WO2016163540A1 - Photosensitive resin composition - Google Patents

Photosensitive resin composition Download PDF

Info

Publication number
WO2016163540A1
WO2016163540A1 PCT/JP2016/061610 JP2016061610W WO2016163540A1 WO 2016163540 A1 WO2016163540 A1 WO 2016163540A1 JP 2016061610 W JP2016061610 W JP 2016061610W WO 2016163540 A1 WO2016163540 A1 WO 2016163540A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
compound
resin composition
ethylenically unsaturated
unsaturated bond
Prior art date
Application number
PCT/JP2016/061610
Other languages
French (fr)
Japanese (ja)
Inventor
真一 国松
隆之 松田
有里 山田
大和 筒井
晶 藤原
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020177020557A priority Critical patent/KR101990230B1/en
Priority to MYUI2017703393A priority patent/MY187481A/en
Priority to CN201680019911.6A priority patent/CN107407880B/en
Priority to KR1020197012465A priority patent/KR102286107B1/en
Priority to JP2017511104A priority patent/JPWO2016163540A1/en
Priority to CN202210104954.1A priority patent/CN114437251B/en
Publication of WO2016163540A1 publication Critical patent/WO2016163540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a photosensitive resin composition and the like.
  • printed wiring boards are generally manufactured by a photolithography method.
  • the photolithography method first, pattern exposure is performed on the photosensitive resin composition layer laminated on the substrate.
  • the exposed portion of the photosensitive resin composition is polymerized and cured (in the case of a negative type) or solubilized in a developer (in the case of a positive type).
  • the unexposed portion (in the case of negative type) or the exposed portion (in the case of positive type) is removed with a developer to form a resist pattern on the substrate.
  • the resist pattern is peeled off from the substrate. Through these steps, a conductor pattern is formed on the substrate.
  • a photosensitive resin composition is applied onto a substrate
  • a solution of the photosensitive resin composition is applied to the substrate and dried, or a support or a layer comprising the photosensitive resin composition (Hereinafter also referred to as “photosensitive resin layer”)
  • a method of laminating a photosensitive resin laminate (hereinafter also referred to as “dry film resist”) obtained by sequentially laminating a protective layer, if desired, on a substrate. Either is used. The latter is frequently used in the production of printed wiring boards.
  • Patent Document 1 A photosensitive resin composition containing a (meth) acrylate compound having a skeleton derived from dipentaerythritol and a pyrazoline compound as a photosensitizer has been proposed (Patent Document 1).
  • Patent Document 2 a (meth) acrylate compound having a skeleton derived from dipentaerythritol, a bisphenol A skeleton, and A photosensitive resin composition containing a di (meth) acrylate compound having an alkylene oxide chain has also been proposed (Patent Document 2).
  • the resist pattern and the substrate may be washed with a chemical solution such as a degreasing solution. In comparison between before and after contact with the chemical, it is required that the change in the resist pattern shape is suppressed.
  • Patent Documents 3 to 6 Furthermore, various photosensitive resin compositions have been proposed in order to improve resist characteristics (Patent Documents 3 to 6).
  • Patent Document 3 a photosensitive resin composition containing pentaerythritol polyalkoxytetramethacrylate is studied as a compound having an ethylenically unsaturated bond from the viewpoint of the resist pattern sword shape, resolution, and residual film ratio.
  • Patent Document 4 from the viewpoints of the resist pattern sedge shape, resolution, adhesion, minimum development time, and bleed-out property, as a monomer in the photosensitive resin composition, ethylene oxide-modified pentaerythritol tetra (meth) acrylate and A combination of di (meth) acrylate obtained by modifying bisphenol A with alkylene oxide and dipentaerythritol (meth) acrylate has been studied.
  • Patent Documents 5 and 6 describe a photosensitive resin composition containing an alkali-soluble polymer having a glass transition temperature exceeding 106 ° C.
  • the cured resist may have good flexibility so as to maintain adhesion to the substrate.
  • the dry film resist may be wound and stored in a roll shape, but if the components of the dry film resist adhere to the support film surface by bleed out, stable wiring pattern production may be difficult. .
  • JP 2012-048202 A International Publication No. 2015/012272 JP 2013-156369 A JP 2014-081440 A JP2013-117716A JP 2014-191318 A
  • the present invention has been made with respect to the background art described above, and the problem to be solved by the present invention is a photosensitive resin that is excellent in at least one of adhesion, resolution, and storage stability. It is to provide a composition.
  • a photosensitive resin composition comprising: A photosensitive resin layer comprising the photosensitive resin composition is formed on the substrate surface, and the resist pattern obtained by exposure and development is treated with a chemical solution for evaluating chemical resistance, and then the minimum line width of the cured resist line is obtained.
  • the photosensitive resin composition whose is 17 micrometers or less.
  • the photosensitive resin layer is formed on the surface of the substrate, exposed with a stove 41 step tablet as a mask, and then exposed at an exposure amount that the maximum remaining film stage number is 15 when developed.
  • the exposure was performed In the FT-IR measurement, the peak height at a wave number of 810 cm ⁇ 1 before exposure is P, and the reaction rate of ethylenic double bonds in the compound (B) having an ethylenically unsaturated bond after the exposure is performed.
  • Q The photosensitive resin composition according to [1], wherein a value of P ⁇ Q / R when the film thickness of the photosensitive resin layer is R is 0.21 or more.
  • a photosensitive resin composition comprising: (A) The weight average value Tg total of the glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or less, and (B) three ethylenically unsaturated bonds as the compound having an ethylenically unsaturated bond.
  • Tg total of the glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or less, and (B) three ethylenically unsaturated bonds as the compound having an ethylenically unsaturated bond
  • the said photosensitive resin composition containing the (meth) acrylate compound which has the above.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • A is C 2 H 4
  • B is C 3 H 6
  • n 1 and n 3 are each independently N is an integer from 1 to 39
  • n 1 + n 3 is an integer from 2 to 40
  • n 2 and n 4 are each independently an integer from 0 to 29, and n 2 + n 4 is an integer from 0 to 30
  • the arrangement of the repeating units of-(AO)-and-(BO)- may be random or block.
  • (A) The weight average value Tgtotal of the glass transition temperature Tg of the alkali-soluble polymer is 105 ° C. or less
  • (B) 70% by mass or more of the compound having an ethylenically unsaturated bond is a compound having a weight average molecular weight of 500 or more.
  • the photosensitive resin composition as described in [8]. [19] (B1) The photosensitive resin composition according to [18], wherein the compound having at least three methacryloyl groups has a weight average molecular weight of 500 or more. [20] The photosensitivity according to [18] or [19], which includes (b2) a compound having a butylene oxide chain and one or two (meth) acryloyl groups as the compound (B) having an ethylenically unsaturated bond. Resin composition. [21] The photosensitive resin composition according to [20], wherein the compound (b2) having a butylene oxide chain and one or two (meth) acryloyl groups has a weight average molecular weight of 500 or more.
  • a photosensitive resin composition excellent in at least one of adhesion, resolution and storage stability can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be specifically described.
  • the photosensitive resin composition contains (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated bond, and (C) a photopolymerization initiator. If desired, the photosensitive resin composition may further contain other components such as (D) an additive.
  • a photosensitive resin layer made of a photosensitive resin composition is formed on a substrate surface, and a resist pattern obtained by exposure and development is treated with a chemical solution for chemical resistance evaluation.
  • the photosensitive resin composition is designed so that the minimum line width of the cured resist line is 17 ⁇ m or less.
  • the minimum line width of the cured resist line is preferably 16 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 12 ⁇ m or less, particularly preferably 10 ⁇ m or less, and most preferably 8 ⁇ m or less.
  • the measurement method and conditions of the minimum line width of the cured resist line will be described in the chemical resistance evaluation of the examples.
  • a weight average value Tg total of glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or lower
  • a compound having an ethylenically unsaturated bond is ethylenic. It is the photosensitive resin composition containing the (meth) acrylate compound which has 3 or more of unsaturated bonds.
  • the reaction rate can be improved, and the crosslinking density is increased.
  • the unreacted component (B) hardly remains, and as a result, the photosensitive resin composition provides a resist pattern that is excellent in at least one of adhesion, resolution, and storage stability. It becomes a trend.
  • a photosensitive resin layer composed of the photosensitive resin composition according to the present embodiment is formed on the substrate surface, exposed using a stove 41 step tablet as a mask, and then developed, the maximum number of remaining film steps is 15 steps.
  • the photosensitive resin layer has the following formula: P ⁇ Q / R ⁇ 0.21 ⁇ In the formula, for the photosensitive resin layer, P represents a peak height at a wave number of 810 cm ⁇ 1 before exposure in FT-IR measurement, and Q represents (B) ethylene in a compound having an ethylenically unsaturated bond. Represents the reaction rate after exposure of the sexual double bond, and R represents the film thickness.
  • the value represented by the formula P ⁇ Q / R described above is more preferably 0.22 or more, 0.23 or more, 0.24 or more, 0.25 or more, or 0.27 or more.
  • the measurement method and conditions for the value represented by the formula P ⁇ Q / R are described in the examples.
  • Alkali-soluble polymer is a polymer that can be dissolved in an alkaline substance.
  • the photosensitive resin composition preferably has a carboxyl group, more preferably a copolymer containing a carboxyl group-containing monomer as a copolymerization component, from the viewpoint of alkali developability.
  • the photosensitive resin composition has an aromatic group as an alkali-soluble polymer (A) from the viewpoint of high resolution and sword shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern. It is preferable to include a copolymer having an aromatic group, and it is particularly preferable to include a copolymer having an aromatic group in the side chain. Examples of such an aromatic group include a substituted or unsubstituted phenyl group and a substituted or unsubstituted aralkyl group.
  • the proportion of the copolymer having an aromatic group in the component (A) is preferably 50% by mass or more, preferably 60% by mass or more, preferably 70% by mass or more, preferably 80% by mass or more, preferably 90%. It may be 100% by mass or more.
  • the copolymerization ratio of the comonomer having an aromatic group in the copolymer having an aromatic group is preferably Is 20% by mass or more, preferably 30% by mass or more, preferably 40% by mass or more, preferably 50% by mass or more, preferably 60% by mass or more, preferably 70% by mass or more, preferably 80% by mass or more.
  • the copolymerization ratio is 95 mass% or less, More preferably, it is 90 mass% or less.
  • Examples of the comonomer having an aromatic group include a monomer having an aralkyl group, styrene, and a polymerizable styrene derivative (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid, styrene). Dimer, styrene trimer, etc.).
  • a monomer having an aralkyl group or styrene is preferable, and a monomer having an aralkyl group is more preferable.
  • Examples of the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding benzyl group), a substituted or unsubstituted benzyl group, and the like, and a substituted or unsubstituted benzyl group is preferable.
  • Examples of the comonomer having a phenylalkyl group include phenylethyl (meth) acrylate.
  • Examples of the comonomer having a benzyl group include (meth) acrylates having a benzyl group, such as benzyl (meth) acrylate, chlorobenzyl (meth) acrylate, etc .; vinyl monomers having a benzyl group, such as vinylbenzyl chloride, vinylbenzyl alcohol, etc. Is mentioned. Of these, benzyl (meth) acrylate is preferred.
  • the copolymer having an aromatic group (preferably a benzyl group) in the side chain includes a monomer having an aromatic group, at least one first monomer described later, and / or at least one second monomer described later. It is preferable to obtain by polymerizing.
  • the alkali-soluble polymer (A) other than the copolymer having an aromatic group in the side chain is preferably obtained by polymerizing at least one of the first monomers described later, and at least one of the first monomers and More preferably, it is obtained by copolymerizing at least one second monomer described below.
  • the first monomer is a monomer having a carboxyl group in the molecule.
  • the first monomer include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, maleic acid half ester, and the like.
  • (meth) acrylic acid is preferable.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acryloyl group” means acryloyl group or methacryloyl group
  • the copolymerization ratio of the first monomer is preferably 10 to 50% by mass based on the total mass of all monomer components. Setting the copolymerization ratio to 10% by mass or more is preferable from the viewpoint of developing good developability and controlling the edge fuse property. Setting the copolymerization ratio to 50% by mass or less is preferable from the viewpoint of the high resolution and sword shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern. In these viewpoints, 30% by mass is preferable. The following is more preferable, 25% by mass or less is further preferable, 22% by mass or less is particularly preferable, and 20% by mass or less is most preferable.
  • the second monomer is non-acidic and has at least one polymerizable unsaturated group in the molecule.
  • the second monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert -(Meth) acrylates such as butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; And vinyl alcohol esters; and (meth) acrylonitrile.
  • the alkali-soluble polymer is prepared by polymerizing the monomer or monomers described above by a known polymerization method, preferably addition polymerization, more preferably radical polymerization. be able to.
  • a monomer having an aralkyl group and / or containing styrene as a monomer is preferable from the viewpoint of chemical resistance, adhesion, high resolution, or sedge shape of a resist pattern, and includes, for example, methacrylic acid, benzyl methacrylate, and styrene.
  • a copolymer, a copolymer of methacrylic acid, methyl methacrylate, benzyl methacrylate, and styrene is preferable.
  • the glass transition temperature Tg of the whole mixture is preferably 110 ° C. or lower, 107 ° C. or lower, 105 ° C. or lower, 100 ° C. or lower, 95 More preferably, it is not higher than 90 ° C, not higher than 90 ° C or not higher than 80 ° C.
  • the lower limit of the glass transition temperature (Tg) of the alkali-soluble polymer is not limited, but is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, more preferably from the viewpoint of controlling the edge fuse property. Is 60 ° C. or higher.
  • the acid equivalent of the alkali-soluble polymer (when the component (A) contains a plurality of types of copolymers, the acid equivalent of the entire mixture) is the development resistance of the photosensitive resin layer and the resist pattern solution. It is preferably 100 or more from the viewpoint of image properties and adhesion, and is preferably 600 or less from the viewpoint of developability and peelability of the photosensitive resin layer.
  • the acid equivalent of the alkali-soluble polymer is more preferably from 200 to 500, and even more preferably from 250 to 450.
  • the weight average molecular weight of the alkali-soluble polymer (when the component (A) includes a plurality of types of copolymers, the weight average molecular weight of the entire mixture) is preferably 5,000 to 500,000. .
  • the weight average molecular weight of the alkali-soluble polymer is preferably 5,000 or more from the viewpoint of maintaining the thickness of the dry film resist uniformly and obtaining resistance to the developer. From the viewpoint of maintaining, the high resolution of the resist pattern, the viewpoint of the sword shape, and the chemical resistance of the resist pattern, it is preferably 500,000 or less.
  • the weight average molecular weight of the alkali-soluble polymer is more preferably 10,000 to 200,000, further preferably 20,000 to 130,000, particularly preferably 30,000 to 100,000, most preferably 40. , 70,000.
  • the degree of dispersion of the alkali-soluble polymer is preferably 1.0 to 6.0.
  • the content of the (A) alkali-soluble polymer in the photosensitive resin composition is based on the total solid content of the photosensitive resin composition (hereinafter, unless otherwise specified, the same for each component). Preferably 10% to 90% by weight, more preferably 20% to 80% by weight, and still more preferably 40% to 60% by weight.
  • the content of the alkali-soluble polymer is preferably 10% by mass or more from the viewpoint of maintaining the alkali developability of the photosensitive resin layer, and the resist pattern formed by exposure has performance as a resist material.
  • It is preferably 90% by mass or less, more preferably 70% by mass or less from the viewpoint of sufficiently exerting, the high resolution of the resist pattern and the viewpoint of the sword shape, and further from the viewpoint of chemical resistance of the resist pattern. Preferably, it is 60 mass% or less.
  • a compound having an ethylenically unsaturated bond is a compound having polymerizability by having an ethylenically unsaturated group in its structure.
  • the photosensitive resin composition according to the present embodiment includes (B) an ethylenically unsaturated compound as a compound having an ethylenically unsaturated bond. It is preferable to include a (meth) acrylate compound having 3 or more bonds. In this case, the ethylenically unsaturated bond is more preferably derived from a methacryloyl group.
  • Examples of the (meth) acrylate compound having three or more ethylenically unsaturated bonds include a (meth) acrylate compound having an ethylene oxide chain and a dipentaerythritol skeleton, or (b1) a compound having at least three methacryloyl groups. Is done.
  • the photosensitive resin composition according to the present embodiment includes (B) an ethylenically unsaturated compound as a compound having an ethylenically unsaturated bond. It is preferable to include a (meth) acrylate compound having 5 or more bonds and having an alkylene oxide chain.
  • the ethylenically unsaturated bond is more preferably derived from a methacryloyl group, and the alkylene oxide chain is more preferably an ethylene oxide chain.
  • the (meth) acrylate compound having 5 or more ethylenically unsaturated bonds and having an alkylene oxide chain will be described later as, for example, a (meth) acrylate compound having an ethylene oxide chain and a dipentaerythritol skeleton.
  • the concentration of the methacryloyl group in the compound (B) having an ethylenically unsaturated bond is preferably 0.20 mol / 100 g or more. Preferably it is 0.30 mol / 100g or more, More preferably, it is 0.35 mol / 100g or more, Most preferably, it is 0.40 mol / 100g or more.
  • the upper limit of the concentration of the methacryloyl group is not limited as long as the polymerizability and the alkali developability are ensured, and may be, for example, 0.90 mol / 100 g or less or 0.80 mol / 100 g or less.
  • the value of (B) concentration of methacryloyl group / (concentration of methacryloyl group + concentration of acryloyl group) in the compound having an ethylenically unsaturated bond is preferably 0.50 or more, more preferably 0. .60 or more, more preferably 0.80 or more, particularly preferably 0.90 or more, and most preferably 0.95 or more.
  • the concentration of the ethylene oxide unit in the compound having (B) an ethylenically unsaturated bond is preferably 0.80 mol / 100 g or more, More preferably, it is 0.90 mol / 100g or more, More preferably, it is 1.00 mol / 100g or more, Especially preferably, it is 1.10 mol / 100g or more.
  • the upper limit of the concentration of the ethylene oxide unit is not limited as long as the chemical resistance, adhesion, and resolution of the resist pattern are ensured. For example, 1.60 mol / 100 g or less, 1.50 mol / 100 g or less, It may be 1.45 mol / 100 g or less or 1.40 mol / 100 g or less.
  • the photosensitive resin composition includes (B) an alkylene oxide chain as a compound having an ethylenically unsaturated bond. It is preferable to include a (meth) acrylate compound having a dipentaerythritol skeleton.
  • the alkylene oxide chain include an ethylene oxide chain, a propylene oxide chain, a butylene oxide chain, a pentylene oxide chain, and a hexylene oxide chain.
  • the photosensitive resin composition includes a plurality of alkylene oxide chains, they may be the same as or different from each other.
  • the alkylene oxide chain is more preferably an ethylene oxide chain, a propylene oxide chain, or a butylene oxide chain, still more preferably an ethylene oxide chain or a propylene oxide chain, and particularly preferably an ethylene oxide chain.
  • (A) an alkali-soluble polymer and a (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton are used in combination, whereby the chemical resistance, adhesion and resolution of the resist pattern are obtained. Gender balance tends to be maintained.
  • the (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton refers to an ester of a dipentaerythritol compound in which at least one of a plurality of hydroxyl groups is modified with an alkyleneoxy group and (meth) acrylic acid.
  • Six hydroxyl groups of the dipentaerythritol skeleton may be modified with an alkyleneoxy group.
  • the number of ester bonds in one molecule of the ester may be 1 to 6, and is preferably 6.
  • Examples of the (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton include, for example, hexapentane having an average of 4 to 30 mol, an average of 6 to 24 mol, or an average of 10 to 14 mol of alkylene oxide added to dipentaerythritol. (Meth) acrylate is mentioned.
  • each R independently represents a hydrogen atom or a methyl group, and n is an integer of 0 to 30, and the total value of all n is 1 or more ⁇
  • the compound represented by these is preferable.
  • it is preferable that the average value of all n is 4 or more, or each n is 1 or more.
  • R is preferably a methyl group.
  • the content of the (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton in the photosensitive resin composition is preferably 1% by mass to 50% by mass, more preferably It is in the range of 5% to 40% by weight, more preferably 7% to 30% by weight.
  • (B) ethylene based on the total solid content of the compound having an ethylenically unsaturated bond (B) 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass of the compound having a polyunsaturated bond is a compound having a weight average molecular weight of 500 or more.
  • the weight average molecular weight of the compound (B) having an ethylenically unsaturated bond is preferably 760 or more, more preferably 800 or more, still more preferably 830 or more, particularly Preferably it is 900 or more.
  • the weight average molecular weight of the compound having an ethylenically unsaturated bond is measured by the method described in Examples.
  • the photosensitive resin composition is (B) a compound having an ethylenically unsaturated bond in order to improve the flexibility of the resist pattern to improve the adhesion and to suppress the bleeding out of the constituent components of the dry film resist.
  • (B1) It preferably contains a compound having at least three methacryloyl groups.
  • the compound having at least three methacryloyl groups preferably has a weight average molecular weight of 500 or more, more preferably 700 or more, and still more preferably 900 or more, from the viewpoint of suppression of bleeding out.
  • the number of methacryloyl groups is preferably 4 or more, 5 or more, or 6 or more.
  • the compound having at least three methacryloyl groups may have an alkylene oxide chain, such as an ethylene oxide chain, a propylene oxide chain, or a combination thereof.
  • trimethacrylate for example, ethoxylated glycerin trimethacrylate, ethoxylated isocyanuric acid trimethacrylate, pentaerythritol trimethacrylate, trimethylolpropane trimethacrylate (for example, trimethylolpropane average) Trimethacrylate added with 21 moles of ethylene oxide or trimethacrylate added with an average of 30 moles of ethylene oxide to trimethylolpropane is preferable from the viewpoints of flexibility, adhesion, and suppression of bleedout), etc .; , Ditrimethylolpropane tetramethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol tetramethacrylate, etc.
  • Penta methacrylates for example, dipentaerythritol penta methacrylate; hexamethylene dimethacrylate, for example, dipentaerythritol hexa methacrylate.
  • tetra, penta or hexamethacrylate is preferable.
  • pentaerythritol tetramethacrylate is preferable.
  • the pentaerythritol tetramethacrylate may be tetramethacrylate in which 1 to 40 moles of alkylene oxide is added to the four terminals of pentaerythritol.
  • Tetramethacrylate has the following general formula (I): ⁇ Wherein R 3 to R 6 each independently represents an alkyl group having 1 to 4 carbon atoms, X represents an alkylene group having 2 to 6 carbon atoms, m 1 , m 2 , m 3 and m 4 is each independently an integer of 0 to 40, m 1 + m 2 + m 3 + m 4 is 1 to 40, and when m 1 + m 2 + m 3 + m 4 is 2 or more, a plurality of X's may be the same or different from each other ⁇ It is more preferable that it is the tetramethacrylate compound represented by these.
  • the tetramethacrylate compound represented by the general formula (I) has a group R 3 to R 6 so that the H 2 C ⁇ CH—CO—O— moiety is substituted. It is considered that the hydrolyzability in the alkaline solution is suppressed as compared with the tetraacrylate having.
  • the use of the photosensitive resin composition containing the tetramethacrylate compound represented by the general formula (I) means that the resolution of the resist pattern, specifically the line shape, more specifically the line shape, and the resist It is preferable from the viewpoint of improving adhesion.
  • At least one of the groups R 3 to R 6 is preferably a methyl group, and more preferably all of the groups R 3 to R 6 are methyl groups.
  • X is preferably —CH 2 —CH 2 — from the viewpoint of obtaining desired resolution, sword shape and remaining film ratio for the resist pattern.
  • m 1 , m 2 , m 3 and m 4 are each independently an integer of 1 to 20 Is preferable, and an integer of 2 to 10 is more preferable. Furthermore, in the general formula (I), m 1 + m 2 + m 3 + m 4 is preferably 1 to 36 or 4 to 36.
  • Examples of the compound represented by the general formula (I) include pentaerythritol (poly) alkoxytetramethacrylate.
  • Examples of the compound represented by the general formula (I) include compounds listed in JP2013-156369A, for example, pentaerythritol (poly) alkoxytetramethacrylate and the like.
  • hexamethacrylate compound a total of 1 to 24 mol of ethylene oxide is added to the six ends of dipentaerythritol, and a total of 1 to 10 mol of ⁇ -caprolactone is added to the six ends of dipentaerythritol.
  • Hexamethacrylate is preferred.
  • the content of the compound (b1) having at least three methacryloyl groups exceeds 0% by mass and 16% by mass or less with respect to the total solid content of the photosensitive resin composition.
  • the content is more preferably 2% by mass or more and 15% by mass or less, and further preferably 4% by mass or more and 12% by mass or less.
  • the photosensitive resin composition preferably includes (B2) a compound having an ethylenically unsaturated bond and (b2) a butylene oxide chain and one or two (meth) acryloyl groups.
  • B2 The compound having a butylene oxide chain and one or two (meth) acryloyl groups is preferably 500 or more, more preferably 700 or more, and still more preferably 1000 or more, from the viewpoint of suppression of bleed-out.
  • Examples of the compound having a butylene oxide chain and one or two (meth) acryloyl groups include polytetramethylene glycol (meth) acrylate and polytetramethylene glycol di (meth) acrylate.
  • the number of (b2) butylene oxide chains and one or two (meth) acryloyl groups is preferably 1-20, more preferably 4-15, and even more preferably 6-12. It is a (meth) acrylate or di (meth) acrylate having 1 C 4 H 8 O.
  • the content of the compound having (b2) butylene oxide chain and one or two (meth) acryloyl groups exceeds 0% by mass and 20% by mass with respect to the total solid content of the photosensitive resin composition The following is preferable.
  • the photosensitive resin composition may include (b3) a compound having an aromatic ring and an ethylenically unsaturated bond as a compound having (B) an ethylenically unsaturated bond.
  • the compound having an aromatic ring and an ethylenically unsaturated bond may further have an alkylene oxide chain.
  • the aromatic ring is preferably incorporated in the compound as a divalent skeleton derived from bisphenol A, a divalent skeleton derived from naphthalene, or a divalent aromatic group such as phenylene or methylphenylene.
  • the alkylene oxide chain may be an ethylene oxide chain, a propylene oxide chain, or a combination thereof.
  • the ethylenically unsaturated bond is preferably incorporated in the compound as a (meth) acryloyl group.
  • the compound (b3) having an aromatic ring and an ethylenically unsaturated bond the following general formula (II): ⁇ Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n 1 and n 3 are each independently N is an integer from 1 to 39, n 1 + n 3 is an integer from 2 to 40, n 2 and n 4 are each independently an integer from 0 to 29, and n 2 + n 4 is an integer from 0 to 30
  • the arrangement of the repeating units of-(AO)-and-(BO)- may be random or block.
  • -(AO)-and- Any of (B—O) — may be on the bisphenyl group side.
  • the compound represented by these can be used.
  • polyethylene glycol dimethacrylate having an average of 5 moles of ethylene oxide added to both ends of bisphenol A and polyethylene glycol having an average of 2 moles of ethylene oxide added to both ends of bisphenol A, respectively.
  • diglycolate of polyethylene and polyethylene glycol dimethacrylate in which 1 mol of ethylene oxide is added to both ends of bisphenol A on average are respectively preferred.
  • a compound in which the aromatic ring in the general formula (II) has a hetero atom and / or a substituent may be used.
  • the hetero atom include a halogen atom
  • examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, and a phenacyl group.
  • substituents may form a condensed ring, or a hydrogen atom in these substituents may be substituted with a hetero atom such as a halogen atom.
  • the aromatic ring in the general formula (II) has a plurality of substituents, the plurality of substituents may be the same or different.
  • the content of the compound (b3) having an aromatic ring and an ethylenically unsaturated bond exceeds 0% by mass and 50% by mass or less with respect to the total solid content of the photosensitive resin composition. If this content exceeds 0% by mass, resolution and adhesion tend to be improved, and from the viewpoint of development time and edge fusion, 50% by mass or less is preferable.
  • the (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton and the (b1) to (b3) compounds described above can be used independently or in combination.
  • the photosensitive resin composition includes (B) (meth) acrylate compounds having an alkylene oxide chain and a dipentaerythritol skeleton and (b1) to (b3) compounds as compounds having an ethylenically unsaturated bond, as well as other compounds. Compounds may also be included.
  • Other compounds include acrylate compounds having at least one (meth) acryloyl group, (meth) acrylates having urethane bonds, compounds obtained by reacting polyhydric alcohols with ⁇ , ⁇ -unsaturated carboxylic acids, glycidyl Examples thereof include compounds obtained by reacting a group-containing compound with an ⁇ , ⁇ -unsaturated carboxylic acid, phthalic acid compounds, and the like. Among them, an acrylate compound having at least two (meth) acryloyl groups is preferable from the viewpoint of resolution, adhesion, and peeling time.
  • the acrylate compound having at least two (meth) acryloyl groups may be di, tri, tetra, penta, hexa (meth) acrylate and the like.
  • polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, di (meth) acrylate having both ethylene oxide and polypropylene oxide for example, “FA-023M, FA-024M, FA-027M, product name, Hitachi "Made by Kasei Kogyo” is preferred from the viewpoints of flexibility, resolution, adhesion and the like.
  • ethylenically unsaturated bonds such as 4-normalnonylphenoxyoctaethylene glycol acrylate, 4-normalnonylphenoxytetraethylene glycol acrylate, and ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-methacryloyloxyethyl-schreib-phthalate
  • 4-normalnonylphenoxyoctaethylene glycol acrylate 4-normalnonylphenoxytetraethylene glycol acrylate
  • ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-methacryloyloxyethyl- Brighton-phthalate When one compound is contained, it is preferable from the viewpoints of peelability and cured film flexibility, and when ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ ′-methacryloyloxyethyl- GmbH-phthalate is contained, sensitivity, resolution, or adhesion is included. From the viewpoint of safety.
  • the total content of all the (B) compounds having an ethylenically unsaturated bond is preferably 1% by mass to 70% by mass, more preferably 2% by mass to 60% by mass, and still more preferably 4% by mass to 50% by mass. It is in the range of mass%.
  • the photopolymerization initiator is a compound that polymerizes a monomer by light.
  • the photosensitive resin composition contains (C) a compound generally known in the art as a photopolymerization initiator.
  • the total content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and still more preferably 0.1% by mass. % To 7% by mass, particularly preferably in the range of 0.1% to 6% by mass.
  • the total content of the photopolymerization initiator is preferably 0.01% by mass or more from the viewpoint of obtaining sufficient sensitivity, and sufficiently transmits light to the bottom surface of the resist to provide good high resolution. It is preferable that it is 20 mass% or less from a viewpoint of obtaining.
  • Photopolymerization initiators include quinones, aromatic ketones, acetophenones, acylphosphine oxides, benzoin or benzoin ethers, dialkyl ketals, thioxanthones, dialkylaminobenzoic acid esters, oxime esters
  • Acridines for example, 9-phenylacridine, bisacridinylheptane, 9- (p-methylphenyl) acridine, 9- (m-methylphenyl) acridine are preferred in terms of sensitivity, resolution, and adhesion
  • hexaarylbiimidazole, pyrazoline compounds, anthracene compounds for example, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, and 9,10-diphenylanthracene have sensitivity, resolution, and adhesion properties).
  • Coumarin Compound for example, 7-diethylamino-4-methylcoumarin is preferable in terms of sensitivity, resolution, and adhesion
  • N-aryl amino acid or an ester compound thereof for example, N-phenylglycine is sensitivity, resolution, and
  • halogen compounds for example, tribromomethylphenylsulfone.
  • 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2,4,6-trimethylbenzoyl -Diphenyl-phosphine oxide, triphenylphosphine oxide, etc. may be used.
  • aromatic ketones examples include benzophenone, Michler's ketone [4,4′-bis (dimethylamino) benzophenone], 4,4′-bis (diethylamino) benzophenone, 4-methoxy-4′-dimethylaminobenzophenone. Can do. These can be used alone or in combination of two or more. Among these, 4,4'-bis (diethylamino) benzophenone is preferable from the viewpoint of adhesion. Furthermore, from the viewpoint of transmittance, the content of aromatic ketones in the photosensitive resin composition is preferably 0.01% by mass to 0.5% by mass, more preferably 0.02% by mass to 0.3%. It is in the range of mass%.
  • hexaarylbiimidazole examples include 2- (o-chlorophenyl) -4,5-diphenylbiimidazole, 2,2 ′, 5-tris- (o-chlorophenyl) -4- (3,4-dimethoxyphenyl) -4 ', 5'-diphenylbiimidazole, 2,4-bis- (o-chlorophenyl) -5- (3,4-dimethoxyphenyl) -diphenylbiimidazole, 2,4,5-tris- (o-chlorophenyl) ) -Diphenylbiimidazole, 2- (o-chlorophenyl) -bis-4,5- (3,4-dimethoxyphenyl) -biimidazole, 2,2′-bis- (2-fluorophenyl) -4,4 ′ , 5,5′-tetrakis- (3-methoxyphenyl) -biimid
  • the content of the hexaarylbisimidazole compound in the photosensitive resin composition is preferably 0.05% by mass to 7% by mass from the viewpoint of improving the peeling characteristics and / or sensitivity of the photosensitive resin layer. %, More preferably in the range of 0.1% to 6% by weight, and still more preferably in the range of 1% to 4% by weight.
  • the photosensitive resin composition preferably also contains a pyrazoline compound as a photosensitizer.
  • Examples of the pyrazoline compound include 1-phenyl-3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1- (4- (benzoxazol-2-yl) Phenyl) -3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl- Phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-octyl-phenyl) -pyrazoline, 1-phenyl-3- (4-isopropylstyryl) -5- (4-isopropyl) Phenyl) -pyrazoline, 1-phenyl-3- (4-methoxystyryl) -5- (4-methoxyphenyl) -
  • the photosensitive resin composition may contain one or more pyrazoline compounds as a photosensitizer.
  • the content of the photosensitizer in the photosensitive resin composition is preferably 0.05% by mass to 5% by mass from the viewpoint of improving the peeling property and / or sensitivity of the photosensitive resin layer. More preferably, it is within the range of 0.1% by mass to 3% by mass.
  • the photosensitive resin composition may contain additives such as dyes, plasticizers, antioxidants, and stabilizers as desired.
  • additives listed in JP2013-156369A may be used.
  • the photosensitive resin composition contains tris (4-dimethylaminophenyl) methane [leuco crystal violet] and / or diamond green (Eisen (Hodogaya Chemical Co., Ltd.) as a dye. Registered trademark) DIAMOND GREEN GH).
  • the content of the dye in the photosensitive resin composition is preferably 0.001% by mass to 3% by mass, more preferably 0.01% by mass to 2% by mass, and still more preferably 0.02% by mass. % To 1% by mass.
  • the content of the dye is preferably 0.001% by mass or more from the viewpoint of obtaining good colorability, and preferably 3% by mass or less from the viewpoint of maintaining the sensitivity of the photosensitive resin layer.
  • the photosensitive resin composition is used as a stabilizer, for example, a radical polymerization inhibitor such as a nitrosophenylhydroxyamine aluminum salt, p-methoxyphenol, 4- tert-butylcatechol, 4-ethyl-6-tert-butylphenol and the like; benzotriazoles such as 1- (2-di-n-butylaminomethyl) -5-carboxylbenzotriazole and 1- (2-di-n -Butylaminomethyl) -6-carboxylbenzotriazole 1: 1 mixture, etc .; carboxybenzotriazoles such as 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole 6-carboxy-1,2,3-benzotriazole and the like; and glycidyl Alkylene oxide compound having, for example, neopentyl glycol diglycidyl ether;
  • a radical polymerization inhibitor such as a nitros
  • 2-mercaptobenzimidazole 1H-tetrazole, 1-methyl-5-mercapto-1H-tetrazole, 2-amino-5-mercapto-1,3,4-thiadiazole, 3-amino-5-mercapto-1, Including 2,4-triazole, 3-mercapto-1,2,4-triazole, 3-mercaptotriazole, 4,5-diphenyl-1,3-diazol-2-yl, 5-amino-1H-tetrazole and the like May be.
  • the total content of all stabilizers in the photosensitive resin composition is preferably 0.001% by mass to 3% by mass, more preferably 0.01% by mass to 1% by mass, and still more preferably. Is in the range of 0.05 mass% to 0.7 mass%.
  • the total content of the stabilizer is preferably 0.001% by mass or more from the viewpoint of imparting good storage stability to the photosensitive resin composition, and from the viewpoint of maintaining the sensitivity of the photosensitive resin layer. It is preferable that it is 3 mass% or less.
  • the photosensitive resin composition preparation liquid can be formed by adding a solvent to the photosensitive resin composition.
  • Suitable solvents include ketones such as methyl ethyl ketone (MEK); and alcohols such as methanol, ethanol, isopropyl alcohol and the like. It is preferable to add a solvent to the photosensitive resin composition so that the viscosity of the photosensitive resin composition preparation liquid is 500 mPa ⁇ second to 4000 mPa ⁇ second at 25 ° C.
  • the photosensitive resin laminated body which has a support body and the photosensitive resin layer which consists of the said photosensitive resin composition laminated
  • the photosensitive resin laminate may have a protective layer on the side opposite to the support side of the photosensitive resin layer.
  • the support is not particularly limited, but is preferably a transparent one that transmits light emitted from the exposure light source.
  • a support include a polyethylene terephthalate film, a polyvinyl alcohol film, a polyvinyl chloride film, a vinyl chloride copolymer film, a polyvinylidene chloride film, a vinylidene chloride copolymer film, a polymethyl methacrylate copolymer film, Examples include polystyrene film, polyacrylonitrile film, styrene copolymer film, polyamide film, and cellulose derivative film. These films may be stretched as necessary.
  • the haze is preferably 0.01% to 5.0%, more preferably 0.01% to 2.5%, and still more preferably 0.01% to 1.0%.
  • an important characteristic of the protective layer used in the photosensitive resin laminate is that the protective layer is smaller than the support in terms of adhesion to the photosensitive resin layer and can be easily peeled off.
  • a protective layer a polyethylene film, a polypropylene film, etc. are preferable, for example.
  • a film having excellent peelability described in JP-A-59-202457 can be used.
  • the thickness of the protective layer is preferably 10 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
  • the thickness of the photosensitive resin layer in the photosensitive resin laminate is preferably 5 ⁇ m to 100 ⁇ m, more preferably 7 ⁇ m to 60 ⁇ m. As the thickness of the photosensitive resin layer is smaller, the resolution of the resist pattern is improved. On the other hand, the larger the thickness is, the more the strength of the cured film is improved.
  • a known method may be used as a method for preparing a photosensitive resin laminate by sequentially laminating a support, a photosensitive resin layer, and if desired, a protective layer.
  • the photosensitive resin composition preparation liquid is prepared, and then coated on the support using a bar coater or a roll coater and dried, and the photosensitive resin comprising the photosensitive resin composition preparation liquid on the support. Laminate the layers. Furthermore, if desired, a photosensitive resin laminate can be produced by laminating a protective layer on the photosensitive resin layer.
  • the resist pattern is formed by laminating a photosensitive resin layer composed of the above-described photosensitive resin composition on a support, an exposure step of exposing the photosensitive resin layer, and developing the exposed photosensitive resin layer. Development steps are preferably included in this order.
  • An example of a specific method for forming a resist pattern in the present embodiment is shown below.
  • a photosensitive resin layer is formed on a substrate using a laminator. Specifically, when the photosensitive resin laminate has a protective layer, the protective layer is peeled off, and then the photosensitive resin layer is heat-pressed and laminated on the substrate surface with a laminator.
  • the material of the substrate include copper, stainless steel (SUS), glass, indium tin oxide (ITO), and the like.
  • the photosensitive resin layer may be laminated on only one surface of the substrate surface, or may be laminated on both surfaces as necessary.
  • the heating temperature during lamination is generally 40 ° C to 160 ° C.
  • substrate of the resist pattern obtained can be improved by performing the thermocompression bonding at the time of lamination twice or more.
  • a two-stage laminator provided with two rolls may be used, or the lamination of the substrate and the photosensitive resin layer may be repeated several times and passed through the roll.
  • the photosensitive resin assembly layer is exposed to active light using an exposure machine.
  • the exposure can be performed after peeling the support, if desired.
  • the exposure amount is determined by the light source illuminance and the exposure time, and may be measured using a light meter.
  • direct imaging exposure may be performed.
  • direct imaging exposure exposure is performed directly on a substrate by a drawing apparatus without using a photomask.
  • the light source a semiconductor laser having a wavelength of 350 nm to 410 nm or an ultrahigh pressure mercury lamp is used.
  • the drawing pattern is controlled by a computer, the exposure amount is determined by the illuminance of the exposure light source and the moving speed of the substrate. You may perform exposure by projecting the image of a photomask through a lens.
  • the unexposed or exposed portion of the exposed photosensitive resin layer is removed with a developer using a developing device. If there is a support on the photosensitive resin layer after exposure, this is excluded. Subsequently, an unexposed portion or an exposed portion is developed and removed using a developer composed of an alkaline aqueous solution to obtain a resist image.
  • an aqueous solution of Na 2 CO 3 , K 2 CO 3 or the like is preferable.
  • the alkaline aqueous solution is selected according to the characteristics of the photosensitive resin layer, and an aqueous Na 2 CO 3 solution having a concentration of 0.2% by mass to 2% by mass is generally used.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • the temperature of the developer in the development process is preferably kept constant within a range of 20 ° C. to 40 ° C.
  • a heating process can be further performed at 100 ° C. to 300 ° C. if desired. By performing this heating step, the chemical resistance of the resist pattern can be improved.
  • a heating furnace using hot air, infrared rays, or far infrared rays can be used for the heating step.
  • the photosensitive resin composition of the present embodiment can be suitably used for forming a printed circuit board.
  • a subtractive process and a semi-additive process (SAP) are used as a circuit formation method for a printed circuit board.
  • the subtractive process is a method of forming a circuit by removing only a non-circuit portion from a conductor disposed on the entire surface of a substrate by etching.
  • SAP is a method in which a resist is formed on a non-circuit portion on a conductor seed layer disposed on the entire surface of a substrate, and then only a circuit portion is formed by plating.
  • the photosensitive resin composition is more preferably used for SAP.
  • the elongation of the cured product of the photosensitive resin composition is preferably 1 mm or more, more preferably 2 mm or more, and more preferably 3 mm or more in order to improve the flexibility of the resist pattern. More preferably.
  • the degree of elongation of the cured product was obtained by exposing the photosensitive resin laminate produced using the photosensitive resin composition through a rectangular mask of 5 mm ⁇ 40 mm, and developing the photosensitive resin laminate in a time twice as long as the minimum development time. It is measured by pulling the cured resist with a tensile tester (Orientec Co., Ltd., RTM-500) at a speed of 100 mm / min.
  • a tensile tester Orientec Co., Ltd., RTM-500
  • the Young modulus of the cured product of the photosensitive resin composition is preferably in the range of 1.5 GPa or more and less than 8 GPa from the viewpoint of resolution and flexibility of the resist pattern.
  • “Young Modulus” can be measured by a nanoindentation method using a nanoindenter DCM manufactured by Toyo Technica Co., Ltd.
  • “Young Modulus” is a method of laminating a resin composition to be measured on a substrate, exposing and developing the surface of the photosensitive resin composition on the substrate using Nanoindenter DCM manufactured by Toyo Technica Co., Ltd. taking measurement. Measurement methods include DCM Basic Hardness, Modulus, Tip Cal, Load Control.
  • the Young's modulus was the value of “Modulas At Max Load”.
  • the method for producing a conductor pattern includes a lamination step of laminating a photosensitive resin layer composed of the above-described photosensitive resin composition on a substrate such as a metal plate or a metal film insulating plate, an exposure step of exposing the photosensitive resin layer, and an exposure step.
  • the conductor pattern manufacturing method is performed by using a metal plate or a metal film insulating plate as a substrate, forming a resist pattern by the above-described resist pattern forming method, and then performing a conductor pattern forming step.
  • a conductor pattern is formed on a substrate surface (for example, a copper surface) exposed by development using a known etching method or plating method.
  • the present invention is preferably applied in the following applications, for example.
  • the resist pattern is further separated from the substrate with an aqueous solution having alkalinity stronger than that of the developer, whereby a wiring board having a desired wiring pattern (for example, Printed wiring board).
  • a laminate of an insulating resin layer and a copper layer or a flexible substrate is used as a substrate.
  • the copper layer is preferably an electroless copper plating layer containing palladium as a catalyst.
  • the conductor pattern forming step is performed by a known plating method.
  • the substrate is preferably a laminate of an insulating resin layer and a copper foil, and more preferably a copper-clad laminate.
  • the alkaline aqueous solution for stripping (hereinafter, also referred to as “stripping solution”) is not particularly limited, but an aqueous solution of NaOH or KOH having a concentration of 2% by mass to 5% by mass, or an organic amine-based stripping solution is used. Generally used. A small amount of a water-soluble solvent may be added to the stripping solution. As a water-soluble solvent, alcohol etc. are mentioned, for example.
  • the temperature of the stripping solution in the stripping step is preferably within the range of 40 ° C to 70 ° C. In order to perform SAP, it is preferable that the manufacturing method of a wiring board further includes the process of removing palladium from the obtained wiring board.
  • a lead frame can be manufactured by forming a resist pattern by a resist pattern forming method using a metal plate such as copper, copper alloy, or iron-based alloy as a substrate, and then performing the following steps. First, a step of etching the substrate exposed by development to form a conductor pattern is performed. Thereafter, a desired lead frame can be obtained by performing a peeling process for peeling the resist pattern by a method similar to the method for manufacturing a wiring board.
  • the resist pattern formed by the resist pattern forming method can be used as a protective mask member when processing the substrate by the sandblasting method.
  • the substrate include glass, silicon wafer, amorphous silicon, polycrystalline silicon, ceramic, sapphire, and metal material.
  • a resist pattern is formed on these substrates by the same method as the resist pattern forming method. Thereafter, a blasting material is sprayed from the formed resist pattern to cut to a desired depth, and a resist pattern remaining on the substrate is removed from the substrate with an alkali stripping solution or the like.
  • substrate can be manufactured.
  • a known blasting material may be used.
  • fine particles having a particle diameter of 2 ⁇ m to 100 ⁇ m including SiC, SiO 2 , Al 2 O 3 , CaCO 3 , ZrO, glass, stainless steel and the like are generally used.
  • a semiconductor package can be manufactured by forming a resist pattern on a wafer by a resist pattern forming method using a wafer on which a large-scale integrated circuit (LSI) has been formed as a substrate, and then performing the following steps. .
  • LSI large-scale integrated circuit
  • a step of forming a conductor pattern by performing columnar plating such as copper or solder on the opening exposed by development is performed.
  • a peeling process for peeling the resist pattern is performed by a method similar to the method for manufacturing the wiring board, and further, a thin metal layer other than the columnar plating is removed by etching, thereby obtaining a desired semiconductor package.
  • the photosensitive resin composition is used for the manufacture of printed wiring boards; the manufacture of lead frames for mounting IC chips; the precision processing of metal foils such as the manufacture of metal masks; ball grid arrays (BGA), chip sizes and packages.
  • Manufacturing of packages such as (CSP); Manufacturing of tape substrates such as chip-on-film (COF) and tape automated bonding (TAB); Manufacturing of semiconductor bumps; and flat panels such as ITO electrodes, address electrodes, and electromagnetic wave shields It can be used for manufacturing a partition of a display.
  • CSP chip-on-film
  • TAB tape automated bonding
  • semiconductor bumps and flat panels
  • flat panels such as ITO electrodes, address electrodes, and electromagnetic wave shields
  • the weight average molecular weight or number average molecular weight of the polymer is determined by gel permeation chromatography (GPC) manufactured by JASCO Corporation (pump: Gulliver, PU-1580 type, column: Shodex (registered trademark) manufactured by Showa Denko KK). KF-807, KF-806M, KF-806M, KF-802.5) in series, moving bed solvent: tetrahydrofuran, polystyrene standard sample (use of calibration curve with Shodex STANDARD SM-105 manufactured by Showa Denko KK) It calculated
  • an acid equivalent means the mass (gram) of the polymer which has a 1 equivalent carboxyl group in a molecule
  • Hiranuma automatic titrator (COM-555) was used, and the acid equivalent was measured by potentiometric titration using a 0.1 mol / L aqueous sodium hydroxide solution.
  • the glass transition temperature of the alkali-soluble polymer has the following formula (Fox formula): ⁇ Wherein, W i is the respective mass comonomers constituting the alkali-soluble polymer, Tg i is the glass transition temperature when the respective comonomers constituting the alkali-soluble polymer is a homopolymer, W total is the total mass of the alkali-soluble polymer, and n is the number of comonomer types constituting the alkali-soluble polymer.
  • Tg i is the glass transition temperature of the homopolymer consisting of comonomers to form the corresponding alkali-soluble polymer
  • Brandrup J. Immergut, E .; H.
  • the value shown in the edit “Polymer handbook, Third edition, John Wiley & Sons, 1989, p. 209 Chapter VI“ Glass transition temperatures of polymers ” is used.
  • Table 1 shows the glass transition temperature of the homopolymer consisting of comonomers to form the corresponding alkali-soluble polymer.
  • a 19 ⁇ m-thick polyethylene film (manufactured by Tamapoly Co., Ltd., GF-818) was bonded as a protective layer on the surface of the photosensitive resin composition layer on which the polyethylene terephthalate film was not laminated. A laminate was obtained.
  • Examples I-1 to I-16 and Comparative Examples I-1 to I-3 0.4 mm-thick copper laminated with 35 ⁇ m-rolled copper foil was used as an evaluation substrate for sensitivity, image quality, adhesion, and chemical resistance.
  • the tension laminate was treated with a soft etching agent (CPE-900, manufactured by Hishoe Chemical Co., Ltd.), and the substrate surface was washed with 10 mass% H 2 SO 4 .
  • a soft etching agent CPE-900, manufactured by Hishoe Chemical Co., Ltd.
  • 35 ⁇ m-rolled copper was used by using an abrasive (Nippon Carlit Co., Ltd., Sac Random R (registered trademark # 220)).
  • a 0.4 mm thick copper clad laminate on which the foil was laminated was jet scrubbed at a spray pressure of 0.2 MPa to produce a substrate for evaluation.
  • ⁇ Laminate> Using a hot roll laminator (ALA-700, manufactured by Asahi Kasei Co., Ltd.), the photosensitive resin laminate was applied to a copper clad laminate that had been leveled and preheated to 60 ° C. while peeling the polyethylene film of the photosensitive resin laminate. A test piece was obtained by laminating at a roll temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
  • ALA-700 manufactured by Asahi Kasei Co., Ltd.
  • Examples I-1 to I-16 and Comparative Examples I-1 to I-3 a direct drawing exposure machine (manufactured by Hitachi Via Mechanics, DE-1DH, light source: GaN blue-violet diode, main wavelength 405 ⁇ 5 nm) Then, using a stove 41 step tablet or a predetermined mask pattern for direct imaging (DI) exposure, exposure was performed under the condition of illuminance of 85 mW / cm 2 . The exposure was performed with an exposure amount at which the maximum number of remaining film steps when the exposure and development were performed using the stove 41 step tablet as a mask was 15. Further, in Examples II-1 to II-6 and Comparative Examples II-1 to II-5, using a chrome glass mask, a parallel light exposure machine (HMW-801, manufactured by Oak Manufacturing Co., Ltd.) was used. The exposure was performed with the exposure amount shown in FIG.
  • a direct drawing exposure machine manufactured by Hitachi Via Mechanics, DE-1DH, light source: GaN blue-violet diode, main wavelength
  • Examples I-1 to I-16 and Comparative Examples I-1 to I-3 after peeling the polyethylene terephthalate film of the exposed evaluation substrate, an alkali developing machine (manufactured by Fuji Kiko Co., Ltd., a dry film developing machine) was used. Then, a 1 mass% Na 2 CO 3 aqueous solution at 30 ° C. was sprayed for a predetermined time to dissolve and remove the unexposed portion of the photosensitive resin layer. At this time, development was carried out over twice the minimum development time to produce a cured resist pattern.
  • the minimum development time refers to the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve.
  • Examples II-1 to II-6 and Comparative Examples II-1 to II-5 after removing the polyethylene terephthalate film from the photosensitive resin laminate, using a developing device manufactured by Fuji Kiko Co., Ltd., full cone Using a nozzle of the type, a 1 mass% Na 2 CO 3 aqueous solution at 30 ° C. was sprayed for a predetermined time at a developing spray pressure of 0.15 MPa, and developed to dissolve and remove unexposed portions of the photosensitive resin layer. At this time, the minimum time required for completely dissolving the photosensitive resin layer in the unexposed portion was measured as the minimum development time, and development was performed in twice the minimum development time to prepare a resist pattern. At that time, the washing process was performed at the same time as the developing process at a washing spray pressure of 0.15 MPa with a flat type nozzle.
  • ⁇ Sensitivity evaluation> The substrate for sensitivity evaluation, which had passed 15 minutes after lamination, was exposed through a mask of a 41-step stove tablet. Development was carried out in a time twice as long as the minimum development time, and was ranked according to the following criteria according to the exposure amount at which the maximum number of remaining film steps was 15.
  • ⁇ Resolution> The resolution evaluation substrate 15 minutes after the lamination was exposed using drawing data having a line pattern in which the width of the exposed area and the unexposed area was 1: 1. Development was performed with a development time twice the minimum development time to form a cured resist line. In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, the minimum line width in which a cured resist line was normally formed was ranked as a resolution value according to the following criteria. ⁇ (Good): The resolution value is 12 ⁇ m or less. ⁇ (allowable): The resolution value exceeds 12 ⁇ m and is 17 ⁇ m or less. X (defect): The resolution value exceeds 17 ⁇ m.
  • the minimum line width in which the cured resist lines were normally formed was ranked as a resolution value according to the following criteria.
  • FT-IR manufactured by Thermo SCIENTIFIC, NICOLET 380
  • the peak height P at a wave number of 810 cm ⁇ 1 was determined by measuring the absorbance with FT-IR before exposure.
  • the reaction rate Q of the ethylenic double bond was determined by the following method.
  • Direct exposure from a polyethylene terephthalate film (support layer) side of the photosensitive resin laminate using a drawing exposure machine manufactured by Hitachi Via Mechanics, DE-1DH, light source: GaN blue-violet diode (main wavelength 405 ⁇ 5 nm)). Went.
  • the illuminance during exposure was 85 mW / cm 2 .
  • the exposure amount at this time was the exposure amount at which the maximum number of remaining film steps when the exposure was carried out using the stove 41 step tablet as a mask and then developed by the above method was 15.
  • the reaction rate Q of the ethylenic double bond of the cured resist obtained by the above operation is calculated by calculating the disappearance rate (%) of the ethylenic double bond group from the peak height before and after exposure at a wave number of 810 cm ⁇ 1. The rate Q (%) was determined.
  • R is the film thickness ( ⁇ m) of the photosensitive resin layer, and P ⁇ Q / R was obtained by calculation.
  • (allowable): Adhesiveness value exceeds 13 ⁇ m and is 15 ⁇ m or less.
  • X (defect) Adhesion value exceeds 15 ⁇ m.
  • the evaluation substrate that had passed 15 minutes after the lamination had a ratio of the exposed portion to the unexposed portion of 1: 100. Exposure was through a chrome glass mask with a line pattern. Development was carried out in a time twice as long as the minimum development time, and the minimum line width in which a cured resist line was normally formed was defined as an adhesion value, and was ranked as follows.
  • a chemical solution was prepared by mixing 100 ml of Cuprapro S2 manufactured by Atotech Japan Co., Ltd., 60 ml of 98% sulfuric acid and 840 ml of pure water.
  • the resolution evaluation substrate 15 minutes after lamination was exposed using drawing data having a line pattern in which the width of the exposed area and the unexposed area was 1: 400.
  • Development was carried out with a development time twice as long as the minimum development time, and immersed in a chemical heated to 40 ° C. in a beaker for 5 minutes. After immersion, the substrate was washed with pure water, and the minimum line width at which a cured resist line was normally formed was obtained as a chemical resistance value.
  • Table 2 only the case where the chemical resistance value exceeds 17 ⁇ m is indicated as “x (defect)”.
  • ⁇ Bleed-out> The photosensitive resin laminate wound up in a roll is stored at 23 ° C under light-shielding conditions, and the time until stickiness occurs on the support film surface (excluding the outermost layer of the roll) due to bleed out is ranked as follows: The bleed-out property was evaluated. ⁇ (Good): Time until stickiness occurs on the surface of the support film is 1 month or more ⁇ (Poor): Time until stickiness occurs on the surface of the support film is less than 1 month
  • the evaluation results are shown in Tables 2 to 5 below.
  • the photosensitive resin composition designed so that the chemical resistance evaluation is 17 ⁇ m or less is also excellent in resist pattern adhesion, resolution, and balance of sword shape. Moreover, when such a photosensitive resin composition is used, a short circuit can be suppressed when a wiring pattern is formed by plating.
  • copper plating was performed after the chemical resistance evaluation, a short circuit was observed in the cured resist with a line width of 15 ⁇ m in the composition of Comparative Example I-1, but no short circuit was observed in the composition of Example I-1. It was inferred that defects could be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

A photosensitive resin composition comprises an alkali-soluble polymer, a compound having an ethylenically unsaturated bond and a photopolymerization initiator, and has such a property that, when a photosensitive resin layer made from the photosensitive resin composition is formed on the surface of a substrate, then the photosensitive resin layer is exposed to light and is developed to form a resist pattern, and then the resist pattern is treated with a chemical solution for chemical solution resistance evaluation use, the smallest line width of the cured resist lines is 17 μm or less.

Description

感光性樹脂組成物Photosensitive resin composition
 本発明は、感光性樹脂組成物、等に関する。 The present invention relates to a photosensitive resin composition and the like.
 従来、プリント配線板は一般に、フォトリソグラフィー法によって製造されていた。フォトリソグラフィー法においては、まず、基板上に積層された感光性樹脂組成物層に対し、パターン露光する。感光性樹脂組成物の露光部は、重合硬化(ネガ型の場合)又は現像液に対して可溶化(ポジ型の場合)する。次に、未露光部(ネガ型の場合)又は露光部(ポジ型の場合)を現像液で除去して基板上にレジストパターンを形成する。更に、エッチング又はめっき処理を施して導体パターンを形成した後、レジストパターンを基板から剥離除去する。これらの工程を経ることによって、基板上に導体パターンが形成される。 Conventionally, printed wiring boards are generally manufactured by a photolithography method. In the photolithography method, first, pattern exposure is performed on the photosensitive resin composition layer laminated on the substrate. The exposed portion of the photosensitive resin composition is polymerized and cured (in the case of a negative type) or solubilized in a developer (in the case of a positive type). Next, the unexposed portion (in the case of negative type) or the exposed portion (in the case of positive type) is removed with a developer to form a resist pattern on the substrate. Furthermore, after a conductor pattern is formed by etching or plating, the resist pattern is peeled off from the substrate. Through these steps, a conductor pattern is formed on the substrate.
 フォトリソグラフィー法では、通常、感光性樹脂組成物を基板上に塗布するときに、感光性樹脂組成物の溶液を基板に塗布して乾燥させる方法、又は支持体、感光性樹脂組成物から成る層(以下、「感光性樹脂層」ともいう)、及び所望により保護層、を順次積層することにより得られる感光性樹脂積層体(以下、「ドライフィルムレジスト」ともいう)を基板に積層する方法のいずれかが使用される。プリント配線板の製造においては後者が多用される。 In the photolithography method, usually, when a photosensitive resin composition is applied onto a substrate, a solution of the photosensitive resin composition is applied to the substrate and dried, or a support or a layer comprising the photosensitive resin composition (Hereinafter also referred to as “photosensitive resin layer”), and a method of laminating a photosensitive resin laminate (hereinafter also referred to as “dry film resist”) obtained by sequentially laminating a protective layer, if desired, on a substrate. Either is used. The latter is frequently used in the production of printed wiring boards.
 近年のプリント配線板における配線間隔の微細化に伴い、ドライフィルムレジストには種々の特性が要求されつつある。例えば、レジストパターンの密着性及び解像性を向上させ、かつ現像工程前までの段階において、スルーホールを覆っているレジストパターンを破断させ難くするために、エチレン性不飽和結合を有する化合物として、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物を、光増感剤としてピラゾリン化合物を、それぞれ含む感光性樹脂組成物が提案されている(特許文献1)。 With the recent miniaturization of wiring intervals in printed wiring boards, various characteristics are being required for dry film resists. For example, as a compound having an ethylenically unsaturated bond in order to improve the adhesion and resolution of the resist pattern and to make it difficult to break the resist pattern covering the through hole in the stage before the development process, A photosensitive resin composition containing a (meth) acrylate compound having a skeleton derived from dipentaerythritol and a pyrazoline compound as a photosensitizer has been proposed (Patent Document 1).
 レジストパターンの密着性及び解像性を向上させ、かつ現像工程においてレジストパターン底部の残渣の発生を抑制するために、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物と、ビスフェノールA型骨格及びアルキレンオキサイド鎖を有するジ(メタ)アクリレート化合物とを含む感光性樹脂組成物も提案されている(特許文献2)。 In order to improve the adhesion and resolution of the resist pattern and to suppress the generation of residues at the bottom of the resist pattern in the development process, a (meth) acrylate compound having a skeleton derived from dipentaerythritol, a bisphenol A skeleton, and A photosensitive resin composition containing a di (meth) acrylate compound having an alkylene oxide chain has also been proposed (Patent Document 2).
 レジストパターンが形成された基板をエッチング又はめっきする導体パターン形成工程中に、又はその工程前に、レジストパターン及び基板が脱脂液等の薬液で洗浄されることがある。薬液との接触前後の比較において、レジストパターン形状の変化が抑制されることが要求される。 During or before the conductor pattern forming process for etching or plating the substrate on which the resist pattern is formed, the resist pattern and the substrate may be washed with a chemical solution such as a degreasing solution. In comparison between before and after contact with the chemical, it is required that the change in the resist pattern shape is suppressed.
 しかしながら、特許文献1及び2に記述されている感光性樹脂組成物は、レジストパターンの耐薬品性等の観点で、なお改良の余地を有するものであった。 However, the photosensitive resin compositions described in Patent Documents 1 and 2 still have room for improvement in terms of chemical resistance of the resist pattern.
 さらに、レジストの特性を向上させるために、様々な感光性樹脂組成物が提案されている(特許文献3~6)。 Furthermore, various photosensitive resin compositions have been proposed in order to improve resist characteristics (Patent Documents 3 to 6).
 特許文献3では、レジストパターンのスソ形状、解像性及び残膜率の観点から、エチレン性不飽和結合を有する化合物として、ペンタエリスリトールポリアルコキシテトラメタクリレートを含む感光性樹脂組成物が検討されている。 In Patent Document 3, a photosensitive resin composition containing pentaerythritol polyalkoxytetramethacrylate is studied as a compound having an ethylenically unsaturated bond from the viewpoint of the resist pattern sword shape, resolution, and residual film ratio. .
 特許文献4では、レジストパターンのスソ形状、解像性、密着性、最小現像時間及びブリードアウト性の観点から、感光性樹脂組成物中のモノマーとして、エチレンオキシド変性したペンタエリスリトールテトラ(メタ)アクリレートと、ビスフェノールAをアルキレンオキシド変性したジ(メタ)アクリレートと、ジペンタエリスリトール(メタ)アクリレートの組み合わせが検討されている。 In Patent Document 4, from the viewpoints of the resist pattern sedge shape, resolution, adhesion, minimum development time, and bleed-out property, as a monomer in the photosensitive resin composition, ethylene oxide-modified pentaerythritol tetra (meth) acrylate and A combination of di (meth) acrylate obtained by modifying bisphenol A with alkylene oxide and dipentaerythritol (meth) acrylate has been studied.
 特許文献5及び6では、106℃を超えるガラス転移温度を有するアルカリ可溶性高分子を含む感光性樹脂組成物が記述されている。 Patent Documents 5 and 6 describe a photosensitive resin composition containing an alkali-soluble polymer having a glass transition temperature exceeding 106 ° C.
 しかしながら、プリント配線板等の製造において、硬化レジストの硬度が高すぎる場合、現像処理中又は搬送中の物理的衝撃によってレジストパターンが折れ、結果として配線パターンの収率が悪化することが懸念される。このため、硬化レジストには基材への密着を維持すべく、柔軟性が良好であることが望まれる。また、ドライフィルムレジストはロール状に巻き取られて保管される場合があるが、ドライフィルムレジストの構成成分がブリードアウトにより支持フィルム表面に付着すると、安定した配線パターン生産が困難となる場合がある。 However, in the production of printed wiring boards and the like, if the hardness of the cured resist is too high, there is a concern that the resist pattern may break due to physical impact during development or transportation, resulting in a deterioration in the yield of the wiring pattern. . For this reason, the cured resist is desired to have good flexibility so as to maintain adhesion to the substrate. In addition, the dry film resist may be wound and stored in a roll shape, but if the components of the dry film resist adhere to the support film surface by bleed out, stable wiring pattern production may be difficult. .
 しかしながら、特許文献3~6に記述されている感光性樹脂組成物は、レジストパターンの柔軟性を改善して密着性を向上させ、かつドライフィルムレジストの構成成分のブリードアウトを抑制するという観点から、なお改良の余地を有するものであった。 However, the photosensitive resin compositions described in Patent Documents 3 to 6 improve the flexibility of the resist pattern to improve the adhesion and suppress the bleeding out of the constituent components of the dry film resist. However, there was still room for improvement.
特開2012-048202号公報JP 2012-048202 A 国際公開第2015/012272号International Publication No. 2015/012272 特開2013-156369号公報JP 2013-156369 A 特開2014-081440号公報JP 2014-081440 A 特開2013-117716号公報JP2013-117716A 特開2014-191318号公報JP 2014-191318 A
 本発明は、上記で説明された背景技術に対して為されたものであり、本発明が解決しようとする課題は、密着性、解像性及び保存安定性の少なくとも1つに優れる感光性樹脂組成物を提供することである。 The present invention has been made with respect to the background art described above, and the problem to be solved by the present invention is a photosensitive resin that is excellent in at least one of adhesion, resolution, and storage stability. It is to provide a composition.
 本発明者は、以下の技術的手段によって上記課題を解決することができることを見出した。
[1]
 (A)アルカリ可溶性高分子;
 (B)エチレン性不飽和結合を有する化合物;及び
 (C)光重合開始剤;
を含む感光性樹脂組成物であって、
 該感光性樹脂組成物から成る感光性樹脂層を基板表面上に形成し、露光及び現像を行って得られたレジストパターンを耐薬液性評価の薬液で処理した後に、硬化レジストラインの最小ライン幅が17μm以下である、感光性樹脂組成物。
[2]
 前記感光性樹脂層を前記基板表面上に形成し、ストーファー41段ステップタブレットをマスクとして露光し、次いで、現像したときの最高残膜段数が15段となる露光量で、該感光性樹脂層に露光を行った時、
FT-IR測定において、露光前の波数810cm-1におけるピーク高さをP、前記露光を行った後の前記(B)エチレン性不飽和結合を有する化合物中のエチレン性二重結合の反応率をQ、前記感光性樹脂層の膜厚をRとした場合のP×Q/Rの値が0.21以上である、[1]に記載の感光性樹脂組成物。
[3]
 前記(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、110℃以下である、[1]又は[2]に記載の感光性樹脂組成物。
[4]
 前記(B)エチレン性不飽和結合を有する化合物の重量平均分子量が760以上である、[1]~[3]のいずれか1項に記載の感光性樹脂組成物。
[5]
 前記(B)エチレン性不飽和結合を有する化合物中におけるメタクリロイル基の濃度が0.20mol/100g以上である、[1]~[4]のいずれか1項に記載の感光性樹脂組成物。
[6]
 前記(B)エチレン性不飽和結合を有する化合物中におけるエチレンオキサイドユニットの濃度が0.80mol/100g以上である、[1]~[5]のいずれか1項に記載の感光性樹脂組成物。
[7]
 前記(C)光重合開始剤として、ヘキサアリールビスイミダゾール化合物を含む、[1]~[6]のいずれか1項に記載の感光性樹脂組成物。
[8]
 (A)アルカリ可溶性高分子;
 (B)エチレン性不飽和結合を有する化合物;及び
 (C)光重合開始剤;
を含む感光性樹脂組成物であって、
 前記(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、110℃以下であり、かつ
 前記(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を3個以上有する(メタ)アクリレート化合物を含む、前記感光性樹脂組成物。
[9]
 前記(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を5個以上有し、かつアルキレンオキサイド鎖を有する(メタ)アクリレート化合物を含む、[8]に記載の感光性樹脂組成物。
[10]
 前記(A)アルカリ可溶性高分子が、100~600の酸当量及び5,000~500,000の重量平均分子量を有し、かつその側鎖に芳香族基を有する、[8]又は[9]に記載の感光性樹脂組成物。
[11]
 前記(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を5個以上有し、かつエチレンオキサイド鎖を有する(メタ)アクリレート化合物を含む、[8]~[10]のいずれか1項に記載の前記感光性樹脂組成物。
[12]
 前記(B)エチレン性不飽和結合を有する化合物として、エチレンオキサイド鎖とジペンタエリスリトール骨格とを有する(メタ)アクリレート化合物を含む、[8]~[11]のいずれか1項に記載の前記感光性樹脂組成物。
[13]
 前記(B)エチレン性不飽和結合を有する化合物として、下記一般式(II):
Figure JPOXMLDOC01-appb-C000003
{式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、AはCであり、BはCであり、n及びnは各々独立に1~39の整数であり、かつn+nは2~40の整数であり、n及びnは各々独立に0~29の整数であり、かつn+nは0~30の整数であり、-(A-O)-及び-(B-O)-の繰り返し単位の配列は、ランダムであってもブロックであってもよく、ブロックの場合、-(A-O)-と-(B-O)-とのいずれがビスフェニル基側でもよい。}
で表される化合物をさらに含む、[8]~[12]のいずれか1項に記載の感光性樹脂組成物。
[14]
 前記(B)エチレン性不飽和結合を有する化合物として、下記一般式(I):
Figure JPOXMLDOC01-appb-C000004
{式中、R~Rは、それぞれ独立に、炭素数1~4のアルキル基を表し、Xは、炭素数2~6のアルキレン基を表し、m、m、m及びmは、それぞれ独立に、0~40の整数であり、m+m+m+mは、1~40であり、そしてm+m+m+mが2以上である場合には、複数のXは、互いに同一であるか、又は異なっていてよい}
で表される化合物をさらに含む、[8]~[13]のいずれか1項に記載の感光性樹脂組成物。
[15]
 前記(C)光重合開始剤として、ヘキサアリールビスイミダゾール化合物を含む、[8]~14のいずれか1項に記載の感光性樹脂組成物。
[16]
 前記(C)光重合開始剤として、ピラゾリン化合物を含む、[8]~[15]のいずれか1項に記載の感光性樹脂組成物。
[17]
 ダイレクトイメージング露光用である、[8]~[16]のいずれか1項に記載の感光性樹脂組成物。
[18]
 前記(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、105℃以下であり、
 前記(B)エチレン性不飽和結合を有する化合物として、(b1)メタクリロイル基を少なくとも3個有する化合物を、前記感光性樹脂組成物の固形分総量に対して0質量%を超え16質量%以下の範囲で含み、かつ
 前記(B)エチレン性不飽和結合を有する化合物のうちの70質量%以上が、500以上の重量平均分子量を有する化合物である、
 [8]に記載の感光性樹脂組成物。
[19]
 前記(b1)メタクリロイル基を少なくとも3個有する化合物は、500以上の重量平均分子量を有する、[18]に記載の感光性樹脂組成物。
[20]
 前記(B)エチレン性不飽和結合を有する化合物として、(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物を含む、[18]又は[19]に記載の感光性樹脂組成物。
[21]
 前記(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物は、500以上の重量平均分子量を有する、[20]に記載の感光性樹脂組成物。
The present inventor has found that the above problems can be solved by the following technical means.
[1]
(A) an alkali-soluble polymer;
(B) a compound having an ethylenically unsaturated bond; and (C) a photopolymerization initiator;
A photosensitive resin composition comprising:
A photosensitive resin layer comprising the photosensitive resin composition is formed on the substrate surface, and the resist pattern obtained by exposure and development is treated with a chemical solution for evaluating chemical resistance, and then the minimum line width of the cured resist line is obtained. The photosensitive resin composition whose is 17 micrometers or less.
[2]
The photosensitive resin layer is formed on the surface of the substrate, exposed with a stove 41 step tablet as a mask, and then exposed at an exposure amount that the maximum remaining film stage number is 15 when developed. When the exposure was performed
In the FT-IR measurement, the peak height at a wave number of 810 cm −1 before exposure is P, and the reaction rate of ethylenic double bonds in the compound (B) having an ethylenically unsaturated bond after the exposure is performed. Q, The photosensitive resin composition according to [1], wherein a value of P × Q / R when the film thickness of the photosensitive resin layer is R is 0.21 or more.
[3]
The photosensitive resin composition according to [1] or [2], wherein the weight average value Tg total of the glass transition temperature Tg of the (A) alkali-soluble polymer is 110 ° C. or lower.
[4]
The photosensitive resin composition according to any one of [1] to [3], wherein the compound (B) having an ethylenically unsaturated bond has a weight average molecular weight of 760 or more.
[5]
The photosensitive resin composition according to any one of [1] to [4], wherein the concentration of the methacryloyl group in the compound (B) having an ethylenically unsaturated bond is 0.20 mol / 100 g or more.
[6]
The photosensitive resin composition according to any one of [1] to [5], wherein the concentration of the ethylene oxide unit in the compound (B) having an ethylenically unsaturated bond is 0.80 mol / 100 g or more.
[7]
The photosensitive resin composition according to any one of [1] to [6], which contains a hexaarylbisimidazole compound as the (C) photopolymerization initiator.
[8]
(A) an alkali-soluble polymer;
(B) a compound having an ethylenically unsaturated bond; and (C) a photopolymerization initiator;
A photosensitive resin composition comprising:
(A) The weight average value Tg total of the glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or less, and (B) three ethylenically unsaturated bonds as the compound having an ethylenically unsaturated bond The said photosensitive resin composition containing the (meth) acrylate compound which has the above.
[9]
The photosensitive resin composition according to [8], including (B) a (meth) acrylate compound having 5 or more ethylenically unsaturated bonds and an alkylene oxide chain as the compound having an ethylenically unsaturated bond. object.
[10]
[8] or [9], wherein the (A) alkali-soluble polymer has an acid equivalent of 100 to 600, a weight average molecular weight of 5,000 to 500,000, and an aromatic group in its side chain. The photosensitive resin composition as described in 2.
[11]
Any of [8] to [10], wherein (B) the compound having an ethylenically unsaturated bond includes a (meth) acrylate compound having 5 or more ethylenically unsaturated bonds and having an ethylene oxide chain 2. The photosensitive resin composition according to item 1.
[12]
[8] The photosensitivity according to any one of [8] to [11], wherein the compound (B) includes a (meth) acrylate compound having an ethylene oxide chain and a dipentaerythritol skeleton as the compound having an ethylenically unsaturated bond. Resin composition.
[13]
As the compound (B) having an ethylenically unsaturated bond, the following general formula (II):
Figure JPOXMLDOC01-appb-C000003
{Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n 1 and n 3 are each independently N is an integer from 1 to 39, n 1 + n 3 is an integer from 2 to 40, n 2 and n 4 are each independently an integer from 0 to 29, and n 2 + n 4 is an integer from 0 to 30 The arrangement of the repeating units of-(AO)-and-(BO)-may be random or block. In the case of a block,-(AO)-and- Any of (B—O) — may be on the bisphenyl group side. }
The photosensitive resin composition according to any one of [8] to [12], further comprising a compound represented by:
[14]
As the compound (B) having an ethylenically unsaturated bond, the following general formula (I):
Figure JPOXMLDOC01-appb-C000004
{Wherein R 3 to R 6 each independently represents an alkyl group having 1 to 4 carbon atoms, X represents an alkylene group having 2 to 6 carbon atoms, m 1 , m 2 , m 3 and m 4 is each independently an integer of 0 to 40, m 1 + m 2 + m 3 + m 4 is 1 to 40, and when m 1 + m 2 + m 3 + m 4 is 2 or more, a plurality of X's may be the same or different from each other}
The photosensitive resin composition according to any one of [8] to [13], further comprising a compound represented by:
[15]
The photosensitive resin composition according to any one of [8] to 14, comprising a hexaarylbisimidazole compound as the (C) photopolymerization initiator.
[16]
The photosensitive resin composition according to any one of [8] to [15], which contains a pyrazoline compound as the (C) photopolymerization initiator.
[17]
The photosensitive resin composition according to any one of [8] to [16], which is used for direct imaging exposure.
[18]
(A) The weight average value Tgtotal of the glass transition temperature Tg of the alkali-soluble polymer is 105 ° C. or less,
(B) As a compound having an ethylenically unsaturated bond, (b1) a compound having at least three methacryloyl groups is more than 0% by mass and less than 16% by mass with respect to the total solid content of the photosensitive resin composition. In a range, and (B) 70% by mass or more of the compound having an ethylenically unsaturated bond is a compound having a weight average molecular weight of 500 or more.
The photosensitive resin composition as described in [8].
[19]
(B1) The photosensitive resin composition according to [18], wherein the compound having at least three methacryloyl groups has a weight average molecular weight of 500 or more.
[20]
The photosensitivity according to [18] or [19], which includes (b2) a compound having a butylene oxide chain and one or two (meth) acryloyl groups as the compound (B) having an ethylenically unsaturated bond. Resin composition.
[21]
The photosensitive resin composition according to [20], wherein the compound (b2) having a butylene oxide chain and one or two (meth) acryloyl groups has a weight average molecular weight of 500 or more.
 本発明によれば、密着性、解像性及び保存安定性の少なくとも1つに優れる感光性樹脂組成物を提供することができる。 According to the present invention, a photosensitive resin composition excellent in at least one of adhesion, resolution and storage stability can be provided.
 以下、本発明を実施するための形態(以下、「本実施形態」と略記する)について具体的に説明する。 Hereinafter, a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be specifically described.
<感光性樹脂組成物>
 本実施形態では、感光性樹脂組成物が、(A)アルカリ可溶性高分子、(B)エチレン性不飽和結合を有する化合物、及び(C)光重合開始剤を含む。所望により、感光性樹脂組成物は、(D)添加剤、といったその他の成分をさらに含んでよい。
<Photosensitive resin composition>
In this embodiment, the photosensitive resin composition contains (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated bond, and (C) a photopolymerization initiator. If desired, the photosensitive resin composition may further contain other components such as (D) an additive.
 本発明の第一の態様は、感光性樹脂組成物から成る感光性樹脂層を基板表面上に形成し、露光及び現像を行って得られたレジストパターンを耐薬液性評価の薬液で処理した後に、硬化レジストラインの最小ライン幅が17μm以下であるように設計されている感光性樹脂組成物である。このような感光性樹脂組成物を用いることにより、めっきにより配線パターンを形成する際、ショートを抑制することができる。また、めっき潜りも抑制することで直線性に優れた配線パターンを得ることができる。即ち、本発明の感光性樹脂組成物は、密着性及び/又は解像性に優れるものである。硬化レジストラインの最小ライン幅は、好ましくは16μm以下、より好ましくは15μm以下、更に好ましくは12μm以下、特に好ましくは10μm以下、最も好ましくは8μm以下である。硬化レジストラインの最小ライン幅の測定方法及び条件は、実施例の耐薬液性評価において説明される。 In the first aspect of the present invention, a photosensitive resin layer made of a photosensitive resin composition is formed on a substrate surface, and a resist pattern obtained by exposure and development is treated with a chemical solution for chemical resistance evaluation. The photosensitive resin composition is designed so that the minimum line width of the cured resist line is 17 μm or less. By using such a photosensitive resin composition, a short circuit can be suppressed when a wiring pattern is formed by plating. Moreover, the wiring pattern excellent in the linearity can be obtained by suppressing the plating dive. That is, the photosensitive resin composition of the present invention is excellent in adhesion and / or resolution. The minimum line width of the cured resist line is preferably 16 μm or less, more preferably 15 μm or less, still more preferably 12 μm or less, particularly preferably 10 μm or less, and most preferably 8 μm or less. The measurement method and conditions of the minimum line width of the cured resist line will be described in the chemical resistance evaluation of the examples.
 本発明の第二の態様は、(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが110℃以下であり、かつ(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を3個以上有する(メタ)アクリレート化合物を含む感光性樹脂組成物である。Tgtotalが110℃以下である(A)アルカリ可溶性高分子及びエチレン性不飽和結合を3個以上有する(メタ)アクリレート化合物を含むことによって、反応率を向上させることができ、また、架橋密度が上げる傾向となり、しかも未反応の(B)成分が残存し難くなるため、その結果、感光性樹脂組成物は、密着性、解像性及び保存安定性の少なくとも1つに優れるレジストパターンを提供する傾向となる。 In the second aspect of the present invention, (A) a weight average value Tg total of glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or lower, and (B) a compound having an ethylenically unsaturated bond is ethylenic. It is the photosensitive resin composition containing the (meth) acrylate compound which has 3 or more of unsaturated bonds. By including (A) an alkali-soluble polymer having a Tg total of 110 ° C. or lower and a (meth) acrylate compound having three or more ethylenically unsaturated bonds, the reaction rate can be improved, and the crosslinking density is increased. The unreacted component (B) hardly remains, and as a result, the photosensitive resin composition provides a resist pattern that is excellent in at least one of adhesion, resolution, and storage stability. It becomes a trend.
 本実施形態に係る感光性樹脂組成物から成る感光性樹脂層を基板表面上に形成し、ストーファー41段ステップタブレットをマスクとして露光し、次いで、現像したときの最高残膜段数が15段となる露光量で、感光性樹脂層に露光を行った時に、感光性樹脂層は、下記式:
  P×Q/R≧0.21
{式中、感光性樹脂層について、Pは、FT-IR測定において、露光前の波数810cm-1におけるピーク高さを表し、Qは、(B)エチレン性不飽和結合を有する化合物中のエチレン性二重結合の露光後の反応率を表し、かつRは、膜厚を表す。}
により表される関係を満たすことが好ましい。上記で説明された式P×Q/Rで表される値は、より好ましくは、0.22以上、0.23以上、0.24以上、0.25以上、又は0.27以上である。式P×Q/Rで表される値の測定方法及び条件は、実施例において説明される。
A photosensitive resin layer composed of the photosensitive resin composition according to the present embodiment is formed on the substrate surface, exposed using a stove 41 step tablet as a mask, and then developed, the maximum number of remaining film steps is 15 steps. When the photosensitive resin layer is exposed with the exposure amount, the photosensitive resin layer has the following formula:
P × Q / R ≧ 0.21
{In the formula, for the photosensitive resin layer, P represents a peak height at a wave number of 810 cm −1 before exposure in FT-IR measurement, and Q represents (B) ethylene in a compound having an ethylenically unsaturated bond. Represents the reaction rate after exposure of the sexual double bond, and R represents the film thickness. }
It is preferable to satisfy the relationship represented by: The value represented by the formula P × Q / R described above is more preferably 0.22 or more, 0.23 or more, 0.24 or more, 0.25 or more, or 0.27 or more. The measurement method and conditions for the value represented by the formula P × Q / R are described in the examples.
(A)アルカリ可溶性高分子
 (A)アルカリ可溶性高分子は、アルカリ物質に溶解可能な高分子である。本実施形態では、感光性樹脂組成物は、アルカリ現像性の観点から、カルボキシル基を有することが好ましく、カルボキシル基含有単量体を共重合成分として含む共重合体であることがより好ましい。
(A) Alkali-soluble polymer (A) An alkali-soluble polymer is a polymer that can be dissolved in an alkaline substance. In the present embodiment, the photosensitive resin composition preferably has a carboxyl group, more preferably a copolymer containing a carboxyl group-containing monomer as a copolymerization component, from the viewpoint of alkali developability.
 本実施形態では、感光性樹脂組成物は、レジストパターンの高解像性及びスソ形状の観点から、更にはレジストパターンの耐薬品性の観点から、(A)アルカリ可溶性高分子として、芳香族基を有するコポリマーを含むことが好ましく、側鎖に芳香族基を有するコポリマーを含むことが特に好ましい。なお、このような芳香族基としては、例えば、置換又は非置換のフェニル基や、置換又は非置換のアラルキル基が挙げられる。
 芳香族基を有するコポリマーが、(A)成分中に占める割合としては、好ましくは50質量%以上、好ましくは60質量%以上、好ましくは70質量%以上、好ましくは80質量%以上、好ましくは90質量%以上であり、100質量%であっても良い。
In the present embodiment, the photosensitive resin composition has an aromatic group as an alkali-soluble polymer (A) from the viewpoint of high resolution and sword shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern. It is preferable to include a copolymer having an aromatic group, and it is particularly preferable to include a copolymer having an aromatic group in the side chain. Examples of such an aromatic group include a substituted or unsubstituted phenyl group and a substituted or unsubstituted aralkyl group.
The proportion of the copolymer having an aromatic group in the component (A) is preferably 50% by mass or more, preferably 60% by mass or more, preferably 70% by mass or more, preferably 80% by mass or more, preferably 90%. It may be 100% by mass or more.
 また、レジストパターンの高解像性及びスソ形状の観点から、更にはレジストパターンの耐薬品性の観点から、芳香族基を有するコポリマーにおける、芳香族基を有するコモノマーの共重合割合としては、好ましくは20質量%以上、好ましくは30質量%以上、好ましくは40質量%以上、好ましくは50質量%以上、好ましくは60質量%以上、好ましくは70質量%以上、好ましくは80質量%以上である。共重合割合の上限としては、特に制限はないが、アルカリ可溶性を維持する観点から、好ましくは95質量%以下、より好ましくは90質量%以下である。 Further, from the viewpoint of resist pattern high resolution and sword shape, and further from the viewpoint of chemical resistance of the resist pattern, the copolymerization ratio of the comonomer having an aromatic group in the copolymer having an aromatic group is preferably Is 20% by mass or more, preferably 30% by mass or more, preferably 40% by mass or more, preferably 50% by mass or more, preferably 60% by mass or more, preferably 70% by mass or more, preferably 80% by mass or more. Although there is no restriction | limiting in particular as an upper limit of a copolymerization ratio, From a viewpoint of maintaining alkali solubility, Preferably it is 95 mass% or less, More preferably, it is 90 mass% or less.
 前記芳香族基を有するコモノマーとしては、例えば、アラルキル基を有するモノマー、スチレン、及び重合可能なスチレン誘導体(例えば、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、スチレントリマー等)が挙げられる。中でも、アラルキル基を有するモノマー、又はスチレンが好ましく、アラルキル基を有するモノマーがより好ましい。 Examples of the comonomer having an aromatic group include a monomer having an aralkyl group, styrene, and a polymerizable styrene derivative (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid, styrene). Dimer, styrene trimer, etc.). Among them, a monomer having an aralkyl group or styrene is preferable, and a monomer having an aralkyl group is more preferable.
 アラルキル基としては、置換又は非置換のフェニルアルキル基(ベンジル基を除く)や、置換又は非置換のベンジル基等が挙げられ、置換又は非置換のベンジル基が好ましい。
 フェニルアルキル基を有するコモノマーとしては、フェニルエチル(メタ)アクリレート等が挙げられる。
 ベンジル基を有するコモノマーとしては、ベンジル基を有する(メタ)アクリレート、例えば、ベンジル(メタ)アクリレート、クロロベンジル(メタ)アクリレート等;ベンジル基を有するビニルモノマー、例えば、ビニルベンジルクロライド、ビニルベンジルアルコール等が挙げられる。中でもベンジル(メタ)アクリレートが好ましい。
Examples of the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding benzyl group), a substituted or unsubstituted benzyl group, and the like, and a substituted or unsubstituted benzyl group is preferable.
Examples of the comonomer having a phenylalkyl group include phenylethyl (meth) acrylate.
Examples of the comonomer having a benzyl group include (meth) acrylates having a benzyl group, such as benzyl (meth) acrylate, chlorobenzyl (meth) acrylate, etc .; vinyl monomers having a benzyl group, such as vinylbenzyl chloride, vinylbenzyl alcohol, etc. Is mentioned. Of these, benzyl (meth) acrylate is preferred.
 側鎖に芳香族基(好ましくは特にベンジル基)を有するコポリマーは、芳香族基を有するモノマーと、後述する第一のモノマーの少なくとも1種及び/又は後述する第二のモノマーの少なくとも1種とを重合することにより得られることが好ましい。 The copolymer having an aromatic group (preferably a benzyl group) in the side chain includes a monomer having an aromatic group, at least one first monomer described later, and / or at least one second monomer described later. It is preferable to obtain by polymerizing.
 側鎖に芳香族基を有するコポリマー以外の(A)アルカリ可溶性高分子は、後述する第一のモノマーの少なくとも1種を重合することにより得られることが好ましく、第一のモノマーの少なくとも1種と後述する第二のモノマーの少なくとも1種とを共重合することにより得られることがより好ましい。 The alkali-soluble polymer (A) other than the copolymer having an aromatic group in the side chain is preferably obtained by polymerizing at least one of the first monomers described later, and at least one of the first monomers and More preferably, it is obtained by copolymerizing at least one second monomer described below.
 第一のモノマーは、分子中にカルボキシル基を有するモノマーである。第一のモノマーとしては、例えば、(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、4-ビニル安息香酸、マレイン酸無水物、マレイン酸半エステル等が挙げられる。これらの中でも、(メタ)アクリル酸が好ましい。
 なお、本明細書において「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味し、かつ「(メタ)アクリレート」とは、「アクリレート」又は「メタクリレート」を意味する。
The first monomer is a monomer having a carboxyl group in the molecule. Examples of the first monomer include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, maleic acid half ester, and the like. Among these, (meth) acrylic acid is preferable.
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, “(meth) acryloyl group” means acryloyl group or methacryloyl group, and “(meth) acrylate” "Means" acrylate "or" methacrylate ".
 第一のモノマーの共重合割合は、全単量体成分の合計質量を基準として、10~50質量%であることが好ましい。該共重合割合を10質量%以上にすることは、良好な現像性を発現させる観点、エッジフューズ性を制御するなどの観点から好ましい。該共重合割合を50質量%以下にすることは、レジストパターンの高解像性及びスソ形状の観点から、更にはレジストパターンの耐薬品性の観点から好ましく、これらの観点においては、30質量%以下がより好ましく、25質量%以下が更に好ましく、22質量%以下が特に好ましく、20質量%以下が最も好ましい。 The copolymerization ratio of the first monomer is preferably 10 to 50% by mass based on the total mass of all monomer components. Setting the copolymerization ratio to 10% by mass or more is preferable from the viewpoint of developing good developability and controlling the edge fuse property. Setting the copolymerization ratio to 50% by mass or less is preferable from the viewpoint of the high resolution and sword shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern. In these viewpoints, 30% by mass is preferable. The following is more preferable, 25% by mass or less is further preferable, 22% by mass or less is particularly preferable, and 20% by mass or less is most preferable.
 第二のモノマーは、非酸性であり、かつ分子中に重合性不飽和基を少なくとも1個有するモノマーである。第二のモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリレート類;酢酸ビニル等のビニルアルコールのエステル類;並びに(メタ)アクリロニトリル等が挙げられる。中でも、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、及びn-ブチル(メタ)アクリレートが好ましい。 The second monomer is non-acidic and has at least one polymerizable unsaturated group in the molecule. Examples of the second monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert -(Meth) acrylates such as butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; And vinyl alcohol esters; and (meth) acrylonitrile. Of these, methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and n-butyl (meth) acrylate are preferable.
 本実施形態では、(A)アルカリ可溶性高分子は、上記で説明された単数又は複数の単量体を既知の重合法、好ましくは付加重合、より好ましくはラジカル重合により重合させることにより調製されることができる。
 アラルキル基を有するモノマー、及び又はスチレンをモノマーとして含有することがレジストパターンの耐薬品性、密着性、高解像性、又はスソ形状の観点から好ましく、例えば、メタクリル酸とベンジルメタクリレートとスチレンからなる共重合体、メタクリル酸とメチルメタクリレートとベンジルメタクリレートとスチレンからなる共重合体等が好ましい。
In this embodiment, (A) the alkali-soluble polymer is prepared by polymerizing the monomer or monomers described above by a known polymerization method, preferably addition polymerization, more preferably radical polymerization. be able to.
A monomer having an aralkyl group and / or containing styrene as a monomer is preferable from the viewpoint of chemical resistance, adhesion, high resolution, or sedge shape of a resist pattern, and includes, for example, methacrylic acid, benzyl methacrylate, and styrene. A copolymer, a copolymer of methacrylic acid, methyl methacrylate, benzyl methacrylate, and styrene is preferable.
 レジストパターンの耐薬品性、密着性、高解像性、又はスソ形状の観点から、Fox式によって求めた(A)アルカリ可溶性高分子のガラス転移温度((A)成分が複数種のコポリマーを含む場合には、その混合物全体についてのガラス転移温度Tg、すなわち、ガラス転移温度の重量平均値Tgtotal)は、110℃以下であることが好ましく、107℃以下、105℃以下、100℃以下、95℃以下、90℃以下又は80℃以下であることがより好ましい。(A)アルカリ可溶性高分子のガラス転移温度(Tg)の下限値は、限定されるものではないが、エッジフューズ性を制御する観点から好ましくは30℃以上、より好ましくは50℃以上、更に好ましくは60℃以上である。 From the viewpoint of chemical resistance, adhesion, high resolution, or sword shape of the resist pattern, (A) glass transition temperature of the alkali-soluble polymer determined by the Fox equation ((A) component contains a plurality of types of copolymers) In this case, the glass transition temperature Tg of the whole mixture, that is, the weight average value Tg total of the glass transition temperature) is preferably 110 ° C. or lower, 107 ° C. or lower, 105 ° C. or lower, 100 ° C. or lower, 95 More preferably, it is not higher than 90 ° C, not higher than 90 ° C or not higher than 80 ° C. (A) The lower limit of the glass transition temperature (Tg) of the alkali-soluble polymer is not limited, but is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, more preferably from the viewpoint of controlling the edge fuse property. Is 60 ° C. or higher.
 (A)アルカリ可溶性高分子の酸当量((A)成分が複数種のコポリマーを含む場合には、その混合物全体についての酸当量)は、感光性樹脂層の耐現像性、並びにレジストパターンの解像性及び密着性の観点から100以上であることが好ましく、感光性樹脂層の現像性及び剥離性の観点から600以下であることが好ましい。(A)アルカリ可溶性高分子の酸当量は、200~500であることがより好ましく、250~450であることがさらに好ましい。 (A) The acid equivalent of the alkali-soluble polymer (when the component (A) contains a plurality of types of copolymers, the acid equivalent of the entire mixture) is the development resistance of the photosensitive resin layer and the resist pattern solution. It is preferably 100 or more from the viewpoint of image properties and adhesion, and is preferably 600 or less from the viewpoint of developability and peelability of the photosensitive resin layer. (A) The acid equivalent of the alkali-soluble polymer is more preferably from 200 to 500, and even more preferably from 250 to 450.
 (A)アルカリ可溶性高分子の重量平均分子量((A)成分が複数種のコポリマーを含む場合には、その混合物全体についての重量平均分子量)は、5,000~500,000であることが好ましい。(A)アルカリ可溶性高分子の重量平均分子量は、ドライフィルムレジストの厚みを均一に維持し、現像液に対する耐性を得るという観点から5,000以上であることが好ましく、ドライフィルムレジストの現像性を維持するという観点、レジストパターンの高解像性及びスソ形状の観点、更にはレジストパターンの耐薬品性の観点から、から500,000以下であることが好ましい。(A)アルカリ可溶性高分子の重量平均分子量は、より好ましくは10,000~200,000、さらに好ましくは20,000~130,000、特に好ましくは30,000~100,000、最も好ましくは40,000~70,000である。(A)アルカリ可溶性高分子の分散度は、1.0~6.0であることが好ましい。 (A) The weight average molecular weight of the alkali-soluble polymer (when the component (A) includes a plurality of types of copolymers, the weight average molecular weight of the entire mixture) is preferably 5,000 to 500,000. . (A) The weight average molecular weight of the alkali-soluble polymer is preferably 5,000 or more from the viewpoint of maintaining the thickness of the dry film resist uniformly and obtaining resistance to the developer. From the viewpoint of maintaining, the high resolution of the resist pattern, the viewpoint of the sword shape, and the chemical resistance of the resist pattern, it is preferably 500,000 or less. (A) The weight average molecular weight of the alkali-soluble polymer is more preferably 10,000 to 200,000, further preferably 20,000 to 130,000, particularly preferably 30,000 to 100,000, most preferably 40. , 70,000. (A) The degree of dispersion of the alkali-soluble polymer is preferably 1.0 to 6.0.
 本実施形態では、感光性樹脂組成物中の(A)アルカリ可溶性高分子の含有量は、感光性樹脂組成物の固形分総量を基準として(以下、特に明示しない限り、各含有成分において同様である)、好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%、さらに好ましくは40質量%~60質量%の範囲内である。(A)アルカリ可溶性高分子の含有量は、感光性樹脂層のアルカリ現像性を維持するという観点から10質量%以上であることが好ましく、露光によって形成されるレジストパターンがレジスト材料としての性能を十分に発揮するという観点、レジストパターンの高解像性及びスソ形状の観点、更にはレジストパターンの耐薬品性の観点から90質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。 In this embodiment, the content of the (A) alkali-soluble polymer in the photosensitive resin composition is based on the total solid content of the photosensitive resin composition (hereinafter, unless otherwise specified, the same for each component). Preferably 10% to 90% by weight, more preferably 20% to 80% by weight, and still more preferably 40% to 60% by weight. (A) The content of the alkali-soluble polymer is preferably 10% by mass or more from the viewpoint of maintaining the alkali developability of the photosensitive resin layer, and the resist pattern formed by exposure has performance as a resist material. It is preferably 90% by mass or less, more preferably 70% by mass or less from the viewpoint of sufficiently exerting, the high resolution of the resist pattern and the viewpoint of the sword shape, and further from the viewpoint of chemical resistance of the resist pattern. Preferably, it is 60 mass% or less.
(B)エチレン性不飽和結合を有する化合物
 (B)エチレン性不飽和結合を有する化合物は、その構造中にエチレン性不飽和基を有することによって重合性を有する化合物である。
(B) Compound having an ethylenically unsaturated bond (B) A compound having an ethylenically unsaturated bond is a compound having polymerizability by having an ethylenically unsaturated group in its structure.
 レジストパターンの耐薬品性、密着性、高解像性又はスソ形状の観点から、本実施形態に係る感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を3個以上有する(メタ)アクリレート化合物を含むことが好ましい。この場合、エチレン性不飽和結合は、より好ましくはメタクリロイル基に由来する。
 エチレン性不飽和結合を3個以上有する(メタ)アクリレート化合物は、例えば、エチレンオキサイド鎖とジペンタエリスリトール骨格とを有する(メタ)アクリレート化合物、又は(b1)メタクリロイル基を少なくとも3個有する化合物として後述される。
From the viewpoint of chemical resistance, adhesion, high resolution, or sword shape of the resist pattern, the photosensitive resin composition according to the present embodiment includes (B) an ethylenically unsaturated compound as a compound having an ethylenically unsaturated bond. It is preferable to include a (meth) acrylate compound having 3 or more bonds. In this case, the ethylenically unsaturated bond is more preferably derived from a methacryloyl group.
Examples of the (meth) acrylate compound having three or more ethylenically unsaturated bonds include a (meth) acrylate compound having an ethylene oxide chain and a dipentaerythritol skeleton, or (b1) a compound having at least three methacryloyl groups. Is done.
 レジストパターンの耐薬品性、密着性、高解像性又はスソ形状の観点から、本実施形態に係る感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を5個以上有し、かつアルキレンオキサイド鎖を有する(メタ)アクリレート化合物を含むことが好ましい。この場合、エチレン性不飽和結合は、より好ましくはメタクリロイル基に由来し、そしてアルキレンオキサイド鎖は、より好ましくはエチレンオキサイド鎖である。
 エチレン性不飽和結合を5個以上有し、かつアルキレンオキサイド鎖を有する(メタ)アクリレート化合物は、例えば、エチレンオキサイド鎖とジペンタエリスリトール骨格とを有する(メタ)アクリレート化合物として後述される。
From the viewpoint of chemical resistance, adhesion, high resolution, or sword shape of the resist pattern, the photosensitive resin composition according to the present embodiment includes (B) an ethylenically unsaturated compound as a compound having an ethylenically unsaturated bond. It is preferable to include a (meth) acrylate compound having 5 or more bonds and having an alkylene oxide chain. In this case, the ethylenically unsaturated bond is more preferably derived from a methacryloyl group, and the alkylene oxide chain is more preferably an ethylene oxide chain.
The (meth) acrylate compound having 5 or more ethylenically unsaturated bonds and having an alkylene oxide chain will be described later as, for example, a (meth) acrylate compound having an ethylene oxide chain and a dipentaerythritol skeleton.
 レジストパターンの耐薬品性、密着性、高解像性又はスソ形状の観点から、(B)エチレン性不飽和結合を有する化合物中におけるメタクリロイル基の濃度が、好ましくは0.20mol/100g以上、より好ましくは0.30mol/100g以上、さらに好ましくは0.35mol/100g以上、特に好ましくは0.40mol/100g以上である。メタクリロイル基の濃度の上限値は、重合性及びアルカリ現像性が確保されるのであれば限定されないが、例えば、0.90mol/100g以下又は0.80mol/100g以下でよい。
 同様の観点から、(B)エチレン性不飽和結合を有する化合物中における、メタクリロイル基の濃度/(メタクリロイル基の濃度+アクリロイル基の濃度)の値が、好ましくは0.50以上、より好ましくは0.60以上、更に好ましくは0.80以上、特に好ましくは0.90以上、最も好ましくは0.95以上である。
From the viewpoint of chemical resistance, adhesion, high resolution, or sword shape of the resist pattern, the concentration of the methacryloyl group in the compound (B) having an ethylenically unsaturated bond is preferably 0.20 mol / 100 g or more. Preferably it is 0.30 mol / 100g or more, More preferably, it is 0.35 mol / 100g or more, Most preferably, it is 0.40 mol / 100g or more. The upper limit of the concentration of the methacryloyl group is not limited as long as the polymerizability and the alkali developability are ensured, and may be, for example, 0.90 mol / 100 g or less or 0.80 mol / 100 g or less.
From the same viewpoint, the value of (B) concentration of methacryloyl group / (concentration of methacryloyl group + concentration of acryloyl group) in the compound having an ethylenically unsaturated bond is preferably 0.50 or more, more preferably 0. .60 or more, more preferably 0.80 or more, particularly preferably 0.90 or more, and most preferably 0.95 or more.
 レジストパターンの耐薬品性、密着性、高解像性又はスソ形状の観点から、(B)エチレン性不飽和結合を有する化合物中におけるエチレンオキサイドユニットの濃度が、好ましくは0.80mol/100g以上、より好ましくは0.90mol/100g以上、さらに好ましくは1.00mol/100g以上、特に好ましくは1.10mol/100g以上である。エチレンオキサイドユニットの濃度の上限値は、レジストパターンの耐薬品性、密着性及び解像性が確保されるのであれば限定されないが、例えば、1.60mol/100g以下、1.50mol/100g以下、1.45mol/100g以下又は1.40mol/100g以下でよい。 From the viewpoint of chemical resistance, adhesion, high resolution, or sword shape of the resist pattern, the concentration of the ethylene oxide unit in the compound having (B) an ethylenically unsaturated bond is preferably 0.80 mol / 100 g or more, More preferably, it is 0.90 mol / 100g or more, More preferably, it is 1.00 mol / 100g or more, Especially preferably, it is 1.10 mol / 100g or more. The upper limit of the concentration of the ethylene oxide unit is not limited as long as the chemical resistance, adhesion, and resolution of the resist pattern are ensured. For example, 1.60 mol / 100 g or less, 1.50 mol / 100 g or less, It may be 1.45 mol / 100 g or less or 1.40 mol / 100 g or less.
 本実施形態では、レジストパターンの耐薬品性、密着性、高解像性又はスソ形状の観点から、感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、アルキレンオキサイド鎖とジペンタエリスリトール骨格とを有する(メタ)アクリレート化合物を含むことが好ましい。アルキレンオキサイド鎖としては、例えば、エチレンオキサイド鎖、プロピレンオキサイド鎖、ブチレンオキサイド鎖、ペンチレンオキサイド鎖、へキシレンオキサイド鎖などが挙げられる。感光性樹脂組成物がアルキレンオキサイド鎖を複数含む場合、それらは互いに同一でも異なっていてもよい。上記の観点から、アルキレンオキサイド鎖としては、エチレンオキサイド鎖、プロピレンオキサイド鎖、又はブチレンオキサイド鎖がより好ましく、エチレンオキサイド鎖、又はプロピレンオキサイド鎖が更に好ましく、エチレンオキサイド鎖が特に好ましい。 In the present embodiment, from the viewpoint of chemical resistance, adhesion, high resolution, or sword shape of the resist pattern, the photosensitive resin composition includes (B) an alkylene oxide chain as a compound having an ethylenically unsaturated bond. It is preferable to include a (meth) acrylate compound having a dipentaerythritol skeleton. Examples of the alkylene oxide chain include an ethylene oxide chain, a propylene oxide chain, a butylene oxide chain, a pentylene oxide chain, and a hexylene oxide chain. When the photosensitive resin composition includes a plurality of alkylene oxide chains, they may be the same as or different from each other. From the above viewpoint, the alkylene oxide chain is more preferably an ethylene oxide chain, a propylene oxide chain, or a butylene oxide chain, still more preferably an ethylene oxide chain or a propylene oxide chain, and particularly preferably an ethylene oxide chain.
 感光性樹脂組成物において、(A)アルカリ可溶性高分子と、アルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物とを併用することによって、レジストパターンの耐薬品性、密着性及び解像性のバランスが保たれる傾向にある。 In the photosensitive resin composition, (A) an alkali-soluble polymer and a (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton are used in combination, whereby the chemical resistance, adhesion and resolution of the resist pattern are obtained. Gender balance tends to be maintained.
 アルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物とは、複数の水酸基の少なくとも1つがアルキレンオキシ基で変性されたジペンタエリスリトール化合物と、(メタ)アクリル酸とのエステルをいう。ジペンタエリスリトール骨格の6つの水酸基が、アルキレンオキシ基で変性されていてもよい。エステル一分子中におけるエステル結合の数は、1~6でよく、6であることが好ましい。 The (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton refers to an ester of a dipentaerythritol compound in which at least one of a plurality of hydroxyl groups is modified with an alkyleneoxy group and (meth) acrylic acid. Six hydroxyl groups of the dipentaerythritol skeleton may be modified with an alkyleneoxy group. The number of ester bonds in one molecule of the ester may be 1 to 6, and is preferably 6.
 アルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物としては、例えば、ジペンタエリスリトールにアルキレンオキサイドが平均4~30モル、平均6~24モル、又は平均10~14モル付加しているヘキサ(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton include, for example, hexapentane having an average of 4 to 30 mol, an average of 6 to 24 mol, or an average of 10 to 14 mol of alkylene oxide added to dipentaerythritol. (Meth) acrylate is mentioned.
 具体的には、アルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物として、レジストパターンの耐薬品性、密着性、高解像性又はスソ形状の観点から、下記一般式(III):
Figure JPOXMLDOC01-appb-C000005
{式中、Rは、それぞれ独立に、水素原子又はメチル基を表し、かつnは、0~30の整数であり、かつ全てのnの合計値が1以上である}
で表される化合物が好ましい。一般式(III)において、全てのnの平均値が4以上であるか、又はnがそれぞれ1以上であることが好ましい。Rとしてはメチル基が好ましい。
Specifically, as a (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton, the following general formula (III) is used from the viewpoint of chemical resistance, adhesion, high resolution, or sedge shape of a resist pattern:
Figure JPOXMLDOC01-appb-C000005
{In the formula, each R independently represents a hydrogen atom or a methyl group, and n is an integer of 0 to 30, and the total value of all n is 1 or more}
The compound represented by these is preferable. In general formula (III), it is preferable that the average value of all n is 4 or more, or each n is 1 or more. R is preferably a methyl group.
 レジストパターンの耐薬品性の観点から、感光性樹脂組成物中のアルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物の含有量は、好ましくは1質量%~50質量%、より好ましくは5質量%~40質量%、さらに好ましくは7質量%~30質量%の範囲内である。 From the viewpoint of chemical resistance of the resist pattern, the content of the (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton in the photosensitive resin composition is preferably 1% by mass to 50% by mass, more preferably It is in the range of 5% to 40% by weight, more preferably 7% to 30% by weight.
 本実施形態では、ドライフィルムレジストの構成成分のブリードアウトを抑制して保存安定性を向上させるために、(B)エチレン性不飽和結合を有する化合物の固形分総量を基準として、(B)エチレン性不飽和結合を有する化合物うちの70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは100質量%が、500以上の重量平均分子量を有する化合物である。ブリードアウトの抑制及びレジストパターンの耐薬品性の観点から、(B)エチレン性不飽和結合を有する化合物の重量平均分子量は、好ましくは760以上、より好ましくは800以上、さらに好ましくは830以上、特に好ましくは900以上である。(B)エチレン性不飽和結合を有する化合物の重量平均分子量は、実施例に記載の方法により測定される。 In this embodiment, in order to suppress the bleed out of the constituent components of the dry film resist and improve the storage stability, (B) ethylene based on the total solid content of the compound having an ethylenically unsaturated bond (B) 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass of the compound having a polyunsaturated bond is a compound having a weight average molecular weight of 500 or more. From the viewpoint of suppression of bleed out and chemical resistance of the resist pattern, the weight average molecular weight of the compound (B) having an ethylenically unsaturated bond is preferably 760 or more, more preferably 800 or more, still more preferably 830 or more, particularly Preferably it is 900 or more. (B) The weight average molecular weight of the compound having an ethylenically unsaturated bond is measured by the method described in Examples.
 感光性樹脂組成物は、レジストパターンの柔軟性を改善して密着性を向上させ、かつドライフィルムレジストの構成成分のブリードアウトを抑制するために、(B)エチレン性不飽和結合を有する化合物として、(b1)メタクリロイル基を少なくとも3個有する化合物を含むことが好ましい。 The photosensitive resin composition is (B) a compound having an ethylenically unsaturated bond in order to improve the flexibility of the resist pattern to improve the adhesion and to suppress the bleeding out of the constituent components of the dry film resist. (B1) It preferably contains a compound having at least three methacryloyl groups.
 (b1)メタクリロイル基を少なくとも3個有する化合物は、ブリードアウトの抑制の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは900以上の重量平均分子量を有する。 (B1) The compound having at least three methacryloyl groups preferably has a weight average molecular weight of 500 or more, more preferably 700 or more, and still more preferably 900 or more, from the viewpoint of suppression of bleeding out.
 (b1)メタクリロイル基を少なくとも3個有する化合物について、メタクリロイル基の数は、好ましくは4以上、5以上又は6以上である。少なくとも3個のメタクリロイル基を有する化合物は、アルキレンオキサイド鎖、例えば、エチレンオキサイド鎖、プロピレンオキサイド鎖、又はこれらの組み合わせを有してもよい。 (B1) For a compound having at least three methacryloyl groups, the number of methacryloyl groups is preferably 4 or more, 5 or more, or 6 or more. The compound having at least three methacryloyl groups may have an alkylene oxide chain, such as an ethylene oxide chain, a propylene oxide chain, or a combination thereof.
 (b1)メタクリロイル基を少なくとも3個有する化合物としては、トリメタクリレート、例えば、エトキシ化グリセリントリメタクリレート、エトキシ化イソシアヌル酸トリメタクリレート、ペンタエリスリトールトリメタクリレート、トリメチロールプロパントリメタクリレート(例えば、トリメチロールプロパンに平均21モルのエチレンオキサイドを付加したトリメタクリレート、又はトリメチロールプロパンに平均30モルのエチレンオキサイドを付加したトリメタクリレートが、柔軟性、密着性、及びブリードアウト抑制の観点で好ましい)等;テトラメタクリレート、例えば、ジトリメチロールプロパンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールテトラメタクリレート等;ペンタメタクリレート、例えば、ジペンタエリスリトールペンタメタクリレート等;ヘキサメタクリレート、例えば、ジペンタエリスリトールヘキサメタクリレート等が挙げられる。これらの中でも、テトラ、ペンタ又はヘキサメタクリレートが好ましい。 (B1) As a compound having at least three methacryloyl groups, trimethacrylate, for example, ethoxylated glycerin trimethacrylate, ethoxylated isocyanuric acid trimethacrylate, pentaerythritol trimethacrylate, trimethylolpropane trimethacrylate (for example, trimethylolpropane average) Trimethacrylate added with 21 moles of ethylene oxide or trimethacrylate added with an average of 30 moles of ethylene oxide to trimethylolpropane is preferable from the viewpoints of flexibility, adhesion, and suppression of bleedout), etc .; , Ditrimethylolpropane tetramethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol tetramethacrylate, etc. Penta methacrylates, for example, dipentaerythritol penta methacrylate; hexamethylene dimethacrylate, for example, dipentaerythritol hexa methacrylate. Among these, tetra, penta or hexamethacrylate is preferable.
 テトラメタクリレートとしては、ペンタエリスリトールテトラメタクリレートが好ましい。ペンタエリスリトールテトラメタクリレートは、ペンタエリスリトールの4つの末端に合計1~40モルのアルキレンオキサイドが付加されているテトラメタクリレート等でよい。 As the tetramethacrylate, pentaerythritol tetramethacrylate is preferable. The pentaerythritol tetramethacrylate may be tetramethacrylate in which 1 to 40 moles of alkylene oxide is added to the four terminals of pentaerythritol.
 テトラメタクリレートは、下記一般式(I):
Figure JPOXMLDOC01-appb-C000006
{式中、R~Rは、それぞれ独立に、炭素数1~4のアルキル基を表し、Xは、炭素数2~6のアルキレン基を表し、m、m、m及びmは、それぞれ独立に、0~40の整数であり、m+m+m+mは、1~40であり、そしてm+m+m+mが2以上である場合には、複数のXは、互いに同一であるか、又は異なっていてよい}
で表されるテトラメタクリレート化合物であることがより好ましい。
Tetramethacrylate has the following general formula (I):
Figure JPOXMLDOC01-appb-C000006
{Wherein R 3 to R 6 each independently represents an alkyl group having 1 to 4 carbon atoms, X represents an alkylene group having 2 to 6 carbon atoms, m 1 , m 2 , m 3 and m 4 is each independently an integer of 0 to 40, m 1 + m 2 + m 3 + m 4 is 1 to 40, and when m 1 + m 2 + m 3 + m 4 is 2 or more, a plurality of X's may be the same or different from each other}
It is more preferable that it is the tetramethacrylate compound represented by these.
 理論に拘束されることを望むものではないが、一般式(I)で表されるテトラメタクリレート化合物は、基R~Rを有することにより、HC=CH-CO-O-部分を有するテトラアクリレートに比べて、アルカリ溶液中での加水分解性が抑制されているものと考えられる。一般式(I)で表されるテトラメタクリレート化合物を含む感光性樹脂組成物を使用することは、レジストパターンの解像性、詳細にはライン形状、より詳細にはラインのスソ形状、並びにレジストの密着性を向上させる観点から好ましい。 Although not wishing to be bound by theory, the tetramethacrylate compound represented by the general formula (I) has a group R 3 to R 6 so that the H 2 C═CH—CO—O— moiety is substituted. It is considered that the hydrolyzability in the alkaline solution is suppressed as compared with the tetraacrylate having. The use of the photosensitive resin composition containing the tetramethacrylate compound represented by the general formula (I) means that the resolution of the resist pattern, specifically the line shape, more specifically the line shape, and the resist It is preferable from the viewpoint of improving adhesion.
 一般式(I)において、基R~Rの少なくとも1つは、メチル基であることが好ましく、そして基R~Rの全てが、メチル基であることがより好ましい。 In the general formula (I), at least one of the groups R 3 to R 6 is preferably a methyl group, and more preferably all of the groups R 3 to R 6 are methyl groups.
 レジストパターンについて所望の解像性、スソ形状及び残膜率を得るという観点から、一般式(I)において、Xは、-CH-CH-であることが好ましい。 In the general formula (I), X is preferably —CH 2 —CH 2 — from the viewpoint of obtaining desired resolution, sword shape and remaining film ratio for the resist pattern.
 レジストパターンについて所望の解像性、スソ形状及び残膜率を得るという観点から、一般式(I)において、m、m、m及びmは、それぞれ独立に、1~20の整数であることが好ましく、2~10の整数であることがより好ましい。さらに、一般式(I)において、m+m+m+mは、1~36又は4~36であることが好ましい。 From the viewpoint of obtaining desired resolution, sword shape and residual film ratio for the resist pattern, in the general formula (I), m 1 , m 2 , m 3 and m 4 are each independently an integer of 1 to 20 Is preferable, and an integer of 2 to 10 is more preferable. Furthermore, in the general formula (I), m 1 + m 2 + m 3 + m 4 is preferably 1 to 36 or 4 to 36.
 一般式(I)で表される化合物としては、例えば、ペンタエリスリトール(ポリ)アルコキシテトラメタクリレート等が挙げられる。また、本明細書では、「ペンタエリスリトール(ポリ)アルコキシテトラメタクリレート」には、上記一般式(I)において、m+m+m+m=1である「ペンタエリスリトールアルコキシテトラメタクリレート」及びm+m+m+m=2~40である「ペンタエリスリトールポリアルコキシテトラメタクリレート」の両方が含まれる。一般式(I)で表される化合物としては、特開2013-156369号公報に列挙されている化合物、例えば、ペンタエリスリトール(ポリ)アルコキシテトラメタクリレート等が挙げられる。 Examples of the compound represented by the general formula (I) include pentaerythritol (poly) alkoxytetramethacrylate. In addition, in this specification, “pentaerythritol (poly) alkoxytetramethacrylate” includes “pentaerythritol alkoxytetramethacrylate” in which m 1 + m 2 + m 3 + m 4 = 1 in the general formula (I) and m 1 Both “pentaerythritol polyalkoxytetramethacrylates” with + m 2 + m 3 + m 4 = 2-40 are included. Examples of the compound represented by the general formula (I) include compounds listed in JP2013-156369A, for example, pentaerythritol (poly) alkoxytetramethacrylate and the like.
 ヘキサメタクリレート化合物としては、ジペンタエリスリトールの6つの末端に合計1~24モルのエチレンオキサイドが付加されているヘキサメタクリレート、ジペンタエリスリトールの6つの末端に合計1~10モルのε-カプロラクトンが付加されているヘキサメタクリレートが好ましい。 As the hexamethacrylate compound, a total of 1 to 24 mol of ethylene oxide is added to the six ends of dipentaerythritol, and a total of 1 to 10 mol of ε-caprolactone is added to the six ends of dipentaerythritol. Hexamethacrylate is preferred.
 感光性樹脂組成物の固形分総量に対して、(b1)メタクリロイル基を少なくとも3個有する化合物の含有量が、0質量%を超え、かつ16質量%以下であることが好ましい。この含有量が、0質量%を超えると、解像度が向上する傾向にあり、16質量%以下であると、硬化レジストの柔軟性が改善し、かつ剥離時間が短縮する傾向にある。この含有量は、2質量%以上15質量%以下であることがより好ましく、4質量%以上12質量%以下であることがさらに好ましい。 It is preferable that the content of the compound (b1) having at least three methacryloyl groups exceeds 0% by mass and 16% by mass or less with respect to the total solid content of the photosensitive resin composition. When this content exceeds 0% by mass, the resolution tends to be improved, and when it is 16% by mass or less, the flexibility of the cured resist is improved and the peeling time tends to be shortened. The content is more preferably 2% by mass or more and 15% by mass or less, and further preferably 4% by mass or more and 12% by mass or less.
 感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物を含むことが好ましい。
 (b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物は、ブリードアウトの抑制の観点から、好ましくは500以上、より好ましくは700以上、さらに好ましくは1000以上の分子量を有する。
The photosensitive resin composition preferably includes (B2) a compound having an ethylenically unsaturated bond and (b2) a butylene oxide chain and one or two (meth) acryloyl groups.
(B2) The compound having a butylene oxide chain and one or two (meth) acryloyl groups is preferably 500 or more, more preferably 700 or more, and still more preferably 1000 or more, from the viewpoint of suppression of bleed-out. Have
 (b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物としては、ポリテトラメチレングリコール(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等が挙げられる。 (B2) Examples of the compound having a butylene oxide chain and one or two (meth) acryloyl groups include polytetramethylene glycol (meth) acrylate and polytetramethylene glycol di (meth) acrylate.
 具体的には、(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物は、好ましくは1~20個、より好ましくは4~15個、さらに好ましくは6~12個のCOを有する(メタ)アクリレート又はジ(メタ)アクリレートである。 Specifically, the number of (b2) butylene oxide chains and one or two (meth) acryloyl groups is preferably 1-20, more preferably 4-15, and even more preferably 6-12. It is a (meth) acrylate or di (meth) acrylate having 1 C 4 H 8 O.
 感光性樹脂組成物の固形分総量に対して、(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物の含有量が、0質量%を超え、かつ20質量%以下であることが好ましい。 The content of the compound having (b2) butylene oxide chain and one or two (meth) acryloyl groups exceeds 0% by mass and 20% by mass with respect to the total solid content of the photosensitive resin composition The following is preferable.
 感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、(b3)芳香環及びエチレン性不飽和結合を有する化合物を含んでよい。 The photosensitive resin composition may include (b3) a compound having an aromatic ring and an ethylenically unsaturated bond as a compound having (B) an ethylenically unsaturated bond.
 (b3)芳香環及びエチレン性不飽和結合を有する化合物は、アルキレンオキサイド鎖をさらに有してもよい。芳香環は、ビスフェノールAに由来する2価の骨格、ナフタレンに由来する2価の骨格、フェニレン、メチルフェニレン等の2価の芳香族基として化合物に組み込まれていることが好ましい。アルキレンオキサイド鎖は、エチレンオキサイド鎖、プロピレンオキサイド鎖、又はこれらの組み合わせでよい。エチレン性不飽和結合は、(メタ)アクリロイル基として化合物に組み込まれていることが好ましい。 (B3) The compound having an aromatic ring and an ethylenically unsaturated bond may further have an alkylene oxide chain. The aromatic ring is preferably incorporated in the compound as a divalent skeleton derived from bisphenol A, a divalent skeleton derived from naphthalene, or a divalent aromatic group such as phenylene or methylphenylene. The alkylene oxide chain may be an ethylene oxide chain, a propylene oxide chain, or a combination thereof. The ethylenically unsaturated bond is preferably incorporated in the compound as a (meth) acryloyl group.
 具体的には、(b3)芳香環及びエチレン性不飽和結合を有する化合物として、下記一般式(II):
Figure JPOXMLDOC01-appb-C000007
{式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、AはCであり、BはCであり、n及びnは各々独立に1~39の整数であり、かつn+nは2~40の整数であり、n及びnは各々独立に0~29の整数であり、かつn+nは0~30の整数であり、-(A-O)-及び-(B-O)-の繰り返し単位の配列は、ランダムであってもブロックであってもよく、ブロックの場合、-(A-O)-と-(B-O)-とのいずれがビスフェニル基側でもよい。}
で表される化合物を使用することができる。
 例えば、ビスフェノ-ルAの両端にそれぞれ平均5モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト、ビスフェノ-ルAの両端にそれぞれ平均2モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト、ビスフェノ-ルAの両端にそれぞれ平均1モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト等が、解像性、及び密着性の点で好ましい。
Specifically, as the compound (b3) having an aromatic ring and an ethylenically unsaturated bond, the following general formula (II):
Figure JPOXMLDOC01-appb-C000007
{Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n 1 and n 3 are each independently N is an integer from 1 to 39, n 1 + n 3 is an integer from 2 to 40, n 2 and n 4 are each independently an integer from 0 to 29, and n 2 + n 4 is an integer from 0 to 30 The arrangement of the repeating units of-(AO)-and-(BO)-may be random or block. In the case of a block,-(AO)-and- Any of (B—O) — may be on the bisphenyl group side. }
The compound represented by these can be used.
For example, polyethylene glycol dimethacrylate having an average of 5 moles of ethylene oxide added to both ends of bisphenol A, and polyethylene glycol having an average of 2 moles of ethylene oxide added to both ends of bisphenol A, respectively. From the viewpoints of resolution and adhesiveness, diglycolate of polyethylene and polyethylene glycol dimethacrylate in which 1 mol of ethylene oxide is added to both ends of bisphenol A on average are respectively preferred.
 また、前記芳香環、アルキレンオキサイド鎖及びエチレン性不飽和結合を有する化合物として、上記一般式(II)中の芳香環が、ヘテロ原子及び/又は置換基を有する化合物を用いてもよい。
 ヘテロ原子としては、例えば、ハロゲン原子等が挙げられ、そして置換基としては、炭素数1~20のアルキル基、炭素数3~10のシクロアルキル基、炭素数6~18のアリール基、フェナシル基、アミノ基、炭素数1~10のアルキルアミノ基、炭素数2~20のジアルキルアミノ基、ニトロ基、シアノ基、カルボニル基、メルカプト基、炭素数1~10のアルキルメルカプト基、アリール基、水酸基、炭素数1~20のヒドロキシアルキル基、カルボキシル基、アルキル基の炭素数が1~10のカルボキシアルキル基、アルキル基の炭素数が1~10のアシル基、炭素数1~20のアルコキシ基、炭素数1~20のアルコキシカルボニル基、炭素数2~10のアルキルカルボニル基、炭素数2~10のアルケニル基、炭素数2~10のN-アルキルカルバモイル基若しくは複素環を含む基、又はこれらの置換基で置換されたアリール基等が挙げられる。これらの置換基は縮合環を形成しているか、又はこれらの置換基中の水素原子がハロゲン原子等のヘテロ原子に置換されていてもよい。一般式(II)中の芳香環が複数の置換基を有する場合には、複数の置換基は同一であるか、又は異なっていてよい。
In addition, as the compound having an aromatic ring, an alkylene oxide chain, and an ethylenically unsaturated bond, a compound in which the aromatic ring in the general formula (II) has a hetero atom and / or a substituent may be used.
Examples of the hetero atom include a halogen atom, and examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, and a phenacyl group. Amino group, alkylamino group having 1 to 10 carbon atoms, dialkylamino group having 2 to 20 carbon atoms, nitro group, cyano group, carbonyl group, mercapto group, alkylmercapto group having 1 to 10 carbon atoms, aryl group, hydroxyl group A hydroxyalkyl group having 1 to 20 carbon atoms, a carboxyl group, a carboxyalkyl group having 1 to 10 carbon atoms in an alkyl group, an acyl group having 1 to 10 carbon atoms in an alkyl group, an alkoxy group having 1 to 20 carbon atoms, An alkoxycarbonyl group having 1 to 20 carbon atoms, an alkylcarbonyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 2 to 10 carbon atoms - alkylcarbamoyl group or a group containing a heterocyclic ring, or an aryl group substituted by these substituents. These substituents may form a condensed ring, or a hydrogen atom in these substituents may be substituted with a hetero atom such as a halogen atom. When the aromatic ring in the general formula (II) has a plurality of substituents, the plurality of substituents may be the same or different.
 感光性樹脂組成物の固形分総量に対して、(b3)芳香環及びエチレン性不飽和結合を有する化合物の含有量が、0質量%を超え、かつ50質量%以下であることが好ましい。この含有量が、0質量%を超えると、解像度および密着性が改善する傾向にあり、現像時間およびエッジフュージョンの観点から50質量%以下が好ましい。 It is preferable that the content of the compound (b3) having an aromatic ring and an ethylenically unsaturated bond exceeds 0% by mass and 50% by mass or less with respect to the total solid content of the photosensitive resin composition. If this content exceeds 0% by mass, resolution and adhesion tend to be improved, and from the viewpoint of development time and edge fusion, 50% by mass or less is preferable.
 上記で説明されたアルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物、並びに(b1)~(b3)化合物は、それぞれ独立に、又は組み合わせて使用されることができる。感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、アルキレンオキサイド鎖及びジペンタエリスリトール骨格を有する(メタ)アクリレート化合物並びに(b1)~(b3)化合物だけでなく、その他の化合物も含んでよい。 The (meth) acrylate compound having an alkylene oxide chain and a dipentaerythritol skeleton and the (b1) to (b3) compounds described above can be used independently or in combination. The photosensitive resin composition includes (B) (meth) acrylate compounds having an alkylene oxide chain and a dipentaerythritol skeleton and (b1) to (b3) compounds as compounds having an ethylenically unsaturated bond, as well as other compounds. Compounds may also be included.
 その他の化合物としては、少なくとも1個の(メタ)アクリロイル基を有するアクリレート化合物、ウレタン結合を有する(メタ)アクリレート、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、フタル酸系化合物等が挙げられる。中でも、解像度、密着性および剥離時間の観点から、少なくとも2個の(メタ)アクリロイル基を有するアクリレート化合物が好ましい。少なくとも2個の(メタ)アクリロイル基を有するアクリレート化合物は、ジ、トリ、テトラ、ペンタ、ヘキサ(メタ)アクリレート等でよい。例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイドとポリプロピレンオキサイドを両方有するジ(メタ)アクリレート(例えば「FA-023M、FA-024M、FA-027M、製品名、日立化成工業製」)が、柔軟性、解像性、密着性等の観点で好ましい。
 また、4-ノルマルノニルフェノキシオクタエチレングリコールアクリレート、4-ノルマルノニルフェノキシテトラエチレングリコールアクリレート、γ-クロロ-β-ヒドロキシプロピル-β'-メタクリロイルオキシエチル-о-フタレートのようなエチレン性不飽和結合を1個有する化合物を含むと、剥離性や硬化膜柔軟性の観点で好ましく、γ-クロロ-β-ヒドロキシプロピル-β'-メタクリロイルオキシエチル-о-フタレートを含むと感度、解像性、又は密着性の観点でも好ましい。
Other compounds include acrylate compounds having at least one (meth) acryloyl group, (meth) acrylates having urethane bonds, compounds obtained by reacting polyhydric alcohols with α, β-unsaturated carboxylic acids, glycidyl Examples thereof include compounds obtained by reacting a group-containing compound with an α, β-unsaturated carboxylic acid, phthalic acid compounds, and the like. Among them, an acrylate compound having at least two (meth) acryloyl groups is preferable from the viewpoint of resolution, adhesion, and peeling time. The acrylate compound having at least two (meth) acryloyl groups may be di, tri, tetra, penta, hexa (meth) acrylate and the like. For example, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, di (meth) acrylate having both ethylene oxide and polypropylene oxide (for example, “FA-023M, FA-024M, FA-027M, product name, Hitachi "Made by Kasei Kogyo" is preferred from the viewpoints of flexibility, resolution, adhesion and the like.
In addition, ethylenically unsaturated bonds such as 4-normalnonylphenoxyoctaethylene glycol acrylate, 4-normalnonylphenoxytetraethylene glycol acrylate, and γ-chloro-β-hydroxypropyl-β'-methacryloyloxyethyl-о-phthalate When one compound is contained, it is preferable from the viewpoints of peelability and cured film flexibility, and when γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-о-phthalate is contained, sensitivity, resolution, or adhesion is included. From the viewpoint of safety.
 本実施形態では、レジストパターンの密着性を向上させ、かつレジストパターンの硬化不良、現像時間の遅延、コールドフロー若しくはブリードアウト又は硬化レジストの剥離遅延を抑制するというという観点から、感光性樹脂組成物中の全ての(B)エチレン性不飽和結合を有する化合物の総含有量は、好ましくは1質量%~70質量%、より好ましくは2質量%~60質量%、さらに好ましくは4質量%~50質量%の範囲内である。 In the present embodiment, from the viewpoint of improving the adhesion of the resist pattern and suppressing the curing failure of the resist pattern, the development time delay, the cold flow or the bleed out, or the cured resist peeling delay, The total content of all the (B) compounds having an ethylenically unsaturated bond is preferably 1% by mass to 70% by mass, more preferably 2% by mass to 60% by mass, and still more preferably 4% by mass to 50% by mass. It is in the range of mass%.
(C)光重合開始剤
 (C)光重合開始剤は、光によりモノマーを重合させる化合物である。感光性樹脂組成物は、(C)光重合開始剤として本技術分野において一般に知られている化合物を含む。
(C) Photopolymerization initiator (C) The photopolymerization initiator is a compound that polymerizes a monomer by light. The photosensitive resin composition contains (C) a compound generally known in the art as a photopolymerization initiator.
 感光性樹脂組成物中の(C)光重合開始剤の総含有量は、好ましくは0.01~20質量%、より好ましくは0.05質量%~10質量%、さらに好ましくは0.1質量%~7質量%、特に好ましくは0.1質量%~6質量%の範囲内である。(C)光重合開始剤の総含有量は、十分な感度を得るという観点から0.01質量%以上であることが好ましく、レジスト底面まで光を充分に透過させて、良好な高解像性を得るという観点から20質量%以下であることが好ましい。 The total content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and still more preferably 0.1% by mass. % To 7% by mass, particularly preferably in the range of 0.1% to 6% by mass. (C) The total content of the photopolymerization initiator is preferably 0.01% by mass or more from the viewpoint of obtaining sufficient sensitivity, and sufficiently transmits light to the bottom surface of the resist to provide good high resolution. It is preferable that it is 20 mass% or less from a viewpoint of obtaining.
 (C)光重合開始剤としては、キノン類、芳香族ケトン類、アセトフェノン類、アシルフォスフィンオキサイド類、ベンゾイン又はベンゾインエーテル類、ジアルキルケタール類、チオキサントン類、ジアルキルアミノ安息香酸エステル類、オキシムエステル類、アクリジン類(例えば9-フェニルアクリジン、ビスアクリジニルヘプタン、9-(p-メチルフェニル)アクリジン、9-(m-メチルフェニル)アクリジンが感度、解像性、及び密着性の点で好ましい)が挙げられ、更にヘキサアリールビイミダゾール、ピラゾリン化合物、アントラセン化合物(例えば9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジフェニルアントラセンが感度、解像性、及び密着性の点で好ましい)、クマリン化合物(例えば7-ジエチルアミノ-4-メチルクマリンが感度、解像性、及び密着性の点で好ましい)、N-アリールアミノ酸又はそのエステル化合物(例えばN-フェニルグリシンが感度、解像性、及び密着性の点で好ましい)、及びハロゲン化合物(例えばトリブロモメチルフェニルスルホン)などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用されることができる。その他、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、トリフェニルホスフィンオキシド等を用いてもよい。 (C) Photopolymerization initiators include quinones, aromatic ketones, acetophenones, acylphosphine oxides, benzoin or benzoin ethers, dialkyl ketals, thioxanthones, dialkylaminobenzoic acid esters, oxime esters Acridines (for example, 9-phenylacridine, bisacridinylheptane, 9- (p-methylphenyl) acridine, 9- (m-methylphenyl) acridine are preferred in terms of sensitivity, resolution, and adhesion) In addition, hexaarylbiimidazole, pyrazoline compounds, anthracene compounds (for example, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, and 9,10-diphenylanthracene have sensitivity, resolution, and adhesion properties). Preferred), Coumarin Compound (for example, 7-diethylamino-4-methylcoumarin is preferable in terms of sensitivity, resolution, and adhesion), N-aryl amino acid or an ester compound thereof (for example, N-phenylglycine is sensitivity, resolution, and And preferred are halogen compounds (for example, tribromomethylphenylsulfone). These can be used alone or in combination of two or more. In addition, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2,4,6-trimethylbenzoyl -Diphenyl-phosphine oxide, triphenylphosphine oxide, etc. may be used.
 芳香族ケトン類としては、例えば、ベンゾフェノン、ミヒラーズケトン[4,4’-ビス(ジメチルアミノ)ベンゾフェノン]、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノンを挙げることができる。これらは、1種を単独で又は2種以上を組み合わせて使用されることができる。これらの中でも、密着性の観点から、4,4’-ビス(ジエチルアミノ)ベンゾフェノンが好ましい。さらに、透過率の観点から、感光性樹脂組成物中の芳香族ケトン類の含有量は、好ましくは0.01質量%~0.5質量%、さらに好ましくは0.02質量%~0.3質量%の範囲内である。 Examples of aromatic ketones include benzophenone, Michler's ketone [4,4′-bis (dimethylamino) benzophenone], 4,4′-bis (diethylamino) benzophenone, 4-methoxy-4′-dimethylaminobenzophenone. Can do. These can be used alone or in combination of two or more. Among these, 4,4'-bis (diethylamino) benzophenone is preferable from the viewpoint of adhesion. Furthermore, from the viewpoint of transmittance, the content of aromatic ketones in the photosensitive resin composition is preferably 0.01% by mass to 0.5% by mass, more preferably 0.02% by mass to 0.3%. It is in the range of mass%.
 ヘキサアリールビイミダゾールの例としては、2-(o-クロロフェニル)-4,5-ジフェニルビイミダゾール、2,2’,5-トリス-(o-クロロフェニル)-4-(3,4-ジメトキシフェニル)-4’,5’-ジフェニルビイミダゾール、2,4-ビス-(o-クロロフェニル)-5-(3,4-ジメトキシフェニル)-ジフェニルビイミダゾール、2,4,5-トリス-(o-クロロフェニル)-ジフェニルビイミダゾール、2-(o-クロロフェニル)-ビス-4,5-(3,4-ジメトキシフェニル)-ビイミダゾール、2,2’-ビス-(2-フルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3-ジフルオロメチルフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,5-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,6-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,5-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,6-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4,5-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4,6-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4,5-テトラフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4,6-テトラフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、及び2,2’-ビス-(2,3,4,5,6-ペンタフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール等が挙げられ、これらは、1種を単独で又は2種以上を組み合わせて使用されることができる。高感度、解像性及び密着性の観点から、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体が好ましい。 Examples of hexaarylbiimidazole include 2- (o-chlorophenyl) -4,5-diphenylbiimidazole, 2,2 ′, 5-tris- (o-chlorophenyl) -4- (3,4-dimethoxyphenyl) -4 ', 5'-diphenylbiimidazole, 2,4-bis- (o-chlorophenyl) -5- (3,4-dimethoxyphenyl) -diphenylbiimidazole, 2,4,5-tris- (o-chlorophenyl) ) -Diphenylbiimidazole, 2- (o-chlorophenyl) -bis-4,5- (3,4-dimethoxyphenyl) -biimidazole, 2,2′-bis- (2-fluorophenyl) -4,4 ′ , 5,5′-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2′-bis- (2,3-difluoromethylphenyl) -4,4 ′, , 5'-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,4-difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -Biimidazole, 2,2'-bis- (2,5-difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- ( 2,6-difluorophenyl) -4,4 ′, 5,5′-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2′-bis- (2,3,4-trifluorophenyl) -4 , 4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,5-trifluorophenyl) -4,4', 5,5'- Tetrakis- (3-methoxyphenyl -Biimidazole, 2,2'-bis- (2,3,6-trifluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'- Bis- (2,4,5-trifluorophenyl) -4,4 ′, 5,5′-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2′-bis- (2,4,6- Trifluorophenyl) -4,4 ′, 5,5′-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2′-bis- (2,3,4,5-tetrafluorophenyl) -4, 4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4,6-tetrafluorophenyl) -4,4', 5,5 ' -Tetrakis- (3-methoxyphenyl) -biimidazole And 2,2′-bis- (2,3,4,5,6-pentafluorophenyl) -4,4 ′, 5,5′-tetrakis- (3-methoxyphenyl) -biimidazole and the like These can be used singly or in combination of two or more. From the viewpoint of high sensitivity, resolution and adhesion, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer is preferable.
 本実施形態では、感光性樹脂組成物中のヘキサアリールビスイミダゾール化合物の含有量は、感光性樹脂層の剥離特性及び/又は感度を向上させるという観点から、好ましくは0.05質量%~7質量%、より好ましくは0.1質量%~6質量%、さらに好ましくは1質量%~4質量%の範囲内である。 In the present embodiment, the content of the hexaarylbisimidazole compound in the photosensitive resin composition is preferably 0.05% by mass to 7% by mass from the viewpoint of improving the peeling characteristics and / or sensitivity of the photosensitive resin layer. %, More preferably in the range of 0.1% to 6% by weight, and still more preferably in the range of 1% to 4% by weight.
 感光性樹脂層の剥離特性、感度、解像性、又は密着性の観点から、感光性樹脂組成物は、光増感剤としてピラゾリン化合物も含むことが好ましい。 From the viewpoint of the peeling property, sensitivity, resolution, or adhesion of the photosensitive resin layer, the photosensitive resin composition preferably also contains a pyrazoline compound as a photosensitizer.
 ピラゾリン化合物としては、例えば、1-フェニル-3-(4-tert-ブチル-スチリル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-(4-(ベンゾオキサゾール-2-イル)フェニル)-3-(4-tert-ブチル-スチリル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-フェニル-3-(4-ビフェニル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-フェニル-3-(4-ビフェニル)-5-(4-tert-オクチル-フェニル)-ピラゾリン、1-フェニル-3-(4-イソプロピルスチリル)-5-(4-イソプロピルフェニル)-ピラゾリン、1-フェニル-3-(4-メトキシスチリル)-5-(4-メトキシフェニル)-ピラゾリン、1-フェニル-3-(3,5-ジメトキシスチリル)-5-(3,5-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(3,4-ジメトキシスチリル)-5-(3,4-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,6-ジメトキシスチリル)-5-(2,6-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,5-ジメトキシスチリル)-5-(2,5-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,3-ジメトキシスチリル)-5-(2,3-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,4-ジメトキシスチリル)-5-(2,4-ジメトキシフェニル)-ピラゾリン等が上記の観点から好ましく、1-フェニル-3-(4-ビフェニル)-5-(4-tert-ブチル-フェニル)-ピラゾリンがより好ましい。 Examples of the pyrazoline compound include 1-phenyl-3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1- (4- (benzoxazol-2-yl) Phenyl) -3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl- Phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-octyl-phenyl) -pyrazoline, 1-phenyl-3- (4-isopropylstyryl) -5- (4-isopropyl) Phenyl) -pyrazoline, 1-phenyl-3- (4-methoxystyryl) -5- (4-methoxyphenyl) -pyrazoline, 1-phenyl-3 (3,5-dimethoxystyryl) -5- (3,5-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (3,4-dimethoxystyryl) -5- (3,4-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,6-dimethoxystyryl) -5- (2,6-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,5-dimethoxystyryl) -5- (2,5- Dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,3-dimethoxystyryl) -5- (2,3-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,4-dimethoxystyryl) -5 -(2,4-Dimethoxyphenyl) -pyrazoline and the like are preferable from the above viewpoint, and 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl-phenyl) is preferable. Yl) - pyrazoline is more preferable.
 感光性樹脂組成物は、光増感剤として、1種又は2種以上のピラゾリン化合物を含んでよい。 The photosensitive resin composition may contain one or more pyrazoline compounds as a photosensitizer.
 本実施形態では、感光性樹脂組成物中の光増感剤の含有量は、感光性樹脂層の剥離特性及び/又は感度を向上させるという観点から、好ましくは0.05質量%~5質量%、より好ましくは0.1質量%~3質量%の範囲内である。 In the present embodiment, the content of the photosensitizer in the photosensitive resin composition is preferably 0.05% by mass to 5% by mass from the viewpoint of improving the peeling property and / or sensitivity of the photosensitive resin layer. More preferably, it is within the range of 0.1% by mass to 3% by mass.
(D)添加剤
 感光性樹脂組成物は、所望により、染料、可塑剤、酸化防止剤、安定化剤等の添加剤を含んでよい。例えば、特開2013-156369号公報に列挙されている添加剤を使用してよい。
(D) Additive The photosensitive resin composition may contain additives such as dyes, plasticizers, antioxidants, and stabilizers as desired. For example, additives listed in JP2013-156369A may be used.
 着色性、色相安定性及び露光コントラストの観点から、感光性樹脂組成物は、染料として、トリス(4-ジメチルアミノフェニル)メタン[ロイコクリスタルバイオレット]及び/又はダイアモンドグリーン(保土ヶ谷化学株式会社製 アイゼン(登録商標) DIAMOND GREEN GH)を含むことが好ましい。 From the viewpoint of colorability, hue stability, and exposure contrast, the photosensitive resin composition contains tris (4-dimethylaminophenyl) methane [leuco crystal violet] and / or diamond green (Eisen (Hodogaya Chemical Co., Ltd.) as a dye. Registered trademark) DIAMOND GREEN GH).
 本実施形態では、感光性樹脂組成物中の染料の含有量は、好ましくは0.001質量%~3質量%、より好ましくは0.01質量%~2質量%、さらに好ましくは0.02質量%~1質量%の範囲内である。染料の含有量は、良好な着色性を得るという観点から0.001質量%以上であることが好ましく、感光性樹脂層の感度を維持するという観点から3質量%以下であることが好ましい。 In the present embodiment, the content of the dye in the photosensitive resin composition is preferably 0.001% by mass to 3% by mass, more preferably 0.01% by mass to 2% by mass, and still more preferably 0.02% by mass. % To 1% by mass. The content of the dye is preferably 0.001% by mass or more from the viewpoint of obtaining good colorability, and preferably 3% by mass or less from the viewpoint of maintaining the sensitivity of the photosensitive resin layer.
 感光性樹脂組成物の熱安定性又は保存安定性の観点から、感光性樹脂組成物は、安定化剤として、ラジカル重合禁止剤、例えば、ニトロソフェニルヒドロキシアミンアルミニウム塩、p-メトキシフェノール、4-tert-ブチルカテコール、4-エチル-6-tert-ブチルフェノール等;ベンゾトリアゾール類、例えば、1-(2-ジ-n-ブチルアミノメチル)-5-カルボキシルベンゾトリアゾールと1-(2-ジ-n-ブチルアミノメチル)-6-カルボキシルベンゾトリアゾールの1:1混合物等;カルボキシベンゾトリアゾール類、例えば、4-カルボキシ-1,2,3-ベンゾトリアゾール、5-カルボキシ-1,2,3-ベンゾトリアゾール、6-カルボキシ-1,2,3-ベンゾトリアゾール等;及びグリシジル基を有するアルキレンオキサイド化合物、例えば、ネオペンチルグリコールジグリシジルエーテル等;から成る群から選ばれる少なくとも1つを含むことが好ましい。その他、2-メルカプトベンゾイミダゾール、1H-テトラゾール、1-メチル-5-メルカプト-1H-テトラゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-メルカプトトリアゾール、4,5-ジフェニル-1,3-ジアゾール-2-イル、5-アミノ-1H-テトラゾール等を含んでいてもよい。 From the viewpoint of thermal stability or storage stability of the photosensitive resin composition, the photosensitive resin composition is used as a stabilizer, for example, a radical polymerization inhibitor such as a nitrosophenylhydroxyamine aluminum salt, p-methoxyphenol, 4- tert-butylcatechol, 4-ethyl-6-tert-butylphenol and the like; benzotriazoles such as 1- (2-di-n-butylaminomethyl) -5-carboxylbenzotriazole and 1- (2-di-n -Butylaminomethyl) -6-carboxylbenzotriazole 1: 1 mixture, etc .; carboxybenzotriazoles such as 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole 6-carboxy-1,2,3-benzotriazole and the like; and glycidyl Alkylene oxide compound having, for example, neopentyl glycol diglycidyl ether; preferably includes at least one selected from the group consisting of. In addition, 2-mercaptobenzimidazole, 1H-tetrazole, 1-methyl-5-mercapto-1H-tetrazole, 2-amino-5-mercapto-1,3,4-thiadiazole, 3-amino-5-mercapto-1, Including 2,4-triazole, 3-mercapto-1,2,4-triazole, 3-mercaptotriazole, 4,5-diphenyl-1,3-diazol-2-yl, 5-amino-1H-tetrazole and the like May be.
 本実施形態では、感光性樹脂組成物中の全ての安定化剤の総含有量は、好ましくは0.001質量%~3質量%、より好ましくは0.01質量%~1質量%、さらに好ましくは0.05質量%~0.7質量%の範囲内である。安定化剤の総含有量は、感光性樹脂組成物に良好な保存安定性を付与するという観点から0.001質量%以上であることが好ましく、感光性樹脂層の感度を維持するという観点から3質量%以下であることが好ましい。 In the present embodiment, the total content of all stabilizers in the photosensitive resin composition is preferably 0.001% by mass to 3% by mass, more preferably 0.01% by mass to 1% by mass, and still more preferably. Is in the range of 0.05 mass% to 0.7 mass%. The total content of the stabilizer is preferably 0.001% by mass or more from the viewpoint of imparting good storage stability to the photosensitive resin composition, and from the viewpoint of maintaining the sensitivity of the photosensitive resin layer. It is preferable that it is 3 mass% or less.
 上記で説明された添加剤は、1種を単独で又は2種以上を組み合わせて使用されることができる。 The additives described above can be used singly or in combination of two or more.
<感光性樹脂組成物調合液>
 本実施形態では、感光性樹脂組成物に溶媒を添加することにより感光性樹脂組成物調合液を形成することができる。好適な溶媒としては、ケトン類、例えば、メチルエチルケトン(MEK)等;及びアルコール類、例えば、メタノール、エタノール、イソプロピルアルコール等が挙げられる。感光性樹脂組成物調合液の粘度が25℃で500mPa・秒~4000mPa・秒となるように、溶媒を感光性樹脂組成物に添加することが好ましい。
<Photosensitive resin composition preparation solution>
In this embodiment, the photosensitive resin composition preparation liquid can be formed by adding a solvent to the photosensitive resin composition. Suitable solvents include ketones such as methyl ethyl ketone (MEK); and alcohols such as methanol, ethanol, isopropyl alcohol and the like. It is preferable to add a solvent to the photosensitive resin composition so that the viscosity of the photosensitive resin composition preparation liquid is 500 mPa · second to 4000 mPa · second at 25 ° C.
<感光性樹脂積層体>
 本実施形態では、支持体と、支持体上に積層された、上記感光性樹脂組成物から成る感光性樹脂層とを有する感光性樹脂積層体が提供されることができる。感光性樹脂積層体は、所望により、感光性樹脂層の支持体側と反対側に保護層を有していてもよい。
<Photosensitive resin laminate>
In this embodiment, the photosensitive resin laminated body which has a support body and the photosensitive resin layer which consists of the said photosensitive resin composition laminated | stacked on the support body can be provided. If desired, the photosensitive resin laminate may have a protective layer on the side opposite to the support side of the photosensitive resin layer.
 支持体としては、特に限定されるものではないが、露光光源から放射される光を透過する透明なものが好ましい。このような支持体としては、例えば、ポリエチレンテレフタレートフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリ塩化ビニリデンフィルム、塩化ビニリデン共重合フィルム、ポリメタクリル酸メチル共重合体フィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、スチレン共重合体フィルム、ポリアミドフィルム、及びセルロース誘導体フィルムが挙げられる。これらのフィルムは、必要に応じて延伸されていてもよい。ヘーズは、好ましくは0.01%~5.0%、より好ましくは0.01%~2.5%、さらに好ましくは0.01%~1.0%である。フィルムの厚みは、フィルムが薄いほど画像形成性及び経済性の面で有利であるが、強度を維持する必要から、10μm~30μmであることが好ましい。 The support is not particularly limited, but is preferably a transparent one that transmits light emitted from the exposure light source. Examples of such a support include a polyethylene terephthalate film, a polyvinyl alcohol film, a polyvinyl chloride film, a vinyl chloride copolymer film, a polyvinylidene chloride film, a vinylidene chloride copolymer film, a polymethyl methacrylate copolymer film, Examples include polystyrene film, polyacrylonitrile film, styrene copolymer film, polyamide film, and cellulose derivative film. These films may be stretched as necessary. The haze is preferably 0.01% to 5.0%, more preferably 0.01% to 2.5%, and still more preferably 0.01% to 1.0%. The thinner the film, the more advantageous in terms of image formation and economy, but it is preferably 10 μm to 30 μm in order to maintain the strength.
 また、感光性樹脂積層体に用いられる保護層の重要な特性は、感光性樹脂層との密着力について、支持体よりも保護層の方が小さく、容易に剥離できることである。保護層としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等が好ましい。例えば、特開昭59-202457号公報に記載された剥離性の優れたフィルムを用いることができる。保護層の膜厚は、10μm~100μmが好ましく、10μm~50μmがより好ましい。 Also, an important characteristic of the protective layer used in the photosensitive resin laminate is that the protective layer is smaller than the support in terms of adhesion to the photosensitive resin layer and can be easily peeled off. As a protective layer, a polyethylene film, a polypropylene film, etc. are preferable, for example. For example, a film having excellent peelability described in JP-A-59-202457 can be used. The thickness of the protective layer is preferably 10 μm to 100 μm, more preferably 10 μm to 50 μm.
 本実施形態では、感光性樹脂積層体における感光性樹脂層の厚みは、好ましくは5μm~100μm、より好ましくは7μm~60μmである。感光性樹脂層の厚みは、小さいほどレジストパターンの解像性が向上し、一方で、大きいほど硬化膜の強度が向上するので、用途に応じて選択されることができる。 In the present embodiment, the thickness of the photosensitive resin layer in the photosensitive resin laminate is preferably 5 μm to 100 μm, more preferably 7 μm to 60 μm. As the thickness of the photosensitive resin layer is smaller, the resolution of the resist pattern is improved. On the other hand, the larger the thickness is, the more the strength of the cured film is improved.
 支持体、感光性樹脂層、及び所望により、保護層を順次積層して、感光性樹脂積層体を作製する方法としては、既知の方法を使用してよい。 As a method for preparing a photosensitive resin laminate by sequentially laminating a support, a photosensitive resin layer, and if desired, a protective layer, a known method may be used.
 例えば、上記感光性樹脂組成物調合液を調製し、次に支持体上にバーコーター又はロールコーターを用いて塗布して乾燥させ、支持体上に感光性樹脂組成物調合液から成る感光性樹脂層を積層する。さらに、所望により、感光性樹脂層上に保護層を積層することにより感光性樹脂積層体を作製することができる。 For example, the photosensitive resin composition preparation liquid is prepared, and then coated on the support using a bar coater or a roll coater and dried, and the photosensitive resin comprising the photosensitive resin composition preparation liquid on the support. Laminate the layers. Furthermore, if desired, a photosensitive resin laminate can be produced by laminating a protective layer on the photosensitive resin layer.
<レジストパターン形成方法>
 レジストパターンの形成方法は、支持体に上述の感光性樹脂組成物から成る感光性樹脂層を積層するラミネート工程、感光性樹脂層を露光する露光工程、及び露光された感光性樹脂層を現像する現像工程を、好ましくはこの順に、含む。本実施形態においてレジストパターンを形成する具体的な方法の一例を以下に示す。
<Resist pattern formation method>
The resist pattern is formed by laminating a photosensitive resin layer composed of the above-described photosensitive resin composition on a support, an exposure step of exposing the photosensitive resin layer, and developing the exposed photosensitive resin layer. Development steps are preferably included in this order. An example of a specific method for forming a resist pattern in the present embodiment is shown below.
 先ず、ラミネート工程において、ラミネーターを用いて基板上に感光性樹脂層を形成する。具体的には、感光性樹脂積層体が保護層を有する場合には保護層を剥離した後、ラミネーターで感光性樹脂層を基板表面に加熱圧着しラミネートする。基板の材料としては、例えば、銅、ステンレス鋼(SUS)、ガラス、酸化インジウムスズ(ITO)等が挙げられる。 First, in a laminating process, a photosensitive resin layer is formed on a substrate using a laminator. Specifically, when the photosensitive resin laminate has a protective layer, the protective layer is peeled off, and then the photosensitive resin layer is heat-pressed and laminated on the substrate surface with a laminator. Examples of the material of the substrate include copper, stainless steel (SUS), glass, indium tin oxide (ITO), and the like.
 本実施形態では、感光性樹脂層は基板表面の片面だけにラミネートするか、又は必要に応じて両面にラミネートしてもよい。ラミネート時の加熱温度は一般的に40℃~160℃である。また、ラミネート時の加熱圧着を2回以上行うことにより、得られるレジストパターンの基板に対する密着性を向上させることができる。加熱圧着時には、二連のロールを備えた二段式ラミネーターを使用するか、又は基板と感光性樹脂層との積層物を数回繰り返してロールに通すことにより圧着してもよい。 In this embodiment, the photosensitive resin layer may be laminated on only one surface of the substrate surface, or may be laminated on both surfaces as necessary. The heating temperature during lamination is generally 40 ° C to 160 ° C. Moreover, the adhesiveness with respect to the board | substrate of the resist pattern obtained can be improved by performing the thermocompression bonding at the time of lamination twice or more. At the time of thermocompression bonding, a two-stage laminator provided with two rolls may be used, or the lamination of the substrate and the photosensitive resin layer may be repeated several times and passed through the roll.
 次に、露光工程において、露光機を用いて感光性樹脂組層を活性光に露光する。露光は、所望により、支持体を剥離した後に行うことができる。フォトマスクを通して露光する場合には、露光量は、光源照度及び露光時間により決定され、光量計を用いて測定してもよい。露光工程では、ダイレクトイメージング露光を行なってもよい。ダイレクトイメージング露光においてはフォトマスクを使用せず基板上に直接描画装置によって露光する。光源としては波長350nm~410nmの半導体レーザー又は超高圧水銀灯が用いられる。描画パターンがコンピューターによって制御される場合、露光量は、露光光源の照度及び基板の移動速度によって決定される。フォトマスクの像をレンズを通して投影させることによる露光を行ってもよい。 Next, in the exposure step, the photosensitive resin assembly layer is exposed to active light using an exposure machine. The exposure can be performed after peeling the support, if desired. In the case of exposing through a photomask, the exposure amount is determined by the light source illuminance and the exposure time, and may be measured using a light meter. In the exposure step, direct imaging exposure may be performed. In direct imaging exposure, exposure is performed directly on a substrate by a drawing apparatus without using a photomask. As the light source, a semiconductor laser having a wavelength of 350 nm to 410 nm or an ultrahigh pressure mercury lamp is used. When the drawing pattern is controlled by a computer, the exposure amount is determined by the illuminance of the exposure light source and the moving speed of the substrate. You may perform exposure by projecting the image of a photomask through a lens.
 次に、現像工程において、露光後の感光性樹脂層における未露光部又は露光部を、現像装置を用いて現像液により除去する。露光後、感光性樹脂層上に支持体がある場合には、これを除く。続いてアルカリ水溶液から成る現像液を用いて、未露光部又は露光部を現像除去し、レジスト画像を得る。 Next, in the development step, the unexposed or exposed portion of the exposed photosensitive resin layer is removed with a developer using a developing device. If there is a support on the photosensitive resin layer after exposure, this is excluded. Subsequently, an unexposed portion or an exposed portion is developed and removed using a developer composed of an alkaline aqueous solution to obtain a resist image.
 アルカリ水溶液としては、NaCO、KCO等の水溶液が好ましい。アルカリ水溶液は、感光性樹脂層の特性に合わせて選択されるが、0.2質量%~2質量%の濃度のNaCO水溶液が一般的に使用される。アルカリ水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混ぜてもよい。現像工程における現像液の温度は、20℃~40℃の範囲内で一定に保たれることが好ましい。 As the alkaline aqueous solution, an aqueous solution of Na 2 CO 3 , K 2 CO 3 or the like is preferable. The alkaline aqueous solution is selected according to the characteristics of the photosensitive resin layer, and an aqueous Na 2 CO 3 solution having a concentration of 0.2% by mass to 2% by mass is generally used. In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed. The temperature of the developer in the development process is preferably kept constant within a range of 20 ° C. to 40 ° C.
 上記の工程によってレジストパターンが得られるが、所望により、さらに100℃~300℃で加熱工程を行うこともできる。この加熱工程を実施することにより、レジストパターンの耐薬品性を向上させることができる。加熱工程には、熱風、赤外線、又は遠赤外線を用いる方式の加熱炉を用いることができる。 Although a resist pattern is obtained by the above process, a heating process can be further performed at 100 ° C. to 300 ° C. if desired. By performing this heating step, the chemical resistance of the resist pattern can be improved. A heating furnace using hot air, infrared rays, or far infrared rays can be used for the heating step.
 本実施形態の感光性樹脂組成物は、プリント基板の回路を形成するために好適に使用されることができる。一般に、プリント基板の回路形成方法としては、サブトラクティブプロセス及びセミアディティブプロセス(SAP)が使用される。 The photosensitive resin composition of the present embodiment can be suitably used for forming a printed circuit board. In general, a subtractive process and a semi-additive process (SAP) are used as a circuit formation method for a printed circuit board.
 サブトラクティブプロセスは、基板全面に配置された導体からエッチングで非回路部分のみを除去して、回路を形成する方法である。
 SAPは、基板全面に配置された導体シード層上の非回路部分にレジストを形成してから、回路部分のみをめっきで形成する方法である。
 本実施形態では、感光性樹脂組成物はSAPのために使用されることがより好ましい。
The subtractive process is a method of forming a circuit by removing only a non-circuit portion from a conductor disposed on the entire surface of a substrate by etching.
SAP is a method in which a resist is formed on a non-circuit portion on a conductor seed layer disposed on the entire surface of a substrate, and then only a circuit portion is formed by plating.
In the present embodiment, the photosensitive resin composition is more preferably used for SAP.
<感光性樹脂組成物の硬化物>
 本実施形態では、感光性樹脂組成物の硬化物の伸度が、レジストパターンの柔軟性を改善するために、1mm以上であることが好ましく、2mm以上であることがより好ましく、3mm以上であることがさらに好ましい。
<Hardened product of photosensitive resin composition>
In this embodiment, the elongation of the cured product of the photosensitive resin composition is preferably 1 mm or more, more preferably 2 mm or more, and more preferably 3 mm or more in order to improve the flexibility of the resist pattern. More preferably.
 硬化物の伸度は、感光性樹脂組成物を用いて作製した感光性樹脂積層体を5mm×40mmの長方形のマスクを通して露光し、さらに最小現像時間の2倍の時間で現像し、得られた硬化レジストを引っ張り試験機(オリエンテック(株)社製、RTM-500)にて100mm/minの速度にて引っ張ることにより測定される。 The degree of elongation of the cured product was obtained by exposing the photosensitive resin laminate produced using the photosensitive resin composition through a rectangular mask of 5 mm × 40 mm, and developing the photosensitive resin laminate in a time twice as long as the minimum development time. It is measured by pulling the cured resist with a tensile tester (Orientec Co., Ltd., RTM-500) at a speed of 100 mm / min.
 本実施形態では、感光性樹脂組成物の硬化物のヤングモジュラスが、レジストパターンの解像性と柔軟性の観点から、1.5Gpa以上かつ8GPa未満の範囲内であることが好ましい。本明細書中、「ヤングモジュラス」は、株式会社東洋テクニカ製ナノインデンターDCMを用いてナノインデンテーション法で測定できる。具体的には、「ヤングモジュラス」は、測定対象樹脂組成物を基板にラミネートし、露光し、現像した基板上の感光性樹脂組成物表面を、株式会社東洋テクニカ製ナノインデンターDCMを用いて測定する。測定のメソッドとしては、DCM Basic Hardness, Modulus,Tip Cal,Load Control.msm(マルチロード・アンロード・メソッド,MultiLoad Method)を用い、押し込み試験のパラメータは、Percent To Unload=90%、Maximum Load=1gf、Load Rate Multiple For Unload Rate=1、Number Of Times to Load=5、Peak Hold time=10s、Time To Load=15s、Poisson's ratio=0.25とした。ヤングモジュラスは、「Modulas At Max Load」の値とした。 In this embodiment, the Young modulus of the cured product of the photosensitive resin composition is preferably in the range of 1.5 GPa or more and less than 8 GPa from the viewpoint of resolution and flexibility of the resist pattern. In the present specification, “Young Modulus” can be measured by a nanoindentation method using a nanoindenter DCM manufactured by Toyo Technica Co., Ltd. Specifically, “Young Modulus” is a method of laminating a resin composition to be measured on a substrate, exposing and developing the surface of the photosensitive resin composition on the substrate using Nanoindenter DCM manufactured by Toyo Technica Co., Ltd. taking measurement. Measurement methods include DCM Basic Hardness, Modulus, Tip Cal, Load Control. Using msm (multiload / unload method, MultiLoad Method), indentation test parameters are Percent 、 To Unload = 90%, Maximum Load = 1gf, Load Rate Multiple For Unload Rate = 1, Number Of Times to Load = 5 Peak Hold time = 10 s, Time To Load = 15 s, Poisson's ratio = 0.25. The Young's modulus was the value of “Modulas At Max Load”.
<導体パターンの製造方法>
 導体パターンの製造方法は、金属板、金属皮膜絶縁板等の基板に上述の感光性樹脂組成物から成る感光性樹脂層を積層するラミネート工程、感光性樹脂層を露光する露光工程、露光された感光性樹脂層の未露光部又は露光部を現像液で除去することによって、レジストパターンが形成された基板を得る現像工程、及びレジストパターンが形成された基板をエッチング又はめっきする導体パターン形成工程を、好ましくはこの順に、含む。
<Conductor pattern manufacturing method>
The method for producing a conductor pattern includes a lamination step of laminating a photosensitive resin layer composed of the above-described photosensitive resin composition on a substrate such as a metal plate or a metal film insulating plate, an exposure step of exposing the photosensitive resin layer, and an exposure step. A developing step for obtaining a substrate on which a resist pattern is formed by removing an unexposed portion or an exposed portion of the photosensitive resin layer with a developer, and a conductor pattern forming step for etching or plating the substrate on which the resist pattern is formed. , Preferably in this order.
 本実施形態では、導体パターンの製造方法は、基板として金属板又は金属皮膜絶縁板を用い、上述のレジストパターン形成方法によってレジストパターンを形成した後に、導体パターン形成工程を経ることにより行われる。導体パターン形成工程においては、現像により露出した基板表面(例えば、銅面)に既知のエッチング法又はめっき法を用いて導体パターンを形成する。 In this embodiment, the conductor pattern manufacturing method is performed by using a metal plate or a metal film insulating plate as a substrate, forming a resist pattern by the above-described resist pattern forming method, and then performing a conductor pattern forming step. In the conductor pattern forming step, a conductor pattern is formed on a substrate surface (for example, a copper surface) exposed by development using a known etching method or plating method.
 さらに、本発明は、例えば、以下の用途において好適に適用される。 Furthermore, the present invention is preferably applied in the following applications, for example.
<配線板の製造方法>
 導体パターンの製造方法により導体パターンを製造した後に、レジストパターンを、現像液よりも強いアルカリ性を有する水溶液により基板から剥離する剥離工程を更に行うことにより、所望の配線パターンを有する配線板(例えば、プリント配線板)を得ることができる。
<Manufacturing method of wiring board>
After the conductor pattern is produced by the conductor pattern production method, the resist pattern is further separated from the substrate with an aqueous solution having alkalinity stronger than that of the developer, whereby a wiring board having a desired wiring pattern (for example, Printed wiring board).
 配線板の製造においては、基板として、絶縁樹脂層と銅層の積層体、又はフレキシブル基板を用いる。SAPを行うためには、絶縁樹脂層と銅層の積層体を用いることが好ましい。SAPについては、銅層は、触媒としてパラジウムを含む無電解銅めっき層であることが好ましい。SAPについては、導体パターン形成工程が、既知のめっき法により行われることも好ましい。モディファイドセミアディティブプロセス(MSAP)を行うためには、基板は、絶縁樹脂層と銅箔の積層体であることが好ましく、銅張積層板であることがより好ましい。 In the production of wiring boards, a laminate of an insulating resin layer and a copper layer or a flexible substrate is used as a substrate. In order to perform SAP, it is preferable to use a laminate of an insulating resin layer and a copper layer. For SAP, the copper layer is preferably an electroless copper plating layer containing palladium as a catalyst. For SAP, it is also preferable that the conductor pattern forming step is performed by a known plating method. In order to perform the modified semi-additive process (MSAP), the substrate is preferably a laminate of an insulating resin layer and a copper foil, and more preferably a copper-clad laminate.
 剥離用のアルカリ水溶液(以下、「剥離液」ともいう)については、特に制限されるものではないが、2質量%~5質量%の濃度のNaOH又はKOHの水溶液、もしくは有機アミン系剥離液が一般に用いられる。剥離液には少量の水溶性溶媒を加えてよい。水溶性溶媒としては、例えば、アルコール等が挙げられる。剥離工程における剥離液の温度は、40℃~70℃の範囲内であることが好ましい。
 SAPを行うためには、配線板の製造方法は、得られた配線板からパラジウムを除去する工程をさらに含むことが好ましい。
The alkaline aqueous solution for stripping (hereinafter, also referred to as “stripping solution”) is not particularly limited, but an aqueous solution of NaOH or KOH having a concentration of 2% by mass to 5% by mass, or an organic amine-based stripping solution is used. Generally used. A small amount of a water-soluble solvent may be added to the stripping solution. As a water-soluble solvent, alcohol etc. are mentioned, for example. The temperature of the stripping solution in the stripping step is preferably within the range of 40 ° C to 70 ° C.
In order to perform SAP, it is preferable that the manufacturing method of a wiring board further includes the process of removing palladium from the obtained wiring board.
<リードフレームの製造>
 基板として銅、銅合金、又は鉄系合金等の金属板を用いて、レジストパターン形成方法によってレジストパターンを形成した後に、以下の工程を経ることにより、リードフレームを製造できる。先ず、現像により露出した基板をエッチングして導体パターンを形成する工程を行う。その後、配線板の製造方法と同様の方法でレジストパターンを剥離する剥離工程を行って、所望のリードフレームを得ることができる。
<Manufacture of lead frames>
A lead frame can be manufactured by forming a resist pattern by a resist pattern forming method using a metal plate such as copper, copper alloy, or iron-based alloy as a substrate, and then performing the following steps. First, a step of etching the substrate exposed by development to form a conductor pattern is performed. Thereafter, a desired lead frame can be obtained by performing a peeling process for peeling the resist pattern by a method similar to the method for manufacturing a wiring board.
<凹凸パターンを有する基材の製造>
 レジストパターン形成方法により形成されるレジストパターンは、サンドブラスト工法により基板に加工を施す時の保護マスク部材として使用することができる。この場合、基板としては、例えば、ガラス、シリコンウエハー、アモルファスシリコン、多結晶シリコン、セラミック、サファイア、金属材料等が挙げられる。これらの基板上に、レジストパターン形成方法と同様の方法によって、レジストパターンを形成する。その後、形成されたレジストパターン上からブラスト材を吹き付けて、目的の深さに切削するサンドブラスト処理工程、及び基板上に残存したレジストパターン部分をアルカリ剥離液等で基板から除去する剥離工程を行って、基板上に微細な凹凸パターンを有する基材を製造できる。
<Manufacture of a substrate having an uneven pattern>
The resist pattern formed by the resist pattern forming method can be used as a protective mask member when processing the substrate by the sandblasting method. In this case, examples of the substrate include glass, silicon wafer, amorphous silicon, polycrystalline silicon, ceramic, sapphire, and metal material. A resist pattern is formed on these substrates by the same method as the resist pattern forming method. Thereafter, a blasting material is sprayed from the formed resist pattern to cut to a desired depth, and a resist pattern remaining on the substrate is removed from the substrate with an alkali stripping solution or the like. The base material which has a fine uneven | corrugated pattern on a board | substrate can be manufactured.
 サンドブラスト処理工程では、公知のブラスト材を使用してよいが、例えば、SiC、SiO、Al、CaCO、ZrO、ガラス、ステンレス等を含む粒径2μm~100μmの微粒子が一般に使用される。 In the sandblasting process, a known blasting material may be used. For example, fine particles having a particle diameter of 2 μm to 100 μm including SiC, SiO 2 , Al 2 O 3 , CaCO 3 , ZrO, glass, stainless steel and the like are generally used. The
<半導体パッケージの製造>
 基板として大規模集積化回路(LSI)の形成が終了したウエハを用いて、レジストパターン形成方法によりウエハにレジストパターンを形成した後に、以下の工程を経ることによって、半導体パッケージを製造することができる。先ず、現像により露出した開口部に銅、はんだ等の柱状めっきを施して、導体パターンを形成する工程を行う。その後、配線板の製造方法と同様の方法でレジストパターンを剥離する剥離工程を行って、更に、柱状めっき以外の部分の薄い金属層をエッチングにより除去する工程を行うことにより、所望の半導体パッケージを得ることができる。
<Manufacture of semiconductor packages>
A semiconductor package can be manufactured by forming a resist pattern on a wafer by a resist pattern forming method using a wafer on which a large-scale integrated circuit (LSI) has been formed as a substrate, and then performing the following steps. . First, a step of forming a conductor pattern by performing columnar plating such as copper or solder on the opening exposed by development is performed. Thereafter, a peeling process for peeling the resist pattern is performed by a method similar to the method for manufacturing the wiring board, and further, a thin metal layer other than the columnar plating is removed by etching, thereby obtaining a desired semiconductor package. Obtainable.
 本実施形態では、感光性樹脂組成物は、プリント配線板の製造;ICチップ搭載用リードフレーム製造;メタルマスク製造等の金属箔精密加工;ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等のパッケージの製造;チップ・オン・フィルム(COF)、テープオートメイテッドボンディング(TAB)等のテープ基板の製造;半導体バンプの製造;及びITO電極、アドレス電極、電磁波シールド等のフラットパネルディスプレイの隔壁の製造に利用されることができる。
 なお、上述した各パラメータの値については特に断りのない限り、後述する実施例での測定方法に準じて測定される。
In the present embodiment, the photosensitive resin composition is used for the manufacture of printed wiring boards; the manufacture of lead frames for mounting IC chips; the precision processing of metal foils such as the manufacture of metal masks; ball grid arrays (BGA), chip sizes and packages. Manufacturing of packages such as (CSP); Manufacturing of tape substrates such as chip-on-film (COF) and tape automated bonding (TAB); Manufacturing of semiconductor bumps; and flat panels such as ITO electrodes, address electrodes, and electromagnetic wave shields It can be used for manufacturing a partition of a display.
In addition, unless otherwise indicated, the value of each parameter mentioned above is measured according to the measuring method in the Example mentioned later.
 高分子の物性値の測定、高分子のガラス転移温度の計算、並びに実施例及び比較例の評価用サンプルの作製方法を説明し、次いで、得られたサンプルについての評価方法及びその評価結果を示す。 Measurement of polymer physical properties, calculation of polymer glass transition temperature, and method for preparing samples for evaluation of Examples and Comparative Examples will be described, and then an evaluation method for the obtained samples and the evaluation results will be shown. .
(1)物性値の測定又は計算
<高分子の重量平均分子量又は数平均分子量の測定>
 高分子の重量平均分子量又は数平均分子量は、日本分光(株)製ゲルパーミエーションクロマトグラフィー(GPC)(ポンプ:Gulliver、PU-1580型、カラム:昭和電工(株)製Shodex(登録商標)(KF-807、KF-806M、KF-806M、KF-802.5)4本直列、移動層溶媒:テトラヒドロフラン、ポリスチレン標準サンプル(昭和電工(株)製Shodex STANDARD SM-105)による検量線使用)によりポリスチレン換算として求めた。
 さらに、高分子の分散度は、数平均分子量に対する重量平均分子量の比(重量平均分子量/数平均分子量)として算出された。
(1) Measurement or calculation of physical properties <Measurement of weight average molecular weight or number average molecular weight of polymer>
The weight average molecular weight or number average molecular weight of the polymer is determined by gel permeation chromatography (GPC) manufactured by JASCO Corporation (pump: Gulliver, PU-1580 type, column: Shodex (registered trademark) manufactured by Showa Denko KK). KF-807, KF-806M, KF-806M, KF-802.5) in series, moving bed solvent: tetrahydrofuran, polystyrene standard sample (use of calibration curve with Shodex STANDARD SM-105 manufactured by Showa Denko KK) It calculated | required as polystyrene conversion.
Furthermore, the degree of dispersion of the polymer was calculated as the ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight / number average molecular weight).
<酸当量>
 本明細書において、酸当量とは、分子中に1当量のカルボキシル基を有する重合体の質量(グラム)を意味する。平沼産業(株)製平沼自動滴定装置(COM-555)を使用し、0.1mol/Lの水酸化ナトリウム水溶液を用いて電位差滴定法により酸当量を測定した。
<Acid equivalent>
In this specification, an acid equivalent means the mass (gram) of the polymer which has a 1 equivalent carboxyl group in a molecule | numerator. Hiranuma Sangyo Co., Ltd. Hiranuma automatic titrator (COM-555) was used, and the acid equivalent was measured by potentiometric titration using a 0.1 mol / L aqueous sodium hydroxide solution.
<ガラス転移温度>
 アルカリ可溶性高分子のガラス転移温度は、下記式(Fox式):
Figure JPOXMLDOC01-appb-M000008
{式中、Wは、アルカリ可溶性高分子を構成するコモノマーそれぞれの質量であり、
   Tgは、アルカリ可溶性高分子を構成するコモノマーのそれぞれがホモポリマーであった場合のガラス転移温度であり、
  Wtotalは、アルカリ可溶性高分子の合計質量であり、そして
     nは、アルカリ可溶性高分子を構成するコモノマーの種類の数である。}
に従って求められる値である。
 ここで、ガラス転移温度Tgを求める際には、対応するアルカリ可溶性高分子を形成するコモノマーから成るホモポリマーのガラス転移温度として、Brandrup,J. Immergut, E. H.編集「Polymer handbook, Third edition, John wiley & sons, 1989, p.209 Chapter VI 『Glass transition temperatures of polymers』」に示される値を使用するものとする。なお、実施例において計算に用いた各コモノマーから成るホモポリマーのTgを表1に示す。
<Glass transition temperature>
The glass transition temperature of the alkali-soluble polymer has the following formula (Fox formula):
Figure JPOXMLDOC01-appb-M000008
{Wherein, W i is the respective mass comonomers constituting the alkali-soluble polymer,
Tg i is the glass transition temperature when the respective comonomers constituting the alkali-soluble polymer is a homopolymer,
W total is the total mass of the alkali-soluble polymer, and n is the number of comonomer types constituting the alkali-soluble polymer. }
Is the value obtained according to
Here, when obtaining the glass transition temperature Tg i is the glass transition temperature of the homopolymer consisting of comonomers to form the corresponding alkali-soluble polymer, Brandrup, J. Immergut, E .; H. The value shown in the edit “Polymer handbook, Third edition, John Wiley & Sons, 1989, p. 209 Chapter VI“ Glass transition temperatures of polymers ”is used. Incidentally, showing the Tg i homopolymer made from each comonomer used in the calculation in the embodiment shown in Table 1.
<(B)エチレン性不飽和結合を有する化合物の重量平均分子量>
 実施例I-1~I-16及び比較例I-1~I-3では、(B)エチレン性不飽和結合を有する化合物の分子構造から計算することで分子量を求めた。複数種類の(B)エチレン性不飽和結合を有する化合物が存在する場合は、各化合物の分子量を含有量で加重平均することにより求めた。
 また、実施例II-1~II-6及び比較例II-1~II-5では、エチレン性不飽和結合を有する化合物の重量平均分子量は、日本分光(株)製ゲルパーミエーションクロマトグラフィー(GPC)(ポンプ:Gulliver、PU-1580型、カラム:昭和電工(株)製Shodex(登録商標)(K-801、K-801、K-802、KF-802.5)4本直列、移動層溶媒:テトラヒドロフラン、ポリスチレン標準サンプル(東ソー株式会社製TSK standard POLYSTYRENE)による検量線使用)によりポリスチレン換算として求めた。
<(B) Weight average molecular weight of the compound having an ethylenically unsaturated bond>
In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, the molecular weight was determined by calculating from the molecular structure of the compound (B) having an ethylenically unsaturated bond. When a compound having a plurality of types of (B) ethylenically unsaturated bonds was present, the molecular weight of each compound was determined by weighted averaging with the content.
In Examples II-1 to II-6 and Comparative Examples II-1 to II-5, the weight average molecular weight of the compound having an ethylenically unsaturated bond was determined by gel permeation chromatography (GPC) manufactured by JASCO Corporation. (Pump: Gulliver, PU-1580 type, Column: Shodex (registered trademark) (K-801, K-801, K-802, KF-802.5) manufactured by Showa Denko KK, in series, moving bed solvent : Tetrahydrofuran, polystyrene standard sample (use of calibration curve by TSK standard POLYSTYRENE manufactured by Tosoh Corporation) was determined as polystyrene conversion.
<(B)エチレン性不飽和結合を有する化合物中におけるメタクリロイル基の濃度>
 (B)エチレン性不飽和結合を有する化合物100gに対するメタクリロイル基のモル数を計算により求めた。
<(B) Concentration of methacryloyl group in compound having ethylenically unsaturated bond>
(B) The number of moles of methacryloyl group relative to 100 g of the compound having an ethylenically unsaturated bond was determined by calculation.
<B)エチレン性不飽和結合を有する化合物中におけるエチレンオキサイド(EO)ユニットの濃度>
 (B)エチレン性不飽和結合を有する化合物100gに対するエチレンオキサイド(EO)ユニットのモル数を計算により求めた。
<B) Concentration of ethylene oxide (EO) unit in compound having ethylenically unsaturated bond>
(B) The number of moles of ethylene oxide (EO) unit relative to 100 g of the compound having an ethylenically unsaturated bond was determined by calculation.
(2)評価用サンプルの作製方法
 評価用サンプルは以下のように作製した。
(2) Preparation method of evaluation sample The evaluation sample was prepared as follows.
<感光性樹脂積層体の作製>
 下記表2~5に示す成分(但し、各成分の数字は固形分としての配合量(質量部)を示す。)及び溶媒を十分に攪拌、混合して、感光性樹脂組成物調合液を得た。表2及び4中に略号で表した成分の名称を、それぞれ下記表3及び5に示す。支持フィルムとして16μm厚のポリエチレンテレフタラートフィルム(東レ(株)製、FB-40)を用い、その表面にバーコーターを用いて、この調合液を均一に塗布し、95℃の乾燥機中で2.5分間乾燥して、感光性樹脂組成物層を形成した。感光性樹脂組成物層の乾燥厚みは25μmであった。
<Preparation of photosensitive resin laminate>
The components shown in the following Tables 2 to 5 (however, the numbers of each component indicate the blending amount (parts by mass) as solid content) and the solvent are sufficiently stirred and mixed to obtain a photosensitive resin composition preparation solution. It was. The names of the components represented by abbreviations in Tables 2 and 4 are shown in Tables 3 and 5 below, respectively. A 16 μm-thick polyethylene terephthalate film (FB-40, manufactured by Toray Industries, Inc.) was used as a support film, and this mixture was uniformly applied to the surface using a bar coater. Dry for 5 minutes to form a photosensitive resin composition layer. The dry thickness of the photosensitive resin composition layer was 25 μm.
 次いで、感光性樹脂組成物層のポリエチレンテレフタラートフィルムを積層していない側の表面上に、保護層として19μm厚のポリエチレンフィルム(タマポリ(株)製、GF-818)を貼り合わせて感光性樹脂積層体を得た。 Next, a 19 μm-thick polyethylene film (manufactured by Tamapoly Co., Ltd., GF-818) was bonded as a protective layer on the surface of the photosensitive resin composition layer on which the polyethylene terephthalate film was not laminated. A laminate was obtained.
<基板整面>
 実施例I-1~I-16及び比較例I-1~I-3では、感度、画像性、密着性及び耐薬液性の評価基板として、35μm圧延銅箔を積層した0.4mm厚の銅張積層板をソフトエッチング剤(菱江化学(株)製、CPE-900)で処理して、10質量%HSOで基板表面を洗浄した。
 また、実施例II-1~II-6及び比較例II-1~II-5では、研削材(日本カーリット(株)製、サクランダムR(登録商標#220))を用いて、35μm圧延銅箔を積層した0.4mm厚の銅張積層板をスプレー圧0.2MPaでジェットスクラブ研磨することにより、評価用基板を作製した。
<Board surface preparation>
In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, 0.4 mm-thick copper laminated with 35 μm-rolled copper foil was used as an evaluation substrate for sensitivity, image quality, adhesion, and chemical resistance. The tension laminate was treated with a soft etching agent (CPE-900, manufactured by Hishoe Chemical Co., Ltd.), and the substrate surface was washed with 10 mass% H 2 SO 4 .
In Examples II-1 to II-6 and Comparative Examples II-1 to II-5, 35 μm-rolled copper was used by using an abrasive (Nippon Carlit Co., Ltd., Sac Random R (registered trademark # 220)). A 0.4 mm thick copper clad laminate on which the foil was laminated was jet scrubbed at a spray pressure of 0.2 MPa to produce a substrate for evaluation.
<ラミネート>
 感光性樹脂積層体のポリエチレンフィルムを剥がしながら、整面して60℃に予熱した銅張積層板に、ホットロールラミネーター(旭化成(株)社製、AL-700)により、感光性樹脂積層体をロール温度105℃でラミネートして試験片を得た。エアー圧は0.35MPaとし、ラミネート速度は1.5m/分とした。
<Laminate>
Using a hot roll laminator (ALA-700, manufactured by Asahi Kasei Co., Ltd.), the photosensitive resin laminate was applied to a copper clad laminate that had been leveled and preheated to 60 ° C. while peeling the polyethylene film of the photosensitive resin laminate. A test piece was obtained by laminating at a roll temperature of 105 ° C. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
<露光>
 実施例I-1~I-16及び比較例I-1~I-3では、直接描画露光機(日立ビアメカニクス(株)製、DE-1DH、光源:GaN青紫ダイオード、主波長405±5nm)により、ストーファー41段ステップタブレット又は所定のダイレクトイメージング(DI)露光用のマスクパターンを用いて、照度85mW/cmの条件下で露光した。露光は、前記ストーファー41段ステップタブレットをマスクとして露光、現像したときの最高残膜段数が15段となる露光量で行った。
 また、実施例II-1~II-6及び比較例II-1~II-5では、クロムガラスマスクを用いて、平行光露光機((株)オーク製作所社製、HMW―801)により、表4に示す露光量で露光を行った。
<Exposure>
In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, a direct drawing exposure machine (manufactured by Hitachi Via Mechanics, DE-1DH, light source: GaN blue-violet diode, main wavelength 405 ± 5 nm) Then, using a stove 41 step tablet or a predetermined mask pattern for direct imaging (DI) exposure, exposure was performed under the condition of illuminance of 85 mW / cm 2 . The exposure was performed with an exposure amount at which the maximum number of remaining film steps when the exposure and development were performed using the stove 41 step tablet as a mask was 15.
Further, in Examples II-1 to II-6 and Comparative Examples II-1 to II-5, using a chrome glass mask, a parallel light exposure machine (HMW-801, manufactured by Oak Manufacturing Co., Ltd.) was used. The exposure was performed with the exposure amount shown in FIG.
<現像>
 実施例I-1~I-16及び比較例I-1~I-3では、露光した評価基板のポリエチレンテレフタラートフィルムを剥離した後、アルカリ現像機(フジ機工製、ドライフィルム用現像機)を用いて30℃の1質量%NaCO水溶液を所定時間スプレーし、感光性樹脂層の未露光部分を溶解除去した。この際、最小現像時間の2倍の時間に亘って現像し、硬化レジストパターンを作製した。なお、最小現像時間とは、未露光部分の感光性樹脂層が完全に溶解するのに要する最も少ない時間をいう。
 また、実施例II-1~II-6及び比較例II-1~II-5では、感光性樹脂積層体からポリエチレンテレフタレートフィルムを剥離した後、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて、現像スプレー圧0.15MPaで、30℃の1質量%NaCO水溶液を所定時間スプレーして現像し、感光性樹脂層の未露光部分を溶解除去した。このとき、未露光部分の感光性樹脂層が完全に溶解するのに要する最も少ない時間を最小現像時間として測定し、最小現像時間の2倍の時間で現像してレジストパターンを作製した。その際、水洗工程は、フラットタイプのノズルにて水洗スプレー圧0.15MPaで、現像工程と同時間処理した。
<Development>
In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, after peeling the polyethylene terephthalate film of the exposed evaluation substrate, an alkali developing machine (manufactured by Fuji Kiko Co., Ltd., a dry film developing machine) was used. Then, a 1 mass% Na 2 CO 3 aqueous solution at 30 ° C. was sprayed for a predetermined time to dissolve and remove the unexposed portion of the photosensitive resin layer. At this time, development was carried out over twice the minimum development time to produce a cured resist pattern. The minimum development time refers to the shortest time required for the unexposed portion of the photosensitive resin layer to completely dissolve.
In Examples II-1 to II-6 and Comparative Examples II-1 to II-5, after removing the polyethylene terephthalate film from the photosensitive resin laminate, using a developing device manufactured by Fuji Kiko Co., Ltd., full cone Using a nozzle of the type, a 1 mass% Na 2 CO 3 aqueous solution at 30 ° C. was sprayed for a predetermined time at a developing spray pressure of 0.15 MPa, and developed to dissolve and remove unexposed portions of the photosensitive resin layer. At this time, the minimum time required for completely dissolving the photosensitive resin layer in the unexposed portion was measured as the minimum development time, and development was performed in twice the minimum development time to prepare a resist pattern. At that time, the washing process was performed at the same time as the developing process at a washing spray pressure of 0.15 MPa with a flat type nozzle.
(3)サンプルの評価方法 (3) Sample evaluation method
<感度評価>
 ラミネート後15分経過した感度評価用基板をストーファー41段ステップタブレットのマスクを通して露光した。最小現像時間の2倍の時間で現像し、最高残膜段数が15段となる露光量によって以下の基準によりランク分けした。
  ○(良好):最高残膜段数が15段となる露光量が70mJ/cm未満。
  ×(不良):最高残膜段数が15段となる露光量が70mJ/cm以上。
<Sensitivity evaluation>
The substrate for sensitivity evaluation, which had passed 15 minutes after lamination, was exposed through a mask of a 41-step stove tablet. Development was carried out in a time twice as long as the minimum development time, and was ranked according to the following criteria according to the exposure amount at which the maximum number of remaining film steps was 15.
○ (Good): The exposure amount at which the maximum number of remaining film steps is 15 is less than 70 mJ / cm 2 .
X (defect): the exposure amount at which the maximum number of remaining film steps is 15 is 70 mJ / cm 2 or more.
<解像性>
 ラミネート後15分経過した解像性評価用基板を、露光部と未露光部の幅が1:1の比率のラインパターンを有する描画データを使用して露光した。最小現像時間の2倍の現像時間で現像し、硬化レジストラインを形成した。
 実施例I-1~I-16及び比較例I-1~I-3では、硬化レジストラインが正常に形成されている最小ライン幅を解像度の値として以下の基準によりランク分けした。
 ○(良好):解像度の値が12μm以下。
 △(許容):解像度の値が12μmを超え、17μm以下。
 ×(不良):解像度の値が17μmを超える。
 また、実施例II-1~II-6及び比較例II-1~II-5では、硬化レジストラインが正常に形成されている最小ライン幅を解像度の値として以下の基準によりランク分けした。
 ◎(極めて良好):解像度の値が7.5μm以下。
 ○(良好):解像度の値が7.5μmを超え、9μm以下。
 △(許容):解像度の値が9μmを超える。
<Resolution>
The resolution evaluation substrate 15 minutes after the lamination was exposed using drawing data having a line pattern in which the width of the exposed area and the unexposed area was 1: 1. Development was performed with a development time twice the minimum development time to form a cured resist line.
In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, the minimum line width in which a cured resist line was normally formed was ranked as a resolution value according to the following criteria.
○ (Good): The resolution value is 12 μm or less.
Δ (allowable): The resolution value exceeds 12 μm and is 17 μm or less.
X (defect): The resolution value exceeds 17 μm.
In Examples II-1 to II-6 and Comparative Examples II-1 to II-5, the minimum line width in which the cured resist lines were normally formed was ranked as a resolution value according to the following criteria.
A (very good): The resolution value is 7.5 μm or less.
○ (Good): The resolution value exceeds 7.5 μm and is 9 μm or less.
Δ (allowable): The resolution value exceeds 9 μm.
<FT-IR測定>
 感光性樹脂積層体のポリエチレンフィルムを剥がした後に、FT-IR(Thermo SCIENTIFIC製、NICOLET 380)測定を行った。
 波数810cm-1におけるピーク高さPは、露光前にFT-IRで吸光度を測定することで求めた。当該ピークが他のピークと重なっている場合は、当該ピークの両側の立ち上がり点同士を線で結び、その線からの最高高さを計測した。
 エチレン性二重結合の反応率Qは以下の方法で求めた。感光性樹脂積層体のポリエチレンテレフタレートフィルム(支持層)側から直接描画露光機(日立ビアメカニクス(株)製、DE-1DH、光源:GaN青紫ダイオード(主波長405±5nm))を用いて、露光を行った。露光時の照度は85mW/cmとした。このときの露光量は、前記の方法でストーファー41段ステップタブレットをマスクとして露光し、次いで現像したときの最高残膜段数が15段となる露光量で行った。以上の操作により得られた硬化レジストのエチレン性二重結合の反応率Qを、波数810cm-1の露光前後でのピーク高さよりエチレン性二重結合基の消失率(%)を算出し、反応率Q(%)を求めた。
 Rは感光性樹脂層の膜厚(μm)であり、P×Q/Rを計算により求めた。
<FT-IR measurement>
After the polyethylene film of the photosensitive resin laminate was peeled off, FT-IR (manufactured by Thermo SCIENTIFIC, NICOLET 380) was measured.
The peak height P at a wave number of 810 cm −1 was determined by measuring the absorbance with FT-IR before exposure. When the peak overlapped with other peaks, the rising points on both sides of the peak were connected with a line, and the maximum height from the line was measured.
The reaction rate Q of the ethylenic double bond was determined by the following method. Direct exposure from a polyethylene terephthalate film (support layer) side of the photosensitive resin laminate using a drawing exposure machine (manufactured by Hitachi Via Mechanics, DE-1DH, light source: GaN blue-violet diode (main wavelength 405 ± 5 nm)). Went. The illuminance during exposure was 85 mW / cm 2 . The exposure amount at this time was the exposure amount at which the maximum number of remaining film steps when the exposure was carried out using the stove 41 step tablet as a mask and then developed by the above method was 15. The reaction rate Q of the ethylenic double bond of the cured resist obtained by the above operation is calculated by calculating the disappearance rate (%) of the ethylenic double bond group from the peak height before and after exposure at a wave number of 810 cm −1. The rate Q (%) was determined.
R is the film thickness (μm) of the photosensitive resin layer, and P × Q / R was obtained by calculation.
<密着性>
 実施例I-1~I-16及び比較例I-1~I-3では、ラミネート後15分経過した解像性評価用基板を、露光部と未露光部の幅が1:400の比率のラインパターンを有する描画データを使用して露光した。最小現像時間の2倍の現像時間で現像し、硬化レジストラインが正常に形成されている最小ライン幅を密着性の値として以下の基準によりランク分けした。
 ○(極めて良好):密着性の値が12μm以下。
 ○△(良好):密着性の値が12μmを超え、13μm以下。
 △(許容):密着性の値が13μmを超え、15μm以下。
 ×(不良):密着性の値が15μmを超える。
 また、実施例II-1~II-6及び比較例II-1~II-5では、ラミネート後15分経過した評価用基板を、露光部と未露光部との幅が1:100の比率のラインパターンを有するクロムガラスマスクを通して露光した。最小現像時間の2倍の時間で現像し、硬化レジストラインが正常に形成されている最小ライン幅を密着性の値とし、下記のようにランク分けした。
 ◎(極めて良好):密着性の値が7.5μm以下。
 ○(良好):密着性の値が7.5μmを超え、9μm以下。
 △(許容):密着性の値が9μmを超え、10μm未満。
 ×(不良):密着性の値が10μm以上。
<Adhesion>
In Examples I-1 to I-16 and Comparative Examples I-1 to I-3, a resolution evaluation substrate that had passed 15 minutes after lamination was subjected to a ratio of the width of the exposed area to the unexposed area of 1: 400. The exposure was performed using drawing data having a line pattern. Development was performed with a development time twice as long as the minimum development time, and the minimum line width in which a cured resist line was normally formed was ranked as an adhesion value according to the following criteria.
○ (very good): Adhesion value is 12 μm or less.
○ Δ (good): Adhesion value exceeds 12 μm and is 13 μm or less.
Δ (allowable): Adhesiveness value exceeds 13 μm and is 15 μm or less.
X (defect): Adhesion value exceeds 15 μm.
Further, in Examples II-1 to II-6 and Comparative Examples II-1 to II-5, the evaluation substrate that had passed 15 minutes after the lamination had a ratio of the exposed portion to the unexposed portion of 1: 100. Exposure was through a chrome glass mask with a line pattern. Development was carried out in a time twice as long as the minimum development time, and the minimum line width in which a cured resist line was normally formed was defined as an adhesion value, and was ranked as follows.
A (very good): Adhesion value is 7.5 μm or less.
○ (Good): Adhesiveness value exceeds 7.5 μm and 9 μm or less.
Δ (Acceptable): Adhesion value exceeds 9 μm and less than 10 μm.
X (defect): Adhesion value is 10 μm or more.
<耐薬液性評価>
 アトテックジャパン(株)製キュプラプロS2 100mLと98%硫酸60mLと純水840mLを混合して、薬液を作製した。ラミネート後15分経過した解像性評価用基板を、露光部と未露光部の幅が1:400の比率のラインパターンを有する描画データを使用して露光した。最小現像時間の2倍の現像時間で現像し、ビーカーで40℃に加温した薬液に5分間浸漬した。浸漬後、純水にて洗浄し、硬化レジストラインが正常に形成されている最小ライン幅を耐薬液性の値として得た。なお、表2では、耐薬液性の値が17μmを超える場合のみを「×(不良)」として示した。
<Evaluation of chemical resistance>
A chemical solution was prepared by mixing 100 ml of Cuprapro S2 manufactured by Atotech Japan Co., Ltd., 60 ml of 98% sulfuric acid and 840 ml of pure water. The resolution evaluation substrate 15 minutes after lamination was exposed using drawing data having a line pattern in which the width of the exposed area and the unexposed area was 1: 400. Development was carried out with a development time twice as long as the minimum development time, and immersed in a chemical heated to 40 ° C. in a beaker for 5 minutes. After immersion, the substrate was washed with pure water, and the minimum line width at which a cured resist line was normally formed was obtained as a chemical resistance value. In Table 2, only the case where the chemical resistance value exceeds 17 μm is indicated as “x (defect)”.
<ブリードアウト性>
 ロール状に巻き取った感光性樹脂積層体を23℃、遮光条件で保管し、ブリードアウトにより支持フィルム表面(但しロールの最外層は除く)にべたつきが生じるまでの時間を以下のようにランク分けし、ブリードアウト性を評価した。
 ○(良好):支持フィルム表面にべたつきが生じるまでの時間が1か月以上
 ×(不良):支持フィルム表面にべたつきが生じるまでの時間が1か月未満
<Bleed-out>
The photosensitive resin laminate wound up in a roll is stored at 23 ° C under light-shielding conditions, and the time until stickiness occurs on the support film surface (excluding the outermost layer of the roll) due to bleed out is ranked as follows: The bleed-out property was evaluated.
○ (Good): Time until stickiness occurs on the surface of the support film is 1 month or more × (Poor): Time until stickiness occurs on the surface of the support film is less than 1 month
(4)評価結果
 評価結果を下記表2~5に示す。耐薬液性評価が17μm以下であるように設計されている感光性樹脂組成物は、レジストパターンの密着性、解像性、又はスソ形状のバランスにも優れる。また、このような感光性樹脂組成物を用いることにより、めっきにより配線パターンを形成する際、ショートを抑制することができる。耐薬液性評価の後に銅めっきを行ったところ、比較例I-1の組成では硬化レジストのライン幅15μmの部分にショートが観察されたが、実施例I-1の組成ではショートが観察されず、不良低減可能であると推察された。
(4) Evaluation results The evaluation results are shown in Tables 2 to 5 below. The photosensitive resin composition designed so that the chemical resistance evaluation is 17 μm or less is also excellent in resist pattern adhesion, resolution, and balance of sword shape. Moreover, when such a photosensitive resin composition is used, a short circuit can be suppressed when a wiring pattern is formed by plating. When copper plating was performed after the chemical resistance evaluation, a short circuit was observed in the cured resist with a line width of 15 μm in the composition of Comparative Example I-1, but no short circuit was observed in the composition of Example I-1. It was inferred that defects could be reduced.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (24)

  1.  (A)アルカリ可溶性高分子;
     (B)エチレン性不飽和結合を有する化合物;及び
     (C)光重合開始剤;
    を含む感光性樹脂組成物であって、
     該感光性樹脂組成物から成る感光性樹脂層を基板表面上に形成し、露光及び現像を行って得られたレジストパターンを耐薬液性評価の薬液で処理した後に、硬化レジストラインの最小ライン幅が17μm以下である、感光性樹脂組成物。
    (A) an alkali-soluble polymer;
    (B) a compound having an ethylenically unsaturated bond; and (C) a photopolymerization initiator;
    A photosensitive resin composition comprising:
    A photosensitive resin layer comprising the photosensitive resin composition is formed on the substrate surface, and the resist pattern obtained by exposure and development is treated with a chemical solution for evaluating chemical resistance, and then the minimum line width of the cured resist line is obtained. The photosensitive resin composition whose is 17 micrometers or less.
  2.  前記感光性樹脂層を前記基板表面上に形成し、ストーファー41段ステップタブレットをマスクとして露光し、次いで、現像したときの最高残膜段数が15段となる露光量で、該感光性樹脂層に露光を行った時、
    FT-IR測定において、露光前の波数810cm-1におけるピーク高さをP、前記露光を行った後の前記(B)エチレン性不飽和結合を有する化合物中のエチレン性二重結合の反応率をQ、前記感光性樹脂層の膜厚をRとした場合のP×Q/Rの値が0.21以上である、請求項1に記載の感光性樹脂組成物。
    The photosensitive resin layer is formed on the surface of the substrate, exposed with a stove 41 step tablet as a mask, and then exposed at an exposure amount that the maximum remaining film stage number is 15 when developed. When the exposure was performed
    In the FT-IR measurement, the peak height at a wave number of 810 cm −1 before exposure is P, and the reaction rate of ethylenic double bonds in the compound (B) having an ethylenically unsaturated bond after the exposure is performed. 2. The photosensitive resin composition according to claim 1, wherein the value of P × Q / R when the film thickness of the photosensitive resin layer is R is 0.21 or more.
  3.  前記(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、110℃以下である、請求項1又は2に記載の感光性樹脂組成物。 (A) the weight average Tg total glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or less, the photosensitive resin composition according to claim 1 or 2.
  4.  前記(B)エチレン性不飽和結合を有する化合物の重量平均分子量が760以上である、請求項1~3のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 3, wherein the compound (B) having an ethylenically unsaturated bond has a weight average molecular weight of 760 or more.
  5.  前記(B)エチレン性不飽和結合を有する化合物中におけるメタクリロイル基の濃度が0.20mol/100g以上である、請求項1~4のいずれか1項に記載の感光性樹脂組成物。 5. The photosensitive resin composition according to claim 1, wherein the concentration of the methacryloyl group in the (B) compound having an ethylenically unsaturated bond is 0.20 mol / 100 g or more.
  6.  前記(B)エチレン性不飽和結合を有する化合物中におけるエチレンオキサイドユニットの濃度が0.80mol/100g以上である、請求項1~5のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 5, wherein the concentration of the ethylene oxide unit in the compound (B) having an ethylenically unsaturated bond is 0.80 mol / 100 g or more.
  7.  前記(C)光重合開始剤として、ヘキサアリールビスイミダゾール化合物を含む、請求項1~6のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 6, comprising a hexaarylbisimidazole compound as the (C) photopolymerization initiator.
  8.  (A)アルカリ可溶性高分子;
     (B)エチレン性不飽和結合を有する化合物;及び
     (C)光重合開始剤;
    を含む感光性樹脂組成物であって、
     前記(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、110℃以下であり、かつ
     前記(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を3個以上有する(メタ)アクリレート化合物を含む、前記感光性樹脂組成物。
    (A) an alkali-soluble polymer;
    (B) a compound having an ethylenically unsaturated bond; and (C) a photopolymerization initiator;
    A photosensitive resin composition comprising:
    (A) The weight average value Tg total of the glass transition temperature Tg of the alkali-soluble polymer is 110 ° C. or less, and (B) three ethylenically unsaturated bonds as the compound having an ethylenically unsaturated bond The said photosensitive resin composition containing the (meth) acrylate compound which has the above.
  9.  前記(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を5個以上有し、かつアルキレンオキサイド鎖を有する(メタ)アクリレート化合物を含む、請求項8に記載の感光性樹脂組成物。 The photosensitive resin composition of Claim 8 containing the (meth) acrylate compound which has 5 or more of ethylenically unsaturated bonds, and has an alkylene oxide chain as said (B) compound which has an ethylenically unsaturated bond. object.
  10.  前記(A)アルカリ可溶性高分子が、100~600の酸当量及び5,000~500,000の重量平均分子量を有し、かつその側鎖に芳香族基を有する、請求項8又は9に記載の感光性樹脂組成物。 10. The (A) alkali-soluble polymer has an acid equivalent of 100 to 600, a weight average molecular weight of 5,000 to 500,000, and an aromatic group in its side chain. Photosensitive resin composition.
  11.  前記(B)エチレン性不飽和結合を有する化合物として、エチレン性不飽和結合を5個以上有し、かつエチレンオキサイド鎖を有する(メタ)アクリレート化合物を含む、請求項8~10のいずれか1項に記載の前記感光性樹脂組成物。 11. The compound (B) according to any one of claims 8 to 10, comprising (B) an (meth) acrylate compound having 5 or more ethylenically unsaturated bonds and having an ethylene oxide chain as the compound having an ethylenically unsaturated bond. The said photosensitive resin composition of description.
  12.  前記(B)エチレン性不飽和結合を有する化合物として、エチレンオキサイド鎖とジペンタエリスリトール骨格とを有する(メタ)アクリレート化合物を含む、請求項8~11のいずれか1項に記載の前記感光性樹脂組成物。 The photosensitive resin according to claim 8, comprising (B) a (meth) acrylate compound having an ethylene oxide chain and a dipentaerythritol skeleton as the compound having an ethylenically unsaturated bond. Composition.
  13.  前記(B)エチレン性不飽和結合を有する化合物として、下記一般式(II):
    Figure JPOXMLDOC01-appb-C000001
    {式中、R及びRは、それぞれ独立に、水素原子又はメチル基を表し、AはCであり、BはCであり、n及びnは各々独立に1~39の整数であり、かつn+nは2~40の整数であり、n及びnは各々独立に0~29の整数であり、かつn+nは0~30の整数であり、-(A-O)-及び-(B-O)-の繰り返し単位の配列は、ランダムであってもブロックであってもよく、ブロックの場合、-(A-O)-と-(B-O)-とのいずれがビスフェニル基側でもよい。}
    で表される化合物をさらに含む、請求項8~12のいずれか1項に記載の感光性樹脂組成物。
    As the compound (B) having an ethylenically unsaturated bond, the following general formula (II):
    Figure JPOXMLDOC01-appb-C000001
    {Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n 1 and n 3 are each independently N is an integer from 1 to 39, n 1 + n 3 is an integer from 2 to 40, n 2 and n 4 are each independently an integer from 0 to 29, and n 2 + n 4 is an integer from 0 to 30 The arrangement of the repeating units of-(AO)-and-(BO)-may be random or block. In the case of a block,-(AO)-and- Any of (B—O) — may be on the bisphenyl group side. }
    The photosensitive resin composition according to any one of claims 8 to 12, further comprising a compound represented by:
  14.  前記(B)エチレン性不飽和結合を有する化合物として、下記一般式(I):
    Figure JPOXMLDOC01-appb-C000002
    {式中、R~Rは、それぞれ独立に、炭素数1~4のアルキル基を表し、Xは、炭素数2~6のアルキレン基を表し、m、m、m及びmは、それぞれ独立に、0~40の整数であり、m+m+m+mは、1~40であり、そしてm+m+m+mが2以上である場合には、複数のXは、互いに同一であるか、又は異なっていてよい}
    で表される化合物をさらに含む、請求項8~13のいずれか1項に記載の感光性樹脂組成物。
    As the compound (B) having an ethylenically unsaturated bond, the following general formula (I):
    Figure JPOXMLDOC01-appb-C000002
    {Wherein R 3 to R 6 each independently represents an alkyl group having 1 to 4 carbon atoms, X represents an alkylene group having 2 to 6 carbon atoms, m 1 , m 2 , m 3 and m 4 is each independently an integer of 0 to 40, m 1 + m 2 + m 3 + m 4 is 1 to 40, and when m 1 + m 2 + m 3 + m 4 is 2 or more, a plurality of X's may be the same or different from each other}
    The photosensitive resin composition according to any one of claims 8 to 13, further comprising a compound represented by:
  15.  前記(C)光重合開始剤として、ヘキサアリールビスイミダゾール化合物を含む、請求項8~14のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 8 to 14, comprising a hexaarylbisimidazole compound as the (C) photopolymerization initiator.
  16.  前記(C)光重合開始剤として、ピラゾリン化合物を含む、請求項8~15のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 8 to 15, comprising a pyrazoline compound as the (C) photopolymerization initiator.
  17.  ダイレクトイメージング露光用である、請求項8~16のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 8 to 16, which is used for direct imaging exposure.
  18.  前記(A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、105℃以下であり、
     前記(B)エチレン性不飽和結合を有する化合物として、(b1)メタクリロイル基を少なくとも3個有する化合物を、前記感光性樹脂組成物の固形分総量に対して0質量%を超え16質量%以下の範囲で含み、かつ
     前記(B)エチレン性不飽和結合を有する化合物のうちの70質量%以上が、500以上の重量平均分子量を有する化合物である、
     請求項8に記載の感光性樹脂組成物。
    (A) The weight average value Tgtotal of the glass transition temperature Tg of the alkali-soluble polymer is 105 ° C. or less,
    (B) As a compound having an ethylenically unsaturated bond, (b1) a compound having at least three methacryloyl groups is more than 0% by mass and less than 16% by mass with respect to the total solid content of the photosensitive resin composition. In a range, and (B) 70% by mass or more of the compound having an ethylenically unsaturated bond is a compound having a weight average molecular weight of 500 or more.
    The photosensitive resin composition of Claim 8.
  19.  前記(b1)メタクリロイル基を少なくとも3個有する化合物は、500以上の重量平均分子量を有する、請求項18に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 18, wherein the compound having at least three (b1) methacryloyl groups has a weight average molecular weight of 500 or more.
  20.  前記(B)エチレン性不飽和結合を有する化合物として、(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物を含む、請求項18又は19に記載の感光性樹脂組成物。 The photosensitive resin of Claim 18 or 19 containing the compound which has (b2) butylene oxide chain | strand and 1 or 2 (meth) acryloyl group as said (B) compound which has an ethylenically unsaturated bond. Composition.
  21.  前記(b2)ブチレンオキサイド鎖と1個又は2個の(メタ)アクリロイル基とを有する化合物は、500以上の重量平均分子量を有する、請求項20に記載の感光性樹脂組成物。 21. The photosensitive resin composition according to claim 20, wherein the compound (b2) having a butylene oxide chain and one or two (meth) acryloyl groups has a weight average molecular weight of 500 or more.
  22.  セミアディティブプロセス(SAP)用である、請求項18~21のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 18 to 21, which is used for a semi-additive process (SAP).
  23.  請求項1~22のいずれか1項に記載の感光性樹脂組成物から成る感光性樹脂層を支持体に積層するラミネート工程;
     該感光性樹脂層を露光する露光工程;及び
     該露光された感光性樹脂層を現像する現像工程;
    を含むレジストパターンの形成方法。
    A laminating step of laminating a photosensitive resin layer comprising the photosensitive resin composition according to any one of claims 1 to 22 on a support;
    An exposure step of exposing the photosensitive resin layer; and a development step of developing the exposed photosensitive resin layer;
    A resist pattern forming method including:
  24.  請求項1~22のいずれか1項に記載の感光性樹脂組成物から成る感光性樹脂層を基板に積層するラミネート工程;
     該感光性樹脂層を露光する露光工程;
     該露光された感光性樹脂層を現像して、レジストパターンが形成された基板を得る現像工程;
     該レジストパターンが形成された基板をエッチング又はめっきする導体パターン形成工程;及び
     該レジストパターンを剥離する剥離工程;
    を含む配線板の製造方法。
    A laminating step of laminating a photosensitive resin layer comprising the photosensitive resin composition according to any one of claims 1 to 22 on a substrate;
    An exposure step of exposing the photosensitive resin layer;
    A development step of developing the exposed photosensitive resin layer to obtain a substrate on which a resist pattern is formed;
    A conductor pattern forming step of etching or plating the substrate on which the resist pattern is formed; and a peeling step of peeling off the resist pattern;
    A method of manufacturing a wiring board including:
PCT/JP2016/061610 2015-04-08 2016-04-08 Photosensitive resin composition WO2016163540A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177020557A KR101990230B1 (en) 2015-04-08 2016-04-08 Photosensitive resin composition
MYUI2017703393A MY187481A (en) 2015-04-08 2016-04-08 Photosensitive resin composition
CN201680019911.6A CN107407880B (en) 2015-04-08 2016-04-08 Photosensitive resin composition
KR1020197012465A KR102286107B1 (en) 2015-04-08 2016-04-08 Photosensitive resin composition
JP2017511104A JPWO2016163540A1 (en) 2015-04-08 2016-04-08 Photosensitive resin composition
CN202210104954.1A CN114437251B (en) 2015-04-08 2016-04-08 Photosensitive resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-079381 2015-04-08
JP2015079381 2015-04-08
JP2015166570 2015-08-26
JP2015-166570 2015-08-26

Publications (1)

Publication Number Publication Date
WO2016163540A1 true WO2016163540A1 (en) 2016-10-13

Family

ID=57073148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061610 WO2016163540A1 (en) 2015-04-08 2016-04-08 Photosensitive resin composition

Country Status (6)

Country Link
JP (3) JPWO2016163540A1 (en)
KR (2) KR102286107B1 (en)
CN (2) CN114437251B (en)
MY (1) MY187481A (en)
TW (3) TWI706222B (en)
WO (1) WO2016163540A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035932A (en) * 2017-01-30 2019-03-07 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, substrate having resist pattern formed thereon, and method of manufacturing circuit board
TWI666518B (en) * 2016-12-30 2019-07-21 奇美實業股份有限公司 Photosensitive resin composition and uses thereof
CN110446976A (en) * 2017-03-01 2019-11-12 旭化成株式会社 Photosensitive polymer combination
WO2019244724A1 (en) * 2018-06-22 2019-12-26 旭化成株式会社 Photosensitive resin composition and resist pattern formation method
WO2019244898A1 (en) * 2018-06-22 2019-12-26 旭化成株式会社 Photosensitive resin composition and resist pattern formation method
WO2021054457A1 (en) * 2019-09-19 2021-03-25 クラレノリタケデンタル株式会社 Curable composition for dentistry
WO2021095784A1 (en) * 2019-11-11 2021-05-20 旭化成株式会社 Photosensitive resin composition and photosensitive resin multilayer body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295744B1 (en) * 2017-03-29 2021-08-30 아사히 가세이 가부시키가이샤 photosensitive resin composition
CN109976092B (en) * 2017-12-27 2022-04-01 太阳油墨(苏州)有限公司 Curable resin composition, dry film, cured product, and printed wiring board
WO2020013111A1 (en) * 2018-07-11 2020-01-16 富士フイルム株式会社 Chemical solution and chemical solution container
CN112534351A (en) * 2018-08-09 2021-03-19 旭化成株式会社 Photosensitive resin composition and method for forming resist pattern
KR20230050360A (en) * 2020-08-07 2023-04-14 가부시끼가이샤 레조낙 Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for manufacturing printed wiring board
JPWO2022181764A1 (en) * 2021-02-26 2022-09-01
WO2022181485A1 (en) * 2021-02-26 2022-09-01 富士フイルム株式会社 Method for manufacturing laminate and method for manufacturing circuit wiring
KR20240031514A (en) * 2022-08-30 2024-03-08 삼성에스디아이 주식회사 Photosensitive resin composition, photosensitive resin layer using the same and color filter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347400A (en) * 1999-06-08 2000-12-15 Nichigo Morton Co Ltd Photosensitive resin composition and dry film resist using the same
WO2006011548A1 (en) * 2004-07-30 2006-02-02 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive film laminate and photosensitive film roll
JP2006145844A (en) * 2004-11-19 2006-06-08 Asahi Kasei Electronics Co Ltd Photopolymerizable resin composition
JP2007133349A (en) * 2005-10-14 2007-05-31 Hitachi Chem Co Ltd Photosensitive film roll
JP2008094803A (en) * 2006-10-16 2008-04-24 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and its laminate
WO2008075575A1 (en) * 2006-12-19 2008-06-26 Hitachi Chemical Company, Ltd. Photosensitive element
WO2009078380A1 (en) * 2007-12-18 2009-06-25 Asahi Kasei E-Materials Corporation Method for producing cured resist using negative photosensitive resin laminate, negative photosensitive resin laminate, and use of negative photosensitive resin laminate
JP2011215366A (en) * 2010-03-31 2011-10-27 Asahi Kasei E-Materials Corp Dry film resist roll
WO2015178462A1 (en) * 2014-05-21 2015-11-26 旭化成イーマテリアルズ株式会社 Photosensitive resin composition and method for forming circuit pattern

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916605B2 (en) * 2001-11-12 2007-05-16 旭化成エレクトロニクス株式会社 Photosensitive resin composition and use thereof
JP4646759B2 (en) * 2005-09-20 2011-03-09 旭化成イーマテリアルズ株式会社 Pattern forming material, pattern forming apparatus and pattern forming method
JP2008202022A (en) * 2007-01-23 2008-09-04 Fujifilm Corp Curable composition for optical nano imprint lithography, and pattern forming method using the same
ES2565021T3 (en) * 2007-06-18 2016-03-30 Asahi Kasei E-Materials Corporation Composition of photosensitive resin, flexographic printing plate and procedure for producing a flexographic printing plate
TWI536094B (en) * 2007-12-25 2016-06-01 Asahi Kasei Emd Corp Photosensitive resin laminate
JP5396833B2 (en) * 2008-11-28 2014-01-22 Jsr株式会社 Radiation-sensitive resin composition, spacer and protective film for liquid crystal display element, and method for forming them
CN102472969A (en) * 2009-07-29 2012-05-23 旭化成电子材料株式会社 Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern
WO2011037182A1 (en) * 2009-09-25 2011-03-31 旭化成イーマテリアルズ株式会社 Photosensitive resin composition for resist material, and photosensitive resin laminate
JP5526868B2 (en) * 2010-03-03 2014-06-18 Jsr株式会社 Radiation-sensitive resin composition, display element spacer and protective film, and method for forming them
KR20120002864A (en) * 2010-07-01 2012-01-09 동우 화인켐 주식회사 A black photosensitive resin composition, color filter and liquid crystal display device having the same
CN106918991A (en) * 2010-07-13 2017-07-04 日立化成工业株式会社 Photosensitive element, the forming method of corrosion-resisting pattern, the manufacture method of printed circuit board and printed circuit board
JP6022749B2 (en) * 2010-07-30 2016-11-09 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for producing resist pattern, method for producing lead frame, and method for producing printed wiring board
JP5771944B2 (en) * 2010-10-18 2015-09-02 Jsr株式会社 Manufacturing method of color filter
CN103282829B (en) * 2010-12-24 2016-08-17 旭化成株式会社 Photosensitive polymer combination
JP5835014B2 (en) * 2011-03-31 2015-12-24 Jsr株式会社 Pixel pattern forming method and color filter manufacturing method
JP6229256B2 (en) 2011-10-31 2017-11-15 日立化成株式会社 Photosensitive element, resist pattern forming method, and printed wiring board manufacturing method
KR20130047656A (en) * 2011-10-31 2013-05-08 히타치가세이가부시끼가이샤 Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for producing printed wiring board
JP5948539B2 (en) 2012-01-27 2016-07-06 旭化成株式会社 Photosensitive resin composition
JP2013195681A (en) * 2012-03-19 2013-09-30 Mitsubishi Chemicals Corp Photosensitive resin composition, color filter, liquid crystal display device, and organic el display
JP5853806B2 (en) * 2012-03-23 2016-02-09 Jsr株式会社 Radiation sensitive resin composition, cured film and method for forming cured film
JP6019791B2 (en) * 2012-06-19 2016-11-02 日立化成株式会社 Partition wall forming material, photosensitive element using the same, partition wall forming method, and image display device manufacturing method
JP5826135B2 (en) * 2012-08-23 2015-12-02 富士フイルム株式会社 Colored radiation-sensitive composition and color filter using the same
JP6063200B2 (en) 2012-10-15 2017-01-18 旭化成株式会社 Photosensitive resin composition
JP6120560B2 (en) * 2012-12-26 2017-04-26 第一工業製薬株式会社 Color filter, black matrix, or curable resin composition for circuit formation
JP6135314B2 (en) * 2012-12-26 2017-05-31 Jsr株式会社 Coloring composition, color filter and display element
JP6257164B2 (en) 2013-03-28 2018-01-10 旭化成株式会社 Method for forming resist pattern
TW201512709A (en) * 2013-05-27 2015-04-01 Fujifilm Corp Method for producing color filter, composition for forming underlayer, organic EL display device
KR102394595B1 (en) 2013-07-23 2022-05-04 쇼와덴코머티리얼즈가부시끼가이샤 Photosensitive resin composition for projection exposure, photosensitive element, method for forming resist pattern, process for producing printed wiring board and process for producing lead frame

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347400A (en) * 1999-06-08 2000-12-15 Nichigo Morton Co Ltd Photosensitive resin composition and dry film resist using the same
WO2006011548A1 (en) * 2004-07-30 2006-02-02 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive film laminate and photosensitive film roll
JP2006145844A (en) * 2004-11-19 2006-06-08 Asahi Kasei Electronics Co Ltd Photopolymerizable resin composition
JP2007133349A (en) * 2005-10-14 2007-05-31 Hitachi Chem Co Ltd Photosensitive film roll
JP2008094803A (en) * 2006-10-16 2008-04-24 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and its laminate
WO2008075575A1 (en) * 2006-12-19 2008-06-26 Hitachi Chemical Company, Ltd. Photosensitive element
WO2009078380A1 (en) * 2007-12-18 2009-06-25 Asahi Kasei E-Materials Corporation Method for producing cured resist using negative photosensitive resin laminate, negative photosensitive resin laminate, and use of negative photosensitive resin laminate
JP2011215366A (en) * 2010-03-31 2011-10-27 Asahi Kasei E-Materials Corp Dry film resist roll
WO2015178462A1 (en) * 2014-05-21 2015-11-26 旭化成イーマテリアルズ株式会社 Photosensitive resin composition and method for forming circuit pattern

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666518B (en) * 2016-12-30 2019-07-21 奇美實業股份有限公司 Photosensitive resin composition and uses thereof
JP2019035932A (en) * 2017-01-30 2019-03-07 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, substrate having resist pattern formed thereon, and method of manufacturing circuit board
CN110446976A (en) * 2017-03-01 2019-11-12 旭化成株式会社 Photosensitive polymer combination
CN110446976B (en) * 2017-03-01 2023-03-24 旭化成株式会社 Photosensitive resin composition
KR20200139227A (en) * 2018-06-22 2020-12-11 아사히 가세이 가부시키가이샤 Photosensitive resin composition and method of forming resist pattern
JP7170723B2 (en) 2018-06-22 2022-11-14 旭化成株式会社 Photosensitive resin composition and method for forming resist pattern
TWI716904B (en) * 2018-06-22 2021-01-21 日商旭化成股份有限公司 Method for forming photosensitive resin composition and resist pattern
KR20210013119A (en) * 2018-06-22 2021-02-03 아사히 가세이 가부시키가이샤 Photosensitive resin composition and method of forming resist pattern
JPWO2019244898A1 (en) * 2018-06-22 2021-03-11 旭化成株式会社 Method for forming photosensitive resin composition and resist pattern
JPWO2019244724A1 (en) * 2018-06-22 2021-03-11 旭化成株式会社 Method for forming photosensitive resin composition and resist pattern
KR102655468B1 (en) 2018-06-22 2024-04-05 아사히 가세이 가부시키가이샤 Photosensitive resin composition and method of forming resist pattern
KR102605003B1 (en) 2018-06-22 2023-11-22 아사히 가세이 가부시키가이샤 Photosensitive resin composition and method of forming resist pattern
WO2019244724A1 (en) * 2018-06-22 2019-12-26 旭化成株式会社 Photosensitive resin composition and resist pattern formation method
JP7169351B2 (en) 2018-06-22 2022-11-10 旭化成株式会社 Photosensitive resin composition and method for forming resist pattern
WO2019244898A1 (en) * 2018-06-22 2019-12-26 旭化成株式会社 Photosensitive resin composition and resist pattern formation method
WO2021054457A1 (en) * 2019-09-19 2021-03-25 クラレノリタケデンタル株式会社 Curable composition for dentistry
JP7464615B2 (en) 2019-09-19 2024-04-09 クラレノリタケデンタル株式会社 Dental hardenable composition
JPWO2021095784A1 (en) * 2019-11-11 2021-05-20
WO2021095784A1 (en) * 2019-11-11 2021-05-20 旭化成株式会社 Photosensitive resin composition and photosensitive resin multilayer body
JP7485692B2 (en) 2019-11-11 2024-05-16 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate

Also Published As

Publication number Publication date
JP7162030B2 (en) 2022-10-27
TWI706222B (en) 2020-10-01
KR101990230B1 (en) 2019-06-17
CN107407880A (en) 2017-11-28
KR102286107B1 (en) 2021-08-04
MY187481A (en) 2021-09-23
CN114437251B (en) 2024-02-20
CN114437251A (en) 2022-05-06
TW201812454A (en) 2018-04-01
TW201701070A (en) 2017-01-01
JP2021131556A (en) 2021-09-09
CN107407880B (en) 2022-02-08
KR20170101263A (en) 2017-09-05
TWI667539B (en) 2019-08-01
JPWO2016163540A1 (en) 2017-11-02
TWI620017B (en) 2018-04-01
KR20190047146A (en) 2019-05-07
JP7242748B2 (en) 2023-03-20
JP2020126251A (en) 2020-08-20
TW201947323A (en) 2019-12-16

Similar Documents

Publication Publication Date Title
JP7242748B2 (en) Photosensitive resin composition
TWI570513B (en) And a method for forming a photosensitive resin composition and a circuit pattern
JP6750088B2 (en) Photosensitive resin composition
JP7340643B2 (en) Photosensitive resin composition and photosensitive resin laminate
JP5437072B2 (en) Photosensitive resin composition and laminate thereof
JP4749305B2 (en) Photosensitive resin composition and laminate
JP5205464B2 (en) Photosensitive resin composition, photosensitive resin laminate, resist pattern forming method, conductor pattern, printed wiring board, lead frame, substrate, and method for manufacturing semiconductor package
JP2012220686A (en) Photosensitive resin composition and laminate of the same
JP6404571B2 (en) Photosensitive resin composition, photosensitive resin laminate, and resist pattern forming method
JP6630088B2 (en) Photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511104

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020557

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776706

Country of ref document: EP

Kind code of ref document: A1