WO2016165390A1 - 一种改性钛酸锂负极材料的制备方法 - Google Patents

一种改性钛酸锂负极材料的制备方法 Download PDF

Info

Publication number
WO2016165390A1
WO2016165390A1 PCT/CN2015/098492 CN2015098492W WO2016165390A1 WO 2016165390 A1 WO2016165390 A1 WO 2016165390A1 CN 2015098492 W CN2015098492 W CN 2015098492W WO 2016165390 A1 WO2016165390 A1 WO 2016165390A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
lithium
negative electrode
electrode material
modified
Prior art date
Application number
PCT/CN2015/098492
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016165390A1 publication Critical patent/WO2016165390A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a lithium ion battery anode material, in particular to a preparation method of a modified lithium titanate anode material.
  • Lithium-ion batteries which have been widely used in electronic products such as mobile phones and notebook computers, have large specific energy, high specific power, low self-discharge, good cycle characteristics, fast charging and high efficiency, wide operating temperature range, and no environmental pollution.
  • the lithium-ion batteries currently used in the market basically use carbon materials as the negative electrode, but the carbon material is the negative electrode in the practical application, there are some insurmountable weaknesses, for example, reacting with the electrolyte during the first discharge to form a surface.
  • the passivation film causes the electrolyte to be consumed and the first coulombic efficiency is low; the potential of the carbon electrode is very close to the potential of the metal lithium.
  • lithium titanate Compared with carbon negative electrode materials, lithium titanate has many advantages. Among them, the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor. At the same time, the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is more than 160mAh/g, and it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
  • the technical problem to be solved by the present invention is to provide a method for preparing a modified lithium titanate negative electrode material to solve the problems raised in the above background art.
  • a preparation method of a lithium titanate negative electrode material for a modified lithium ion battery, the raw materials according to the proportion by weight, comprising the following process steps:
  • the temperature is raised to 800-900 ° C at a rate of 10 to 20 ° C / min, and then kept for 1 to 3 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material;
  • Lithium titanate, epoxy resin, and nano-silica are placed in a ratio of 100:5 to 10:1 to 5 and a solid content of 20% to 50%. First, a certain amount of nano-silica is weighed. In the alcohol solvent, and ultrasonically dispersed, and then separately added epoxy resin and lithium titanate, stirring constantly, mixing into a uniform slurry;
  • step (3) then mixing the homogeneous slurry of step (2) by spray drying to obtain a lithium titanate powder having a surface coated with a mixture of nano silica and an epoxy resin;
  • the powder obtained in the step (3) is heated to a temperature of 1000 to 1200 ° C at a rate of 1 to 20 ° C / min, and then kept for 0.5 to 5 hours, and naturally cooled, and after cooling, the modified lithium titanate negative electrode is obtained. material.
  • the lithium salt described in the step (1) is one of lithium acetate, lithium sulfate, lithium oxalate, lithium carbonate, and lithium hydroxide.
  • the titanium oxide described in the step (1) is one of anatase type titanium dioxide or a gold stone type titanium dioxide.
  • the nano silica described in the step (2) is prepared by vapor phase deposition, and has a particle diameter of not more than 30 nm.
  • the inlet temperature of the spray-dried hot air in the step (3) is 200 ° C to 300 ° C, and the outlet temperature is 40 ° C to 90 ° C.
  • lithium titanate powder was weighed 2000 g, according to lithium titanate, epoxy resin, nano silica according to 100:5 : 3, a solid content of 30%, weigh 60g of nano-silica into 4914g of alcohol solvent, and ultrasonically dispersed, then add 100g of epoxy resin, stirring constantly, mixing into a uniform slurry; The slurry is spray-dried to obtain lithium titanate powder coated with a mixture of nano-silicon and epoxy resin.
  • the temperature is raised to 1100 ° C at a rate of 20 ° C / min, and then kept for 3 h, and the temperature is naturally lowered. After cooling, the modified lithium titanate negative electrode material is obtained by sieving.
  • lithium titanate negative electrode material 800 ° C, and then kept at 4 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material; the above lithium titanate powder was weighed 2000 g, according to lithium titanate, epoxy resin, nano silica according to 100:10 : 5, the solid content is 30% ratio, weigh 100g of nano-silica into 5366g of alcohol solvent, and ultrasonically disperse, then add 200g of epoxy resin separately, continue to stir, mix into a uniform slurry; The slurry is spray-dried to obtain lithium titanate powder coated with a mixture of nano-silicon and epoxy resin. Under the protection of inert gas, the temperature is raised to 1100 ° C at a rate of 20 ° C / min, and then kept for 3 h, and naturally cooled. After cooling, the modified lithium titanate negative electrode material is obtained by sieving.
  • lithium titanate negative electrode material 800 ° C, and then kept for 4 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material;
  • the above lithium titanate powder was weighed 2000 g, according to lithium titanate, epoxy resin, nano silica according to 100:8 :1, the ratio of solid content is 35%, weigh 20g of nano-silica into 4048g of alcohol solvent, and ultrasonically disperse, then add 160g of epoxy resin separately and stir, mix into a uniform slurry;
  • Slurry Spray drying is carried out to obtain a lithium titanate powder coated with a mixture of nano silicon and epoxy resin, and heated to a temperature of 20 ° C / min to 1100 ° C under the protection of an inert gas, and then kept for 3 hours, naturally cooled, after cooling
  • the modified lithium titanate negative electrode material is obtained by sieving.
  • the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
  • the battery performance can be tested. The test results are shown in Table 1.
  • Table 1 compares the performance of negative electrode materials in different examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种改性钛酸锂负极材料的制备方法,一种改性钛酸锂负极材料的制备方法,原料按照重量份比例,包括以下工艺步骤:(1)钛酸锂的制备;(2)将钛酸锂、环氧树脂、纳米二氧化硅混合成均匀浆体;(3)通过喷雾干燥,得到钛酸锂粉体;(4)将步骤(3)所得到的粉体在惰性气体的保护下,经过高温处理得到改性钛酸锂负极材料。本发明可以进通过固相法制备钛酸锂,具有工艺简单、制造成本低、制成周期短等优点。

Description

一种改性钛酸锂负极材料的制备方法 技术领域
本发明涉及一种锂离子电池负极材料的制备方法,具体来说是一种改性钛酸锂负极材料的制备方法。
背景技术
目前已广泛应用于移动电话、笔记本电脑等电子产品中的锂离子电池具有比能量大、比功率高、自放电小、循环特性好以及可快速充电且效率高、工作温度范围宽、无环境污染等优点,目前市场上所用锂离子电池,基本都是以碳材料为负极,但是碳材料为负极在实际应用中还有一些难以克服的弱点,例如,首次放电过程中与电解液发生反应形成表面钝化膜,导致电解液的消耗和首次库伦效率较低;碳电极的电位与金属锂的电位很接近,当电池过充电时,碳电极表面易析出金属锂,从而可能会引起短路,进而导致电池爆炸。为了解决锂电池的安全问题,人们做了大量的研究。尖晶石Li4Ti5O12作为一种新型的锂离子二次电池负极材料,与其它商业化的材料相比,具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点,是近几年来备受关注的最优异的锂离子电池负极材料之一。
与碳负电极材料相比,钛酸锂有很多的优势,其中,锂离子在钛酸锂中的脱嵌是可逆的,而且锂离子在嵌入或脱出钛酸锂的过程中,其晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,能够避免充放电循环中由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,具有比碳负极更优良的循环性能;但是,由于钛酸锂是一种绝缘材料,其电导率低,从而导致在锂电中的应用存在倍率性能较差的问题,同时钛酸锂材料理论比容量为175mAh/g,实际比容量大于160mAh/g,具有克容量较低等缺点,因此,对于钛酸锂进行改性是十分必要的。
发明内容
本发明所解决的技术问题在于提供一种改性钛酸锂负极材料的制备方法,以解决上述背景技术中提出的问题。
为了达到上述目的,本发明采用以下技术方案来实现:
一种改性锂离子电池钛酸锂负极材料的制备方法,原料按照重量份比例,包括以下工艺步骤:
(1)按照n(Li):n(Ti)=0.84~0.87的比例称取锂盐、二氧化钛,用球磨机将两者进行球磨混合5~9小时,然后将混合均匀的粉体在空气中,以10~20℃/min的速度升温至800~900℃,再保温1~3h,然后自然冷却至室温,得到钛酸锂负极材料;
(2)将钛酸锂、环氧树脂、纳米二氧化硅按照100:5~10:1~5,固含量为20%~50%的比例,首先称取一定量的纳米二氧化硅放入酒精溶剂中,并超声分散,然后分别加入环氧树脂和钛酸锂,不断搅拌,混合成均匀浆体;
(3)然后将步骤(2)混合均匀的浆体通过喷雾干燥,得到表面包裹有纳米二氧化硅和环氧树脂混合物的钛酸锂粉体;
(4)将步骤(3)所得到的粉体以1~20℃/min的速度升温至1000~1200℃,再保温0.5~5h,自然降温,冷却后过筛即得到改性钛酸锂负极材料。
进一步,步骤(1)中所述的为锂盐为醋酸锂、硫酸锂、草酸锂、碳酸锂、氢氧化锂中的一种。
进一步,步骤(1)中所述的二氧化钛为锐钛型二氧化钛或金石型二氧化钛中的一种。
进一步,步骤(2)中所述的纳米二氧化硅为气相法沉积制备,其粒径不大于30纳米。
进一步,步骤(3)中喷雾干燥的热空气的进口温度为200℃~300℃,出口温度为40℃~90℃。
有益效果:
(1)通过固相法制备钛酸锂,具有工艺简单、制造成本低、制成周期短等优点;
(2)通过选用纳米二氧化硅进行掺杂处理,可以避免钛酸锂和电解液直接接触导致气胀而对锂电池造成安全隐患,同时有利于材料性能的稳定;
(3)树脂在热处理过程中,树脂内的小分子过多,在溢出过程中会造成包覆后材料的表面产生过多的空隙,有利益电解液的吸收和保持,同时这些空隙扩大了锂离子脱嵌的通道,增加材料的倍率和低温性能。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1
按照n(Li):n(Ti)=0.84,称取1000g碳酸锂和2572g二氧化钛,放入球磨机进行球磨混合8h后,将混合均匀的粉体在空气中,以10℃/min的速度升温至800℃,再保温2h,然后自然冷却至室温,得到钛酸锂负极材料;将上述的钛酸锂粉体称取2000g,按照将钛酸锂、环氧树脂、纳米二氧化硅按照100:5:3,固含量为30%的比例,称取60g的纳米二氧化硅放入4914g的酒精溶剂中,并超声分散,然后加入100g的环氧树脂,不断搅拌,混合成均匀浆体;再将浆体进行喷雾干燥,得到表面包裹有纳米硅和环氧树脂混合物的钛酸锂粉体,在惰性气体的保护下,以20℃/min的速度升温至1100℃,再保温3h,自然降温,冷却后过筛即得到改性钛酸锂负极材料。
实施例2
按照n(Li):n(Ti)=0.87,称取1000g碳酸锂和2484g二氧化钛,放入球磨机进行球磨混合8h后,将混合均匀的粉体在空气中,以10℃/min的速度升温至800℃,再保温4h,然后自然冷却至室温,得到钛酸锂负极材料;将上述的钛酸锂粉体称取2000g,按照将钛酸锂、环氧树脂、纳米二氧化硅按照100:10:5,固含量为30%的比例,称取100g的纳米二氧化硅放入5366g的酒精溶剂中,并超声分散,然后分别加入200g的环氧树脂,不断搅拌,混合成均匀浆体;再将浆体进行喷雾干燥,得到表面包裹有纳米硅和环氧树脂混合物的钛酸锂粉体,在惰性气体的保护下,以20℃/min的速度升温至1100℃,再保温3h,自然降温,冷却后过筛即得到改性钛酸锂负极材料。
实施例3
按照n(Li):n(Ti)=0.87,称取1000g碳酸锂和2161g二氧化钛,放入球磨机进行球磨混合8h后,将混合均匀的粉体在空气中,以10℃/min的速度升温至800℃,再保温4h,然后自然冷却至室温,得到钛酸锂负极材料;将上述的钛酸锂粉体称取2000g,按照将钛酸锂、环氧树脂、纳米二氧化硅按照100:8:1,固含量为35%的比例,称取20g的纳米二氧化硅放入4048g的酒精溶剂中,并超声分散,然后分别加入160g的环氧树脂不断搅拌,混合成均匀浆体;再将浆体 进行喷雾干燥,得到表面包裹有纳米硅和环氧树脂混合物的钛酸锂粉体,在惰性气体的保护下,以20℃/min的速度升温至1100℃,再保温3h,自然降温,冷却后过筛即得到改性钛酸锂负极材料。
对比例1
按照n(Li):n(Ti)=0.87,称取1000g碳酸锂和2161g二氧化钛,放入球磨机进行球磨混合8h后,将混合均匀的粉体在空气中,以10℃/min的速度升温至800℃,再保温4h,然后自然冷却至室温,得到钛酸锂负极材料。
电化学性能测试
为检验本发明方法制备的改性锂离子电池钛酸锂负极材料的性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
表1为不同实施例和比较例中负极材料的性能比较
Figure PCTCN2015098492-appb-000001
以上显示和描述了本实用新型的基本原理和主要特征及本实用新型的优点,本行业的技术人员应该了解,本实用新型不受上述实施例的限制,上述实施例和说明书中描述的只是说明本实用新型的原理,在不脱离本实用新型精神和范围的前提下,本实用新型还会有各种变化和改进,这些变化和改进都落入要求保护的本实用新型范围内,本实用新型要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

  1. 一种改性锂离子电池钛酸锂负极材料的制备方法,原料按照重量份比例,其特征在于,包括以下工艺步骤:
    (1)按照n(Li):n(Ti)=0.84~0.87的比例称取锂盐、二氧化钛,用球磨机将两者进行球磨混合5~9小时,然后将混合均匀的粉体在空气中,以10~20℃/min的速度升温至800~900℃,再保温1~3h,然后自然冷却至室温,得到钛酸锂负极材料;
    (2)将钛酸锂、环氧树脂、纳米二氧化硅按照100:5~10:1~5,固含量为20%~50%的比例,首先称取一定量的纳米二氧化硅放入酒精溶剂中,并超声分散,然后分别加入环氧树脂和钛酸锂,不断搅拌,混合成均匀浆体;
    (3)然后将步骤(2)混合均匀的浆体通过喷雾干燥,得到表面包裹有纳米二氧化硅和环氧树脂混合物的钛酸锂粉体;
    (4)将步骤(3)所得到的粉体以1~20℃/min的速度升温至1000~1200℃,再保温0.5~5h,自然降温,冷却后过筛即得到改性钛酸锂负极材料。
  2. 根据权利要求1所述的一种改性锂离子电池钛酸锂负极材料的制备方法,其特征在于,步骤(1)中所述的为锂盐为醋酸锂、硫酸锂、草酸锂、碳酸锂、氢氧化锂中的一种。
  3. 根据权利要求1所述的一种改性锂离子电池钛酸锂负极材料的制备方法,其特征在于,步骤(1)中所述的二氧化钛为锐钛型二氧化钛或金石型二氧化钛中的一种。
  4. 根据权利要求1所述的一种改性锂离子电池钛酸锂负极材料的制备方法,其特征在于,步骤(2)中所述的纳米二氧化硅为气相法沉积制备,其粒径不大于30纳米。
  5. 根据权利要求1所述的一种改性锂离子电池钛酸锂负极材料的制备方法,其特征在于,步骤(3)中喷雾干燥的热空气的进口温度为200℃~300℃,出口温度为40℃~90℃。
PCT/CN2015/098492 2015-04-15 2015-12-23 一种改性钛酸锂负极材料的制备方法 WO2016165390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510176471.2 2015-04-15
CN201510176471.2A CN104733720A (zh) 2015-04-15 2015-04-15 一种改性钛酸锂负极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2016165390A1 true WO2016165390A1 (zh) 2016-10-20

Family

ID=53457385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098492 WO2016165390A1 (zh) 2015-04-15 2015-12-23 一种改性钛酸锂负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104733720A (zh)
WO (1) WO2016165390A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733720A (zh) * 2015-04-15 2015-06-24 田东 一种改性钛酸锂负极材料的制备方法
CN104916835A (zh) * 2015-07-10 2015-09-16 田东 一种钛酸锂硅基复合负极材料的制备方法
CN105129844A (zh) * 2015-08-07 2015-12-09 田东 一种改性锂电池钛酸锂负极材料的制备方法
CN109734123A (zh) * 2018-12-28 2019-05-10 南通奥新电子科技有限公司 一种纳米钛酸锂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373829A (zh) * 2008-10-07 2009-02-25 深圳市贝特瑞新能源材料股份有限公司 钛系负极活性物质及其制备方法、钛系锂离子动力电池
CN101378119A (zh) * 2008-10-06 2009-03-04 天津巴莫科技股份有限公司 锂离子电池用碳包覆型钛酸锂的制备方法
CN102299311A (zh) * 2011-07-20 2011-12-28 彩虹集团公司 负极活性物质及其制备方法以及采用该负极活性物质制备的锂离子二次电池
CN103035901A (zh) * 2012-12-20 2013-04-10 中国东方电气集团有限公司 一种锂电池纳米氧化物包覆钛酸锂负极材料及其制备方法
CN104733720A (zh) * 2015-04-15 2015-06-24 田东 一种改性钛酸锂负极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326009B (zh) * 2013-06-05 2015-08-19 深圳市斯诺实业发展有限公司 一种高容量钛酸锂负极材料的制备方法
CN103296257B (zh) * 2013-06-05 2015-06-24 深圳市斯诺实业发展有限公司 一种改性锂离子电池钛酸锂负极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378119A (zh) * 2008-10-06 2009-03-04 天津巴莫科技股份有限公司 锂离子电池用碳包覆型钛酸锂的制备方法
CN101373829A (zh) * 2008-10-07 2009-02-25 深圳市贝特瑞新能源材料股份有限公司 钛系负极活性物质及其制备方法、钛系锂离子动力电池
CN102299311A (zh) * 2011-07-20 2011-12-28 彩虹集团公司 负极活性物质及其制备方法以及采用该负极活性物质制备的锂离子二次电池
CN103035901A (zh) * 2012-12-20 2013-04-10 中国东方电气集团有限公司 一种锂电池纳米氧化物包覆钛酸锂负极材料及其制备方法
CN104733720A (zh) * 2015-04-15 2015-06-24 田东 一种改性钛酸锂负极材料的制备方法

Also Published As

Publication number Publication date
CN104733720A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2017024719A1 (zh) 一种高容量锂电池负极材料的制备方法
Tang et al. Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0. 2Ni0. 15Mn0. 55Co0. 1-xAlx] O2
US20190386293A1 (en) Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
WO2018103332A1 (zh) 锂离子电池及其负极材料
CN103296257B (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
CN109873140B (zh) 一种锂离子电池石墨烯复合三元正极材料及其制备方法
CN104810520B (zh) 一种锂离子电池镍钴锰酸锂正极材料及其制备方法
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
CN108493435B (zh) 锂离子电池正极材料Li(Ni0.8Co0.1Mn0.1)1-xYxO2及制备方法
CN104966828A (zh) 一种高容量锂电池负极材料的制备方法
WO2017024896A1 (zh) 一种金属锡掺杂复合钛酸锂负极材料的制备方法
CN103151528A (zh) 一种掺铝氧化锌包覆锂离子电池正极材料的制备方法
WO2016165262A1 (zh) 一种掺杂钛酸锂负极材料的制备方法
WO2016188130A1 (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
CN103326009B (zh) 一种高容量钛酸锂负极材料的制备方法
CN108199011B (zh) 一种钛酸锂负极材料的制备方法
CN103413924A (zh) 一种La1-xCaxCoO3包覆锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料及其制备方法
CN106935830B (zh) 一种锂离子电池复合正极材料及其制备方法和应用
CN103326010A (zh) 一种纳米硅掺杂复合钛酸锂负极材料的制备方法
CN102881883B (zh) 一种锂电池三元复合负极材料及其制备方法
WO2017024902A1 (zh) 一种改性锂电池钛酸锂负极材料的制备方法
WO2020098275A1 (zh) 一种SiO 2包覆三元正极材料及其制备方法
WO2016165390A1 (zh) 一种改性钛酸锂负极材料的制备方法
WO2019096012A1 (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
CN103441257B (zh) 一种钛酸锂材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889086

Country of ref document: EP

Kind code of ref document: A1