、
     前記減速機構は、
     前記回転子により回転されるウォームと、
     前記出力軸が回転中心に設けられ、前記ウォームに噛み合わされる歯部を備えたウォームホイールと、
    を有し、
     前記回転子の軸方向寸法が、前記ウォームの軸方向寸法よりも小さい、
    ブラシレスワイパモータ。
  4.  請求項1記載のブラシレスワイパモータにおいて、
     前記複数の固定脚のうちの少なくとも1箇所が、緩衝部材を介して前記車体固定部に固定される、
    ブラシレスワイパモータ。
  5.  請求項1記載のブラシレスワイパモータにおいて、
     前記固定子は、前記回転子を中心に互いに対向するティースを備える、
    ブラシレスワイパモータ。
PCT/JP2016/061295 2015-04-16 2016-04-06 ブラシレスワイパモータ WO2016167168A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/565,531 US10040426B2 (en) 2015-04-16 2016-04-06 Brushless wiper motor
CN201680021699.7A CN107431422B (zh) 2015-04-16 2016-04-06 无刷雨刮电机
EP16779959.2A EP3285378B1 (en) 2015-04-16 2016-04-06 Brushless wiper motor
US16/029,989 US10442401B2 (en) 2015-04-16 2018-07-09 Brushless wiper motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-083856 2015-04-16
JP2015083856A JP6495080B2 (ja) 2015-04-16 2015-04-16 ブラシレスワイパモータ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/565,531 A-371-Of-International US10040426B2 (en) 2015-04-16 2016-04-06 Brushless wiper motor
US16/029,989 Continuation US10442401B2 (en) 2015-04-16 2018-07-09 Brushless wiper motor

Publications (1)

Publication Number Publication Date
WO2016167168A1 true WO2016167168A1 (ja) 2016-10-20

Family

ID=57125887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061295 WO2016167168A1 (ja) 2015-04-16 2016-04-06 ブラシレスワイパモータ

Country Status (5)

Country Link
US (2) US10040426B2 (ja)
EP (1) EP3285378B1 (ja)
JP (1) JP6495080B2 (ja)
CN (1) CN107431422B (ja)
WO (1) WO2016167168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109421675A (zh) * 2017-08-30 2019-03-05 通用汽车环球科技运作有限责任公司 磁力驱动的致动器组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066968B1 (fr) * 2017-06-02 2021-01-01 Valeo Systemes Dessuyage Moto-reducteur pour systeme d'essuyage de vehicule automobile
FR3074887B1 (fr) * 2017-12-08 2020-02-14 Valeo Systemes D'essuyage Moto-reducteur pour systeme d'essuyage de vehicule automobile
FR3074888B1 (fr) * 2017-12-08 2019-12-06 Valeo Systemes D'essuyage Moto-reducteur pour systeme d'essuyage de vehicule automobile
JP7490602B2 (ja) * 2021-03-10 2024-05-27 株式会社東芝 ブラシレスモータ駆動装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041285A (ja) * 2003-07-24 2005-02-17 Mitsubishi Motors Corp ワイパモータの取り付け構造
JP2014195389A (ja) * 2013-02-26 2014-10-09 Mitsuba Corp ブラシレスモータ及びワイパ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355061A (en) * 1992-01-24 1994-10-11 Grimes Aerospace Company Windshield wiper system
US7389561B2 (en) * 2002-05-15 2008-06-24 Trico Products Corporation Tandem windshield wiper system with direct drive motor
US7676880B2 (en) * 2002-05-15 2010-03-16 Trico Products Corporation Direct drive windshield wiper assembly
CA2536676A1 (en) * 2003-09-15 2005-03-24 Intier Automotive Closures Inc. Reversing-motor windshield wiper system
DE102008043173A1 (de) * 2008-07-04 2010-01-07 Robert Bosch Gmbh Getriebe-Antriebseinheit mit einer Selbsthemmvorrichtung
CN201263107Y (zh) * 2008-08-28 2009-06-24 成都华川电装有限责任公司 雨刮电机总成
CN201518442U (zh) * 2009-09-23 2010-06-30 湖北钱潮汽车零部件有限公司 一种后雨刮电机总成
JP2013223317A (ja) 2012-04-16 2013-10-28 Mitsuba Corp ブラシレスワイパモータ
DE102012223835A1 (de) * 2012-12-19 2014-06-26 Robert Bosch Gmbh Entkoppelter Wischerantrieb
JP6324946B2 (ja) * 2013-03-29 2018-05-16 株式会社ミツバ ブラシレスワイパモータ
JP2015037331A (ja) * 2013-08-10 2015-02-23 株式会社ミツバ ブラシレスモータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041285A (ja) * 2003-07-24 2005-02-17 Mitsubishi Motors Corp ワイパモータの取り付け構造
JP2014195389A (ja) * 2013-02-26 2014-10-09 Mitsuba Corp ブラシレスモータ及びワイパ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109421675A (zh) * 2017-08-30 2019-03-05 通用汽车环球科技运作有限责任公司 磁力驱动的致动器组件

Also Published As

Publication number Publication date
US20180312138A1 (en) 2018-11-01
US20180086308A1 (en) 2018-03-29
EP3285378A1 (en) 2018-02-21
CN107431422B (zh) 2020-02-14
EP3285378A4 (en) 2018-11-14
CN107431422A (zh) 2017-12-01
US10040426B2 (en) 2018-08-07
EP3285378B1 (en) 2020-10-28
US10442401B2 (en) 2019-10-15
JP2016208573A (ja) 2016-12-08
JP6495080B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2016167168A1 (ja) ブラシレスワイパモータ
JP6650302B2 (ja) ブラシレスモータおよびワイパ装置
JP6634372B2 (ja) ブラシレスワイパモータ
WO2015045003A1 (ja) ブラシレスワイパモータ
JPWO2016010021A1 (ja) ブラシレスワイパモータ
JP6681490B2 (ja) ブラシレスワイパモータおよびワイパ装置
JP2009167967A (ja) スタータ
JP6441814B2 (ja) ワイパ装置
JP2017143595A (ja) ブラシレスモータ
JP5317750B2 (ja) ワイパ装置
JP6552422B2 (ja) ブラシレスモータ
JP5446045B2 (ja) 回転電機及び電動パワーステアリング装置
WO2014021246A1 (ja) ワイパモータ
JP5155816B2 (ja) ワイパモータおよびワイパ装置
WO2005049407A1 (ja) 電動パワーステアリング装置
JP2020078995A (ja) 駆動ユニット
JP2017013739A (ja) 支持部材
JP2021048661A (ja) ブラシレスモータ
JPH10147152A (ja) 電気自動車における補機部品の配設構造
JP3889337B2 (ja) パワーウインドウモータ
JP2869926B2 (ja) ホイールモータ
JP5174203B2 (ja) 車載用モータユニット
JP2010161858A (ja) モータ及び電動パワーステアリング装置
JP2004009918A (ja) ワイパモータの固定構造
JP2017013738A (ja) 支持部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779959

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016779959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15565531

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE