WO2016167145A1 - フェーズドアレイアンテナ装置 - Google Patents

フェーズドアレイアンテナ装置 Download PDF

Info

Publication number
WO2016167145A1
WO2016167145A1 PCT/JP2016/060945 JP2016060945W WO2016167145A1 WO 2016167145 A1 WO2016167145 A1 WO 2016167145A1 JP 2016060945 W JP2016060945 W JP 2016060945W WO 2016167145 A1 WO2016167145 A1 WO 2016167145A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
unit
output
distortion compensation
Prior art date
Application number
PCT/JP2016/060945
Other languages
English (en)
French (fr)
Inventor
一二三 能登
安藤 暢彦
英之 中溝
檜枝 護重
秀樹 森重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16779936.0A priority Critical patent/EP3285402B1/en
Priority to CN201680021126.4A priority patent/CN107534454B/zh
Priority to JP2016549184A priority patent/JP6104476B2/ja
Priority to US15/561,472 priority patent/US10516209B2/en
Publication of WO2016167145A1 publication Critical patent/WO2016167145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2617Array of identical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Definitions

  • the present invention relates to a phased array antenna apparatus having a function of compensating for nonlinearity of a signal in a power amplifier that amplifies a modulated wave signal.
  • Patent Document 1 discloses a technique for improving the linearity of a microwave transmitting / receiving apparatus using a phased array antenna apparatus. That is, in Patent Document 1, a microwave transmission / reception apparatus using a phased array antenna apparatus transmits a microwave that is a transmission signal, and then receives the microwave reception signal as a feedback signal from a reception terminal that has received the microwave. A technique for improving linearity by collecting and performing distortion compensation processing on a transmission signal using the feedback signal is disclosed.
  • Patent Documents 2 to 6 below disclose techniques for improving the linearity of an antenna module constituting a phased array antenna device. That is, in Patent Documents 2 and 4, by switching the switch connected to each antenna module, the signal transmitted from each antenna module is returned as a feedback signal, and the feedback signal is used for each antenna module, A technique for improving the linearity of each antenna module by performing distortion compensation processing on a transmission signal is disclosed. In Patent Document 3, it is assumed that the operation of each antenna module constituting the phased array antenna apparatus has the same characteristics, and a synthesizer in the RF unit adds a reverse distortion signal to a transmission signal. And a technique for distributing the transmission signal after distortion compensation processing to a plurality of antenna modules is disclosed.
  • Patent Document 5 a part of a signal transmitted from each antenna module is extracted as a feedback signal by a distributor connected to each antenna module, and the feedback signal is used for each antenna module.
  • a technique for improving the linearity of each antenna module by performing a distortion compensation process is disclosed.
  • Patent Document 6 discloses a technique in which a distortion compensation device is mounted in some of the plurality of antenna modules constituting the phased array antenna device.
  • FIG. 15 is an explanatory diagram showing an example of an antenna pattern of a phased array antenna composed of 4 ⁇ 4 antenna modules.
  • FIG. 15A shows the antenna pattern and the required amplitude distribution when the amplitude distribution is not applied
  • FIG. 15B shows the antenna pattern and the required amplitude distribution when the amplitude distribution is applied. Comparing FIG. 15 (a) and FIG. 15 (b), it can be seen that the side lobe of the antenna pattern can be suppressed when the amplitude distribution is applied.
  • the gain of the variable gain device mounted on each antenna module or the attenuation amount of the variable attenuator is adjusted.
  • each antenna constituting the phased array antenna is used.
  • the saturation output of the final stage amplifier mounted on each antenna module is the same. For this reason, even if the linearity of each antenna module is increased, if the output power of the entire phased array antenna is increased, it is mounted on an antenna module having a required amplitude distribution of 0 dB regardless of whether or not the amplitude distribution is applied.
  • the final stage amplifier that has been subjected to nonlinear operation first causes distortion.
  • the required amplitude distribution of all antenna modules is 0 dB.
  • the required amplitude distribution of the four antenna modules arranged in the center portion of the 16 antenna modules is 0 dB.
  • the phased array antenna with an amplitude distribution has an overall output power smaller than the output power of the entire phased array antenna without an amplitude distribution because the required amplitude distribution includes an antenna module smaller than 0 dB. . Accordingly, the total output power when the final stage amplifier mounted on the antenna module having the required amplitude distribution of 0 dB operates nonlinearly is larger in the amplitude of the phased array antenna with the amplitude distribution. It becomes smaller than the phased array antenna without distribution.
  • FIG. 16 is an explanatory diagram showing an example of output power with and without an amplitude distribution. In the example of FIG. 16, it is shown that when the amplitude distribution is provided, the deterioration of the distortion is about 6 dB faster than when the amplitude distribution is not provided.
  • the present invention has been made to solve the above-described problems, and even when an amplitude distribution is provided, a phased array that can prevent the occurrence of distortion up to the same output power as when no amplitude distribution is provided.
  • An object is to obtain an antenna device.
  • a phased array antenna apparatus includes: a distortion compensation unit that performs distortion compensation processing using a distortion compensation coefficient on a transmission signal to compensate for distortion of a signal radiated from the phased array antenna; and a distortion compensation unit A distribution unit that distributes the transmission signal after distortion compensation processing by the signal processing unit, adjusts the amplitude and phase of the transmission signal distributed by the distribution unit, and performs signal processing to amplify the power of the transmission signal, thereby performing a phased array antenna
  • the transmission signal after signal processing is radiated from the element antenna that constitutes the signal, while a part of the transmission signal after signal processing is used as a feedback signal, the amplitude and phase of the feedback signal are adjusted, A combination of multiple output antenna modules and feedback signals output from multiple antenna modules.
  • the distortion compensation signal output unit is radiated from the phased array antenna for the transmission signal based on the difference between the feedback signal synthesized by the synthesis unit and the transmission signal before distortion compensation processing by the distortion compensation unit.
  • the distortion compensation coefficient that gives the distortion characteristic opposite to the distortion characteristic of the signal to be obtained is obtained, and the distortion compensation coefficient is output to the distortion compensation unit.
  • the combining unit that combines the feedback signals output from the plurality of antenna modules
  • the distortion compensation signal output unit transmits the feedback signal combined by the combining unit and the distortion compensation processing by the distortion compensating unit.
  • a distortion compensation coefficient that gives a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna is obtained from the difference from the signal, and the distortion compensation coefficient is output to the distortion compensation unit. Since it is configured, even when the amplitude distribution is provided, there is an effect that it is possible to prevent the occurrence of distortion up to the output power equivalent to the case where the amplitude distribution is not provided.
  • FIG. 1 is a configuration diagram showing a general phased array antenna device that performs distortion compensation processing for each individual antenna module 4;
  • FIG. 1 is explanatory drawing which shows the ACPR characteristic before and behind distortion compensation processing.
  • FIG. 1 is a configuration diagram showing a general phased array antenna device that performs distortion compensation processing for each individual antenna module 4;
  • FIG. 1 is explanatory drawing which shows the ACPR characteristic before and behind distortion compensation processing.
  • FIG. 1 is a configuration diagram showing a general phased array antenna device that performs distortion compensation processing for each individual antenna module 4;
  • FIG. It is explanatory drawing which shows the ACPR characteristic before and behind distortion compensation processing.
  • combination signal of the feedback signal output from 16 ( 4x4) antenna modules 4.
  • FIG. 1 It is a block diagram which shows the phased array antenna apparatus by Embodiment 2 of this invention. It is a block diagram which shows the distortion compensation signal output part 61 in the modem 1-n of the phased array antenna apparatus by Embodiment 2 of this invention.
  • 6 is an explanatory diagram showing distortion compensation of a radiation signal of a phased array antenna by a PD unit 13 of modems 1-1 to 1-N.
  • FIG. It is a block diagram which shows the phased array antenna apparatus by Embodiment 3 of this invention. It is a block diagram which shows the phased array antenna apparatus by Embodiment 4 of this invention. It is explanatory drawing which shows deterioration of the distortion compensation amount accompanying the amplitude variation of each system
  • FIG. 1 is a block diagram showing a phased array antenna apparatus according to Embodiment 1 of the present invention.
  • the phased array antenna apparatus of FIG. 1 is an apparatus capable of duplex communication that is time-division multiple communication, and includes four array antenna modules including a modem 1, a signal conversion unit 2, and an antenna module 4 that is four unit modules. It is composed of three.
  • the number of array antenna modules 3 is four is shown, but the number of array antenna modules 3 may be any number as long as it is one or more.
  • the number of the antenna modules 4 included in the array antenna module 3 is four, the number of the antenna modules 4 may be any number as long as it is one or more.
  • the DSP 11 of the modem 1 is a digital signal processing unit that outputs a digital signal as a transmission signal to the modulation unit 12 and performs predetermined digital signal processing on the reception signal orthogonally demodulated by the demodulation unit 18.
  • This digital signal processing for example, general signal processing performed when the communication apparatus receives a signal is assumed.
  • the modulation unit 12 performs quadrature modulation on the digital signal output from the DSP 11, and a baseband signal, which is a digital signal after quadrature modulation, is supplied to a predistortion unit (hereinafter referred to as “PD unit”) 13 and a distortion compensation signal output unit 15. Output.
  • PD unit predistortion unit
  • the modulation unit 12 performs quadrature modulation on the digital signal output from the DSP 11 and outputs a baseband signal that is a digital signal after quadrature modulation, but this is merely an example.
  • the digital signal may be quadrature modulated to output an IF (Intermediate Frequency) signal that is a digital signal after quadrature modulation.
  • the PD unit 13 performs distortion compensation processing using a predistortion signal, which is a distortion compensation signal output from the distortion compensation signal output unit 15, on the baseband signal output from the modulation unit 12. It is a distortion compensation unit that compensates for distortion of a radiated signal.
  • a DA converter (hereinafter referred to as “DAC”) 21 of the signal conversion unit 2 performs digital / analog conversion of the baseband signal after the distortion compensation processing by the PD 13 of the modem 1 and outputs an analog baseband signal.
  • the frequency converter 22 converts the frequency of the analog baseband signal output from the DAC 21 into a radio frequency, thereby outputting an RF signal that is a radio frequency signal.
  • the distributor 23 distributes the RF signal output from the frequency converter 22 to the four array antenna modules 3.
  • the distributor 31 of the array antenna module 3 distributes the RF signal distributed by the distributor 23 of the signal converter 2 to the four antenna modules 4.
  • the distributor 23 and the distributor 31 constitute a distribution unit.
  • the phase shifter 41 of the antenna module 4 adjusts the phase of the RF signal distributed by the distributor 31 of the array antenna module 3, and outputs the RF signal after the phase adjustment to the variable gain device 42.
  • the amount of phase shift of the RF signal by the phase shifter 41 is determined by the direction of the phased array antenna.
  • the variable gain device 42 adjusts the amplitude of the RF signal output from the phase shifter 41 and outputs the RF signal after the amplitude adjustment to the power amplifier 43.
  • Each antenna module 4 is given an amplitude distribution for the purpose of suppressing side lobes of the antenna pattern in the phased array antenna, and the gain of the variable gain device 42 is as shown in FIG. Is determined by the required amplitude distribution. Note that the phase and amplitude of the RF signal are appropriately adjusted by the phase shifter 41 and the variable gain device 42, thereby suppressing the amplitude phase error of each antenna module 4 in the transmission system.
  • the power amplifier 43 amplifies the power of the RF signal output from the variable gain device 42.
  • the isolator 44 insulates the input and output in order to reduce the influence of the active impedance and reflection of the element antenna 47 constituting the phased array antenna. However, the isolator 44 may be omitted if it is not affected by the active impedance.
  • the filter 45 reduces harmonics generated by the power amplifier 43 and outputs an RF signal after the harmonics are reduced.
  • the switch 46 connects the filter 45 and the element antenna 47 when transmitting an RF signal. As a result, the RF signal output from the filter 45 is applied to the element antenna 47, but a part of the RF signal is output to the variable attenuator 48 as a feedback signal.
  • the switch 46 connects the element antenna 47 and the filter 49 when receiving an RF signal.
  • the element antenna 47 radiates the RF signal output from the switch 46 to the space, receives the incoming RF signal, and outputs the received signal that is the RF signal to the switch 46.
  • the variable attenuator 48 attenuates the amplitude of the feedback signal output from the switch 46, and outputs the feedback signal after amplitude attenuation.
  • the filter 49 reduces the harmonics superimposed on the reception signal output from the switch 46, and outputs the reception signal after the harmonics are reduced.
  • the low noise amplifier 50 amplifies the power of the reception signal output from the filter 49.
  • the switch 51 connects the variable attenuator 48 and the variable gain device 52 when transmitting the RF signal, and connects the low noise amplifier 50 and the variable gain device 52 when receiving the RF signal.
  • the variable gain device 52 adjusts the amplitude of the feedback signal or reception signal output from the switch 51.
  • the phase shifter 53 adjusts the phase of the feedback signal or reception signal whose amplitude is adjusted by the variable gain device 52.
  • the amount of phase shift of the feedback signal or received signal by the phase shifter 53 is such that the phase of the feedback signal or received signal is the same as the phase of the feedback signal or received signal output from the other antenna module 4 to the combiner 32. To be determined.
  • the amplitude and phase error of each antenna module 4 in the reception system is suppressed by appropriately adjusting the amplitude and phase of the feedback signal or the reception signal by the variable gain device 52 and the phase shifter 53.
  • the synthesizer 32 of the array antenna module 3 synthesizes feedback signals or received signals output from the four antenna modules 4.
  • the synthesizer 24 of the signal converter 2 synthesizes the feedback signal or the received signal synthesized by the synthesizers 32 of the four array antenna modules 3.
  • the synthesizer 32 and the synthesizer 24 constitute a synthesizer.
  • the frequency converter 25 converts the frequency of the feedback signal or reception signal synthesized by the synthesizer 24 and outputs a baseband feedback signal or reception signal.
  • An AD converter (hereinafter referred to as “ADC”) 26 performs analog / digital conversion on the feedback signal or reception signal output from the frequency converter 25 and outputs a digital feedback signal or reception signal.
  • the switch 14 of the modem 1 connects the ADC 26 and the distortion compensation signal output unit 15 when transmitting an RF signal, and connects the ADC 26 and the demodulation unit 18 when receiving an RF signal.
  • the distortion compensation signal output unit 15 is radiated from the phased array antenna to the baseband signal based on the difference between the baseband signal output from the modulation unit 12 and the feedback signal output from the ADC 26 via the switch 14.
  • a distortion compensation coefficient that gives a distortion characteristic opposite to the distortion characteristic of the signal to be obtained is obtained, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13.
  • the predistortion signal may be obtained by any method, but in the first embodiment, an example of obtaining by the LUT method will be described.
  • the signal comparison unit 16 of the distortion compensation signal output unit 15 calculates the difference between the baseband signal output from the modulation unit 12 and the feedback signal output from the ADC 26 via the switch 14.
  • the PD signal generation unit 17 holds a lookup table that stores distortion compensation coefficients corresponding to the difference between the baseband signal and the feedback signal in advance, and the difference calculated by the signal comparison unit 16 from the lookup table.
  • a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13.
  • the demodulator 18 performs quadrature demodulation on the digital received signal output from the ADC 26 via the switch 14 and outputs the received signal after quadrature demodulation to the DSP 11.
  • FIG. 2 is an explanatory diagram showing a phased array antenna including four array antenna modules 3 including four antenna modules 4.
  • four array antenna modules 3 as sub-arrays perform duplex communication by directing beams in different directions (A direction, C direction, G direction, and I direction).
  • the DSP 11 of the modem 1 outputs a digital signal that is a transmission signal to the modulation unit 12.
  • the modulation unit 12 of the modem 1 performs quadrature modulation on the digital signal and outputs a baseband signal, which is a digital signal after quadrature modulation, to the PD unit 13 and the distortion compensation signal output unit 15.
  • the PD unit 13 of the modem 1 When receiving the baseband signal from the modulation unit 12, the PD unit 13 of the modem 1 performs a distortion compensation process using a predistortion signal output from the distortion compensation signal output unit 15 described later on the baseband signal. Thus, distortion of the signal radiated from the phased array antenna is compensated.
  • the distortion compensation processing by the PD unit 13 does not individually compensate for distortion of a signal radiated from the antenna module 4 which is a unit module, but integrally compensates for distortion of a signal radiated from the phased array antenna. is there.
  • the power amplifier 43 mounted on the antenna module 4 having a required amplitude distribution of 0 dB by multiplying the baseband signal by a predistortion signal that gives a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna. This compensates for distortion caused by non-linear operation.
  • the DAC 21 of the signal conversion unit 2 When receiving the baseband signal after distortion compensation processing from the PD unit 13 of the modem 1, the DAC 21 of the signal conversion unit 2 performs digital / analog conversion on the baseband signal and outputs an analog baseband signal.
  • the frequency converter 22 of the signal converter 2 converts the frequency of the baseband signal into a radio frequency, thereby outputting an RF signal that is a radio frequency signal. .
  • the distributor 23 of the signal conversion unit 2 distributes the RF signal to the four array antenna modules 3.
  • the distributor 31 of each array antenna module 3 receives the RF signal from the distributor 23 of the signal converter 2, the distributor 31 distributes the RF signal to the four antenna modules 4.
  • the phase shifter 41 of each antenna module 4 adjusts the phase of the RF signal and outputs the RF signal after the phase adjustment to the variable gain device 42.
  • the amount of phase shift of the RF signal by the phase shifter 41 is determined by the directivity direction of the phased array antenna, and a specific example thereof will be described later.
  • the variable gain device 42 of each antenna module 4 receives the RF signal after phase adjustment from the phase shifter 41, it adjusts the amplitude of the RF signal and outputs the RF signal after amplitude adjustment to the power amplifier 43.
  • the gain of the variable gain device 42 is determined by the required amplitude distribution of each array antenna module 3 as shown in FIG.
  • the power amplifier 43 of each antenna module 4 When the power amplifier 43 of each antenna module 4 receives the RF signal after amplitude adjustment from the variable gain device 42, it amplifies the power of the RF signal. As a result, the RF signal whose power is amplified by the power amplifier 43 is output to the isolator 44. However, when the power amplifier 43 is operating in a non-linear manner, the RF signal output from the power amplifier 43 is distorted. To do. In order to reduce the influence of active impedance and reflection of the element antenna 47, an isolator 44 is provided between the power amplifier 43 and the filter 45 so that the input and output are insulated. When the filter 45 of each antenna module 4 receives the RF signal that has passed through the isolator 44, it reduces the harmonics generated by the power amplifier 43 superimposed on the RF signal and outputs the RF signal after the harmonics are reduced. To do.
  • the switch 46 of each antenna module 4 connects the filter 45 and the element antenna 47, so that the RF signal output from the filter 45 is given to the element antenna 47.
  • an RF signal is radiated from the element antenna 47 to the space, but a part of the RF signal output from the filter 45 is fed to the variable attenuator 48 through the switch 46 as a feedback signal.
  • variable attenuator 48 of each antenna module 4 When the variable attenuator 48 of each antenna module 4 receives the feedback signal from the switch 46, the variable attenuator 48 attenuates the amplitude of the feedback signal and outputs the feedback signal after the amplitude attenuation.
  • the switch 51 of each antenna module 4 When transmitting an RF signal, the switch 51 of each antenna module 4 connects the variable attenuator 48 and the variable gain unit 52, so that the feedback signal output from the variable attenuator 48 is given to the variable gain unit 52. .
  • variable gain device 52 of each antenna module 4 When the variable gain device 52 of each antenna module 4 receives the feedback signal from the switch 51, it adjusts the amplitude of the feedback signal.
  • the phase shifter 53 of each antenna module 4 receives the feedback signal after amplitude adjustment from the variable gain device 52, the phase shifter 53 adjusts the phase of the feedback signal.
  • the amount of phase shift of the feedback signal by the phase shifter 53 is determined so that the phase of the feedback signal is the same as the phase of the feedback signal output from the other antenna module 4 to the combiner 32.
  • the amount of phase shift of the feedback signal by the phase shifter 53 of each antenna module 4 is determined in the same manner, so that the synthesis output from the synthesizer 32 of the four array antenna modules 3.
  • the phase of the later feedback signal becomes the same phase.
  • FIG. 3 is an explanatory diagram showing the phase shifters 41 and 53 of the four antenna modules 4 included in the array antenna module 3.
  • description of elements other than the phase shifters 41 and 53 and the element antenna 47 is omitted for simplification of description.
  • the four antenna modules 4 are distinguished by (1) to (4).
  • the phase shift amounts ⁇ 1 to ⁇ 4 of the phase shifter 41 of the antenna module 4 of (1) to (4) are set as follows.
  • the combiner 32 of each array antenna module 3 receives feedback signals from the four antenna modules 4, the combiner 32 combines the four feedback signals and outputs the combined feedback signal.
  • the combiner 24 of the signal conversion unit 2 receives the combined feedback signals from the combiners 32 of the four array antenna modules 3, the combiner 24 further combines the four combined feedback signals, and outputs the combined feedback signal. Output.
  • the frequency converting unit 25 of the signal converting unit 2 converts the frequency of the feedback signal and outputs a baseband feedback signal.
  • the ADC 26 of the signal converter 2 receives the baseband feedback signal from the frequency converter 25, the ADC 26 performs analog / digital conversion on the feedback signal and outputs a digital feedback signal.
  • the switch 14 of the modem 1 When transmitting the RF signal, the switch 14 of the modem 1 connects the ADC 26 and the distortion compensation signal output unit 15, so that the digital feedback signal output from the ADC 26 is given to the distortion compensation signal output unit 15.
  • the distortion compensation signal output unit 15 of the modem 1 receives a digital feedback signal from the switch 14, the difference between the feedback signal and the baseband signal output from the modulation unit 12 is used for the baseband signal.
  • a distortion compensation coefficient that gives a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna is obtained, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13.
  • the signal comparison unit 16 of the distortion compensation signal output unit 15 calculates a difference between the baseband signal output from the modulation unit 12 and the feedback signal output from the ADC 26 via the switch 14. This difference corresponds to the distortion component of the signal radiated from the phased array antenna.
  • the PD signal generation unit 17 of the distortion compensation signal output unit 15 holds in advance a look-up table that stores a distortion compensation coefficient corresponding to the difference between the baseband signal and the feedback signal.
  • the distortion compensation coefficient corresponding to the difference calculated by the comparison unit 16 is read, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13.
  • the distortion compensation signal output unit 15 obtains the predistortion signal by the LUT method, but the predistortion signal may be obtained by a method such as a polynomial method or a memory polynomial method.
  • the predistortion signal may be obtained by a method such as a polynomial method or a memory polynomial method.
  • the distortion compensation coefficient corresponding to the difference between the baseband signal and the feedback signal is stored in a lookup table in advance for each angle at which the beam is shaken, and from the lookup table corresponding to the angle of the beam every time the beam is shaken.
  • the distortion compensation coefficient corresponding to the difference between the baseband signal and the feedback signal may be read out.
  • a difference between the baseband signal output from the modulation unit 12 and the feedback signal output from the ADC 26 via the switch 14 is calculated, and a distortion compensation coefficient corresponding to the difference is calculated.
  • the lookup table is updated by storing distortion compensation coefficients corresponding to these differences in the lookup table.
  • a distortion compensation coefficient is read from the updated look-up table, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13.
  • the PD unit 13 of the modem 1 When receiving the predistortion signal from the distortion compensation signal output unit 15, the PD unit 13 of the modem 1 multiplies the baseband signal output from the modulation unit 12 by the predistortion signal as described above. The distortion of the radiation signal of the phased array antenna caused by the non-linear operation of the power amplifier 43 mounted on the antenna module 4 is compensated.
  • the switch 46 of each antenna module 4 connects the element antenna 47 and the filter 49, so that the reception signal of the element antenna 47 is given to the filter 49.
  • the filter 49 of each antenna module 4 receives the reception signal from the switch 46, it reduces the harmonics superimposed on the reception signal and outputs the reception signal after the harmonics are reduced.
  • the low noise amplifier 50 of each antenna module 4 receives the received signal after harmonic reduction from the filter 49, it amplifies the power of the received signal and outputs the received signal after power amplification.
  • the switch 51 of each antenna module 4 connects the low noise amplifier 50 and the variable gain device 52, so that the received signal after power amplification output from the low noise amplifier 50 is sent to the variable gain device 52. Given.
  • variable gain device 52 of each antenna module 4 When the variable gain device 52 of each antenna module 4 receives the received signal from the switch 51, it adjusts the amplitude of the received signal.
  • the phase shifter 53 of each antenna module 4 receives the received signal after amplitude adjustment from the variable gain device 52, the phase shifter 53 adjusts the phase of the received signal.
  • the amount of phase shift of the received signal by the phase shifter 53 is determined so that the phase of the received signal is the same as the phase of the received signal output from the other antenna module 4 to the combiner 32. Since the amount of phase shift of the received signal by the phase shifter 53 is the same as the amount of phase shift of the feedback signal, description of a specific example is omitted.
  • the synthesizer 32 of each array antenna module 3 receives the reception signals from the four antenna modules 4, the synthesizer 32 synthesizes the four reception signals and outputs the combined reception signal.
  • the synthesizer 24 of the signal conversion unit 2 receives the combined received signals from the synthesizers 32 of the four array antenna modules 3, the synthesizer 24 further synthesizes the four received signals and combines the combined received signals. Output.
  • the frequency converting unit 25 of the signal converting unit 2 converts the frequency of the received signal and outputs a baseband received signal.
  • the ADC 26 of the signal converter 2 receives the baseband received signal from the frequency converter 25, the ADC 26 performs analog / digital conversion on the received signal and outputs a digital received signal.
  • the switch 14 of the modem 1 connects the ADC 26 and the demodulator 18, so that the digital received signal output from the ADC 26 is given to the demodulator 18.
  • the demodulator 18 of the modem 1 performs quadrature demodulation on the received signal and outputs the received signal after quadrature demodulation to the DSP 11.
  • the DSP 11 of the modem 1 receives the received signal after quadrature demodulation from the demodulator 18, the DSP 11 performs predetermined digital signal processing on the received signal.
  • FIG. 4 is a configuration diagram showing a general phased array antenna apparatus that performs distortion compensation processing for each individual antenna module 4.
  • FIG. 5 is an explanatory diagram showing ACPR characteristics before and after distortion compensation processing.
  • ACPR means the adjacent channel leakage power ratio, and the higher the ACPR, the worse the distortion.
  • FIG. 5A shows the ACPR characteristics before and after the distortion compensation processing when the required amplitude distribution is not applied as shown in FIG. 15A in the configuration of FIG. 4, and FIG. 5B is the first embodiment.
  • FIG. 15 shows ACPR characteristics before and after distortion compensation processing when the required amplitude distribution is not provided as shown in FIG.
  • FIG. 5C shows ACPR characteristics before and after distortion compensation processing when the required amplitude distribution is applied as shown in FIG. 15B in the configuration of FIG. 4, and
  • FIG. 5D is the embodiment. 1 shows the ACPR characteristics before and after the distortion compensation processing when the required amplitude distribution is provided as shown in FIG.
  • the ACPR characteristic after the distortion compensation processing is as shown in FIGS. 5A and 5B between the configuration of FIG. 4 and the configuration of FIG. There is no big change.
  • the minimum output power at which distortion occurs is larger than in the configuration of FIG.
  • FIG. 6A shows the amplitude characteristics of the synthesized signal
  • FIG. 6B shows the phase characteristics of the synthesized signal. From FIG. 6, it can be seen that the amplitude phase characteristic of the composite signal of the feedback signal changes depending on the presence or absence of the required amplitude distribution. As described above, since the amplitude and phase characteristics of the composite signal of the feedback signal change, it is necessary to perform the distortion compensation process for the entire phased array antenna instead of performing the distortion compensation process for each antenna module 4 which is a unit module. I understand that there is.
  • the synthesizers 32 and 24 for synthesizing the feedback signals output from the plurality of antenna modules 4 are provided, and the distortion compensation signal output unit 15 is provided with the synthesizers 32 and 24.
  • the baseband signal is given a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna. Since the distortion compensation coefficient is obtained and the predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13, the variable gain unit 42 of each antenna module 4 has an amplitude distribution in order to suppress the side lobe of the antenna pattern. Even if the is attached, distortion can be prevented up to the same output power as when no amplitude distribution is applied. It achieves the effect that.
  • the four array antenna modules 3 including the four antenna modules 4 are mounted. However, the array antenna module 3 is not mounted, and the sixteen antenna modules 4 are mounted. You may make it mount.
  • the distributor 23 of the signal converter 2 distributes the RF signal output from the frequency converter 22 to the 16 antenna modules 4, and 16 synthesizers 24 of the signal converter 2.
  • the feedback signal output from the antenna module 4 may be synthesized.
  • the amplifier is not mounted on the signal conversion unit 2, but it goes without saying that the amplifier may be mounted on the signal conversion unit 2.
  • the description of the calibration function for adjusting the transmission / reception amplitude phase necessary for the phased array antenna and the control of the variable unit is omitted. However, as a general technique, the calibration function or the like is omitted. have.
  • FIG. 7 is a block diagram showing a phased array antenna apparatus according to Embodiment 2 of the present invention.
  • the transmission signal output to 12 is the same digital signal.
  • the distortion compensation signal output unit 61 of the modem 1-n combines the feedback signals output from the ADCs 26 of the signal conversion units 2-1 to 2-N, and the combined feedback signal and the baseband signal output from the modulation unit 12
  • the distortion compensation coefficient giving a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna is obtained for the baseband signal
  • the predistortion signal indicating the distortion compensation coefficient is obtained from the PD unit 13.
  • a method for obtaining a predistortion signal by the distortion compensation signal output unit 61 an LUT method, a polynomial method, a memory polynomial method, and the like are conceivable.
  • the predistortion signal may be obtained by any method, but in the second embodiment, an example of obtaining by the LUT method will be described.
  • the signal comparison unit 62 of the distortion compensation signal output unit 61 in the modem 1-n includes the feedback signal output from the ADC 26 of the signal conversion unit 2-n of the same system (n) via the switch 14 and the ADC 26 of another system. Synthesizes feedback and signal output from.
  • the signal comparison unit 62 of the modem 1-1 receives the feedback signal output from the ADC 26 of the signal conversion unit 2-1, and the signal conversion units 2-2 to 2-2 acquired by the communication unit 64 of the modem 1-1.
  • the N ⁇ 1 feedback signals output from the N ADCs 26 are combined.
  • the signal comparison unit 62 of the distortion compensation signal output unit 61 in the modem 1-n calculates the difference between the combined feedback signal and the baseband signal output from the modulation unit 12.
  • the PD signal generation unit 63 of the distortion compensation signal output unit 61 in the modem 1-n holds a look-up table that stores in advance a distortion compensation coefficient corresponding to the difference between the baseband signal and the synthesized feedback signal. Then, the distortion compensation coefficient corresponding to the difference calculated by the signal comparison unit 62 is read from the lookup table, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13 of the modem 1-n.
  • the communication unit 64 of the modem 1-n transmits the feedback signal output from the ADC 26 of the signal conversion unit 2-n of the same system (n) to the communication unit 64 of another system, while the communication unit 64 of the other system N ⁇ 1 feedback signals transmitted from the receiver 1 are received, and N ⁇ 1 feedback signals are output to the signal comparison unit 62 of the modem 1-n.
  • the communication unit 64 of the modem 1-1 transmits the feedback signal output from the ADC 26 of the signal conversion unit 2-1 to the communication unit 64 of the modems 1-2 to 1-N, while the modems 1-2 to 1
  • the N ⁇ 1 feedback signals transmitted from the ⁇ N communication units 64 are received, and the N ⁇ 1 feedback signals are output to the signal comparison unit 62 of the modem 1-1.
  • FIG. 8 is a configuration diagram showing a distortion compensation signal output unit 61 in the modem 1-n of the phased array antenna apparatus according to the second embodiment of the present invention.
  • the feedback signal acquisition unit 62a acquires the feedback signal output from the ADC 26 of the signal conversion unit 2-n of the same system (n) through the switch 14, and sends the feedback signal to the feedback signal synthesis unit 62c.
  • the feedback signal is output to the distortion compensation signal output unit 61 of another system.
  • the feedback signal storage unit 62 b stores feedback signals of other systems received by the communication unit 64.
  • the feedback signal synthesis unit 62c synthesizes the feedback signal output from the feedback signal acquisition unit 62a and the feedback signal of another system stored in the feedback signal storage unit 62b.
  • the difference calculation unit 62d calculates a difference between the feedback signal synthesized by the feedback signal synthesis unit 62c and the baseband signal output from the modulation unit 12.
  • the modulation unit 12 of the modem 1-n Upon receiving a digital signal from the DSP 11, the modulation unit 12 of the modem 1-n performs quadrature modulation on the digital signal and outputs a baseband signal that is a digital signal after quadrature modulation to the PD unit 13 and the distortion compensation signal output unit 61. To do.
  • the PD unit 13 of the modem 1-n When receiving the baseband signal from the modulation unit 12, the PD unit 13 of the modem 1-n performs a distortion compensation process using a predistortion signal output from the distortion compensation signal output unit 61 described later on the baseband signal. Implement to compensate for distortion of the signal radiated from the phased array antenna.
  • the distortion compensation process by the PD unit 13 does not individually compensate for the distortion of the signal radiated from the antenna module 4 which is a unit module, as in the first embodiment, but the signal radiated from the phased array antenna. Compensates for distortion as a whole.
  • the DAC 21 of the signal conversion unit 2-n When receiving the baseband signal after distortion compensation processing from the PD unit 13 of the modem 1-n, the DAC 21 of the signal conversion unit 2-n performs digital / analog conversion on the baseband signal and outputs an analog baseband signal. To do.
  • the frequency converter 22 of the signal converter 2-n converts the frequency of the baseband signal into a radio frequency, thereby converting an RF signal that is a radio frequency signal. Output.
  • the phase shifter 41 of the antenna module 4-n receives the RF signal from the frequency conversion unit 22 of the signal conversion unit 2-n, the phase shifter 41 adjusts the phase of the RF signal and adjusts the phase as in the first embodiment.
  • the subsequent RF signal is output to the variable gain device 42.
  • the variable gain device 42 of the antenna module 4-n adjusts the amplitude of the RF signal to adjust the RF signal after the amplitude adjustment, as in the first embodiment.
  • the signal is output to the power amplifier 43.
  • the power amplifier 43 of the antenna module 4-n When receiving the RF signal after amplitude adjustment from the variable gain device 42, the power amplifier 43 of the antenna module 4-n amplifies the power of the RF signal as in the first embodiment. As a result, the RF signal whose power is amplified by the power amplifier 43 is output to the isolator 44. However, when the power amplifier 43 is operating in a non-linear manner, the RF signal output from the power amplifier 43 is distorted. To do. In order to reduce the influence of active impedance and reflection of the element antenna 47, an isolator 44 is provided between the power amplifier 43 and the filter 45 so that the input and output are insulated. When receiving the RF signal that has passed through the isolator 44, the filter 45 of the antenna module 4-n reduces harmonics generated by the power amplifier 43 superimposed on the RF signal, as in the first embodiment. The RF signal after harmonic reduction is output.
  • the switch 46 of the antenna module 4-n connects the filter 45 and the element antenna 47 when transmitting an RF signal, the RF signal output from the filter 45 is given to the element antenna 47. As a result, an RF signal is radiated from the element antenna 47 to the space, but a part of the RF signal output from the filter 45 is fed to the variable attenuator 48 through the switch 46 as a feedback signal.
  • variable attenuator 48 of the antenna module 4-n When receiving the feedback signal from the switch 46, the variable attenuator 48 of the antenna module 4-n attenuates the amplitude of the feedback signal and outputs the feedback signal after the amplitude attenuation, as in the first embodiment.
  • the switch 51 of the antenna module 4-n connects the variable attenuator 48 and the variable gain unit 52. Therefore, the feedback signal output from the variable attenuator 48 is given to the variable gain unit 52. It is done.
  • variable gain device 52 of the antenna module 4-n adjusts the amplitude of the feedback signal as in the first embodiment.
  • the phase shifter 53 of the antenna module 4 receives the feedback signal after amplitude adjustment from the variable gain device 52, the phase shifter 53 adjusts the phase of the feedback signal as in the first embodiment.
  • the amount of phase shift of the feedback signal by the phase shifter 53 of the antenna module 4-n is determined so that the phase of the feedback signal is the same as the phase of the feedback signal output from the other antenna module 4.
  • the frequency converter 25 of the signal converter 2-n converts the frequency of the feedback signal and outputs a baseband feedback signal.
  • the ADC 26 of the signal converter 2-n receives the baseband feedback signal from the frequency converter 25, the ADC 26 performs analog / digital conversion on the feedback signal and outputs a digital feedback signal.
  • the switch 14 of the modem 1-n When transmitting an RF signal, the switch 14 of the modem 1-n connects the ADC 26 and the distortion compensation signal output unit 61, so that the digital feedback signal output from the ADC 26 is given to the distortion compensation signal output unit 61. .
  • the distortion compensation signal output unit 61 of the modem 1-n combines the feedback signals output from the ADCs 26 of the signal conversion units 2-1 to 2-N, and combines the combined feedback signal and the baseband output from the modulation unit 12. From the difference from the signal, a distortion compensation coefficient that gives a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna is obtained for the baseband signal, and a predistortion signal indicating the distortion compensation coefficient is obtained from the modem 1.
  • the feedback signal acquisition unit 62a of the distortion compensation signal output unit 61 in the modem 1-n receives the feedback signal from the ADC 26 of the signal conversion unit 2-n of the same system (n) via the switch 14, the feedback signal Is output to the feedback signal synthesis unit 62 c and the feedback signal is output to the communication unit 64.
  • the communication unit 64 of the modem 1-n transmits the feedback signal to the communication units 64 of other systems.
  • the communication unit 64 of the modem 1-n receives N ⁇ 1 feedback signals transmitted from the communication units 64 of other systems, and stores the N ⁇ 1 feedback signals in the feedback signal storage unit 62b. .
  • the feedback signal synthesis unit 62c of the distortion compensation signal output unit 61 in the modem 1-n reads N ⁇ 1 feedback signals of other systems from the feedback signal storage unit 62b, and obtains N ⁇ 1 feedback signals and feedback signals.
  • the feedback signal output from the unit 62a is synthesized.
  • the difference calculation unit 62d of the distortion compensation signal output unit 61 in the modem 1-n includes the synthesized feedback signal and the baseband signal output from the modulation unit 12. The difference is calculated.
  • the PD signal generation unit 63 of the distortion compensation signal output unit 61 in the modem 1-n holds a look-up table that stores in advance a distortion compensation coefficient corresponding to the difference between the baseband signal and the synthesized feedback signal.
  • the distortion compensation coefficient corresponding to the difference calculated by the difference calculating unit 62d is read from the lookup table, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13 of the modem 1-n.
  • the distortion compensation signal output unit 61 obtains the predistortion signal by the LUT method, but the predistortion signal is obtained by a method such as a polynomial method or a memory polynomial method. May be.
  • the PD unit 13 of the modem 1-n When receiving the predistortion signal from the distortion compensation signal output unit 61 of the modem 1-n, the PD unit 13 of the modem 1-n applies the preband signal to the baseband signal output from the modulation unit 12 as described above. By multiplying the distortion signal, the distortion of the radiation signal of the phased array antenna caused by the non-linear operation of the power amplifier 43 mounted on the antenna module 4 is compensated.
  • FIG. 9 is an explanatory view showing distortion compensation of the radiation signal of the phased array antenna by the PD unit 13 of the modems 1-1 to 1-N.
  • FIG. 9A shows the required amplitude distribution attached to the 16 antenna modules 4.
  • the required amplitude distribution for the 16 antenna modules 4 is divided into three of 0 dB, ⁇ 7.7 dB, and ⁇ 15.3 dB.
  • the amplitude distribution of 0 dB is represented by classification A
  • the amplitude distribution of ⁇ 7.7 dB is represented by classification B
  • the amplitude distribution of ⁇ 15.3 dB is represented by classification C.
  • FIG. 9A there are four antenna modules 4 belonging to class A, eight antenna modules 4 belonging to class B, and four antenna modules 4 belonging to class C.
  • FIG. 9B shows two-dimensional arrangement positions of the element antennas 47 in the antenna modules 4 of the systems (1) to (16).
  • FIG. 9C shows the input / output amplitude characteristics of the antenna modules 4 belonging to the categories A, B, and C
  • FIG. 9D shows the input / output phase characteristics of the antenna modules 4 belonging to the classes A, B, and C.
  • FIG. 9E shows the input / output amplitude characteristics obtained by synthesizing the input / output amplitude characteristics of the antenna modules 4 belonging to the categories A, B, and C
  • FIG. 9F belongs to the categories A, B, and C.
  • the input / output phase characteristics obtained by combining the input / output phase characteristics of the antenna module 4 are shown.
  • the feedback signal synthesis unit 62c of the distortion compensation signal output unit 61 in the modem 1-n synthesizes the feedback signals of the systems (1) to (16).
  • the input / output amplitude characteristic corresponds to the input / output amplitude characteristic shown in FIG.
  • the input / output phase characteristics of the combined feedback signal correspond to the input / output phase characteristics shown in FIG.
  • the difference calculated by the difference calculation unit 62d of the distortion compensation signal output unit 61 in the modem 1-n that is, the difference between the combined feedback signal and the baseband signal output from the modulation unit 12 is 16 lines.
  • the unit 13 multiplies the baseband signal output from the modulation unit 12 by the predistortion signal indicating the distortion compensation coefficient, so that the distortion of the signal radiated from the phased array antenna can be compensated.
  • the switch 46 of the antenna module 4-n connects the element antenna 47 and the filter 49, so that the received signal of the element antenna 47 is given to the filter 49.
  • the filter 49 of the antenna module 4-n reduces the harmonics superimposed on the reception signal, and receives the reception signal after the harmonic reduction, as in the first embodiment.
  • Output When the low noise amplifier 50 of the antenna module 4-n receives the received signal after harmonic reduction from the filter 49, it amplifies the power of the received signal and receives the received signal after the power amplification, as in the first embodiment. Is output.
  • the switch 51 of the antenna module 4-n connects the low noise amplifier 50 and the variable gain device 52. Therefore, the received signal after power amplification output from the low noise amplifier 50 is the variable gain device 52. Given to.
  • variable gain device 52 of the antenna module 4-n When the variable gain device 52 of the antenna module 4-n receives the received signal from the switch 51, it adjusts the amplitude of the received signal as in the first embodiment.
  • the phase shifter 53 of the antenna module 4-n receives the received signal after amplitude adjustment from the variable gain device 52, the phase shifter 53 adjusts the phase of the received signal as in the first embodiment.
  • the amount of phase shift of the received signal by the phase shifter 53 of the antenna module 4-n is determined so that the phase of the received signal is the same as the phase of the received signal output from the other antenna module 4.
  • the frequency converting unit 25 of the signal converting unit 2-n converts the frequency of the received signal to convert the received baseband signal. Output.
  • the ADC 26 of the signal converting unit 2-n receives the baseband received signal from the frequency converting unit 25, the ADC 26 performs analog / digital conversion on the received signal and outputs a digital received signal.
  • the switch 14 of the modem 1-n When receiving the RF signal, the switch 14 of the modem 1-n connects the ADC 26 and the demodulator 18, so that the digital received signal output from the ADC 26 is given to the demodulator 18.
  • the demodulator 18 of the modem 1-n When receiving the digital received signal from the switch 14, the demodulator 18 of the modem 1-n performs quadrature demodulation on the received signal and outputs the received signal after quadrature demodulation to the DSP 11.
  • the DSP 11 of the modem 1-n receives the received signal after quadrature demodulation from the demodulator 18, the DSP 11 performs predetermined digital signal processing on the received signal.
  • the distortion compensation signal output unit 61 of the modem 1-n combines the feedback signals output from the ADCs 26 of the signal conversion units 2-1 to 2-N.
  • Distortion compensation that gives a distortion characteristic opposite to the distortion characteristic of the signal radiated from the phased array antenna to the baseband signal from the difference between the combined feedback signal and the baseband signal output from the modulation unit 12 Since the coefficient is obtained and the predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13, the variable gain device 42 of the antenna module 4-n uses the amplitude distribution to suppress the side lobe of the antenna pattern. Even if it is applied, there is an effect that it is possible to prevent the occurrence of distortion up to the same output power as when the amplitude distribution is not applied.
  • Embodiment 3 In the first embodiment, when an RF signal is transmitted, all the antenna modules 4 included in each array antenna module 3 output feedback signals. However, some of the antenna elements included in each array antenna module 3 Only the antenna module 4 may output a feedback signal.
  • FIG. 10 is a block diagram showing a phased array antenna apparatus according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. In the example of FIG. 10, the antenna module 4 on which the variable attenuator 48 and the switch 51 are mounted and the antenna module 4 on which the variable attenuator 48 and the switch 51 are not mounted are mixed. That is, the antenna module 4 that needs to output a feedback signal is equipped with the variable attenuator 48 and the switch 51, and the antenna module 4 that does not need to output a feedback signal is equipped with the variable attenuator 48 and the switch 51. Not done.
  • each antenna module 4 when the amplitude distribution is given to each antenna module 4 by the variable gain device 42 for the purpose of suppressing the side lobe of the antenna pattern in the phased array antenna, each antenna module 4 is attached.
  • the representative antenna module is a variable attenuator for outputting a feedback signal after amplitude and phase adjustment. 48 and the switch 51 are mounted, but since the antenna modules other than the representative do not output a feedback signal, the variable attenuator 48 and the switch 51 are not mounted.
  • variable attenuator 48 and the switch 51 are not mounted on the antenna module 4 that does not need to output a feedback signal, similarly to the antenna module 4 that needs to output a feedback signal.
  • the variable attenuator 48 and the switch 51 may be mounted and the attenuation amount of the variable attenuator 48 may be adjusted so that the feedback signal is not output.
  • the element antennas 47 of the antenna modules 4 of the systems (1) to (16) are arranged as shown in FIG. 9B, and the systems (1) to (16) ) Is required as shown in FIG. 9A.
  • the first array antenna module 3 is mounted with the antenna modules 4 of the systems (1) to (4), and the second array antenna module 3 is of the system (5 ) To (8) are mounted
  • the third array antenna module 3 is mounted with the antenna modules 4 of the systems (9) to (12)
  • the fourth array antenna module 3 is mounted with the systems (13) to (13).
  • each of the first to fourth array antenna modules 3 includes one antenna module 4 belonging to class A, two antenna modules 4 belonging to class B, One antenna module 4 belonging to the category C is mounted.
  • the four antenna modules 4 belonging to the classification A that is, the antenna modules 4 of the systems (4), (7), (10), and (13) are classified into the first group and belong to the classification B.
  • the antenna modules 4 of the systems (2) (3) (5) (8) (9) (12) (14) (15) are classified into the second group and have four antennas belonging to the classification C.
  • the module 4, that is, the antenna module 4 in the systems (1), (6), (11), and (16) is classified into the third group.
  • the amplitude phase characteristics of the feedback signals output from the plurality of antenna modules 4 are substantially the same.
  • the representative antenna module 4 outputs a feedback signal.
  • the feedback signal can be handled as a feedback signal output from the remaining antenna module 4. Therefore, if the representative antenna module 4 outputs the feedback signal, the output from the 16 antenna modules 4 is the same as in the first embodiment, even if the remaining antenna modules 4 do not output the feedback signal. Feedback signals can be synthesized.
  • the antenna module 4 of the system (4) is used as the representative antenna module 4.
  • the antenna module 4 of the systems (2) and (3) is set as the representative antenna module 4, and the four antenna modules 4 belonging to the third group.
  • the antenna modules 4 of the system (1) is used as a representative antenna module 4.
  • the variable attenuator 48 and the switch 51 are mounted on the antenna modules 4 of the systems (1) to (4) so as to output feedback signals after amplitude and phase adjustment.
  • the variable attenuator 48 and the switch 51 are not mounted on the antenna modules 4 of the remaining systems (5) to (16), so that feedback signals after amplitude and phase adjustment are not output.
  • the feedback signals output from the antenna modules 4 of the systems (1) to (4) are combined by the combiner 32 of the array antenna module 3 and the combiner 24 of the signal converter 2, and the combined feedback signal is The signal is output to the signal comparison unit 16 of the distortion compensation signal output unit 15 through the frequency conversion unit 25, the ADC 26, and the switch 14.
  • the combined feedback signal supplied to the signal comparison unit 16 of the distortion compensation signal output unit 15 includes a feedback signal of one antenna module 4 belonging to the class A, and a feedback signal of two antenna modules 4 belonging to the class B.
  • the feedback signal of one antenna module 4 belonging to the class C, and the ratio of the amplitude distribution is the same as when the 16 feedback signals are combined, that is, the class A, the class B, and the class C Since the ratio is the same, a combined feedback signal similar to the case where 16 feedback signals are combined is given. Since the processing contents of the distortion compensation signal output unit 15 and the PD unit 13 are the same as those in the first embodiment, detailed description thereof is omitted.
  • the plurality of antenna modules 4 are grouped by the amplitude distribution attached to suppress the side lobes of the antenna pattern in the phased array antenna.
  • the representative antenna module outputs a feedback signal after amplitude and phase adjustment, and the antenna modules 4 other than the representative do not output the feedback signal. Therefore, in addition to the same effects as those of the first embodiment, the effect of simplifying the configuration of the antenna module 4 other than the representative can be obtained.
  • Embodiment 4 FIG.
  • the antenna modules 4 are grouped according to the amplitude distribution, and moreover, a plurality of groups affect the distortion characteristics of the signal radiated from the phased array antenna. It shall be classified according to the degree.
  • the antenna module belonging to a group having a relatively high influence compared to the other group outputs a feedback signal after amplitude and phase adjustment, and A description will be given of an antenna module that does not output a feedback signal in a group having a relatively low influence level.
  • FIG. 11 is a block diagram showing a phased array antenna apparatus according to Embodiment 4 of the present invention.
  • the modem 1 includes a memory 71
  • the distortion compensation signal output unit 15 includes a signal comparison unit 72 and a PD signal generation unit 17.
  • the memory 71 and the signal comparison unit 72 will be described later.
  • the antenna module 4 in which the variable attenuator 48 and the switch 51 are mounted and the antenna module 4 in which the variable attenuator 48 and the switch 51 are not mounted are mixed. That is, the antenna module 4 that needs to output a feedback signal is equipped with the variable attenuator 48 and the switch 51, and the antenna module 4 that does not need to output a feedback signal is equipped with the variable attenuator 48 and the switch 51. Not done.
  • FIG. 12 is an explanatory diagram showing the deterioration of the distortion compensation amount due to the amplitude variation of each system with respect to a certain distortion value.
  • (1) to (18) are numbers indicating combinations of amplitude variations of the antenna modules 4 belonging to the classification A, the classification B, and the classification C.
  • B.I. O for each combination of amplitude variations, B.I. O.
  • the amount of improvement and the amount of deterioration are shown.
  • the amplitude variation is expressed in dB, and is blank when the amplitude variation is 0 dB.
  • B. O The improvement amount indicates how much the output power of the phased array antenna is improved when the distortion compensation process is performed on a certain distortion value compared to the case where the distortion compensation process is not performed.
  • the degradation amount represents how much dB the degradation is caused when the distortion compensation processing for a certain distortion value is not an ideal distortion compensation processing.
  • the amplitude variation of the antenna modules 4 belonging to the classification A, the classification B, and the classification C is, for example, If the adjustment is performed as in combination numbers (2) and (3), the deterioration amount is reduced from 4.3 dB to 1 dB or 0.3 dB, so that the deterioration amount falls within an allowable range. However, if the amplitude variation of the antenna module 4 belonging to the category A is adjusted, the deterioration amount is reduced as shown in the combination number (16) without adjusting the amplitude variation of the antenna module 4 belonging to the category B and the category C. It can be within the allowable range.
  • the antenna module 4 belonging to the category A belongs to the category A because the degree of influence on the distortion characteristics of the signal radiated from the phased array antenna is relatively higher than the antenna modules 4 belonging to the categories B and C.
  • the amount of deterioration can be kept within an allowable range simply by adjusting the amplitude variation of the antenna module 4, but the antenna module 4 belonging to the categories B and C has an influence on the distortion characteristics as compared with the antenna module 4 belonging to the category A. Since it is relatively low in comparison, it may not be possible to keep the amount of deterioration within an allowable range simply by adjusting the amplitude variation of the antenna module 4 belonging to the category B. Further, simply adjusting the amplitude variation of the antenna module 4 belonging to the category C may not allow the deterioration amount to fall within the allowable range as indicated by the combination number (13).
  • the variable attenuation is applied to the four antenna modules 4 belonging to the classification A having a high influence on the distortion characteristics, that is, the antenna modules of the systems (4), (7), (10), and (13).
  • 48 and switch 51 are mounted to output a feedback signal after amplitude and phase adjustment.
  • the variable attenuator 48 and the switch 51 are not mounted, and the feedback signal after amplitude and phase adjustment is not output.
  • the synthesizer 32 of the array antenna module 3 and the synthesizer 24 of the signal converter 2 synthesize the feedback signals output from the antenna modules 4 of the systems (4) (7) (10) (13).
  • the subsequent feedback signal is output to the signal comparison unit 72 of the distortion compensation signal output unit 15 via the frequency conversion unit 25, the ADC 26, and the switch 14.
  • no feedback signal is output from the twelve antenna modules 4 belonging to the classifications B and C that have a low influence on the distortion characteristics.
  • the feedback signals belong to the classifications B and C measured at the time of product inspection.
  • Feedback signals output from the twelve antenna modules 4 are stored in the memory 71 of the modem 1. Since this feedback signal does not change even if the input / output amplitude phase characteristics of the antenna modules 4 belonging to the classifications B and C change due to factors such as heat, for example, it is hereinafter referred to as a “fixed feedback signal”.
  • the signal comparison unit 72 of the distortion compensation signal output unit 15 receives the combined feedback signal related to the systems (4), (7), (10), and (13) from the ADC 26 via the switch 14, the feedback signal and the memory 71 are received. Is combined with the feedback signal stored in. That is, the signal comparison unit 72 outputs the feedback signals of the four antenna modules 4 belonging to the class A output from the ADC 26 via the switch 14 and the eight antenna modules 4 belonging to the class B stored in the memory 71. Are combined with the fixed feedback signals of the four antenna modules 4 belonging to the class C stored in the memory 71 to synthesize the feedback signals output from the 16 antenna modules 4 A synthesized feedback signal corresponding to the synthesized feedback signal is generated.
  • the signal comparison unit 72 of the distortion compensation signal output unit 15 When the signal comparison unit 72 of the distortion compensation signal output unit 15 generates the synthesized feedback signal, the signal comparison unit 72 calculates a difference between the synthesized feedback signal and the baseband signal output from the modulation unit 12.
  • the PD signal generation unit 17 of the distortion compensation signal output unit 15 holds in advance a look-up table that stores a distortion compensation coefficient corresponding to the difference between the baseband signal and the feedback signal.
  • the distortion compensation coefficient corresponding to the difference calculated by the comparison unit 72 is read, and a predistortion signal indicating the distortion compensation coefficient is output to the PD unit 13. Since the processing content of the PD unit 13 is the same as that of the first embodiment, detailed description thereof is omitted.
  • the plurality of groups are classified according to the degree of influence on the distortion characteristics of the signal radiated from the phased array antenna.
  • An antenna module belonging to a group having a relatively high influence compared to a group outputs a feedback signal after amplitude and phase adjustment, and an antenna module belonging to a group having a relatively low influence compared to other groups Since the feedback signal is not output, the same effect as in the first embodiment can be obtained, and the configuration of the antenna module 4 belonging to the group having a low influence on the distortion characteristic can be simplified. Is obtained.
  • Embodiment 5 FIG. In the second embodiment, when RF signals are transmitted, all antenna modules 4 output feedback signals. However, only some antenna modules 4 may output feedback signals.
  • FIG. 13 is a block diagram showing a phased array antenna apparatus according to Embodiment 5 of the present invention.
  • the same reference numerals as those in FIG. the antenna module 4 in which the variable attenuator 48 and the switch 51 are mounted and the antenna module 4 in which the variable attenuator 48 and the switch 51 are not mounted are mixed. That is, the antenna module 4 that needs to output a feedback signal is equipped with the variable attenuator 48 and the switch 51, and the antenna module 4 that does not need to output a feedback signal is equipped with the variable attenuator 48 and the switch 51. Not done.
  • FIG. 13 the same reference numerals as those in FIG. 13
  • the antenna module 4 in which the variable attenuator 48 and the switch 51 are mounted are mixed. That is, the antenna module 4 that needs to output a feedback signal is equipped with the variable attenuator 48 and the switch 51, and the antenna module 4 that does not need to output a feedback signal is equipped with the variable attenuator 48 and the switch 51. Not done.
  • the antenna module 4-1 includes the variable attenuator 48 and the switch 51, and the antenna module 4 -N does not include the variable attenuator 48 and the switch 51.
  • the antenna module 4-1 does not include the variable attenuator 48 and the switch 51
  • the antenna module 4-N includes the variable attenuator 48 and the switch 51.
  • the variable attenuator 48 and the switch 51 are mounted on the antenna modules 4-1 to 4-4 of the systems (1) to (4), so that the system (5 A configuration in which the variable attenuator 48 and the switch 51 are not mounted is assumed for the antenna modules 4-5 to 4-16 in FIGS.
  • a variable attenuator 48 and a switch 51 are mounted on the antenna modules 4-1 to 4-4 of the systems (1) to (4), and the antenna modules 4-5 to 4- of the systems (5) to (16) are mounted.
  • the modems 1-1 to 1-4 of the systems (1) to (4) are connected to the signal conversion units from the antenna modules 4-1 to 4-4.
  • a feedback signal is given via 2-1 to 2-4.
  • the communication units 64 of the modems 1-1 to 1-4 of the systems (1) to (4) transmit the feedback signals output from the antenna modules 4-1 to 4-4 to the communication units 64 of other systems. Since the communication units 64 of the modems 1-5 to 1-16 of the systems (5) to (16) do not output feedback signals from the antenna modules 4-5 to 4-16, the feedback signals are transmitted to the communication units 64 of other systems. Processing to send to is not performed.
  • the communication units 64 of the modems 1-1 to 1-4 of the systems (1) to (4) receive the three feedback signals transmitted from the communication units 64 of other systems, and receive the three feedback signals. Is stored in the feedback signal storage unit 62b.
  • the communication units 64 of the modems 1-5 to 1-16 of the systems (5) to (16) receive the four feedback signals transmitted from the communication units 64 of the systems (1) to (4), Are stored in the feedback signal storage unit 62b.
  • the feedback signal synthesis unit 62c of the distortion compensation signal output unit 61 in the systems (1) to (4) reads three feedback signals of other systems from the feedback signal storage unit 62b.
  • the feedback signal synthesizer 62c of the system (1) the three feedback signals output from the antenna modules 4-2 to 4-4 of the systems (2) to (4) are read, and the system ( In the case of the feedback signal synthesizer 62c of 2), the three feedback signals output from the antenna modules 4-1, 4-3, and 4-4 of the systems (1), (3), and (4) are read out.
  • the feedback signal synthesizer 62c of the systems (1) to (4) synthesizes the read three feedback signals and the feedback signal output from the feedback signal acquisition unit 62a.
  • the difference calculation unit 62d of the distortion compensation signal output unit 61 in the systems (1) to (4) outputs the combined feedback signal and the modulation unit 12 when the feedback signal synthesis unit 62c synthesizes four feedback signals. The difference from the baseband signal is calculated.
  • the feedback signal synthesis unit 62c of the distortion compensation signal output unit 61 in the systems (5) to (16) reads the feedback signals of the systems (1) to (4) from the feedback signal storage unit 62b, and the systems (1) to (4) ) Is synthesized.
  • the difference calculation unit 62d of the distortion compensation signal output unit 61 in the systems (1) to (16) outputs the combined feedback signal and the modulation unit 12 when the feedback signal synthesis unit 62c synthesizes four feedback signals.
  • the difference from the baseband signal is calculated. Since the processing contents of the PD signal generation unit 63 and the PD unit 13 of the distortion compensation signal output unit 61 in the modem 1-n are the same as those in the second embodiment, detailed description thereof is omitted.
  • the plurality of antenna modules 4 are grouped by the amplitude distribution attached to suppress the side lobes of the antenna pattern in the phased array antenna.
  • the representative antenna module outputs a feedback signal after amplitude and phase adjustment, and the antenna modules 4 other than the representative do not output the feedback signal. Therefore, in addition to the same effects as those of the second embodiment, the effect of simplifying the configuration of the antenna module 4 other than the representative can be obtained.
  • Embodiment 6 the antenna modules 4 are grouped according to the amplitude distribution as in the fourth embodiment, and a plurality of groups are classified according to the degree of influence on the distortion characteristics of the signal radiated from the phased array antenna. It shall be classified.
  • the antenna module belonging to a group having a relatively high influence compared to the other group outputs a feedback signal after amplitude and phase adjustment, and A description will be given of an antenna module that does not output a feedback signal in a group having a relatively low influence level.
  • the configuration diagram of the phased array antenna apparatus according to the sixth embodiment is the same as FIG. 13 in the fifth embodiment.
  • 14 is a block diagram showing a distortion compensation signal output unit 61 in a modem 1-n of a phased array antenna apparatus according to Embodiment 6 of the present invention.
  • the feedback signal storage unit 62e stores feedback signals of other systems received by the communication unit 64, and stores a fixed feedback signal related to the antenna module 4 in which the variable attenuator 48 and the switch 51 are not mounted.
  • the feedback signal synthesis unit 62f synthesizes the feedback signal output from the feedback signal acquisition unit 62a and the feedback signal and the fixed feedback signal of another system stored in the feedback signal storage unit 62b.
  • the antenna module 4 in which the variable attenuator 48 and the switch 51 are mounted and the antenna module 4 in which the variable attenuator 48 and the switch 51 are not mounted, as in the fourth embodiment. It is mixed. Specifically, as in the fourth embodiment, the four antenna modules 4 belonging to the classification A having a high influence on the distortion characteristics, that is, the antenna modules of the systems (4), (7), (10), and (13).
  • variable attenuator 48 and the switch 51 are mounted, and the twelve antenna modules 4 belonging to the classifications B and C having a low influence on the distortion characteristics, that is, the systems (1) to (3) (5) (6) ) (8) (9) (11) (12) (14) to (16) are assumed to have a configuration in which the variable attenuator 48 and the switch 51 are not mounted.
  • variable attenuator 48 and the switch 51 are mounted on the antenna modules 4 of the systems (4), (7), (10), and (13), and the systems (1) to (3) (5) (6) (8) ( 9) (11) (12) (14) to (16) are not equipped with the variable attenuator 48 and the switch 51 in the antenna module 4, and the modems of the systems (4), (7), (10), and (13) 1, a feedback signal is given via the signal converter 2 from the antenna module 4 having a connection relationship.
  • the communication unit 64 of the modem 1 of the systems (4), (7), (10), and (13) transmits the feedback signal output from the antenna module 4 having a connection relationship to the communication units 64 of other systems.
  • the communication unit 64 of the modem 1 in the systems (1) to (3) (5) (6) (8) (9) (11) (12) (14) to (16) is connected to the antenna module 4 having a connection relationship. Since the feedback signal is not output, the process of transmitting the feedback signal to the communication unit 64 of another system is not performed.
  • the communication unit 64 of the modem 1 of the systems (4), (7), (10), and (13) receives the three feedback signals transmitted from the communication units 64 of the other systems, and receives the three feedback signals. Stored in the feedback signal storage unit 62e.
  • the communication unit 64 of the modem 1 of the systems (1) to (3) (5) (6) (8) (9) (11) (12) (14) to (16) is connected to the systems (4) (7) ( 10)
  • the four feedback signals transmitted from the communication unit 64 in (13) are received, and the four feedback signals are stored in the feedback signal storage unit 62e.
  • the feedback signal synthesis unit 62f of the distortion compensation signal output unit 61 in the systems (4), (7), (10), and (13) reads out the three feedback signals of the other systems from the feedback signal storage unit 62e and performs feedback.
  • the fixed feedback signal from the signal storage unit 62e that is, the fixed feedback signal related to the systems (1) to (3) (5) (6) (8) (9) (11) (12) (14) to (16) Read.
  • the feedback signal synthesizer 62f of the system (4) the three feedback signals output from the antenna modules 4 of the systems (7), (10), and (13) are read and the systems (1) to (3) (5) (6) (8) (9) (11) (12)
  • the fixed feedback signal according to (14) to (16) is read.
  • the feedback signal synthesizer 62f in the systems (4), (7), (10), and (13) has the connection relationship output from the three feedback signals and the fixed feedback signal read out and the feedback signal acquisition unit 62a. Are combined with the feedback signal.
  • the feedback signal synthesis unit 62f of the distortion compensation signal output unit 61 in the systems (1) to (3) (5) (6) (8) (9) (11) (12) (14) to (16) The four feedback signals of the systems (4), (7), (10), and (13) are read from the storage unit 62e, and fixed feedback signals, that is, the systems (1) to (3) ( 5) Read out the fixed feedback signal according to (6) (8) (9) (11) (12) (14) to (16).
  • the feedback signal synthesis unit 62f of the systems (1) to (3) (5) (6) (8) (9) (11) (12) (14) to (16) is fixed to the four feedback signals read out. Combining with the feedback signal.
  • the difference calculation unit 62d of the distortion compensation signal output unit 61 in the systems (1) to (16) outputs the combined feedback signal and the modulation unit 12 when the feedback signal synthesis unit 62f synthesizes 16 feedback signals.
  • the difference from the baseband signal is calculated. Since the processing contents of the PD signal generation unit 63 and the PD unit 13 of the distortion compensation signal output unit 61 in the modem 1-n are the same as those in the second embodiment, detailed description thereof is omitted.
  • the plurality of groups are classified according to the degree of influence on the distortion characteristics of the signal radiated from the phased array antenna.
  • An antenna module belonging to a group having a relatively high influence compared to a group outputs a feedback signal after amplitude and phase adjustment, and an antenna module belonging to a group having a relatively low influence compared to other groups Since the feedback signal is not output, the same effect as in the second embodiment can be obtained, and the configuration of the antenna module 4 belonging to the group having a low influence on the distortion characteristic can be simplified. Is obtained.
  • a phased array antenna apparatus includes: a distortion compensation unit that performs distortion compensation processing using a distortion compensation coefficient on a transmission signal to compensate for distortion of a signal radiated from the phased array antenna; and a distortion compensation unit A distribution unit that distributes the transmission signal after distortion compensation processing by the signal processing unit, adjusts the amplitude and phase of the transmission signal distributed by the distribution unit, and performs signal processing to amplify the power of the transmission signal, thereby performing a phased array antenna
  • the transmission signal after signal processing is radiated from the element antenna that constitutes the signal, while a part of the transmission signal after signal processing is used as a feedback signal, the amplitude and phase of the feedback signal are adjusted, A combination of multiple output antenna modules and feedback signals output from multiple antenna modules.
  • the distortion compensation signal output unit is radiated from the phased array antenna for the transmission signal based on the difference between the feedback signal synthesized by the synthesis unit and the transmission signal before distortion compensation processing by the distortion compensation unit.
  • the distortion compensation coefficient that gives the distortion characteristic opposite to the distortion characteristic of the signal to be obtained is obtained, and the distortion compensation coefficient is output to the distortion compensation unit, so even if the amplitude distribution is applied, it is equivalent to the case where the amplitude distribution is not applied. It is possible to prevent the occurrence of distortion up to the output power of, and is suitable for compensating the nonlinearity of the signal in the power amplifier that amplifies the modulated wave signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Amplifiers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmitters (AREA)

Abstract

複数のアンテナモジュール(4)から出力されたフィードバック信号を合成する合成器(32,24)を設け、歪補償信号出力部(15)が、合成器(32,24)により合成されたフィードバック信号と、変調部(12)から出力されたベースバンド信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をPD部(13)に出力する。

Description

フェーズドアレイアンテナ装置
 この発明は、変調波信号を増幅する電力増幅器における信号の非線形性を補償する機能を有するフェーズドアレイアンテナ装置に関するものである。
 フェーズドアレイアンテナ装置を用いるマイクロ波送受信装置は、レーダー用途に用いられる場合、送信機については線形性を求められることがないが、通信用途に用いられる場合、送信機について線形性が求められる。
 フェーズドアレイアンテナ装置を用いるマイクロ波送受信装置では、各素子アンテナに接続される送受信機モジュールを小さくする必要があるため、送信機に含まれる電力増幅器の効率を上げる必要がある。
 しかし、電力増幅器の効率を上げると、一般的には非線形性が大きくなり、歪みが発生する。
 以下の特許文献1には、フェーズドアレイアンテナ装置を用いるマイクロ波送受信装置の線形性を高める技術が開示されている。
 即ち、特許文献1には、フェーズドアレイアンテナ装置を用いるマイクロ波送受信装置が、送信信号であるマイクロ波を送信したのち、そのマイクロ波を受信した受信端末から当該マイクロ波の受信信号をフィードバック信号として収集し、そのフィードバック信号を用いて、送信信号に対する歪補償処理を実施することで、線形性を高める技術が開示されている。
 以下の特許文献2~6には、フェーズドアレイアンテナ装置を構成しているアンテナモジュールの線形性を高める技術が開示されている。
 即ち、特許文献2,4には、各アンテナモジュールに接続しているスイッチを切り替えることで、各アンテナモジュールから送信される信号をフィードバック信号として戻し、アンテナモジュール毎に、そのフィードバック信号を用いて、送信信号に対する歪補償処理を実施することで、各アンテナモジュールの線形性を高める技術が開示されている。
 特許文献3には、フェーズドアレイアンテナ装置を構成している各アンテナモジュールの動作がすべて同じ特性であると仮定して、RF部における合成器が、逆歪み信号を送信信号に加算する歪補償処理を実施し、歪補償処理後の送信信号を複数のアンテナモジュールに分配する技術が開示されている。
 特許文献5には、各アンテナモジュールに接続されている分配器によって、各アンテナモジュールから送信される信号の一部をフィードバック信号として取り出し、アンテナモジュール毎に、そのフィードバック信号を用いて、送信信号に対する歪補償処理を実施することで、各アンテナモジュールの線形性を高める技術が開示されている。
 特許文献6には、フェーズドアレイアンテナ装置を構成している複数のアンテナモジュールのうち、一部のアンテナモジュールの中に歪み補償装置を実装している技術が開示されている。
特開2010-232866号公報 特開2006-94043号公報 特開2006-67428号公報 特開2011-19029号公報 特開2002-190712号公報 特開2004-135263号公報
 従来のフェーズドアレイアンテナ装置は以上のように構成されているので、特許文献1の場合、受信端末から受信信号をフィードバック信号として収集することができれば、送信信号に対する歪補償処理を実施して、線形性を高めることができる。しかし、例えば、受信端末が移動体端末等の場合には、フィードバック信号を収集することができるとは限らず、マイクロ波に対する歪補償処理を実施することができないことがあるという課題があった。
 また、特許文献2~6の場合、個々のアンテナモジュールの線形性を高めることができるが、アンテナパターンのサイドローブを抑圧するために振幅分布をつけると、各アンテナモジュールの線形性を高めたとしても、振幅分布をつけない場合よりも、小さな出力電力で歪み発生してしまうという課題があった。
 ここで、図15は4×4のアンテナモジュールからなるフェーズドアレイアンテナのアンテナパターンの一例を示す説明図である。
 特に図15(a)は振幅分布をつけない場合のアンテナパターン及び所要振幅分布を示し、図15(b)は振幅分布をつけた場合のアンテナパターン及び所要振幅分布を示している。
 図15(a)と図15(b)を比較すると、振幅分布をつけた場合の方がアンテナパターンのサイドローブを抑圧できることが分かる。
 各アンテナモジュールから放射される信号の電力を変化させる場合、各アンテナモジュールに実装されている可変利得器の利得又は可変減衰器の減衰量を調整するが、通常、フェーズドアレイアンテナを構成する各アンテナモジュールは同じ素子を用いるため、各アンテナモジュールに実装されている最終段増幅器の飽和出力は同じである。
 このため、各アンテナモジュールの線形性を高めたとしても、フェーズドアレイアンテナ全体の出力電力を高めていくと、振幅分布をつけているか否かにかかわらず、所要振幅分布が0dBのアンテナモジュールに実装されている最終段増幅器が先に非線形動作して歪みが発生する。図15(a)の例では、全てのアンテナモジュールの所要振幅分布が0dBである。図15(b)の例では、16個のアンテナモジュールのうち、中心部分に配置されている4個のアンテナモジュールの所要振幅分布が0dBである。
 また、振幅分布をつけた場合のフェーズドアレイアンテナは、所要振幅分布が0dBより小さいアンテナモジュールを含む分だけ、全体の出力電力が、振幅分布をつけない場合のフェーズドアレイアンテナ全体の出力電力より小さい。
 したがって、所要振幅分布が0dBのアンテナモジュールに実装されている最終段増幅器が非線形動作して歪みが発生する際の全体の出力電力は、振幅分布をつけた場合のフェーズドアレイアンテナの方が、振幅分布をつけない場合のフェーズドアレイアンテナより小さくなる。
 図16は振幅分布をつけた場合と振幅分布をつけない場合の出力電力の一例を示す説明図である。
 図16の例では、振幅分布をつけた場合、振幅分布をつけない場合より、歪みの悪化が約6dB早くなっていることを示している。
 この発明は上記のような課題を解決するためになされたもので、振幅分布をつけた場合でも、振幅分布をつけない場合と同等の出力電力まで、歪みの発生を防止することができるフェーズドアレイアンテナ装置を得ることを目的とする。
 この発明に係るフェーズドアレイアンテナ装置は、送信信号に対して、歪補償係数を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する歪補償部と、歪補償部による歪補償処理後の送信信号を分配する分配部と、分配部により分配された送信信号の振幅及び位相を調整するとともに、その送信信号の電力を増幅する信号処理を実施して、フェーズドアレイアンテナを構成している素子アンテナから信号処理後の送信信号を放射する一方、信号処理後の送信信号の一部をフィードバック信号として、そのフィードバック信号の振幅及び位相を調整し、調整後のフィードバック信号を出力する複数のアンテナモジュールと、複数のアンテナモジュールから出力されたフィードバック信号を合成する合成部とを設け、歪補償信号出力部が、合成部により合成されたフィードバック信号と歪補償部による歪補償処理前の送信信号との差分から、当該送信信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を歪補償部に出力するようにしたものである。
 この発明によれば、複数のアンテナモジュールから出力されたフィードバック信号を合成する合成部を設け、歪補償信号出力部が、合成部により合成されたフィードバック信号と歪補償部による歪補償処理前の送信信号との差分から、当該送信信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を歪補償部に出力するように構成したので、振幅分布をつけた場合でも、振幅分布をつけない場合と同等の出力電力まで、歪みの発生を防止することができる効果がある。
この発明の実施の形態1によるフェーズドアレイアンテナ装置を示す構成図である。 4個のアンテナモジュール4を含む4個のアレイアンテナモジュール3からなるフェーズドアレイアンテナを示す説明図である。 アレイアンテナモジュール3に含まれている4個のアンテナモジュール4の移相器41,53を示す説明図である。 個々のアンテナモジュール4毎に歪補償処理を実施する一般的なフェーズドアレイアンテナ装置を示す構成図である。 歪補償処理前後のACPR特性を示す説明図である。 16個(=4×4個)のアンテナモジュール4から出力されたフィードバック信号の合成信号の振幅位相特性を示す説明図である。 この発明の実施の形態2によるフェーズドアレイアンテナ装置を示す構成図である。 この発明の実施の形態2によるフェーズドアレイアンテナ装置のモデム1-nにおける歪補償信号出力部61を示す構成図である。 モデム1-1~1-NのPD部13によるフェーズドアレイアンテナの放射信号の歪み補償を示す説明図である。 この発明の実施の形態3によるフェーズドアレイアンテナ装置を示す構成図である。 この発明の実施の形態4によるフェーズドアレイアンテナ装置を示す構成図である。 ある一定の歪み値に対する各系統の振幅バラツキに伴う歪み補償量の劣化を示す説明図である。 この発明の実施の形態5によるフェーズドアレイアンテナ装置を示す構成図である。 この発明の実施の形態6によるフェーズドアレイアンテナ装置のモデム1-nにおける歪補償信号出力部61を示す構成図である。 4×4のアンテナモジュールからなるフェーズドアレイアンテナのアンテナパターンの一例を示す説明図である。 振幅分布をつけた場合と振幅分布をつけない場合の出力電力の一例を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1によるフェーズドアレイアンテナ装置を示す構成図である。
 図1のフェーズドアレイアンテナ装置は、時分割複数通信であるデュプレクス通信が可能な装置であり、モデム1、信号変換部2及び4個の単位モジュールであるアンテナモジュール4を含む4個のアレイアンテナモジュール3から構成されている。
 図1の例では、アレイアンテナモジュール3の個数が4個である例を示しているが、アレイアンテナモジュール3の個数は1個以上であれば何個でもよい。また、アレイアンテナモジュール3に含まれるアンテナモジュール4の個数が4個である例を示しているが、アンテナモジュール4の個数は1個以上であれば何個でもよい。
 図1において、モデム1のDSP11は送信信号であるディジタル信号を変調部12に出力するとともに、復調部18により直交復調された受信信号に対する所定のディジタル信号処理を実施するディジタル信号処理部である。このディジタル信号処理は、例えば、通信装置が信号を受信する際に行う一般的な信号処理が想定される。
 変調部12はDSP11から出力されたディジタル信号を直交変調し、直交変調後のディジタル信号であるベースバンド信号をプリディストーション部(以下、「PD部」と称する)13及び歪補償信号出力部15に出力する。ここでは、変調部12がDSP11から出力されたディジタル信号を直交変調して、直交変調後のディジタル信号であるベースバンド信号を出力する例を示しているが、これは一例に過ぎず、例えば、ディジタル信号を直交変調して、直交変調後のディジタル信号であるIF(Intermediate Frequency)信号を出力するようにしてもよい。
 PD部13は変調部12から出力されたベースバンド信号に対して、歪補償信号出力部15から出力される歪補償信号であるプリディストーション信号を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する歪補償部である。
 信号変換部2のDAコンバータ(以下、「DAC」と称する)21はモデム1のPD13による歪補償処理後のベースバンド信号をディジタル/アナログ変換して、アナログのベースバンド信号を出力する。
 周波数変換部22はDAC21から出力されたアナログのベースバンド信号の周波数を無線周波数に変換することで、無線周波数の信号であるRF信号を出力する。
 分配器23は周波数変換部22から出力されたRF信号を4個のアレイアンテナモジュール3に分配する。
 アレイアンテナモジュール3の分配器31は信号変換部2の分配器23により分配されたRF信号を4個のアンテナモジュール4に分配する。なお、分配器23及び分配器31から分配部が構成されている。
 アンテナモジュール4の移相器41はアレイアンテナモジュール3の分配器31により分配されたRF信号の位相を調整し、位相調整後のRF信号を可変利得器42に出力する。移相器41によるRF信号の移相量は、フェーズドアレイアンテナの指向方向によって決定される。
 可変利得器42は移相器41から出力されたRF信号の振幅を調整し、振幅調整後のRF信号を電力増幅器43に出力する。各アンテナモジュール4には、フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧する目的で振幅分布がつけられており、可変利得器42の利得は、図15(b)に示すような各アンテナモジュール4の所要振幅分布によって決定される。
 なお、移相器41及び可変利得器42によってRF信号の位相と振幅が適宜調整されることで、送信系における各アンテナモジュール4の振幅位相誤差が抑圧される。
 電力増幅器43は可変利得器42から出力されたRF信号の電力を増幅する。
 アイソレータ44はフェーズドアレイアンテナを構成している素子アンテナ47のアクティブインピーダンスや反射の影響を低減するために入出力間を絶縁している。ただし、アクティブインピーダンスの影響を受けない場合はアイソレータ44を省略するようにしてもよい。
 フィルタ45は電力増幅器43で発生した高調波を低減し、高調波低減後のRF信号を出力する。
 スイッチ46はRF信号を送信する場合、フィルタ45と素子アンテナ47を接続する。これにより、フィルタ45から出力されたRF信号が素子アンテナ47に与えられるが、そのRF信号の一部はフィードバック信号として可変減衰器48に出力される。
 スイッチ46はRF信号を受信する場合、素子アンテナ47とフィルタ49を接続する。
 素子アンテナ47はスイッチ46から出力されたRF信号を空間に放射する一方、到来してきたRF信号を受信し、そのRF信号である受信信号をスイッチ46に出力する。
 可変減衰器48はスイッチ46から出力されたフィードバック信号の振幅を減衰し、振幅減衰後のフィードバック信号を出力する。
 フィルタ49はスイッチ46から出力された受信信号に重畳されている高調波を低減し、高調波低減後の受信信号を出力する。
 低雑音増幅器50はフィルタ49から出力された受信信号の電力を増幅する。
 スイッチ51はRF信号を送信する場合、可変減衰器48と可変利得器52を接続し、RF信号を受信する場合、低雑音増幅器50と可変利得器52を接続する。
 可変利得器52はスイッチ51から出力されたフィードバック信号又は受信信号の振幅を調整する。
 移相器53は可変利得器52により振幅が調整されたフィードバック信号又は受信信号の位相を調整する。
 移相器53によるフィードバック信号又は受信信号の移相量は、そのフィードバック信号又は受信信号の位相が、他のアンテナモジュール4から合成器32に出力されるフィードバック信号又は受信信号の位相と同位相になるように決定される。
 なお、可変利得器52及び移相器53によってフィードバック信号又は受信信号の振幅と位相が適宜調整されることで、受信系における各アンテナモジュール4の振幅位相誤差が抑圧される。
 アレイアンテナモジュール3の合成器32は4個のアンテナモジュール4から出力されたフィードバック信号又は受信信号を合成する。
 信号変換部2の合成器24は4個のアレイアンテナモジュール3の合成器32により合成されたフィードバック信号又は受信信号を合成する。なお、合成器32及び合成器24から合成部が構成されている。
 周波数変換部25は合成器24により合成されたフィードバック信号又は受信信号の周波数を変換して、ベースバンドのフィードバック信号又は受信信号を出力する。
 ADコンバータ(以下、「ADC」と称する)26は周波数変換部25から出力されたフィードバック信号又は受信信号をアナログ/ディジタル変換して、ディジタルのフィードバック信号又は受信信号を出力する。
 モデム1のスイッチ14はRF信号を送信する場合、ADC26と歪補償信号出力部15を接続し、RF信号を受信する場合、ADC26と復調部18を接続する。
 歪補償信号出力部15は変調部12から出力されたベースバンド信号と、ADC26からスイッチ14を介して出力されたフィードバック信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をPD部13に出力する。
 歪補償信号出力部15によるプリディストーション信号の求める方式として、LUT方式、多項式方式、メモリポリナミナル方式などが考えられる。
 どの方式でプリディストーション信号を求めてもよいが、この実施の形態1では、LUT方式で求める例を説明する。
 歪補償信号出力部15の信号比較部16は変調部12から出力されたベースバンド信号と、ADC26からスイッチ14を介して出力されたフィードバック信号との差分を算出する。
 PD信号生成部17は、予めベースバンド信号とフィードバック信号の差分に対応する歪補償係数を格納しているルックアップテーブルを保持しており、そのルックアップテーブルから信号比較部16により算出された差分に対応する歪補償係数を読み出し、その歪補償係数を示すプリディストーション信号をPD部13に出力する。
 復調部18はADC26からスイッチ14を介して出力されたディジタルの受信信号を直交復調し、直交復調後の受信信号をDSP11に出力する。
 図2は4個のアンテナモジュール4を含む4個のアレイアンテナモジュール3からなるフェーズドアレイアンテナを示す説明図である。
 この実施の形態1では、サブアレイである4個のアレイアンテナモジュール3が、互いに異なる方向(Aの方向、Cの方向、Gの方向、Iの方向)にビームを向けて、デュプレクス通信を行うものとする。
 次に動作について説明する。
 最初に信号を送信する場合の動作を説明する。
 モデム1のDSP11は、送信信号であるディジタル信号を変調部12に出力する。
 モデム1の変調部12は、DSP11からディジタル信号を受けると、そのディジタル信号を直交変調し、直交変調後のディジタル信号であるベースバンド信号をPD部13及び歪補償信号出力部15に出力する。
 モデム1のPD部13は、変調部12からベースバンド信号を受けると、そのベースバンド信号に対して、後述する歪補償信号出力部15から出力されるプリディストーション信号を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する。
 PD部13による歪補償処理は、単位モジュールであるアンテナモジュール4から放射される信号の歪みを個別に補償するものではなく、フェーズドアレイアンテナから放射される信号の歪みを一体的に補償するものである。即ち、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与えるプリディストーション信号をベースバンド信号に乗算することで、所要振幅分布が0dBのアンテナモジュール4に実装されている電力増幅器43の非線形動作を起因とする歪みを補償するものである。
 信号変換部2のDAC21は、モデム1のPD部13から歪補償処理後のベースバンド信号を受けると、そのベースバンド信号をディジタル/アナログ変換して、アナログのベースバンド信号を出力する。
 信号変換部2の周波数変換部22は、DAコンバータ21からアナログのベースバンド信号を受けると、そのベースバンド信号の周波数を無線周波数に変換することで、無線周波数の信号であるRF信号を出力する。
 信号変換部2の分配器23は、周波数変換部22からRF信号を受けると、そのRF信号を4個のアレイアンテナモジュール3に分配する。
 各アレイアンテナモジュール3の分配器31は、信号変換部2の分配器23からRF信号を受けると、そのRF信号を4個のアンテナモジュール4に分配する。
 各アンテナモジュール4の移相器41は、アレイアンテナモジュール3の分配器31からRF信号を受けると、そのRF信号の位相を調整し、位相調整後のRF信号を可変利得器42に出力する。
 移相器41によるRF信号の移相量は、フェーズドアレイアンテナの指向方向によって決定されるが、その具体例については後述する。
 各アンテナモジュール4の可変利得器42は、移相器41から位相調整後のRF信号を受けると、そのRF信号の振幅を調整し、振幅調整後のRF信号を電力増幅器43に出力する。可変利得器42の利得は、図15(b)に示すような各アレイアンテナモジュール3の所要振幅分布によって決定される。
 各アンテナモジュール4の電力増幅器43は、可変利得器42から振幅調整後のRF信号を受けると、そのRF信号の電力を増幅する。
 これにより、電力増幅器43によって電力が増幅されたRF信号がアイソレータ44に出力されるが、電力増幅器43が非線形動作している場合には、電力増幅器43から出力されるRF信号には歪みが発生する。
 素子アンテナ47のアクティブインピーダンスや反射の影響を低減するために、入出力間が絶縁されているアイソレータ44が、電力増幅器43とフィルタ45の間に設けられている。
 各アンテナモジュール4のフィルタ45は、アイソレータ44を通過してきたRF信号を受けると、そのRF信号に重畳されている電力増幅器43で発生した高調波を低減し、高調波低減後のRF信号を出力する。
 各アンテナモジュール4のスイッチ46は、RF信号を送信する場合、フィルタ45と素子アンテナ47を接続しているので、フィルタ45から出力されたRF信号が素子アンテナ47に与えられる。
 これにより、素子アンテナ47からRF信号が空間に放射されるが、フィルタ45から出力されたRF信号の一部はフィードバック信号として、スイッチ46を通って可変減衰器48に与えられる。
 各アンテナモジュール4の可変減衰器48は、スイッチ46からフィードバック信号を受けると、そのフィードバック信号の振幅を減衰し、振幅減衰後のフィードバック信号を出力する。
 各アンテナモジュール4のスイッチ51は、RF信号を送信する場合、可変減衰器48と可変利得器52を接続しているので、可変減衰器48から出力されたフィードバック信号が可変利得器52に与えられる。
 各アンテナモジュール4の可変利得器52は、スイッチ51からフィードバック信号を受けると、そのフィードバック信号の振幅を調整する。
 各アンテナモジュール4の移相器53は、可変利得器52から振幅調整後のフィードバック信号を受けると、そのフィードバック信号の位相を調整する。
 移相器53によるフィードバック信号の移相量は、そのフィードバック信号の位相が、他のアンテナモジュール4から合成器32に出力されるフィードバック信号の位相と同位相になるように決定される。
 4個のアレイアンテナモジュール3において、各アンテナモジュール4の移相器53によるフィードバック信号の移相量が同様に決定されることで、4個のアレイアンテナモジュール3の合成器32から出力される合成後のフィードバック信号の位相が同位相になる。
 ここで、各アンテナモジュール4の移相器41,53によるフィードバック信号の移相量の具体例を明示する。
 図3はアレイアンテナモジュール3に含まれている4個のアンテナモジュール4の移相器41,53を示す説明図である。ただし、図3では、説明の簡単化のため、移相器41,53及び素子アンテナ47以外の要素の記述を省略している。また、図3では、4個のアンテナモジュール4を(1)~(4)で区別している。
 図3の例では、(1)~(4)のアンテナモジュール4の移相器41の移相量φ1~φ4を下記のように設定している。
   φ1=60deg
   φ2=40deg
   φ3=20deg
   φ4= 0deg
 また、(1)~(4)のアンテナモジュール4から合成器32に出力されるフィードバック信号の位相が同位相になるようにするため、(1)~(4)のアンテナモジュール4の移相器53の移相量φ1~φ4を下記のように設定している。
   φ’1= 0deg
   φ’2=20deg
   φ’3=40deg
   φ’4=60deg
 各アレイアンテナモジュール3の合成器32は、4個のアンテナモジュール4からフィードバック信号を受けると、4個のフィードバック信号を合成し、合成後のフィードバック信号を出力する。
 信号変換部2の合成器24は、4個のアレイアンテナモジュール3の合成器32から合成後のフィードバック信号を受けると、4個の合成後のフィードバック信号を更に合成し、合成後のフィードバック信号を出力する。
 これにより、16個(=4×4個)のアンテナモジュール4から出力されたフィードバック信号が合成され、合成後のフィードバック信号が周波数変換部25に出力される。
 信号変換部2の周波数変換部25は、合成器24から合成後のフィードバック信号を受けると、そのフィードバック信号の周波数を変換して、ベースバンドのフィードバック信号を出力する。
 信号変換部2のADC26は、周波数変換部25からベースバンドのフィードバック信号を受けると、そのフィードバック信号をアナログ/ディジタル変換して、ディジタルのフィードバック信号を出力する。
 モデム1のスイッチ14は、RF信号を送信する場合、ADC26と歪補償信号出力部15を接続しているので、ADC26から出力されたディジタルのフィードバック信号が歪補償信号出力部15に与えられる。
 モデム1の歪補償信号出力部15は、スイッチ14からディジタルのフィードバック信号を受けると、そのフィードバック信号と、変調部12から出力されたベースバンド信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をPD部13に出力する。
 即ち、歪補償信号出力部15の信号比較部16は、変調部12から出力されたベースバンド信号と、ADC26からスイッチ14を介して出力されたフィードバック信号との差分を算出する。この差分はフェーズドアレイアンテナから放射される信号の歪み成分に相当する。
 歪補償信号出力部15のPD信号生成部17は、予め、ベースバンド信号とフィードバック信号の差分に対応する歪補償係数を格納しているルックアップテーブルを保持しており、そのルックアップテーブルから信号比較部16により算出された差分に対応する歪補償係数を読み出し、その歪補償係数を示すプリディストーション信号をPD部13に出力する。
 ここでは、歪補償信号出力部15が、LUT方式でプリディストーション信号を求める例を示しているが、多項式方式やメモリポリナミナル方式などの方式で、プリディストーション信号を求めるようにしてもよい。
 なお、フェーズドアレイアンテナでビームを振る場合において、プリディストーションするための歪補償系数を算出するだけの十分な時間がない場合(収束時間よりもビームを制御する時間の方が短い場合)については、予め、ビームを振る角度毎に、ベースバンド信号とフィードバック信号の差分に対応する歪補償係数をルックアップテーブルに格納しておき、ビームを振る度に、当該ビームの角度に対応するルックアップテーブルから、ベースバンド信号とフィードバック信号の差分に対応する歪補償係数を読み出すようにしてもよい。その際、変調部12から出力されたベースバンド信号と、ADC26からスイッチ14を介して出力されたフィードバック信号との差分を算出し、その差分に対応する歪補償係数を計算する。そして、ルックアップテーブルの更新のために十分な差分の値が集まったら、それらの差分に対応する歪補償係数をルックアップテーブルに格納することで当該ルックアップテーブルを更新する。次のタイミングでは、更新後のルックアップテーブルから歪補償係数を読み出し、その歪補償係数を示すプリディストーション信号をPD部13に出力するようにする。
 モデム1のPD部13は、歪補償信号出力部15からプリディストーション信号を受けると、上述したように、変調部12から出力されたベースバンド信号に対して、そのプリディストーション信号を乗算することで、アンテナモジュール4に実装されている電力増幅器43の非線形動作を起因とするフェーズドアレイアンテナの放射信号の歪みを補償する。
 次に信号を受信する場合の動作を説明する。
 各アンテナモジュール4のスイッチ46は、RF信号を受信する場合、素子アンテナ47とフィルタ49を接続しているので、素子アンテナ47の受信信号がフィルタ49に与えられる。
 各アンテナモジュール4のフィルタ49は、スイッチ46から受信信号を受けると、その受信信号に重畳されている高調波を低減し、高調波低減後の受信信号を出力する。
 各アンテナモジュール4の低雑音増幅器50は、フィルタ49から高調波低減後の受信信号を受けると、その受信信号の電力を増幅し、電力増幅後の受信信号を出力する。
 各アンテナモジュール4のスイッチ51は、RF信号を受信する場合、低雑音増幅器50と可変利得器52を接続するので、低雑音増幅器50から出力された電力増幅後の受信信号が可変利得器52に与えられる。
 各アンテナモジュール4の可変利得器52は、スイッチ51から受信信号を受けると、その受信信号の振幅を調整する。
 各アンテナモジュール4の移相器53は、可変利得器52から振幅調整後の受信信号を受けると、その受信信号の位相を調整する。
 移相器53による受信信号の移相量は、その受信信号の位相が、他のアンテナモジュール4から合成器32に出力される受信信号の位相と同位相になるように決定される。
 移相器53による受信信号の移相量は、フィードバック信号の移相量と同様であるため、具体例の説明は省略する。
 各アレイアンテナモジュール3の合成器32は、4個のアンテナモジュール4から受信信号を受けると、4個の受信信号を合成し、合成後の受信信号を出力する。
 信号変換部2の合成器24は、4個のアレイアンテナモジュール3の合成器32から合成後の受信信号を受けると、4個の合成後の受信信号を更に合成し、合成後の受信信号を出力する。
 これにより、16個(=4×4個)のアンテナモジュール4から出力された受信信号が合成され、合成後の受信信号が周波数変換部25に出力される。
 信号変換部2の周波数変換部25は、合成器24から合成後の受信信号を受けると、その受信信号の周波数を変換して、ベースバンドの受信信号を出力する。
 信号変換部2のADC26は、周波数変換部25からベースバンドの受信信号を受けると、その受信信号をアナログ/ディジタル変換して、ディジタルの受信信号を出力する。
 モデム1のスイッチ14は、RF信号を受信する場合、ADC26と復調部18を接続しているので、ADC26から出力されたディジタルの受信信号が復調部18に与えられる。
 モデム1の復調部18は、スイッチ14からディジタルの受信信号を受けると、その受信信号を直交復調し、直交復調後の受信信号をDSP11に出力する。
 モデム1のDSP11は、復調部18から直交復調後の受信信号を受けると、その受信信号に対する所定のディジタル信号処理を実施する。
 この実施の形態1によれば、アンテナパターンのサイドローブを抑圧するために振幅分布をつけた場合でも、振幅分布をつけない場合と同等の出力電力まで、歪みの発生を防止することができるが、以下、振幅分布をつけた場合の歪み補償結果と、振幅分布をつけない場合の歪み補償結果について説明する。
 図4は個々のアンテナモジュール4毎に歪補償処理を実施する一般的なフェーズドアレイアンテナ装置を示す構成図である。
 また、図5は歪補償処理前後のACPR特性を示す説明図である。ACPRは隣接チャネル漏洩電力比を意味し、ACPRが高いほど、歪みが悪いことを表している。
 特に図5(a)は図4の構成において、図15(a)に示すように所要振幅分布をつけない場合の歪補償処理前後のACPR特性を示し、図5(b)は実施の形態1における図1の構成において、図15(a)に示すように所要振幅分布をつけない場合の歪補償処理前後のACPR特性を示している。
 また、図5(c)は図4の構成において、図15(b)に示すように所要振幅分布をつけた場合の歪補償処理前後のACPR特性を示し、図5(d)は実施の形態1における図1の構成において、図15(b)に示すように所要振幅分布をつけた場合の歪補償処理前後のACPR特性を示している。
 所要振幅分布をつけていない場合、歪補償処理後のACPR特性は、図5(a)(b)に示すように、図4の構成と、実施の形態1における図1の構成との間で大きな変化がない。
 しかし、所要振幅分布をつけた場合、図5(c)(d)に示すように、実施の形態1における図1の構成は、図4の構成より、歪補償処理後のACPR特性が大きく改善していることが分かる。
 具体的には、ACPR=-50dBcを規定とする場合、図4の構成では、バックオフ電力の改善が約4.1dBにとどまっているが、実施の形態1における図1の構成では、バックオフ電力の改善が約9.6dBになっている。
 実施の形態1における図1の構成では、バックオフ電力の改善が大きいため、図4の構成よりも、歪みが発生する最小の出力電力が大きくなる。
 図6は16個(=4×4個)のアンテナモジュール4から出力されたフィードバック信号の合成信号の振幅位相特性を示す説明図である。
 図6(a)は合成信号の振幅特性を示し、図6(b)は合成信号の位相特性を示している。
 図6より、所要振幅分布の有無によってフィードバック信号の合成信号の振幅位相特性が変化することが分かる。
 このように、フィードバック信号の合成信号の振幅位相特性が変化するので、単位モジュールであるアンテナモジュール4毎に歪補償処理を実施するのではなく、フェーズドアレイアンテナの全体で歪補償処理を実施する必要があることが分かる。
 以上で明らかなように、この実施の形態1によれば、複数のアンテナモジュール4から出力されたフィードバック信号を合成する合成器32,24を設け、歪補償信号出力部15が、合成器32,24により合成されたフィードバック信号と、変調部12から出力されたベースバンド信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をPD部13に出力するように構成したので、各アンテナモジュール4の可変利得器42がアンテナパターンのサイドローブを抑圧するために振幅分布をつけた場合でも、振幅分布をつけない場合と同等の出力電力まで、歪みの発生を防止することができる効果を奏する。
 この実施の形態1では、4個のアンテナモジュール4を含む4個のアレイアンテナモジュール3を実装しているものを示したが、アレイアンテナモジュール3を実装せずに、16個のアンテナモジュール4を実装するようにしてもよい。
 この場合には、信号変換部2の分配器23が周波数変換部22から出力されたRF信号を16個のアンテナモジュール4に分配するようにし、また、信号変換部2の合成器24が16個のアンテナモジュール4から出力されたフィードバック信号を合成するようにすればよい。
 なお、この実施の形態1では、説明の簡単化のために、増幅器が信号変換部2に実装されていないが、増幅器が信号変換部2に実装されていてもよいことは言うまでもない。
 また、この実施の形態1では、フェーズドアレイアンテナとして必要な送受信の振幅位相を合わせるキャリブレーション機能や可変部の制御等についての記述を省略しているが、一般的な技術として、キャリブレーション機能等を有している。
実施の形態2.
 上記実施の形態1では、モデム1及び信号変換部2が1個ずつ実装されているものを示したが、モデム1及び信号変換部2がフェーズドアレイアンテナを構成している素子アンテナ47の本数分だけ実装されているものであってもよい。
 図7はこの発明の実施の形態2によるフェーズドアレイアンテナ装置を示す構成図であり、図7において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 モデム1-n(n=1,2,・・・,N)はフェーズドアレイアンテナを構成している素子アンテナ47毎に設けられているが、モデム1-1~1-NのDSP11から変調部12に出力される送信信号は、同一のディジタル信号である。
 この実施の形態2では、説明の便宜上、N=16である場合を想定して説明するが、Nは2以上であれば、いくつでもよい。
 モデム1-nの歪補償信号出力部61は信号変換部2-1~2-NのADC26から出力されたフィードバック信号を合成し、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をPD部13に出力する。
 歪補償信号出力部61によるプリディストーション信号の求める方式として、LUT方式、多項式方式、メモリポリナミナル方式などが考えられる。
 どの方式でプリディストーション信号を求めてもよいが、この実施の形態2では、LUT方式で求める例を説明する。
 モデム1-nにおける歪補償信号出力部61の信号比較部62は、同じ系統(n)の信号変換部2-nのADC26からスイッチ14を介して出力されたフィードバック信号と、他の系統のADC26から出力されたフィードバックと信号を合成する。
 例えば、モデム1-1の信号比較部62は、信号変換部2-1のADC26から出力されたフィードバック信号と、モデム1-1の通信部64により取得された信号変換部2-2~2-NのADC26から出力されたN-1個のフィードバック信号とを合成する。
 また、モデム1-nにおける歪補償信号出力部61の信号比較部62は合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 モデム1-nにおける歪補償信号出力部61のPD信号生成部63は、予めベースバンド信号と合成後のフィードバック信号との差分に対応する歪補償係数を格納しているルックアップテーブルを保持しており、そのルックアップテーブルから信号比較部62により算出された差分に対応する歪補償係数を読み出し、その歪補償係数を示すプリディストーション信号をモデム1-nのPD部13に出力する。
 モデム1-nの通信部64は、同じ系統(n)の信号変換部2-nのADC26から出力されたフィードバック信号を他の系統の通信部64に送信する一方、他の系統の通信部64から送信されたN-1個のフィードバック信号を受信して、N-1個のフィードバック信号をモデム1-nの信号比較部62に出力する。
 例えば、モデム1-1の通信部64は、信号変換部2-1のADC26から出力されたフィードバック信号をモデム1-2~1-Nの通信部64に送信する一方、モデム1-2~1-Nの通信部64から送信されたN-1個のフィードバック信号を受信して、N-1個のフィードバック信号をモデム1-1の信号比較部62に出力する。
 信号変換部2-n(n=1,2,・・・,N)はフェーズドアレイアンテナを構成している素子アンテナ47毎に設けられており、図1の信号変換部2と異なり、分配器23及び合成器24が設けられていない。
 アンテナモジュール4-n(n=1,2,・・・,N)は図1のアンテナモジュール4と同様の構成であり、フェーズドアレイアンテナを構成している素子アンテナ47毎に設けられている。
 図8はこの発明の実施の形態2によるフェーズドアレイアンテナ装置のモデム1-nにおける歪補償信号出力部61を示す構成図である。
 図8において、フィードバック信号取得部62aは同じ系統(n)の信号変換部2-nのADC26からスイッチ14を介して出力されたフィードバック信号を取得して、そのフィードバック信号をフィードバック信号合成部62cに出力するとともに、そのフィードバック信号を通信部64に出力することで、そのフィードバック信号を他の系統の歪補償信号出力部61に出力する。
 フィードバック信号記憶部62bは通信部64により受信された他の系統のフィードバック信号を記憶する。
 フィードバック信号合成部62cはフィードバック信号取得部62aから出力されたフィードバック信号と、フィードバック信号記憶部62bにより記憶されている他の系統のフィードバック信号とを合成する。
 差分算出部62dはフィードバック信号合成部62cにより合成されたフィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 次に動作について説明する。
 最初に信号を送信する場合の動作を説明する。
 モデム1-n(n=1,2,・・・,N)のDSP11は、送信信号であるディジタル信号を変調部12に出力する。
 モデム1-nの変調部12は、DSP11からディジタル信号を受けると、そのディジタル信号を直交変調し、直交変調後のディジタル信号であるベースバンド信号をPD部13及び歪補償信号出力部61に出力する。
 モデム1-nのPD部13は、変調部12からベースバンド信号を受けると、そのベースバンド信号に対して、後述する歪補償信号出力部61から出力されるプリディストーション信号を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する。
 PD部13による歪補償処理は、上記実施の形態1と同様に、単位モジュールであるアンテナモジュール4から放射される信号の歪みを個別に補償するものではなく、フェーズドアレイアンテナから放射される信号の歪みを一体的に補償するものである。
 信号変換部2-nのDAC21は、モデム1-nのPD部13から歪補償処理後のベースバンド信号を受けると、そのベースバンド信号をディジタル/アナログ変換して、アナログのベースバンド信号を出力する。
 信号変換部2-nの周波数変換部22は、DAコンバータ21からアナログのベースバンド信号を受けると、そのベースバンド信号の周波数を無線周波数に変換することで、無線周波数の信号であるRF信号を出力する。
 アンテナモジュール4-nの移相器41は、信号変換部2-nの周波数変換部22からRF信号を受けると、上記実施の形態1と同様に、そのRF信号の位相を調整し、位相調整後のRF信号を可変利得器42に出力する。
 アンテナモジュール4-nの可変利得器42は、移相器41から位相調整後のRF信号を受けると、上記実施の形態1と同様に、そのRF信号の振幅を調整し、振幅調整後のRF信号を電力増幅器43に出力する。
 アンテナモジュール4-nの電力増幅器43は、可変利得器42から振幅調整後のRF信号を受けると、上記実施の形態1と同様に、そのRF信号の電力を増幅する。
 これにより、電力増幅器43によって電力が増幅されたRF信号がアイソレータ44に出力されるが、電力増幅器43が非線形動作している場合には、電力増幅器43から出力されるRF信号には歪みが発生する。
 素子アンテナ47のアクティブインピーダンスや反射の影響を低減するために、入出力間が絶縁されているアイソレータ44が、電力増幅器43とフィルタ45の間に設けられている。
 アンテナモジュール4-nのフィルタ45は、アイソレータ44を通過してきたRF信号を受けると、上記実施の形態1と同様に、そのRF信号に重畳されている電力増幅器43で発生した高調波を低減し、高調波低減後のRF信号を出力する。
 アンテナモジュール4-nのスイッチ46は、RF信号を送信する場合、フィルタ45と素子アンテナ47を接続しているので、フィルタ45から出力されたRF信号が素子アンテナ47に与えられる。
 これにより、素子アンテナ47からRF信号が空間に放射されるが、フィルタ45から出力されたRF信号の一部はフィードバック信号として、スイッチ46を通って可変減衰器48に与えられる。
 アンテナモジュール4-nの可変減衰器48は、スイッチ46からフィードバック信号を受けると、上記実施の形態1と同様に、そのフィードバック信号の振幅を減衰し、振幅減衰後のフィードバック信号を出力する。
 アンテナモジュール4-nのスイッチ51は、RF信号を送信する場合、可変減衰器48と可変利得器52を接続しているので、可変減衰器48から出力されたフィードバック信号が可変利得器52に与えられる。
 アンテナモジュール4-nの可変利得器52は、スイッチ51からフィードバック信号を受けると、上記実施の形態1と同様に、そのフィードバック信号の振幅を調整する。
 アンテナモジュール4の移相器53は、可変利得器52から振幅調整後のフィードバック信号を受けると、上記実施の形態1と同様に、そのフィードバック信号の位相を調整する。
 アンテナモジュール4-nの移相器53によるフィードバック信号の移相量は、そのフィードバック信号の位相が、他のアンテナモジュール4から出力されるフィードバック信号の位相と同位相になるように決定される。
 信号変換部2-nの周波数変換部25は、アンテナモジュール4から位相調整後のフィードバック信号を受けると、そのフィードバック信号の周波数を変換して、ベースバンドのフィードバック信号を出力する。
 信号変換部2-nのADC26は、周波数変換部25からベースバンドのフィードバック信号を受けると、そのフィードバック信号をアナログ/ディジタル変換して、ディジタルのフィードバック信号を出力する。
 モデム1-nのスイッチ14は、RF信号を送信する場合、ADC26と歪補償信号出力部61を接続しているので、ADC26から出力されたディジタルのフィードバック信号が歪補償信号出力部61に与えられる。
 モデム1-nの歪補償信号出力部61は、信号変換部2-1~2-NのADC26から出力されたフィードバック信号を合成し、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をモデム1-nのPD部13に出力する。
 即ち、モデム1-nにおける歪補償信号出力部61のフィードバック信号取得部62aは、同じ系統(n)の信号変換部2-nのADC26からスイッチ14を介してフィードバック信号を受けると、そのフィードバック信号をフィードバック信号合成部62cに出力するとともに、そのフィードバック信号を通信部64に出力する。
 モデム1-nの通信部64は、フィードバック信号取得部62aからフィードバック信号を受けると、そのフィードバック信号を他の系統の通信部64に送信する。
 また、モデム1-nの通信部64は、他の系統の通信部64から送信されたN-1個のフィードバック信号を受信し、N-1個のフィードバック信号をフィードバック信号記憶部62bに格納する。
 モデム1-nにおける歪補償信号出力部61のフィードバック信号合成部62cは、フィードバック信号記憶部62bから他の系統のN-1個のフィードバック信号を読み出し、N-1個のフィードバック信号とフィードバック信号取得部62aから出力されたフィードバック信号とを合成する。
 モデム1-nにおける歪補償信号出力部61の差分算出部62dは、フィードバック信号合成部62cがN個のフィードバック信号を合成すると、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 モデム1-nにおける歪補償信号出力部61のPD信号生成部63は、予めベースバンド信号と合成後のフィードバック信号との差分に対応する歪補償係数を格納しているルックアップテーブルを保持しており、そのルックアップテーブルから差分算出部62dにより算出された差分に対応する歪補償係数を読み出し、その歪補償係数を示すプリディストーション信号をモデム1-nのPD部13に出力する。
 この実施の形態2では、歪補償信号出力部61が、LUT方式でプリディストーション信号を求める例を示しているが、多項式方式やメモリポリナミナル方式などの方式で、プリディストーション信号を求めるようにしてもよい。
 モデム1-nのPD部13は、モデム1-nの歪補償信号出力部61からプリディストーション信号を受けると、上述したように、変調部12から出力されたベースバンド信号に対して、そのプリディストーション信号を乗算することで、アンテナモジュール4に実装されている電力増幅器43の非線形動作を起因とするフェーズドアレイアンテナの放射信号の歪みを補償する。
 ここで、図9はモデム1-1~1-NのPD部13によるフェーズドアレイアンテナの放射信号の歪み補償を示す説明図である。
 図9(a)は16個のアンテナモジュール4につけられている所要振幅分布を示している。
 図9(a)の例では、16個のアンテナモジュール4に対する所要振幅分布が0dB、-7.7dB、-15.3dBの3つに分けられている。以下、説明の便宜上、0dBの振幅分布を分類A、-7.7dBの振幅分布を分類B、-15.3dBの振幅分布を分類Cで表すものとする。
 図9(a)の例では、分類Aに属するアンテナモジュール4が4個、分類Bに属するアンテナモジュール4が8個、分類Cに属するアンテナモジュール4が4個である。
 図9(b)は系統(1)~(16)のアンテナモジュール4における素子アンテナ47の2次元上の配置位置を示している。
 図9(c)は分類A,B,Cに属するアンテナモジュール4の入出力振幅特性を示し、図9(d)は分類A,B,Cに属するアンテナモジュール4の入出力位相特性を示している。
 図9(e)は分類A,B,Cに属するアンテナモジュール4の入出力振幅特性を合成することで得られる入出力振幅特性を示し、図9(f)は分類A,B,Cに属するアンテナモジュール4の入出力位相特性を合成することで得られる入出力位相特性を示している。
 この実施の形態2では、モデム1-nにおける歪補償信号出力部61のフィードバック信号合成部62cが、系統(1)~(16)のフィードバック信号を合成しており、この合成後のフィードバック信号の入出力振幅特性は、図9(e)に示す入出力振幅特性に相当するものとなる。
 また、この合成後のフィードバック信号の入出力位相特性は、図9(f)に示す入出力位相特性に相当するものとなる。
 したがって、モデム1-nにおける歪補償信号出力部61の差分算出部62dにより算出された差分、即ち、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分は、16本の素子アンテナ47からなるフェーズドアレイアンテナの放射信号の歪み成分に相当するものとなる。
 このため、差分算出部62dにより算出された差分から、フェーズドアレイアンテナの放射信号の歪み特性を把握して、その歪み特性と逆の歪み特性を与える歪補償係数を求めることが可能になり、PD部13が当該歪補償係数を示すプリディストーション信号を変調部12から出力されたベースバンド信号に乗算することで、フェーズドアレイアンテナから放射される信号の歪みを補償することができる。
 なお、上記の構成により、ある系統のアンテナモジュール4の入出力振幅位相特性が、例えば、熱などの要因によって変化したとしても、フェーズドアレイアンテナの放射信号の歪み特性を把握して、その歪み特性と逆の歪み特性を与える歪補償係数を求めることが可能であるため、フェーズドアレイアンテナの放射信号の歪みを正確に補償することができる。
 次に信号を受信する場合の動作を説明する。
 アンテナモジュール4-nのスイッチ46は、RF信号を受信する場合、素子アンテナ47とフィルタ49を接続しているので、素子アンテナ47の受信信号がフィルタ49に与えられる。
 アンテナモジュール4-nのフィルタ49は、スイッチ46から受信信号を受けると、上記実施の形態1と同様に、その受信信号に重畳されている高調波を低減し、高調波低減後の受信信号を出力する。
 アンテナモジュール4-nの低雑音増幅器50は、フィルタ49から高調波低減後の受信信号を受けると、上記実施の形態1と同様に、その受信信号の電力を増幅し、電力増幅後の受信信号を出力する。
 アンテナモジュール4-nのスイッチ51は、RF信号を受信する場合、低雑音増幅器50と可変利得器52を接続するので、低雑音増幅器50から出力された電力増幅後の受信信号が可変利得器52に与えられる。
 アンテナモジュール4-nの可変利得器52は、スイッチ51から受信信号を受けると、上記実施の形態1と同様に、その受信信号の振幅を調整する。
 アンテナモジュール4-nの移相器53は、可変利得器52から振幅調整後の受信信号を受けると、上記実施の形態1と同様に、その受信信号の位相を調整する。
 アンテナモジュール4-nの移相器53による受信信号の移相量は、その受信信号の位相が、他のアンテナモジュール4から出力される受信信号の位相と同位相になるように決定される。
 信号変換部2-nの周波数変換部25は、アンテナモジュール4-nの移相器53から位相調整後の受信信号を受けると、その受信信号の周波数を変換して、ベースバンドの受信信号を出力する。
 信号変換部2-nのADC26は、周波数変換部25からベースバンドの受信信号を受けると、その受信信号をアナログ/ディジタル変換して、ディジタルの受信信号を出力する。
 モデム1-nのスイッチ14は、RF信号を受信する場合、ADC26と復調部18を接続しているので、ADC26から出力されたディジタルの受信信号が復調部18に与えられる。
 モデム1-nの復調部18は、スイッチ14からディジタルの受信信号を受けると、その受信信号を直交復調し、直交復調後の受信信号をDSP11に出力する。
 モデム1-nのDSP11は、復調部18から直交復調後の受信信号を受けると、その受信信号に対する所定のディジタル信号処理を実施する。
 以上で明らかなように、この実施の形態2によれば、モデム1-nの歪補償信号出力部61が、信号変換部2-1~2-NのADC26から出力されたフィードバック信号を合成し、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分から、そのベースバンド信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を示すプリディストーション信号をPD部13に出力するように構成したので、アンテナモジュール4-nの可変利得器42がアンテナパターンのサイドローブを抑圧するために振幅分布をつけた場合でも、振幅分布をつけない場合と同等の出力電力まで、歪みの発生を防止することができる効果を奏する。
実施の形態3.
 上記実施の形態1では、RF信号を送信する場合、各アレイアンテナモジュール3に含まれる全てのアンテナモジュール4がフィードバック信号を出力するものを示したが、各アレイアンテナモジュール3に含まれる一部のアンテナモジュール4だけがフィードバック信号を出力するようにしてもよい。
 図10はこの発明の実施の形態3によるフェーズドアレイアンテナ装置を示す構成図であり、図10において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 図10の例では、可変減衰器48及びスイッチ51を実装しているアンテナモジュール4と、可変減衰器48及びスイッチ51を実装していないアンテナモジュール4とが混在している。
 即ち、フィードバック信号を出力する必要があるアンテナモジュール4は、可変減衰器48及びスイッチ51を実装しており、フィードバック信号を出力する必要がないアンテナモジュール4は、可変減衰器48及びスイッチ51を実装していない。
 具体的には、フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧する目的で、可変利得器42によって各アンテナモジュール4に振幅分布がつけられている場合において、各アンテナモジュール4が、つけられている振幅分布によってグループ分けされており、振幅分布が同一のグループに属する1つ以上のアンテナモジュールの中で、代表のアンテナモジュールは、振幅及び位相調整後のフィードバック信号を出力するために、可変減衰器48及びスイッチ51を実装しているが、代表以外のアンテナモジュールは、フィードバック信号を出力しないため、可変減衰器48及びスイッチ51を実装していない。
 図10では、フィードバック信号を出力する必要がないアンテナモジュール4は、可変減衰器48及びスイッチ51を実装していない例を示しているが、フィードバック信号を出力する必要があるアンテナモジュール4と同様に、可変減衰器48及びスイッチ51を実装し、その可変減衰器48の減衰量を調整することで、フィードバック信号を出力しないようにしてもよい。
 この実施の形態3では、説明の便宜上、系統(1)~(16)のアンテナモジュール4の素子アンテナ47が図9(b)のように配置されており、また、系統(1)~(16)のアンテナモジュール4に対する所要振幅分布が図9(a)のようにつけられているものとする。
 このため、4個のアレイアンテナモジュール3のうち、例えば、第1のアレイアンテナモジュール3が系統(1)~(4)のアンテナモジュール4を実装し、第2のアレイアンテナモジュール3が系統(5)~(8)のアンテナモジュール4を実装し、第3のアレイアンテナモジュール3が系統(9)~(12)のアンテナモジュール4を実装し、第4のアレイアンテナモジュール3が系統(13)~(16)のアンテナモジュール4を実装しているとすると、第1~第4のアレイアンテナモジュール3は、それぞれ分類Aに属するアンテナモジュール4を1個、分類Bに属するアンテナモジュール4を2個、分類Cに属するアンテナモジュール4を1個実装していることになる。
 分類Aに属する4個のアンテナモジュール4、即ち、系統(4)(7)(10)(13)のアンテナモジュール4は、第1のグループに分類され、分類Bに属する8個のアンテナモジュール4、即ち、系統(2)(3)(5)(8)(9)(12)(14)(15)のアンテナモジュール4は、第2のグループに分類され、分類Cに属する4個のアンテナモジュール4、即ち、系統(1)(6)(11)(16)のアンテナモジュール4は、第3のグループに分類される。
 このとき、同一のグループに属している複数のアンテナモジュール4には、同一の振幅分布がつけられているので、複数のアンテナモジュール4から出力されるフィードバック信号の振幅位相特性はほぼ同様である。
 このため、同一のグループに属している複数のアンテナモジュール4のうち、いずれか1個以上のアンテナモジュール4を代表のアンテナモジュール4として、代表のアンテナモジュール4がフィードバック信号を出力するようにすれば、そのフィードバック信号を、残りのアンテナモジュール4から出力されたフィードバック信号として取り扱うことができる。
 したがって、代表のアンテナモジュール4がフィードバック信号を出力するようにすれば、残りのアンテナモジュール4がフィードバック信号を出力しなくても、上記実施の形態1と同様に、16個のアンテナモジュール4から出力されたフィードバック信号を合成することができる。
 そこで、この実施の形態3では、第1のグループに属している4個のアンテナモジュール4のうち、例えば、系統(4)のアンテナモジュール4を代表のアンテナモジュール4とする。
 また、第2のグループに属している8個のアンテナモジュール4のうち、例えば、系統(2)(3)のアンテナモジュール4を代表のアンテナモジュール4とし、第3のグループに属している4個のアンテナモジュール4のうち、例えば、系統(1)のアンテナモジュール4を代表のアンテナモジュール4とする。
 この場合、系統(1)~(4)のアンテナモジュール4には、可変減衰器48及びスイッチ51が実装され、振幅及び位相調整後のフィードバック信号を出力するようにする。
 残りの系統(5)~(16)のアンテナモジュール4には、可変減衰器48及びスイッチ51が実装されず、振幅及び位相調整後のフィードバック信号を出力しないようにする。
 これにより、アレイアンテナモジュール3の合成器32及び信号変換部2の合成器24によって、系統(1)~(4)のアンテナモジュール4から出力されたフィードバック信号が合成され、合成後のフィードバック信号は、周波数変換部25、ADC26及びスイッチ14を介して、歪補償信号出力部15の信号比較部16に出力される。
 歪補償信号出力部15の信号比較部16に与えられる合成後のフィードバック信号は、分類Aに属する1個のアンテナモジュール4のフィードバック信号と、分類Bに属する2個のアンテナモジュール4のフィードバック信号と、分類Cに属する1個のアンテナモジュール4のフィードバック信号とを合成したものであり、16個のフィードバック信号を合成する場合と振幅分布の割合が同一、即ち、分類Aと分類Bと分類Cの割合が同一であるため、16個のフィードバック信号を合成した場合と同様の合成フィードバック信号が与えられる。
 歪補償信号出力部15及びPD部13の処理内容は、上記実施の形態1と同様であるため詳細な説明を省略する。
 以上で明らかなように、この実施の形態3によれば、複数のアンテナモジュール4が、フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧するためにつけられている振幅分布によってグループ分けされており、振幅分布が同一のグループに属する1つ以上のアンテナモジュール4の中で、代表のアンテナモジュールは振幅及び位相調整後のフィードバック信号を出力し、代表以外のアンテナモジュール4はフィードバック信号を出力しないように構成したので、上記実施の形態1と同様の効果が得られるほかに、代表以外のアンテナモジュール4の構成の簡略化を図ることができる効果が得られる。
実施の形態4.
 この実施の形態4では、上記実施の形態3のように、各アンテナモジュール4が振幅分布によってグループ分けされており、さらに、複数のグループが、フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度によって分類されているものとする。
 この実施の形態4では、複数のグループの中で、他のグループと比較して影響度が相対的に高いグループに属するアンテナモジュールは振幅及び位相調整後のフィードバック信号を出力し、他のグループと比較して影響度が相対的に低いグループに属するアンテナモジュールはフィードバック信号を出力しないようにするものについて説明する。
 図11はこの発明の実施の形態4によるフェーズドアレイアンテナ装置を示す構成図であり、図11において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 モデム1はメモリ71を実装しており、歪補償信号出力部15は信号比較部72とPD信号生成部17から構成されている。
 メモリ71及び信号比較部72については後述する。
 図11の例では、可変減衰器48及びスイッチ51を実装しているアンテナモジュール4と、可変減衰器48及びスイッチ51を実装していないアンテナモジュール4とが混在している。
 即ち、フィードバック信号を出力する必要があるアンテナモジュール4は、可変減衰器48及びスイッチ51を実装しており、フィードバック信号を出力する必要がないアンテナモジュール4は、可変減衰器48及びスイッチ51を実装していない。
 図12はある一定の歪み値に対する各系統の振幅バラツキに伴う歪み補償量の劣化を示す説明図である。
 図12において、(1)~(18)は分類A、分類B及び分類Cに属するアンテナモジュール4の振幅バラツキの組み合わせを示す番号である。
 図12では、振幅バラツキの組み合わせ毎に、B.O.改善量と劣化量を示している。
 振幅バラツキはdBで表記しており、振幅バラツキが0dBの場合には空欄になっている。
 B.O.改善量は、ある一定の歪み値に対して歪み補償処理を実施したとき、歪み補償処理を実施しない場合と比べて、フェーズドアレイアンテナの出力電力が何dB改善するかを表している。
 また、劣化量は、ある一定の歪み値に対する歪み補償処理が、理想的な歪み補償処理でない場合に、何dB劣化するかを表している。
 例えば、組み合わせ番号(1)の振幅バラツキが生じている場合、仮に、2dBの劣化量まで許容されるとすれば、分類A、分類B及び分類Cに属するアンテナモジュール4の振幅バラツキを、例えば、組み合わせ番号(2)や(3)のように調整すれば、劣化量が4.3dBから1dBや0.3dBに減少するため、劣化量が許容範囲に収まる。
 しかし、分類Aに属するアンテナモジュール4の振幅バラツキを調整すれば、分類B及び分類Cに属するアンテナモジュール4の振幅バラツキを調整しなくても、組み合わせ番号(16)に示すように、劣化量を許容範囲に収めることができる。
 なお、分類Aに属するアンテナモジュール4は、フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度が、分類B,Cに属するアンテナモジュール4と比較して相対的に高いため、分類Aに属するアンテナモジュール4の振幅バラツキを調整するだけで、劣化量を許容範囲に収めることができるが、分類B,Cに属するアンテナモジュール4は、歪み特性に対する影響度が、分類Aに属するアンテナモジュール4と比較して相対的に低いため、分類Bに属するアンテナモジュール4の振幅バラツキを調整するだけでは、劣化量を許容範囲に収めることができないことがある。また、分類Cに属するアンテナモジュール4の振幅バラツキを調整するだけでは、組み合わせ番号(13)に示すように、劣化量を許容範囲に収めることができないことがある。
 そこで、この実施の形態4では、歪み特性に対する影響度が高い分類Aに属する4個のアンテナモジュール4、即ち、系統(4)(7)(10)(13)のアンテナモジュールには、可変減衰器48及びスイッチ51が実装され、振幅及び位相調整後のフィードバック信号を出力するようにする。
 一方、歪み特性に対する影響度が低い分類B,Cに属する12個のアンテナモジュール4、即ち、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)のアンテナモジュールには、可変減衰器48及びスイッチ51が実装されず、振幅及び位相調整後のフィードバック信号を出力しないようにする。
 これにより、アレイアンテナモジュール3の合成器32及び信号変換部2の合成器24によって、系統(4)(7)(10)(13)のアンテナモジュール4から出力されたフィードバック信号が合成され、合成後のフィードバック信号は、周波数変換部25、ADC26及びスイッチ14を介して、歪補償信号出力部15の信号比較部72に出力される。
 この実施の形態4では、歪み特性に対する影響度が低い分類B,Cに属する12個のアンテナモジュール4からフィードバック信号が出力されないので、例えば、製品検査時等に測定された分類B,Cに属する12個のアンテナモジュール4から出力されたフィードバック信号がモデム1のメモリ71に格納されている。このフィードバック信号は、例えば、熱などの要因によって、分類B,Cに属するアンテナモジュール4の入出力振幅位相特性が変化しても変わらないので、以下、「固定フィードバック信号」と称する。
 歪補償信号出力部15の信号比較部72は、ADC26からスイッチ14を介して系統(4)(7)(10)(13)に係る合成後のフィードバック信号を受けると、そのフィードバック信号とメモリ71に格納されているフィードバック信号とを合成する。
 即ち、信号比較部72は、ADC26からスイッチ14を介して出力された分類Aに属する4個のアンテナモジュール4のフィードバック信号と、メモリ71に格納されている分類Bに属する8個のアンテナモジュール4の固定フィードバック信号と、メモリ71に格納されている分類Cに属する4個のアンテナモジュール4の固定フィードバック信号とを合成することで、16個のアンテナモジュール4から出力されたフィードバック信号を合成した場合の合成フィードバック信号に相当する合成フィードバック信号を生成する。
 歪補償信号出力部15の信号比較部72は、合成フィードバック信号を生成すると、その合成フィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 歪補償信号出力部15のPD信号生成部17は、予め、ベースバンド信号とフィードバック信号の差分に対応する歪補償係数を格納しているルックアップテーブルを保持しており、そのルックアップテーブルから信号比較部72により算出された差分に対応する歪補償係数を読み出し、その歪補償係数を示すプリディストーション信号をPD部13に出力する。
 PD部13の処理内容は、上記実施の形態1と同様であるため詳細な説明を省略する。
 以上で明らかなように、この実施の形態4によれば、複数のグループが、フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度によって分類されており、複数のグループの中で、他のグループと比較して影響度が相対的に高いグループに属するアンテナモジュールは振幅及び位相調整後のフィードバック信号を出力し、他のグループと比較して影響度が相対的に低いグループに属するアンテナモジュールはフィードバック信号を出力しないように構成したので、上記実施の形態1と同様の効果が得られるほかに、歪み特性に対する影響度が低いグループに属するアンテナモジュール4の構成の簡略化を図ることができる効果が得られる。
実施の形態5.
 上記実施の形態2では、RF信号を送信する場合、全てのアンテナモジュール4がフィードバック信号を出力するものを示したが、一部のアンテナモジュール4だけがフィードバック信号を出力するようにしてもよい。
 図13この発明の実施の形態5よるフェーズドアレイアンテナ装置を示す構成図であり、図13おいて、図7と同一符号は同一または相当部分を示すので説明を省略する。
 図13の例では、可変減衰器48及びスイッチ51を実装しているアンテナモジュール4と、可変減衰器48及びスイッチ51を実装していないアンテナモジュール4とが混在している。
 即ち、フィードバック信号を出力する必要があるアンテナモジュール4は、可変減衰器48及びスイッチ51を実装しており、フィードバック信号を出力する必要がないアンテナモジュール4は、可変減衰器48及びスイッチ51を実装していない。
 図13の例では、説明の便宜上、アンテナモジュール4-1が可変減衰器48及びスイッチ51を実装し、アンテナモジュール4-Nが可変減衰器48及びスイッチ51を実装していないものを示しているが、これはあくまでも一例であり、アンテナモジュール4-1が可変減衰器48及びスイッチ51を実装しておらず、アンテナモジュール4-Nが可変減衰器48及びスイッチ51を実装しているものであってもよい。
 具体的には、上記実施の形態3と同様に、系統(1)~(4)のアンテナモジュール4-1~4-4には、可変減衰器48及びスイッチ51が実装されて、系統(5)~(16)のアンテナモジュール4-5~4-16には、可変減衰器48及びスイッチ51が実装されない構成などが想定される。
 系統(1)~(4)のアンテナモジュール4-1~4-4には、可変減衰器48及びスイッチ51が実装されて、系統(5)~(16)のアンテナモジュール4-5~4-16には、可変減衰器48及びスイッチ51が実装されない構成では、系統(1)~(4)のモデム1-1~1-4には、アンテナモジュール4-1~4-4から信号変換部2-1~2-4を介してフィードバック信号が与えられる。
 系統(1)~(4)のモデム1-1~1-4の通信部64は、アンテナモジュール4-1~4-4から出力されたフィードバック信号を他の系統の通信部64に送信する。
 系統(5)~(16)のモデム1-5~1-16の通信部64は、アンテナモジュール4-5~4-16からフィードバック信号が出力されないので、フィードバック信号を他の系統の通信部64に送信する処理を行わない。
 また、系統(1)~(4)のモデム1-1~1-4の通信部64は、他の系統の通信部64から送信された3個のフィードバック信号を受信し、3個のフィードバック信号をフィードバック信号記憶部62bに格納する。
 系統(5)~(16)のモデム1-5~1-16の通信部64は、系統(1)~(4)の通信部64から送信された4個のフィードバック信号を受信し、4個のフィードバック信号をフィードバック信号記憶部62bに格納する。
 系統(1)~(4)における歪補償信号出力部61のフィードバック信号合成部62cは、フィードバック信号記憶部62bから他の系統の3個のフィードバック信号の読み出しを行う。例えば、系統(1)のフィードバック信号合成部62cであれば、系統(2)~(4)のアンテナモジュール4-2~4-4から出力された3個のフィードバック信号の読み出しを行い、系統(2)のフィードバック信号合成部62cであれば、系統(1)(3)(4)のアンテナモジュール4-1,4-3,4-4から出力された3個のフィードバック信号の読み出しを行う。
 系統(1)~(4)のフィードバック信号合成部62cは、読み出した3個のフィードバック信号とフィードバック信号取得部62aから出力されたフィードバック信号とを合成する。
 系統(1)~(4)における歪補償信号出力部61の差分算出部62dは、フィードバック信号合成部62cが4個のフィードバック信号を合成すると、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 系統(5)~(16)における歪補償信号出力部61のフィードバック信号合成部62cは、フィードバック信号記憶部62bから系統(1)~(4)のフィードバック信号を読み出し、系統(1)~(4)のフィードバック信号を合成する。
 系統(1)~(16)における歪補償信号出力部61の差分算出部62dは、フィードバック信号合成部62cが4個のフィードバック信号を合成すると、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 モデム1-nにおける歪補償信号出力部61のPD信号生成部63及びPD部13の処理内容は、上記実施の形態2と同様であるため詳細な説明を省略する。
 以上で明らかなように、この実施の形態5によれば、複数のアンテナモジュール4が、フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧するためにつけられている振幅分布によってグループ分けされており、振幅分布が同一のグループに属する1つ以上のアンテナモジュール4の中で、代表のアンテナモジュールは振幅及び位相調整後のフィードバック信号を出力し、代表以外のアンテナモジュール4はフィードバック信号を出力しないように構成したので、上記実施の形態2と同様の効果が得られるほかに、代表以外のアンテナモジュール4の構成の簡略化を図ることができる効果が得られる。
実施の形態6.
 この実施の形態6では、上記実施の形態4のように、各アンテナモジュール4が振幅分布によってグループ分けされるとともに、複数のグループが、フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度によって分類されているものとする。
 この実施の形態6では、複数のグループの中で、他のグループと比較して影響度が相対的に高いグループに属するアンテナモジュールは振幅及び位相調整後のフィードバック信号を出力し、他のグループと比較して影響度が相対的に低いグループに属するアンテナモジュールはフィードバック信号を出力しないようにするものについて説明する。
 この実施の形態6によるフェーズドアレイアンテナ装置の構成図は、上記実施の形態5における図13と同様である。
 図14はこの発明の実施の形態6によるフェーズドアレイアンテナ装置のモデム1-nにおける歪補償信号出力部61を示す構成図であり、図14において、図8と同一符号は同一または相当部分を示すので説明を省略する。
 フィードバック信号記憶部62eは通信部64により受信された他の系統のフィードバック信号を記憶するとともに、可変減衰器48及びスイッチ51が実装されないアンテナモジュール4に係る固定フィードバック信号を記憶する。
 フィードバック信号合成部62fはフィードバック信号取得部62aから出力されたフィードバック信号と、フィードバック信号記憶部62bにより記憶されている他の系統のフィードバック信号及び固定フィードバック信号とを合成する。
 この実施の形態6でも、上記実施の形態4のように、可変減衰器48及びスイッチ51を実装しているアンテナモジュール4と、可変減衰器48及びスイッチ51を実装していないアンテナモジュール4とが混在している。
 具体的には、上記実施の形態4と同様に、歪み特性に対する影響度が高い分類Aに属する4個のアンテナモジュール4、即ち、系統(4)(7)(10)(13)のアンテナモジュール4には、可変減衰器48及びスイッチ51が実装され、歪み特性に対する影響度が低い分類B,Cに属する12個のアンテナモジュール4、即ち、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)のアンテナモジュール4には、可変減衰器48及びスイッチ51が実装されない構成などが想定される。
 系統(4)(7)(10)(13)のアンテナモジュール4には、可変減衰器48及びスイッチ51が実装されて、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)のアンテナモジュール4には、可変減衰器48及びスイッチ51が実装されない構成では、系統(4)(7)(10)(13)のモデム1には、接続関係があるアンテナモジュール4から信号変換部2を介してフィードバック信号が与えられる。
 系統(4)(7)(10)(13)のモデム1の通信部64は、接続関係があるアンテナモジュール4から出力されたフィードバック信号を他の系統の通信部64に送信する。
 系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)のモデム1の通信部64は、接続関係があるアンテナモジュール4からフィードバック信号が出力されないので、フィードバック信号を他の系統の通信部64に送信する処理を行わない。
 また、系統(4)(7)(10)(13)のモデム1の通信部64は、他の系統の通信部64から送信された3個のフィードバック信号を受信し、3個のフィードバック信号をフィードバック信号記憶部62eに格納する。
 系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)のモデム1の通信部64は、系統(4)(7)(10)(13)の通信部64から送信された4個のフィードバック信号を受信し、4個のフィードバック信号をフィードバック信号記憶部62eに格納する。
 系統(4)(7)(10)(13)における歪補償信号出力部61のフィードバック信号合成部62fは、フィードバック信号記憶部62eから他の系統の3個のフィードバック信号の読み出しを行うとともに、フィードバック信号記憶部62eから固定フィードバック信号、即ち、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)に係る固定フィードバック信号の読み出しを行う。
 例えば、系統(4)のフィードバック信号合成部62fであれば、系統(7)(10)(13)のアンテナモジュール4から出力された3個のフィードバック信号の読み出しを行うとともに、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)に係る固定フィードバック信号の読み出しを行う。系統(7)のフィードバック信号合成部62fであれば、系統(4)(10)(13)のアンテナモジュール4から出力された3個のフィードバック信号の読み出しを行うとともに、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)に係る固定フィードバック信号の読み出しを行う。
 系統(4)(7)(10)(13)のフィードバック信号合成部62fは、読み出した3個のフィードバック信号及び固定フィードバック信号と、フィードバック信号取得部62aから出力された接続関係があるアンテナモジュール4のフィードバック信号とを合成する。
 系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)における歪補償信号出力部61のフィードバック信号合成部62fは、フィードバック信号記憶部62eから系統(4)(7)(10)(13)の4個のフィードバック信号の読み出しを行うとともに、フィードバック信号記憶部62eから固定フィードバック信号、即ち、系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)に係る固定フィードバック信号の読み出しを行う。
 系統(1)~(3)(5)(6)(8)(9)(11)(12)(14)~(16)のフィードバック信号合成部62fは、読み出した4個のフィードバック信号と固定フィードバック信号とを合成する。
 系統(1)~(16)における歪補償信号出力部61の差分算出部62dは、フィードバック信号合成部62fが16個のフィードバック信号を合成すると、合成後のフィードバック信号と変調部12から出力されたベースバンド信号との差分を算出する。
 モデム1-nにおける歪補償信号出力部61のPD信号生成部63及びPD部13の処理内容は、上記実施の形態2と同様であるため詳細な説明を省略する。
 以上で明らかなように、この実施の形態6によれば、複数のグループが、フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度によって分類されており、複数のグループの中で、他のグループと比較して影響度が相対的に高いグループに属するアンテナモジュールは振幅及び位相調整後のフィードバック信号を出力し、他のグループと比較して影響度が相対的に低いグループに属するアンテナモジュールはフィードバック信号を出力しないように構成したので、上記実施の形態2と同様の効果が得られるほかに、歪み特性に対する影響度が低いグループに属するアンテナモジュール4の構成の簡略化を図ることができる効果が得られる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るフェーズドアレイアンテナ装置は、送信信号に対して、歪補償係数を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する歪補償部と、歪補償部による歪補償処理後の送信信号を分配する分配部と、分配部により分配された送信信号の振幅及び位相を調整するとともに、その送信信号の電力を増幅する信号処理を実施して、フェーズドアレイアンテナを構成している素子アンテナから信号処理後の送信信号を放射する一方、信号処理後の送信信号の一部をフィードバック信号として、そのフィードバック信号の振幅及び位相を調整し、調整後のフィードバック信号を出力する複数のアンテナモジュールと、複数のアンテナモジュールから出力されたフィードバック信号を合成する合成部とを設け、歪補償信号出力部が、合成部により合成されたフィードバック信号と歪補償部による歪補償処理前の送信信号との差分から、当該送信信号に対して、フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、その歪補償係数を歪補償部に出力するようにしたので、振幅分布をつけた場合でも、振幅分布をつけない場合と同等の出力電力まで、歪みの発生を防止することができ、変調波信号を増幅する電力増幅器における信号の非線形性を補償するのに適している。
 1,1-n モデム、2,2-n 信号変換部、3 アレイアンテナモジュール、4,4-n アンテナモジュール、11 DSP、12 変調部、13 PD部(歪補償部)、14 スイッチ、15 歪補償信号出力部、16 信号比較部、17 PD信号生成部、18 復調部、21 DAC、22 周波数変換部、23 分配器(分配部)、24 合成器(合成部)、25 周波数変換部、26 ADC、31 分配器(分配部)、32 合成器(合成部)、41 移相器、42 可変利得器、43 電力増幅器、44 アイソレータ、45 フィルタ、46 スイッチ、47 素子アンテナ、48 可変減衰器、49 フィルタ、50 低雑音増幅器、51 スイッチ、52 可変利得器、53 移相器、61 歪補償信号出力部、62 信号比較部、62a フィードバック信号取得部、62b フィードバック信号記憶部、62c フィードバック信号合成部、62d 差分算出部、62e フィードバック信号記憶部、62f フィードバック信号合成部、63 PD信号生成部、64 通信部、71 メモリ、72 信号比較部。

Claims (10)

  1.  送信信号に対して、歪補償係数を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する歪補償部と、
     前記歪補償部による歪補償処理後の送信信号を分配する分配部と、
     前記分配部により分配された送信信号の振幅及び位相を調整するとともに、前記送信信号の電力を増幅する信号処理を実施して、前記フェーズドアレイアンテナを構成している素子アンテナから前記信号処理後の送信信号を放射する一方、前記信号処理後の送信信号の一部をフィードバック信号として、前記フィードバック信号の振幅及び位相を調整し、調整後のフィードバック信号を出力する複数のアンテナモジュールと、
     前記複数のアンテナモジュールから出力されたフィードバック信号を合成する合成部と、
     前記合成部により合成されたフィードバック信号と前記歪補償部による歪補償処理前の送信信号との差分から、当該送信信号に対して、前記フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、前記歪補償係数を前記歪補償部に出力する歪補償信号出力部と
     を備えたフェーズドアレイアンテナ装置。
  2.  前記複数のアンテナモジュールは、前記信号処理後の送信信号の一部であるフィードバック信号の位相が、他のアンテナモジュールから前記合成部に出力されるフィードバック信号の位相と同位相になるように調整することを特徴とする請求項1記載のフェーズドアレイアンテナ装置。
  3.  前記複数のアンテナモジュールが、前記フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧するためにつけられている振幅分布によってグループ分けされており、
     前記振幅分布が同一のグループに属する1つ以上のアンテナモジュールの中で、代表のアンテナモジュールは振幅及び位相調整後のフィードバック信号を前記合成部に出力し、代表以外のアンテナモジュールはフィードバック信号を前記合成部に出力しないことを特徴とする請求項1記載のフェーズドアレイアンテナ装置。
  4.  前記複数のアンテナモジュールが、前記フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧するためにつけられている振幅分布によってグループ分けされるとともに、前記複数のグループが、前記フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度によって分類されており、
     前記複数のグループの中で、他のグループと比較して前記影響度が相対的に高いグループに属するアンテナモジュールは振幅及び位相調整後のフィードバック信号を前記合成部に出力し、他のグループと比較して前記影響度が相対的に低いグループに属するアンテナモジュールはフィードバック信号を前記合成部に出力しないことを特徴とする請求項1記載のフェーズドアレイアンテナ装置。
  5.  前記複数のアンテナモジュールは、前記素子アンテナにより受信された信号の振幅及び位相を調整して、調整後の受信信号を出力し、
     前記合成部は、前記複数のアンテナモジュールから出力された受信信号を合成することを特徴とする請求項1記載のフェーズドアレイアンテナ装置。
  6.  送信信号に対して、歪補償係数を用いる歪補償処理を実施して、フェーズドアレイアンテナから放射される信号の歪みを補償する複数の歪補償部と、
     前記歪補償部による歪補償処理後の送信信号の振幅及び位相を調整するとともに、前記送信信号の電力を増幅する信号処理を実施して、前記フェーズドアレイアンテナを構成している素子アンテナから前記信号処理後の送信信号を放射する一方、前記信号処理後の送信信号の一部をフィードバック信号として、前記フィードバック信号の振幅及び位相を調整し、調整後のフィードバック信号を出力する複数のアンテナモジュールと、
     前記複数のアンテナモジュールから出力されたフィードバック信号を合成し、合成後のフィードバック信号と前記歪補償部による歪補償処理前の送信信号との差分から、当該送信信号に対して、前記フェーズドアレイアンテナから放射される信号の歪み特性と逆の歪み特性を与える歪補償係数を求め、前記歪補償係数を前記歪補償部に出力する複数の歪補償信号出力部と
     を備えたフェーズドアレイアンテナ装置。
  7.  前記複数のアンテナモジュールは、前記信号処理後の送信信号の一部であるフィードバック信号の位相が、他のアンテナモジュールから前記歪補償部に出力されるフィードバック信号の位相と同位相になるように調整することを特徴とする請求項6記載のフェーズドアレイアンテナ装置。
  8.  前記複数のアンテナモジュールが、前記フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧するためにつけられている振幅分布によってグループ分けされており、
     前記振幅分布が同一のグループに属する1つ以上のアンテナモジュールの中で、代表のアンテナモジュールは振幅及び位相調整後のフィードバック信号を前記歪補償部に出力し、代表以外のアンテナモジュールはフィードバック信号を前記歪補償部に出力しないことを特徴とする請求項6記載のフェーズドアレイアンテナ装置。
  9.  前記複数のアンテナモジュールが、前記フェーズドアレイアンテナにおけるアンテナパターンのサイドローブを抑圧するためにつけられている振幅分布によってグループ分けされるとともに、前記複数のグループが、前記フェーズドアレイアンテナから放射される信号の歪み特性に対する影響度によって分類されており、
     前記複数のグループの中で、他のグループと比較して前記影響度が相対的に高いグループに属するアンテナモジュールは振幅及び位相調整後のフィードバック信号を前記歪補償部に出力し、他のグループと比較して前記影響度が相対的に低いグループに属するアンテナモジュールはフィードバック信号を前記歪補償部に出力しないことを特徴とする請求項6記載のフェーズドアレイアンテナ装置。
  10.  前記複数のアンテナモジュールは、前記素子アンテナにより受信された信号の振幅及び位相を調整して、調整後の受信信号を出力することを特徴とする請求項6記載のフェーズドアレイアンテナ装置。
PCT/JP2016/060945 2015-04-13 2016-04-01 フェーズドアレイアンテナ装置 WO2016167145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16779936.0A EP3285402B1 (en) 2015-04-13 2016-04-01 Phased array antenna device
CN201680021126.4A CN107534454B (zh) 2015-04-13 2016-04-01 相控阵天线装置
JP2016549184A JP6104476B2 (ja) 2015-04-13 2016-04-01 フェーズドアレイアンテナ装置
US15/561,472 US10516209B2 (en) 2015-04-13 2016-04-01 Phased array antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-081628 2015-04-13
JP2015081628 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167145A1 true WO2016167145A1 (ja) 2016-10-20

Family

ID=57126140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060945 WO2016167145A1 (ja) 2015-04-13 2016-04-01 フェーズドアレイアンテナ装置

Country Status (5)

Country Link
US (1) US10516209B2 (ja)
EP (1) EP3285402B1 (ja)
JP (1) JP6104476B2 (ja)
CN (1) CN107534454B (ja)
WO (1) WO2016167145A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611609A (zh) * 2017-08-10 2018-01-19 杨勇 一种小型化微组装可变相位有源天线振子
JP2019088001A (ja) * 2017-11-01 2019-06-06 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー フェーズドアレイ増幅器線形化
JP2019154024A (ja) * 2018-03-01 2019-09-12 富士通株式会社 マルチアンテナ通信装置及び係数更新方法
US10469109B2 (en) 2017-09-19 2019-11-05 Qualcomm Incorporated Predistortion for transmitter with array
JP2019220816A (ja) * 2018-06-19 2019-12-26 株式会社東芝 無線通信装置及び無線通信方法
US10637522B2 (en) 2018-03-14 2020-04-28 Nec Corporation Apparatus, control method, and non-transitory computer readable medium storing program
JP2020072306A (ja) * 2018-10-29 2020-05-07 富士通株式会社 増幅回路及びアンテナ装置
US10659124B2 (en) 2018-03-01 2020-05-19 Fujitsu Limited Multiantenna communication device and coefficient update method
US10680664B2 (en) 2018-06-20 2020-06-09 Samsung Electronics Co., Ltd. Device and method for compensating nonlinearity of a transmitter
JP2020107934A (ja) * 2018-12-26 2020-07-09 富士通株式会社 マルチアンテナ通信装置及び歪み補償方法
US11075606B2 (en) 2019-02-14 2021-07-27 Fujitsu Limited Power amplifier circuit and antenna device
US11621488B2 (en) 2018-05-17 2023-04-04 Nec Corporation Array communication device and method for controlling same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892801B2 (en) * 2016-08-12 2021-01-12 Lg Electronics Inc. Method for signaling for phase feedback, and device for same
CN106556783B (zh) * 2016-12-05 2019-07-19 西安交通大学 一种变电站内基于特高频相控阵原理的局部放电测向方法
US10637525B2 (en) * 2017-02-06 2020-04-28 Hitachi Kokusai Electric Inc. Wireless device and wireless communication method
KR102360496B1 (ko) * 2017-06-07 2022-02-10 삼성전자주식회사 신호 위상을 보상하는 전자 장치 및 그 방법
EP3646462A1 (en) * 2017-06-30 2020-05-06 INTEL Corporation Wireless architectures and digital pre-distortion (dpd) techniques using closed loop feedback for phased array transmitters
US10665957B1 (en) * 2018-03-01 2020-05-26 Rockwell Collins, Inc. Angle interconnect for card based antenna array
CN113016108B (zh) * 2018-11-14 2024-02-13 株式会社村田制作所 天线模块和搭载有天线模块的通信装置
US10637694B1 (en) * 2018-12-21 2020-04-28 At&T Intellectual Property I, L.P. Reduction and/or mitigation of spatial emissions in multi-antenna wireless communication systems for advanced networks
WO2021000262A1 (zh) * 2019-07-02 2021-01-07 瑞声声学科技(深圳)有限公司 一种基站天线
US12088398B1 (en) 2020-02-29 2024-09-10 Space Exploration Technologies Corp. Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for same
US11671123B1 (en) * 2020-02-29 2023-06-06 Space Exploration Technologies Corp. Digital pre-distortion compensation in a wireless communications system
US20230344459A1 (en) * 2022-04-22 2023-10-26 Dell Products L.P. Digital front end super paths
US20240235587A9 (en) * 2022-10-24 2024-07-11 Mediatek Inc. Measurement receiver architecture for digital pre-distortion (dpd) in millimeter wave phased array environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117162A (ja) * 1996-05-17 1998-05-06 Motorola Ltd 送信経路重みのための装置および方法
US20100166109A1 (en) * 2008-12-31 2010-07-01 Dirk Neumann Radio station and active antenna array
US20110235748A1 (en) * 2010-03-26 2011-09-29 Peter Kenington Active antenna array having analogue transmitter linearisation and a method for predistortion of radio signals

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190712A (ja) 2000-10-11 2002-07-05 Matsushita Electric Ind Co Ltd アレーアンテナ装置
JP4184164B2 (ja) 2002-08-09 2008-11-19 松下電器産業株式会社 アレイアンテナ装置
KR100472070B1 (ko) * 2002-10-16 2005-03-10 한국전자통신연구원 선형화가 가능한 적응 배열 안테나 시스템 및 그 선형화방법
JP4867146B2 (ja) 2004-08-30 2012-02-01 三菱電機株式会社 マイクロ波分配回路
JP2006094043A (ja) 2004-09-22 2006-04-06 Matsushita Electric Ind Co Ltd 送信装置及び通信装置
JP5176692B2 (ja) * 2008-05-28 2013-04-03 日本電気株式会社 歪補償回路及び歪補償方法
US8331879B2 (en) * 2008-10-15 2012-12-11 Research In Motion Limited Multi-dimensional Volterra series transmitter linearization
JP5383274B2 (ja) 2009-03-26 2014-01-08 三菱電機株式会社 歪み補償システム
JP5404219B2 (ja) 2009-07-08 2014-01-29 三菱電機株式会社 アレーアンテナ用送信機
US8351543B2 (en) * 2009-12-21 2013-01-08 Ubidyne, Inc. Active antenna array with modulator-based pre-distortion
CN103718456A (zh) * 2011-12-09 2014-04-09 株式会社Ntt都科摩 预失真器、预失真器控制方法
US9025575B2 (en) * 2012-11-15 2015-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Antenna array calibration using traffic signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117162A (ja) * 1996-05-17 1998-05-06 Motorola Ltd 送信経路重みのための装置および方法
US20100166109A1 (en) * 2008-12-31 2010-07-01 Dirk Neumann Radio station and active antenna array
US20110235748A1 (en) * 2010-03-26 2011-09-29 Peter Kenington Active antenna array having analogue transmitter linearisation and a method for predistortion of radio signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3285402A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611609B (zh) * 2017-08-10 2024-01-30 达斯博技术有限公司 一种小型化微组装可变相位有源天线振子
CN107611609A (zh) * 2017-08-10 2018-01-19 杨勇 一种小型化微组装可变相位有源天线振子
US10469109B2 (en) 2017-09-19 2019-11-05 Qualcomm Incorporated Predistortion for transmitter with array
US11038474B2 (en) 2017-11-01 2021-06-15 Analog Devices Global Unlimited Company Phased array amplifier linearization
JP2019088001A (ja) * 2017-11-01 2019-06-06 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー フェーズドアレイ増幅器線形化
US11973473B2 (en) 2017-11-01 2024-04-30 Analog Devices International Unlimited Company Phased array amplifier linearization
US11522501B2 (en) 2017-11-01 2022-12-06 Analog Devices International Unlimited Company Phased array amplifier linearization
JP7238407B2 (ja) 2018-03-01 2023-03-14 富士通株式会社 マルチアンテナ通信装置及び係数更新方法
US10659124B2 (en) 2018-03-01 2020-05-19 Fujitsu Limited Multiantenna communication device and coefficient update method
JP2019154024A (ja) * 2018-03-01 2019-09-12 富士通株式会社 マルチアンテナ通信装置及び係数更新方法
US10637522B2 (en) 2018-03-14 2020-04-28 Nec Corporation Apparatus, control method, and non-transitory computer readable medium storing program
US11621488B2 (en) 2018-05-17 2023-04-04 Nec Corporation Array communication device and method for controlling same
JP2019220816A (ja) * 2018-06-19 2019-12-26 株式会社東芝 無線通信装置及び無線通信方法
US10680664B2 (en) 2018-06-20 2020-06-09 Samsung Electronics Co., Ltd. Device and method for compensating nonlinearity of a transmitter
US11218117B2 (en) 2018-10-29 2022-01-04 Fujitsu Limited Amplifier circuit and antenna device
JP2020072306A (ja) * 2018-10-29 2020-05-07 富士通株式会社 増幅回路及びアンテナ装置
JP7302160B2 (ja) 2018-10-29 2023-07-04 富士通株式会社 増幅回路及びアンテナ装置
JP2020107934A (ja) * 2018-12-26 2020-07-09 富士通株式会社 マルチアンテナ通信装置及び歪み補償方法
JP7087991B2 (ja) 2018-12-26 2022-06-21 富士通株式会社 マルチアンテナ通信装置及び歪み補償方法
US11075606B2 (en) 2019-02-14 2021-07-27 Fujitsu Limited Power amplifier circuit and antenna device

Also Published As

Publication number Publication date
US20180053997A1 (en) 2018-02-22
JPWO2016167145A1 (ja) 2017-04-27
US10516209B2 (en) 2019-12-24
EP3285402A1 (en) 2018-02-21
EP3285402B1 (en) 2021-12-01
CN107534454B (zh) 2019-11-08
EP3285402A4 (en) 2018-11-21
CN107534454A (zh) 2018-01-02
JP6104476B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6104476B2 (ja) フェーズドアレイアンテナ装置
US11973473B2 (en) Phased array amplifier linearization
TWI505633B (zh) 主動式前饋放大器
US7010281B2 (en) Array antenna apparatus utilizing a nonlinear distortion compensator circuit
CN111434056B (zh) 用于发射器阵列的线性化的方法、装置和布置
US7256649B2 (en) Multiple signal intermodulation reduction system
US5862459A (en) Method of and apparatus for filtering intermodulation products in a radiocommunication system
US8489041B2 (en) Multi-element amplitude and phase compensated antenna array with adaptive pre-distortion for wireless network
US20110235734A1 (en) Active antenna array having a single dpd lineariser and a method for predistortion of radio signals
US20130136209A1 (en) Active General Purpose Hybrid
US10298275B2 (en) Outphasing transmit and receive wireless systems having dual-polarized antennas
JP5815448B2 (ja) フェーズドアレイ送信装置
JP2001203540A (ja) 高周波電力増幅器
KR20080096202A (ko) 무선통신시스템에서 저출력 증폭을 수행하기 위한 장치 및방법
JP7279391B2 (ja) 電力増幅回路及びアンテナ装置
US20150061762A1 (en) Dual power amplifier linearizer
JP5383274B2 (ja) 歪み補償システム
JP5735863B2 (ja) 無線通信装置、送信方法、及びプログラム
JP6219007B1 (ja) フィードフォワード増幅器及びアンテナ装置
JP5975445B2 (ja) 送信機、及び送信方法
JP5485045B2 (ja) 通信装置
JP3750992B2 (ja) 増幅装置
JPH10209777A (ja) 増幅装置
WO2016076054A1 (ja) アンテナシステム
JP2007251243A (ja) 送信回路、無線基地局装置及び無線端末装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549184

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561472

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016779936

Country of ref document: EP