WO2016163001A1 - アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法 - Google Patents

アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法 Download PDF

Info

Publication number
WO2016163001A1
WO2016163001A1 PCT/JP2015/061105 JP2015061105W WO2016163001A1 WO 2016163001 A1 WO2016163001 A1 WO 2016163001A1 JP 2015061105 W JP2015061105 W JP 2015061105W WO 2016163001 A1 WO2016163001 A1 WO 2016163001A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
actuator
control unit
reference position
engine
Prior art date
Application number
PCT/JP2015/061105
Other languages
English (en)
French (fr)
Inventor
敏 川村
波多野 健太
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112015006431.1T priority Critical patent/DE112015006431T5/de
Priority to PCT/JP2015/061105 priority patent/WO2016163001A1/ja
Priority to JP2017511416A priority patent/JPWO2016163001A1/ja
Priority to US15/558,334 priority patent/US10422274B2/en
Priority to CN201580078562.0A priority patent/CN107407196B/zh
Publication of WO2016163001A1 publication Critical patent/WO2016163001A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an actuator control device for driving a driving object such as a valve, an actuator, a valve drive device, and an actuator control method.
  • the intake vortex control valve is driven to the reference position by an actuator when the engine is stopped, and the reference position is learned from the opening value of the intake vortex control valve detected by the position sensor.
  • the present invention has been made to solve the above-described problems, and has an object to increase the frequency of learning the reference position and improve the accuracy of the reference position.
  • the actuator control device includes a feedback control unit that feedback-controls the actuator so that the position of the shaft detected by the position sensor approaches the target position using the reference position in the axial direction of the shaft, and the engine of the vehicle A position learning unit that learns the reference position when the driving is not disturbed during the driving period.
  • the frequency of learning the reference position can be increased.
  • the accuracy can be improved.
  • FIG. 2 is a block diagram illustrating a configuration example of a control device for a wastegate actuator according to the first embodiment.
  • 4 is a flowchart illustrating an operation performed by the control device for the wastegate actuator according to the first embodiment.
  • 3 is a diagram illustrating a hardware configuration example of a control apparatus for a wastegate actuator according to Embodiment 1.
  • FIG. It is a block diagram which shows the structural example of the control apparatus of the wastegate actuator which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a WG actuator 1 according to the first embodiment.
  • the turbocharger has a configuration in which a turbine is rotated by exhaust gas from an engine, a compressor connected coaxially with the turbine is driven, and intake air is compressed and supplied to the engine.
  • a WG valve 2 for allowing exhaust gas to escape from the exhaust passage 100 to the bypass passage 101 is installed on the upstream side of the exhaust passage 100.
  • the WG actuator 1 opens and closes the WG valve 2 to open the exhaust passage 100 to the bypass passage 101.
  • the rotational speed of the turbine is controlled by adjusting the exhaust gas inflow amount.
  • the fully closed state of the WG valve 2 is indicated by a solid line, and the fully open state is indicated by a two-dot chain line.
  • the WG actuator 1 includes a DC motor 4 serving as a drive source, a shaft 13 that opens and closes the WG valve 2, and a screw mechanism 12 that converts the rotational motion of the DC motor 4 into linear motion of the shaft 13.
  • the DC motor 4 includes a rotor 6 having a plurality of magnets 5 magnetized in N and S poles, and a stator 8 around which a coil 7 is wound.
  • a brush 11 b is connected to the end of the coil 7.
  • One end side of the rotor 6 is rotatably supported by a bearing portion 14, and a commutator 9 is fixed to the other end side.
  • the rotor 6 has a hole for arranging the shaft 13, a female screw portion 12 a is formed on the inner peripheral surface of the hole, and a male screw portion 12 b is formed on the outer peripheral surface of the shaft 13.
  • the male threaded portion 12b is screwed into the female threaded portion 12a and coupled to convert the rotational motion of the rotor 6 into the linear motion of the shaft 13.
  • the female screw portion 12a and the male screw portion 12b constitute a screw mechanism 12.
  • One end side of the shaft 13 passes through the housing 15 and is connected to the WG valve 2 via the link mechanism 3.
  • a position sensor 16 for detecting the position of the shaft 13 in the axial direction is installed.
  • the link mechanism 3 has two plates 3a and 3b.
  • a shaft 13 is attached to one end side of the plate 3a, and one end side of the plate 3b is rotatably attached to a fulcrum 3c on the other end side.
  • the WG valve 2 is attached to the other end of the plate 3b.
  • the shaft 13 is formed with two planes and functions as the rotation restricting portion 13a.
  • a guide portion 15a such as a two-plane is formed on the inner peripheral surface of the hole of the housing 15 that penetrates the shaft 13 in accordance with the shape of the rotation restricting portion 13a.
  • a stopper 15b that protrudes toward the shaft 13 is formed at the end of the guide portion 15a.
  • a plate that functions as the stopper 15c is installed at the end of the screw mechanism 12, and the end surface of the shaft 13 that functions as the abutting portion 13c abuts against the stopper 15c, so that the shaft 13 is further closed in the valve closing direction. Restrict movement.
  • a hole that is smaller than the outer diameter of the shaft 13 passes through the plate that functions as the stopper 15 c of the shaft 13, and the sensor shaft 17 is passed through the hole, and the end surface of the sensor shaft 17 contacts the end surface of the shaft 13. Touch. Accordingly, the sensor shaft 17 also reciprocates in accordance with the axial reciprocation of the shaft 13.
  • a sensor magnet 18 is fixed to the sensor shaft 17, and the magnetic flux density passing through the position sensor 16 is also changed by changing the position of the sensor magnet 18 with respect to the position sensor 16 as the shaft 13 reciprocates. Change.
  • the position sensor 16 is a Hall element, a magnetoresistive element, or the like, detects a magnetic flux density that changes as the shaft 13 reciprocates, converts it to an analog signal indicating the actual stroke position of the shaft 13, and outputs the analog signal.
  • FIG. 2 is a block diagram illustrating a configuration example of the control device 20.
  • the control device 20 mainly has a function of controlling the WG actuator 1 to adjust the opening degree of the WG valve 2 and a function of learning the reference position of the WG actuator 1.
  • the function of the control device 20 is configured to be realized as one function of the engine control unit.
  • the control device 20 may be configured as an independent electronic control unit or the WG actuator 1. May be incorporated as a circuit board.
  • the engine control unit includes an engine control unit 21 and a control device 20, and illustration and description of other components are omitted.
  • the control device 20 includes a feedback control unit 22, a motor driver 23, an A / D converter 24, and a position learning unit 30.
  • the position learning unit 30 includes a position learning start determination unit 31, a position learning control unit 32, and a reference position detection unit 33.
  • the engine control unit 21 outputs the target stroke position of the shaft 13 to the feedback control unit 22.
  • the engine control unit 21 designates the target stroke position with reference to the reference position of the shaft 13.
  • the reference position corresponds to the position of the shaft 13 when the WG valve 2 is fully closed, and is notified from the reference position detection unit 33 to the engine control unit 21.
  • the engine control unit 21 outputs vehicle information indicating the state of the vehicle to the position learning start determination unit 31.
  • vehicle information includes, for example, information indicating an engine driving state and a state indicating an engine load.
  • Information indicating the driving state of the engine includes information on an on / off state of an ignition (IG) key indicating that the engine has started or stopped.
  • Information indicating the engine load includes information indicating engine idling, vehicle deceleration, or acceleration. When the engine load is low, such as when idling or decelerating, the WG valve 2 is driven in the valve closing direction. When the engine load is high, such as during acceleration, the WG valve 2 is driven in the valve opening direction.
  • the A / D converter 24 receives the analog signal of the actual stroke position of the shaft 13 output from the position sensor 16, converts it into a digital signal of the actual stroke position, and outputs it to the feedback control unit 22 and the reference position detection unit 33.
  • the feedback control unit 22 feedback-controls the stroke position of the shaft 13 so that the actual stroke position received from the A / D converter 24 approaches the target stroke position received from the engine control unit 21.
  • PID control in which the opening degree of the WG valve 2 connected to the shaft 13 is adjusted by feedback control of the stroke position of the shaft 13, the feedback control unit 22 determines the target stroke position and the actual stroke position.
  • the deviation is calculated, the operation amounts of the proportional term, the integral term, and the differential term according to the deviation are obtained to calculate the drive duty, and a PWM (Pulse Width Modulation) control signal corresponding to the drive duty is generated to generate the motor driver 23.
  • PWM Pulse Width Modulation
  • the actual stroke position received from the A / D converter 24 by the feedback control unit 22 is corrected using the reference position of the shaft 13 notified from the reference position detection unit 33, Used for feedback control. Thereby, highly accurate feedback control based on the reference position can be performed.
  • the feedback control unit 22 receives an instruction from the position learning control unit 32 to move the shaft 13 to the reference position, that is, a position corresponding to the fully closed position of the WG valve 2 for the position learning process of learning the reference position.
  • the normal feedback control described above is interrupted, and a PWM control signal for moving the shaft 13 in accordance with an instruction from the position learning control unit 32 is generated and output to the motor driver 23.
  • the motor driver 23 performs on / off control of the voltage applied to the DC motor 4 in accordance with the PWM control signal received from the feedback control unit 22 and adjusts the current supplied to the DC motor 4.
  • the position learning start determination unit 31 determines whether or not to start the position learning process based on the vehicle information received from the engine control unit 21, and if it determines that the position learning process starts, the position learning control unit 32 is notified. For example, when the IG key changes from the off state to the on state and the engine starts, when the IG key changes from the on state to the off state and the engine stops, and when the engine is running and the engine load is below a predetermined threshold At this time, the position learning start determination unit 31 determines to start the position learning process. In this example, when the engine is idling or when the vehicle is decelerating, the engine load is determined to be equal to or less than a predetermined threshold, but the present invention is not limited to this.
  • the level of the engine load may be determined based on the engine speed or the opening of the throttle valve.
  • the target stroke position indicated by the engine control unit 21 is the fully closed position of the WG valve 2 or a position close to the fully closed position.
  • the position learning control unit 32 When the position learning control unit 32 receives the notification of the start of the position learning process from the position learning start determination unit 31, the position learning control unit 32 gives an instruction to move the shaft 13 to the reference position, that is, a position corresponding to the fully closed position of the WG valve 2. 22 to output. Further, the position learning control unit 32 outputs an instruction to detect the reference position to the reference position detection unit 33.
  • the reference position detection unit 33 When receiving the reference position detection instruction from the position learning control unit 32, the reference position detection unit 33 receives the actual stroke position of the shaft 13 that is moving by the position learning process from the A / D converter 24, and determines the reference position. To detect. The reference position detection unit 33 notifies the detected reference position to the engine control unit 21 and the feedback control unit 22.
  • the position learning control unit 32 gives an instruction to move the shaft 13 to a position corresponding to the fully closed position of the WG valve 2 to the feedback control unit 22.
  • the feedback control unit 22 moves the shaft 13 in the valve closing direction to pull it into the housing 15, and presses the WG valve 2 against the valve seat so as to be fully closed.
  • the reference position detector 33 detects the actual stroke position of the shaft 13 detected by the position sensor 16 in this state as the fully closed reference position.
  • the reference position detection unit 33 determines the fully closed state using, for example, the following method.
  • the reference position detection unit 33 detects the actual stroke detected this time by the position sensor 16.
  • the difference between the position and the actual stroke position before one sampling is equal to or less than a predetermined value and the drive duty calculated by the feedback control unit 22 is equal to or less than the predetermined value continues continuously for a predetermined period, Judge that there is.
  • the reference position detection unit 33 calculates an average value of the actual stroke positions detected by the position sensor 16 during the predetermined period, and detects a position represented by the average value as a fully closed reference position.
  • FIG. 3 is a flowchart showing the operation of the position learning unit 30.
  • the feedback control unit 22 performs feedback control in parallel with the operation of the position learning unit 30 along the flowchart of FIG.
  • the position learning start determination unit 31 receives vehicle information from the engine control unit 21 (step ST1), and determines whether or not to start the position learning process based on the vehicle information (step ST2).
  • the position learning start determination unit 31 determines to start the position learning process
  • the position learning start determination unit 31 outputs a start notification to the position learning control unit 32 (step ST2 “YES”).
  • the position learning control unit 32 that has received the start notification outputs an instruction to move the shaft 13 to a position corresponding to the fully closed position of the WG valve 2 to the feedback control unit 22 and also outputs an instruction to detect the reference position to the reference position. It outputs to the detection part 33 (step ST3).
  • the feedback control unit 22 interrupts normal feedback control, performs position learning control, and moves the shaft 13 to the fully closed position.
  • the reference position detector 33 receives the actual stroke position of the shaft 13 detected by the position sensor 16 with the shaft 13 moved to the fully closed position via the A / D converter 24, and detects it as the reference position (step). ST4).
  • the reference position detection unit 33 outputs the detected reference position to the engine control unit 21 and the feedback control unit 22. Note that after the reference position is detected by the reference position detector 33, the feedback controller 22 returns to normal feedback control.
  • step ST2 “NO” the position learning process instruction is notified from the position learning start determination unit 31 to the position learning control unit 32. Therefore, the feedback control unit 22 continues normal feedback control.
  • the position learning process when the IG key is turned on, the reference position of the shaft 13 can be learned before the vehicle travels, that is, before the WG actuator 1 is used. Therefore, feedback control can be performed with high accuracy. Further, by performing the position learning process when the IG key is turned off, the reference position of the shaft 13 is learned before the vehicle next travels, that is, before the WG actuator 1 is used next time. be able to. Therefore, feedback control can be performed with high accuracy.
  • the position learning process may be performed when the IG key is turned on and when the IG key is turned off, or only one of them may be performed.
  • the position learning process is performed while the vehicle is traveling, in addition to at least one of the vehicle before and after the vehicle travels, even when the mechanical parts are warmed and deformed due to thermal expansion, the reference position is shifted. The reference position corresponding to the deviation can be learned. Therefore, feedback control can be performed with higher accuracy than when the reference position is learned only before or after the vehicle travels.
  • the timing at which the position learning process is performed while the vehicle is running is a timing at which the engine load becomes equal to or less than the threshold value
  • the original target stroke position instructed from the engine control unit 21 to the feedback control unit 22 is the fully closed WG valve 2. Even if the WG valve 2 is fully closed for the position learning process, the normal operation of the turbocharged engine is not hindered.
  • the timing at which the engine load becomes equal to or less than the threshold is not limited to idling and deceleration, and may be any time that does not interfere with normal operation of the turbocharged engine.
  • the position learning process is performed while the vehicle is traveling in addition to at least one of the vehicle before and after the vehicle travel.
  • the position learning process is performed only while the vehicle is traveling. You may make it the structure to carry out.
  • the control device 20 the example in which the reference position is used for alignment between the target stroke position and the actual stroke position has been described.
  • the use of the reference position is not limited to this.
  • the control device 20 sets the soft landing start target position of the shaft 13 with reference to the reference position, and the actual stroke position of the shaft 13 is fully closed from the soft landing start target position. It is also possible to reduce the impact when the WG valve 2 is fully closed by starting the deceleration of the shaft 13 when it comes to the vehicle.
  • the motor driver 23 includes a switching element that turns on and off the voltage applied to the DC motor 4.
  • the feedback control unit 22, the A / D converter 24, and the position learning unit 30 are realized by a processor 41 that executes a program stored in the memory 40.
  • the processor 41 is a processing circuit such as a CPU or a system LSI.
  • the memory 40 stores an engine load threshold for determining the start of the position learning process, a reference position detected by the reference position detection unit 33, and the like.
  • a plurality of processors and a plurality of memories may execute the above functions in cooperation.
  • the control device 20 of the WG actuator 1 uses the reference position in the axial direction of the shaft 13 so that the position of the shaft 13 detected by the position sensor 16 approaches the target position. Since the feedback control unit 22 that performs feedback control of the actuator 1 and the position learning unit 30 that learns the reference position when the vehicle engine is operating without interfering with the operation, the configuration is provided. The frequency of learning the reference position can be increased, and the accuracy of the reference position can be improved.
  • the position learning unit 30 is operated by the vehicle engine.
  • the feedback control unit 22 is instructed to move the shaft 13 to the fully closed position of the WG valve 2, and the position of the shaft 13 detected by the position sensor 16 is learned as the reference position.
  • the fully closed position of the WG valve 2 is used as the reference position of the shaft 13.
  • the fully open position of the WG valve 2 is used as the reference position of the shaft 13. Also good.
  • the WG valve 2 is not fully closed or fully opened. 2 can be fully opened.
  • the position learning process may be started based on the vehicle information at a timing when the engine becomes a heavy load such as during vehicle acceleration.
  • the original target stroke position instructed from the engine control unit 21 to the feedback control unit 22 is the fully open position of the WG valve 2 or a position close to the fully open position.
  • the position learning start determination unit 31 determines to start the position learning process when the engine load is higher than a predetermined threshold based on the vehicle information received from the engine control unit 21.
  • the reference position can be learned even when the WG valve 2 is fully opened to warm the catalyst that purifies the exhaust gas.
  • the position learning control unit 32 gives an instruction to move the shaft 13 to a position corresponding to the fully opened position of the WG valve 2 to the feedback control unit 22.
  • the feedback control unit 22 moves the shaft 13 in the valve opening direction to push the shaft 13 out of the housing 15 according to the instruction from the position learning control unit 32, and presses the link mechanism 3 against the stopper 19 to make it fully open.
  • the reference position detection unit 33 detects the actual stroke position of the shaft 13 detected by the position sensor 16 as a fully open reference position.
  • the reference position detection unit 33 determines the fully open state using, for example, the following method. In a state where the instruction to move the shaft 13 to the fully open position of the WG valve 2 is issued from the position learning control unit 32 to the feedback control unit 22, the reference position detection unit 33 detects the actual actual stroke position detected by the position sensor 16. And the actual stroke position before one sampling is equal to or less than a predetermined value, and the state where the drive duty calculated by the feedback control unit 22 is equal to or less than the predetermined value continues continuously for a predetermined period. judge. The reference position detector 33 calculates an average value of the actual stroke positions detected by the position sensor 16 during the predetermined period, and detects a position represented by the average value as a fully open reference position.
  • FIG. FIG. 5 is a block diagram showing a configuration example of the control device 20 of the WG actuator 1 according to Embodiment 2 of the present invention.
  • the same or corresponding parts as those in FIG. 5
  • the WG actuator 1 which is a control object of the control device 20 according to the second embodiment has the same configuration as that of the first embodiment, FIG.
  • a position corresponding to the fully closed position of the WG valve 2 is used as the reference position of the shaft 13 will be described as an example.
  • the engine control unit 21a of the second embodiment outputs the target stroke position of the shaft 13 not only to the feedback control unit 22 but also to the position learning start determination unit 31a. In addition, the engine control unit 21a outputs information indicating the on / off state of the ignition key to the position learning start determination unit 31a as vehicle information.
  • the position learning start determination unit 31a determines whether or not the engine is in operation based on vehicle information indicating the on / off state of the ignition key received from the engine control unit 21a. In addition, the position learning start determination unit 31a determines the position when the target stroke position from the engine control unit 21a is within a predetermined range from the fully closed position, which is the reference position, during a period in which the engine is operating. It is determined that the learning process is started. Then, a position learning process start notification is output from the position learning start determination unit 31 a to the position learning control unit 32.
  • the predetermined range from the reference position is a range for determining whether the target stroke position is the fully closed position of the WG valve 2 or a position close to the fully closed position as described in the first embodiment, for example. Even if the WG valve 2 is fully closed for the learning process, it does not interfere with normal operation of the turbocharged engine.
  • the feedback learning unit 32 When the position learning control unit 32 receives the notification of the start of the position learning process from the position learning start determination unit 31a, the feedback learning unit gives an instruction to move the shaft 13 to the reference position, that is, the position corresponding to the fully closed position of the WG valve 2. 22 to output. Further, the position learning control unit 32 outputs an instruction to detect the position of the shaft 13 detected by the position sensor 16 as a reference position to the reference position detection unit 33.
  • the reference position detector 33 detects the position of the shaft 13 detected by the position sensor 16 as the reference position when the feedback controller 22 moves the shaft 13 to a position corresponding to the fully closed position of the WG valve 2. To do.
  • the position learning unit 30 is operated by the engine of the vehicle.
  • the target position is within a predetermined range from the fully closed position during a predetermined period
  • an instruction to move the shaft 13 to the fully closed position is given to the feedback control unit 22 and the shaft 13 detected by the position sensor 16 is detected. Since the position is learned as the reference position, the frequency of learning the reference position can be increased compared to the conventional case, and the accuracy of the reference position can be improved. Further, when the position learning process is performed, the normal operation of the turbocharged engine is not hindered, and consequently, the traveling vehicle is not affected.
  • the fully closed position of the WG valve 2 is used as the reference position of the shaft 13, but conversely, the fully open position of the WG valve 2 may be used as the reference position of the shaft 13.
  • the position learning start determination unit 31a determines to start the position learning process when the target stroke position from the engine control unit 21a is within a predetermined range from the fully open position that is the reference position.
  • the position learning control unit 32 outputs an instruction to move the shaft 13 to the reference position, that is, a position corresponding to the fully opened position of the WG valve 2, to the feedback control unit 22, and uses the position of the shaft 13 detected by the position sensor 16 as a reference.
  • An instruction to detect the position is output to the reference position detection unit 33.
  • the frequency of learning the reference position can be increased compared to the conventional case, and the accuracy of the reference position can be improved. Further, when the position learning process is performed, the normal operation of the turbocharged engine is not hindered, and consequently, the traveling vehicle is not affected.
  • the WG valve is exemplified as an example of the driven object driven by the actuator according to the present invention.
  • the present invention is not limited to this, and the exhaust gas recirculation (EGR) valve mounted on the engine or a variable is not limited thereto. It may be a movable vane or the like attached to a capacity (VG; Variable Geometry) turbocharger.
  • VG Variable Geometry
  • the actuator control device learns the reference position of the shaft during engine operation, it is suitable for use in an actuator control device affected by temperature changes.

Abstract

 アクチュエータの制御装置は、車両のエンジンが運転している期間において当該運転を妨害しないときにシャフトの基準位置を学習し、当該学習した基準位置を用いて位置センサにより検出されるシャフトの位置が目標位置に近づくようフィードバック制御する。

Description

アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法
 この発明は、バルブなどの駆動対象物を駆動するアクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法に関するものである。
 アクチュエータにより駆動対象物を駆動する場合、アクチュエータと駆動対象物との位置関係を学習することは、高精度な駆動制御を行う上で重要である。例えば特許文献1に係る基準開度位置学習装置においては、エンジン停止時にアクチュエータにより吸気渦流制御弁を基準位置へ駆動し、位置センサにより検出される吸気渦流制御弁の開度値より基準位置を学習していた。
 しかしながら、上記特許文献1のようにエンジン停止時に位置学習を行うだけでは、機構部品が暖まり、熱膨張により変形すると、基準位置がずれるという課題があった。そこで、特許文献2に係る制御弁開閉制御装置においては、エンジンの運転中に吸気渦流制御弁が基準位置へ駆動されたとき、位置センサにより検出される吸気渦流制御弁の開度値より基準位置を学習していた。
特開2009-62833号公報 特開2010-168909号公報
 駆動対象物は、エンジンの運転中に頻繁に基準位置へ駆動されるとは限らない。そのため、上記特許文献2のようにエンジンの運転中に駆動対象物が基準位置へ駆動された機会を利用して基準位置を学習する構成にしたとしても、駆動対象物が基準位置へ駆動されなければ、熱膨張による変形などによって基準位置がずれるという課題が依然として存在する。
 この発明は、上記のような課題を解決するためになされたもので、基準位置を学習する頻度を高め、基準位置の精度向上を図ることを目的とする。
 この発明に係るアクチュエータの制御装置は、シャフトの軸方向における基準位置を用いて、位置センサにより検出されるシャフトの位置が目標位置に近づくようアクチュエータをフィードバック制御するフィードバック制御部と、車両のエンジンが運転している期間において当該運転を妨害しないときに基準位置を学習する位置学習部とを備えるものである。
 この発明によれば、車両のエンジンが運転している期間において当該運転を妨害しないときにシャフトの基準位置を学習するようにしたので、基準位置を学習する頻度を高めることができ、基準位置の精度向上を図ることができる。
この発明の実施の形態1に係るウエストゲートアクチュエータの構成例を示す断面図である。 実施の形態1に係るウエストゲートアクチュエータの制御装置の構成例を示すブロック図である。 実施の形態1に係るウエストゲートアクチュエータの制御装置が行う動作を示すフローチャートである。 実施の形態1に係るウエストゲートアクチュエータの制御装置のハードウエア構成例を示す図である。 この発明の実施の形態2に係るウエストゲートアクチュエータの制御装置の構成例を示すブロック図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この発明に係るアクチュエータを、車両に搭載されたターボチャージャ付きエンジンのウエストゲート(以下、WGと称す)バルブを駆動するWGアクチュエータとして用いる場合を例にして説明する。
 図1は、実施の形態1に係るWGアクチュエータ1の構成例を示す断面図である。ターボチャージャは、エンジンからの排気ガスによってタービンを回転させ、このタービンと同軸で接続されたコンプレッサを駆動して吸気を圧縮しエンジンに供給する構成である。排気通路100のタービン上流側には、排気ガスを排気通路100からバイパス通路101へ逃がすWGバルブ2が設置されており、WGアクチュエータ1がWGバルブ2を開閉して排気通路100からバイパス通路101への排気ガス流入量を調整することにより、タービンの回転数を制御する。なお、図1では、WGバルブ2の全閉状態を実線で示し、全開状態を二点鎖線で示す。
 WGアクチュエータ1は、駆動源となる直流モータ4と、WGバルブ2を開閉するシャフト13と、直流モータ4の回転運動をシャフト13の直線運動に変換するネジ機構12とを備える。直流モータ4は、複数のN極とS極に着磁されたマグネット5を有するロータ6と、コイル7が巻回されたステータ8とを含む。コイル7の端部にはブラシ11bが接続されている。ロータ6の一端側は軸受部14によって回転自在に支持されており、他端側には整流子9が固定されている。
 外部端子10に電圧が印加されると、この外部端子10に接続しているブラシ11aを介し、整流子9を構成する複数の整流子片の中のブラシ11aと接触した整流子片に電流が流れ、この整流子片と電気的に接続したブラシ11bを介してコイル7に電流が流れる。コイル7に通電することでステータ8がN極とS極に磁化し、そのステータ8がマグネット5のN極とS極と反発および吸引しあうことでロータ6が回転する。ロータ6の回転に伴って通電するコイル7が切り替わることにより、ステータ8の極も切り替わり、ロータ6が回転し続ける。電流の向きが逆になると、ロータ6の回転方向も逆になる。
 なお、図1では直流モータ4としてブラシ付きDCモータを使用しているが、ブラシレスDCモータを使用してもよい。
 ロータ6の内部にはシャフト13を配置するための穴があいており、穴の内周面に雌ネジ部12aが形成され、シャフト13の外周面に雄ネジ部12bが形成されている。この雄ネジ部12bが雌ネジ部12aにねじ込まれて結合され、ロータ6の回転運動をシャフト13の直線運動に変換する。これら雌ネジ部12aと雄ネジ部12bとでネジ機構12が構成される。シャフト13の一端側は、ハウジング15を貫通し、リンク機構3を介してWGバルブ2と連結されている。シャフト13の他端側には、このシャフト13の軸方向における位置を検知する位置センサ16などが設置されている。
 リンク機構3は、2枚のプレート3a,3bを有する。プレート3aの一端側にシャフト13が取り付けられ、他端側の支点3cにはプレート3bの一端側が回動自在に取り付けられている。このプレート3bの他端側にはWGバルブ2が取り付けられている。ロータ6の一方向への回転によってシャフト13がハウジング15の外へ押し出される方向に移動すると、プレート3aも同方向に移動して、プレート3bとWGバルブ2が支点3cを中心に回動し、WGバルブ2が開弁方向に動く。ロータ6の逆方向への回転によってシャフト13がハウジング15の内へ引き込まれる方向に移動すると、プレート3aも同方向に移動して、プレート3bとWGバルブ2が支点3cを中心に回動し、WGバルブ2が閉弁方向に動く。
 シャフト13には、二平面などが形成されて回転規制部13aとして機能する。また、シャフト13を貫通するハウジング15の穴の内周面には、この回転規制部13aの形状に合わせて、二平面などのガイド部15aが形成されている。回転規制部13aとガイド部15aとが摺動することにより、ロータ6の回転に合わせてシャフト13が回転運動するのを規制し、シャフト13が直線移動するようサポートする。ガイド部15aの端部には、シャフト13側に突出したストッパ15bが形成されており、シャフト13から突出した形状の当て部13bがこのストッパ15bに当接することにより、シャフト13のこれ以上の開弁方向への直線移動を規制する。同様に、ネジ機構12の端部にストッパ15cとして機能するプレートが設置され、当て部13cとして機能するシャフト13の端面がストッパ15cに当接することにより、シャフト13のこれ以上の閉弁方向への移動を規制する。
 シャフト13のストッパ15cとして機能するプレートには、シャフト13の外径より小さな穴が貫通しており、この穴にセンサ用シャフト17が通され、センサ用シャフト17の端面がシャフト13の端面に当接する。これにより、シャフト13の軸方向の往復運動に合わせてセンサ用シャフト17も往復運動する。このセンサ用シャフト17にはセンサ用マグネット18が固定されており、シャフト13の往復運動に伴って位置センサ16に対するセンサ用マグネット18の位置が変化することにより、位置センサ16を通過する磁束密度も変化する。位置センサ16は、ホール素子または磁気抵抗素子などであり、シャフト13の往復運動に伴って変化する磁束密度を検出し、シャフト13の実ストローク位置を示すアナログ信号に変換して出力する。
 図2は、制御装置20の構成例を示すブロック図である。制御装置20は、主に、WGアクチュエータ1を制御してWGバルブ2の開度を調整する機能と、WGアクチュエータ1の基準位置を学習する機能を備えている。なお、図示例では、制御装置20の機能をエンジンコントロールユニットの一機能として実現するように構成しているが、制御装置20を独立した電子制御ユニットとして構成してもよいし、あるいはWGアクチュエータ1の内部に回路基板として組み込んでもよい。
 エンジンコントロールユニットは、エンジン制御部21と制御装置20とを備えており、これら以外の構成については図示および説明を省略する。制御装置20は、フィードバック制御部22と、モータドライバ23と、A/Dコンバータ24と、位置学習部30とを備えている。位置学習部30は、位置学習開始判定部31と、位置学習制御部32と、基準位置検出部33とを備えている。
 エンジン制御部21は、シャフト13の目標ストローク位置を、フィードバック制御部22へ出力する。実施の形態1においては、一例として、エンジン制御部21がシャフト13の基準位置を基準にして目標ストローク位置を指定する。基準位置は、WGバルブ2を全閉したときのシャフト13の位置に相当し、基準位置検出部33からエンジン制御部21へ通知される。
 また、エンジン制御部21は、車両の状態を示す車両情報を、位置学習開始判定部31へ出力する。車両情報は、例えばエンジンの駆動状態を示す情報、およびエンジン負荷を示す状態などである。エンジンの駆動状態を示す情報としては、エンジンが始動したことまたは停止したことを示すイグニッション(IG)キーのオンオフ状態の情報などがある。エンジン負荷を示す情報としては、エンジンのアイドリング、車両の減速または加速を示す情報などがある。アイドリング時および減速時などエンジン負荷が低いときにはWGバルブ2が閉弁方向へ駆動され、加速時などエンジン負荷が高いときにはWGバルブ2は開弁方向へ駆動されることになる。
 A/Dコンバータ24は、位置センサ16が出力するシャフト13の実ストローク位置のアナログ信号を受け取り、実ストローク位置のデジタル信号に変換して、フィードバック制御部22および基準位置検出部33へ出力する。
 フィードバック制御部22は、A/Dコンバータ24から受け取った実ストローク位置がエンジン制御部21から受け取った目標ストローク位置に近づくように、シャフト13のストローク位置をフィードバック制御する。シャフト13のストローク位置をフィードバック制御することにより、シャフト13に連結されたWGバルブ2の開度が調整される例えばPID制御を行う場合、フィードバック制御部22は、目標ストローク位置と実ストローク位置との偏差を算出し、偏差に応じた比例項、積分項および微分項の各操作量を求めて駆動Dutyを算出し、駆動Dutyに対応するPWM(Pulse Width Modulation)制御信号を生成してモータドライバ23へ出力する。
 なお、実施の形態1においては、一例として、フィードバック制御部22がA/Dコンバータ24から受け取った実ストローク位置を、基準位置検出部33から通知されたシャフト13の基準位置を用いて補正し、フィードバック制御に用いる。これにより、基準位置を基準とした高精度なフィードバック制御を行うことができる。
 また、フィードバック制御部22は、基準位置を学習する位置学習処理のためにシャフト13を基準位置、つまりWGバルブ2の全閉位置に相当する位置へ移動させる指示を位置学習制御部32から受け取ると、上述した通常時のフィードバック制御を中断して、位置学習制御部32からの指示に応じてシャフト13を移動させるPWM制御信号を生成しモータドライバ23へ出力する。
 モータドライバ23は、フィードバック制御部22から受け取るPWM制御信号に応じて直流モータ4に印加する電圧をオンオフ制御し、直流モータ4へ通電する電流を調整する。
 位置学習開始判定部31は、エンジン制御部21から受け取った車両情報に基づいて位置学習処理を開始するか否かを判定し、位置学習処理を開始すると判定した場合にその旨を位置学習制御部32へ通知する。例えばIGキーがオフ状態からオン状態になりエンジンが始動したとき、IGキーがオン状態からオフ状態になりエンジンが停止したとき、およびエンジンが運転中であってエンジン負荷が予め定められた閾値以下のときに、位置学習開始判定部31は位置学習処理を開始すると判定する。なお、この例では、エンジンがアイドリングしているときまたは車両が減速しているときを、エンジン負荷が予め定められた閾値以下になるときと判定するように構成するが、これに限定されるものではなく、エンジンの回転数またはスロットルバルブの開度などに基づいてエンジン負荷の高低を判定してもよい。エンジン負荷が予め定められた閾値以下になるとき、エンジン制御部21の指示する目標ストローク位置はWGバルブ2の全閉位置、または全閉に近い位置になる。
 位置学習制御部32は、位置学習開始判定部31から位置学習処理の開始通知を受け取ると、シャフト13を基準位置、つまりWGバルブ2の全閉位置に相当する位置へ移動させる指示をフィードバック制御部22へ出力する。また、位置学習制御部32は、基準位置を検出する指示を基準位置検出部33へ出力する。
 基準位置検出部33は、位置学習制御部32から基準位置検出の指示を受け取った場合、この位置学習処理によって移動しているシャフト13の実ストローク位置をA/Dコンバータ24から受け取り、基準位置を検出する。基準位置検出部33は、検出した基準位置をエンジン制御部21およびフィードバック制御部22へ通知する。
 ここで、全閉の基準位置検出方法の一例を説明する。
 位置学習制御部32は、WGバルブ2の全閉位置に相当する位置へシャフト13を移動させる指示を、フィードバック制御部22へ与える。フィードバック制御部22は、位置学習制御部32からの指示に従い、シャフト13をハウジング15へ引き込む閉弁方向に移動させ、WGバルブ2を弁座に押し付けて全閉状態にする。基準位置検出部33は、この状態において位置センサ16により検出されるシャフト13の実ストローク位置を、全閉基準位置として検出する。
 なお、基準位置検出部33は、例えば下記のような方法を使用して全閉状態を判定する。位置学習制御部32からフィードバック制御部22へシャフト13をWGバルブ2の全閉位置へ移動させる指示が出ている状態において、基準位置検出部33は、位置センサ16により検出された今回の実ストローク位置と1サンプリング前の実ストローク位置との差が所定値以下となり、フィードバック制御部22により算出された駆動Dutyが所定値以下になる状態が連続して所定期間継続した場合に、全閉状態であると判定する。そして基準位置検出部33は、当該所定期間に位置センサ16により検出された実ストローク位置の平均値を算出し、この平均値で表される位置を全閉基準位置として検出する。
 図3は、位置学習部30の動作を示すフローチャートである。以下、位置学習部30による図3のフローチャートに沿った動作と並行して、フィードバック制御部22がフィードバック制御を行っているものとする。
 位置学習開始判定部31は、エンジン制御部21から車両情報を受け取り(ステップST1)、その車両情報に基づいて位置学習処理を開始するか否かを判定する(ステップST2)。
 位置学習開始判定部31は、位置学習処理を開始すると判定した場合に位置学習制御部32へ開始通知を出力する(ステップST2“YES”)。この開始通知を受け取った位置学習制御部32は、WGバルブ2の全閉位置に相当する位置へシャフト13を移動させる指示をフィードバック制御部22へ出力すると共に、基準位置を検出する指示を基準位置検出部33へ出力する(ステップST3)。フィードバック制御部22は、位置学習処理の開始通知を受け取ると通常のフィードバック制御を中断して位置学習制御を実施し、シャフト13を全閉位置に移動させる。基準位置検出部33は、シャフト13が全閉位置に移動した状態で位置センサ16により検出されるシャフト13の実ストローク位置を、A/Dコンバータ24を介して受け取り、基準位置として検出する(ステップST4)。基準位置検出部33は、検出した基準位置をエンジン制御部21とフィードバック制御部22へ出力する。なお、基準位置検出部33による基準位置の検出後、フィードバック制御部22は通常のフィードバック制御に復帰する。
 一方、ステップST2において位置学習開始判定部31が位置学習処理を開始しないと判定した場合(ステップST2“NO”)、位置学習開始判定部31から位置学習制御部32へ位置学習処理の指示が通知されないため、フィードバック制御部22は通常のフィードバック制御を継続する。
 例えば、IGキーがオン状態になったときに位置学習処理を実施することで、車両が走行する前に、つまりWGアクチュエータ1の使用前にシャフト13の基準位置を学習することができる。よって、フィードバック制御を高精度に行うことができる。
 また、IGキーがオフ状態になったときに位置学習処理を実施することで、次に車両が走行する前に、つまり次にWGアクチュエータ1が使用される前にシャフト13の基準位置を学習することができる。よって、フィードバック制御を高精度に行うことができる。
 なお、IGキーがオン状態になったとき、およびIGキーがオフ状態になったときにそれぞれ位置学習処理を実施するようにしてもよいし、いずれか一方のみ実施してもよい。
 さらに、車両の走行前または走行後の少なくとも一方に加え、車両の走行中にも位置学習処理を実施するようにしたので、機構部品が暖まり、熱膨張により変形して基準位置がずれた場合でも、そのずれに対応した基準位置を学習することができる。よって、車両の走行前または走行後のみに基準位置を学習する場合に比べて、フィードバック制御をより高精度に行うことができる。
 車両の走行中において位置学習処理を実施するタイミングは、エンジン負荷が閾値以下になるタイミングであるため、エンジン制御部21からフィードバック制御部22へ指示する本来の目標ストローク位置がWGバルブ2の全閉位置または全閉に近い位置であり、位置学習処理のためにWGバルブ2を全閉してもターボチャージャ付きエンジンの正常な運転を妨害することはない。なお、エンジン負荷が閾値以下になるタイミングは、アイドリング時および減速時に限定されるものではなく、ターボチャージャ付きエンジンの正常な運転を妨害しないときであればよい。
 なお、上記の制御装置20においては、車両の走行前または走行後の少なくとも一方に加えて車両の走行中にも位置学習処理を実施する構成にしたが、車両の走行中のみ位置学習処理を実施する構成にしてもよい。
 また、上記の制御装置20においては、基準位置を、目標ストローク位置と実ストローク位置の位置合わせに用いる例を説明したが、基準位置の用途はこれに限定されるものではない。例えばWGアクチュエータ1をソフトランディング制御する場合、制御装置20は、基準位置を基準にしてシャフト13のソフトランディング開始目標位置を設定し、シャフト13の実ストローク位置がソフトランディング開始目標位置より全閉側にきたときにシャフト13の減速を開始して、WGバルブ2が全閉するときの衝撃を低減するようにしてもよい。
 次に、図4を用いて、制御装置20のハードウエア構成例を説明する。
 モータドライバ23は、直流モータ4に印加する電圧をオンオフするスイッチング素子などで構成される。フィードバック制御部22、A/Dコンバータ24および位置学習部30は、メモリ40に記憶されたプログラムを実行するプロセッサ41により、実現される。プロセッサ41は、CPUまたはシステムLSI等の処理回路である。メモリ40は、上記プログラムの他、位置学習処理の開始を判定するエンジン負荷の閾値および基準位置検出部33で検出された基準位置などを記憶している。なお、複数のプロセッサおよび複数のメモリが連携して上記機能を実行してもよい。
 以上より、実施の形態1によれば、WGアクチュエータ1の制御装置20は、シャフト13の軸方向における基準位置を用いて、位置センサ16により検出されるシャフト13の位置が目標位置に近づくようWGアクチュエータ1をフィードバック制御するフィードバック制御部22と、車両のエンジンが運転している期間において当該運転を妨害しないときに基準位置を学習する位置学習部30とを備える構成にしたので、従来に比べて基準位置を学習する頻度を高めることができ、基準位置の精度向上を図ることができる。
 また、実施の形態1によれば、フィードバック制御部22において駆動対象物であるWGバルブ2の全閉位置をシャフト13の基準位置として用いる場合、位置学習部30は、車両のエンジンが運転している期間においてエンジン負荷が閾値以下のときに、シャフト13をWGバルブ2の全閉位置に移動させる指示をフィードバック制御部22に与え、位置センサ16により検出されるシャフト13の位置を基準位置として学習する構成にしたので、位置学習処理を行う際にターボチャージャ付きエンジンの正常な運転を妨害せず、ひいては走行中の車両に影響を与えることもない。
 なお、実施の形態1の位置学習部30においては、WGバルブ2の全閉位置をシャフト13の基準位置として用いたが、反対に、WGバルブ2の全開位置をシャフト13の基準位置として用いてもよい。
 エンジン負荷が閾値以下になる低負荷のタイミングでは、WGバルブ2が全閉状態でも全開状態でも、ターボチャージャ付きエンジンの正常な運転は妨害されないので、シャフト13の基準位置を学習するためにWGバルブ2を全開することが可能である。
 また、WGバルブ2の全開位置を基準位置として用いる場合、車両情報に基づいて、車両加速時などエンジンが高負荷になるタイミングで位置学習処理を開始するようにしてもよい。エンジンが高負荷になるタイミングにおいては、エンジン制御部21からフィードバック制御部22へ指示する本来の目標ストローク位置がWGバルブ2の全開位置または全開に近い位置であり、位置学習処理のためにWGバルブ2を全開してもターボチャージャ付きエンジンの正常な運転は妨害されない。例えば位置学習開始判定部31は、エンジン制御部21から受け取る車両情報に基づいて、エンジン負荷が予め定められた閾値より高い場合に位置学習処理を開始すると判定する。
 さらに、排気ガスを浄化する触媒を暖めるためにWGバルブ2を全開にする場合などにおいても、基準位置の学習が可能である。
 ここで、全開の基準位置検出方法の一例を説明する。この例では、WGバルブ2を全開したときにリンク機構3に当接するストッパ19を設け、シャフト13のこれ以上の開弁方向への移動を規制する構成を前提とする。
 位置学習制御部32は、WGバルブ2の全開位置に相当する位置へシャフト13を移動させる指示を、フィードバック制御部22へ与える。フィードバック制御部22は、位置学習制御部32からの指示に従い、シャフト13をハウジング15から押し出す開弁方向に移動させ、リンク機構3をストッパ19に押し付けて全開状態にする。基準位置検出部33は、この状態において位置センサ16により検出されるシャフト13の実ストローク位置を、全開基準位置として検出する。
 なお、基準位置検出部33は、例えば下記のような方法を使用して全開状態を判定する。位置学習制御部32からフィードバック制御部22へシャフト13をWGバルブ2の全開位置へ移動させる指示が出ている状態において、基準位置検出部33は、位置センサ16により検出された今回の実ストローク位置と1サンプリング前の実ストローク位置との差が所定値以下となり、フィードバック制御部22により算出された駆動Dutyが所定値以下になる状態が連続して所定期間継続した場合に、全開状態であると判定する。そして基準位置検出部33は、当該所定期間に位置センサ16により検出された実ストローク位置の平均値を算出し、この平均値で表される位置を全開基準位置として検出する。
実施の形態2.
 図5は、この発明の実施の形態2に係るWGアクチュエータ1の制御装置20の構成例を示すブロック図である。図5において、図2と同一または相当する部分は同一の符号を付し説明を省略する。また、実施の形態2に係る制御装置20の制御対象であるWGアクチュエータ1は上記実施の形態1と同じ構成であるため、以下では図1を援用する。
 また、実施の形態2では、WGバルブ2の全閉位置に相当する位置を、シャフト13の基準位置として用いる場合を例に説明する。
 実施の形態2のエンジン制御部21aは、シャフト13の目標ストローク位置を、フィードバック制御部22だけでなく位置学習開始判定部31aにも出力する。また、エンジン制御部21aは、イグニッションキーのオンオフ状態を示す情報を、車両情報として位置学習開始判定部31aへ出力する。
 位置学習開始判定部31aは、エンジン制御部21aから受け取ったイグニッションキーのオンオフ状態を示す車両情報に基づいて、エンジンが運転中であるか否かを判定する。また、位置学習開始判定部31aは、エンジンが運転中である期間において、エンジン制御部21aからの目標ストローク位置が、基準位置である全閉位置から予め定められた範囲内にある場合に、位置学習処理を開始すると判定する。そして、位置学習開始判定部31aから位置学習制御部32へ、位置学習処理の開始通知を出力する。
 基準位置から予め定められた範囲とは、例えば上記実施の形態1で説明したような、目標ストローク位置がWGバルブ2の全閉位置または全閉に近い位置を判定するための範囲であり、位置学習処理のためにWGバルブ2を全閉してもターボチャージャ付きエンジンの正常な運転を妨害しない範囲である。
 位置学習制御部32は、位置学習開始判定部31aから位置学習処理の開始通知を受け取ると、シャフト13を基準位置、つまりWGバルブ2の全閉位置に相当する位置へ移動させる指示をフィードバック制御部22へ出力する。また、位置学習制御部32は、位置センサ16により検出されるシャフト13の位置を基準位置として検出する指示を基準位置検出部33へ出力する。基準位置検出部33は、フィードバック制御部22がシャフト13をWGバルブ2の全閉位置に相当する位置へ移動させたときに、位置センサ16により検出されるシャフト13の位置を、基準位置として検出する。
 以上より、実施の形態2によれば、フィードバック制御部22において駆動対象物であるWGバルブ2の全閉位置をシャフト13の基準位置として用いる場合、位置学習部30は、車両のエンジンが運転している期間において目標位置が全閉位置から予め定められた範囲内にあるときに、シャフト13を全閉位置に移動させる指示をフィードバック制御部22に与え、位置センサ16により検出されるシャフト13の位置を基準位置として学習する構成にしたので、従来に比べて基準位置を学習する頻度を高めることができ、基準位置の精度向上を図ることができる。また、位置学習処理を行う際にターボチャージャ付きエンジンの正常な運転を妨害せず、ひいては走行中の車両に影響を与えることもない。
 上記説明では、WGバルブ2の全閉位置をシャフト13の基準位置として用いたが、反対に、WGバルブ2の全開位置をシャフト13の基準位置として用いてもよい。その場合、位置学習開始判定部31aは、エンジン制御部21aからの目標ストローク位置が、基準位置である全開位置から予め定められた範囲内にある場合に、位置学習処理を開始すると判定する。位置学習制御部32は、シャフト13を基準位置、つまりWGバルブ2の全開位置に相当する位置へ移動させる指示をフィードバック制御部22へ出力し、位置センサ16により検出されるシャフト13の位置を基準位置として検出する指示を基準位置検出部33へ出力する。これにより、上記同様、従来に比べて基準位置を学習する頻度を高めることができ、基準位置の精度向上を図ることができる。また、位置学習処理を行う際にターボチャージャ付きエンジンの正常な運転を妨害せず、ひいては走行中の車両に影響を与えることもない。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。
 上記説明では、本発明に係るアクチュエータが駆動する駆動対象物の一例としてWGバルブを挙げたが、これに限定されるものではなく、エンジンに装着される排気ガス再循環(EGR)バルブ、または可変容量(VG;Variable Geometry)ターボチャージャに装着される可動ベーン等であってもよい。
 また、本発明に係るアクチュエータのシャフトと駆動対象物とを、リンク機構を用いて連結する構成を示したが、リンク機構を用いずに直接シャフトと駆動対象物とを連結する構成であってもよい。
 また、本発明に係るアクチュエータと、駆動対象物であるバルブと、制御装置とを備えたバルブ駆動装置として構成してもよい。
 この発明に係るアクチュエータの制御装置は、エンジン運転中にシャフトの基準位置を学習するようにしたので、温度変化の影響を受けるアクチュエータの制御装置に用いるのに適している。
 1 WGアクチュエータ、2 WGバルブ(駆動対象物)、3 リンク機構、3a,3b プレート、3c 支点、4 直流モータ、5 マグネット、6 ロータ、7 コイル、8 ステータ、9 整流子、10 外部端子、11a,11b ブラシ、12 ネジ機構、12a 雌ネジ部、12b 雄ネジ部、13 シャフト、13a 回転規制部、13b,13c 当て部、14 軸受部、15 ハウジング、15a ガイド部、15b,15c ストッパ、16 位置センサ、17 センサ用シャフト、18 センサ用マグネット、19 ストッパ、20 制御装置、21,21a エンジン制御部、22 フィードバック制御部、23 モータドライバ、24 A/Dコンバータ、30 位置学習部、31,31a 位置学習制御部、32 位置学習制御部、33 基準位置検出部、40 メモリ、41 プロセッサ、100 排気通路、101 バイパス通路。

Claims (8)

  1.  車両に搭載された駆動対象物の開度を調整するシャフトと、前記シャフトを軸方向に往復運動させるモータと、前記シャフトの位置を検出する位置センサとを有するアクチュエータの制御装置であって、
     前記シャフトの軸方向における基準位置を用いて、前記位置センサにより検出される前記シャフトの位置が目標位置に近づくよう前記アクチュエータをフィードバック制御するフィードバック制御部と、
     前記車両のエンジンが運転している期間において当該運転を妨害しないときに前記基準位置を学習する位置学習部とを備えることを特徴とするアクチュエータの制御装置。
  2.  前記フィードバック制御部は、前記駆動対象物の全閉位置または全開位置を前記シャフトの基準位置として用い、
     前記位置学習部は、前記車両のエンジンが運転している期間においてエンジン負荷が閾値以下のときに、前記シャフトを前記全閉位置または前記全開位置に移動させる指示を前記フィードバック制御部に与え、前記位置センサにより検出される前記シャフトの位置を前記基準位置として学習することを特徴とする請求項1記載のアクチュエータの制御装置。
  3.  前記フィードバック制御部は、前記駆動対象物の全開位置を前記シャフトの基準位置として用い、
     前記位置学習部は、前記車両のエンジンが運転している期間においてエンジン負荷が閾値より高いときに、前記シャフトを前記全開位置に移動させる指示を前記フィードバック制御部に与え、前記位置センサにより検出される前記シャフトの位置を前記基準位置として学習することを特徴とする請求項1記載のアクチュエータの制御装置。
  4.  前記フィードバック制御部は、前記駆動対象物の全閉位置を前記シャフトの基準位置として用い、
     前記位置学習部は、前記車両のエンジンが運転している期間において前記目標位置が全閉位置から予め定められた範囲内にあるときに、前記シャフトを前記全閉位置に移動させる指示を前記フィードバック制御部に与え、前記位置センサにより検出される前記シャフトの位置を前記基準位置として学習することを特徴とする請求項1記載のアクチュエータの制御装置。
  5.  前記フィードバック制御部は、前記駆動対象物の全開位置を前記シャフトの基準位置として用い、
     前記位置学習部は、前記車両のエンジンが運転している期間において前記目標位置が全開位置から予め定められた範囲内にあるときに、前記シャフトを前記全開位置に移動させる指示を前記フィードバック制御部に与え、前記位置センサにより検出される前記シャフトの位置を前記基準位置として学習することを特徴とする請求項1記載のアクチュエータの制御装置。
  6.  車両に搭載された駆動対象物の開度を調整するシャフトと、
     前記シャフトを軸方向に往復運動させるモータと、
     前記シャフトの位置を検出する位置センサと、
     請求項1記載の制御装置とを備えることを特徴とするアクチュエータ。
  7.  車両に搭載された駆動対象物の開度を調整するシャフト、前記シャフトを軸方向に往復運動させるモータ、および前記シャフトの位置を検出する位置センサを有するアクチュエータと、
     前記シャフトの軸方向の往復運動によって駆動されるバルブと、
     請求項1記載の制御装置とを備えることを特徴とするバルブ駆動装置。
  8.  車両に搭載された駆動対象物の開度を調整するシャフトと、前記シャフトを軸方向に往復運動させるモータと、前記シャフトの位置を検出する位置センサとを有するアクチュエータの制御方法であって、
     制御装置のフィードバック制御部は、前記シャフトの軸方向における基準位置を用いて、前記位置センサにより検出される前記シャフトの位置が目標位置に近づくよう前記アクチュエータをフィードバック制御し、
     前記制御装置の位置学習部は、前記車両のエンジンが運転している期間において当該運転を妨害しないときに前記基準位置を学習することを特徴とするアクチュエータの制御方法。
PCT/JP2015/061105 2015-04-09 2015-04-09 アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法 WO2016163001A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112015006431.1T DE112015006431T5 (de) 2015-04-09 2015-04-09 Steuervorrichtung für Aktuator, Aktuator, Ventilantriebsvorrichtung und Steuerverfahren für Aktuator
PCT/JP2015/061105 WO2016163001A1 (ja) 2015-04-09 2015-04-09 アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法
JP2017511416A JPWO2016163001A1 (ja) 2015-04-09 2015-04-09 アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法
US15/558,334 US10422274B2 (en) 2015-04-09 2015-04-09 Control device for actuator, actuator, valve driving device and control method for actuator
CN201580078562.0A CN107407196B (zh) 2015-04-09 2015-04-09 致动器的控制装置、致动器、阀驱动装置以及致动器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061105 WO2016163001A1 (ja) 2015-04-09 2015-04-09 アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法

Publications (1)

Publication Number Publication Date
WO2016163001A1 true WO2016163001A1 (ja) 2016-10-13

Family

ID=57071810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061105 WO2016163001A1 (ja) 2015-04-09 2015-04-09 アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法

Country Status (5)

Country Link
US (1) US10422274B2 (ja)
JP (1) JPWO2016163001A1 (ja)
CN (1) CN107407196B (ja)
DE (1) DE112015006431T5 (ja)
WO (1) WO2016163001A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162924A1 (ja) * 2015-04-06 2016-10-13 三菱電機株式会社 アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの異常検知方法
US11459966B2 (en) * 2019-12-20 2022-10-04 Pratt & Whitney Canada Corp. Systems and methods for operating an on-off valve
US11421619B2 (en) * 2020-12-01 2022-08-23 Garrett Transportation I Inc. Wear monitoring for electrical actuators
DE102022134219B3 (de) 2022-12-20 2023-12-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aktuator zum Steuern eines Verstellweges eines Ventils sowie Verfahren zum Messen des Toleranzausgleiches und Wassermischventil mit einem derartigen Aktuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110573A (ja) * 1998-09-30 2000-04-18 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2013117267A (ja) * 2011-12-05 2013-06-13 Denso Corp 電動アクチュエータ、および電動アクチュエータを備えた制御弁
JP2015025409A (ja) * 2013-07-26 2015-02-05 三菱自動車工業株式会社 エンジンの制御装置
JP2015040488A (ja) * 2013-08-21 2015-03-02 日産自動車株式会社 過給機付き内燃エンジンの過給圧制御装置及び過給圧制御方法
JP2015059549A (ja) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580535A (en) * 1985-06-03 1986-04-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine idling speed controlling system
USRE33027E (en) * 1984-06-08 1989-08-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine idling speed controlling system
US5005359A (en) * 1988-03-19 1991-04-09 Mazda Motor Corporation Air supply control systems for turbocharged internal combustion engines
EP0334206B1 (en) * 1988-03-19 1992-06-17 Mazda Motor Corporation Air supply control systems for internal combustion engines
JPH07269406A (ja) * 1994-03-29 1995-10-17 Hitachi Ltd 内燃機関の絞り弁制御装置
JP2003106185A (ja) 2001-10-02 2003-04-09 Mitsubishi Motors Corp 触媒被毒再生装置
GB2390642A (en) * 2002-07-09 2004-01-14 Honeywell Uk Ltd Turbocharged i.c engine
JP2006274831A (ja) * 2005-03-28 2006-10-12 Denso Corp ターボチャージャ付き内燃機関の制御装置
JP2007154737A (ja) * 2005-12-05 2007-06-21 Denso Corp 車両用エンジンの制御装置
JP4751864B2 (ja) * 2007-09-04 2011-08-17 トヨタ自動車株式会社 吸気渦流制御弁の基準開度位置学習装置
JP2009209758A (ja) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd 機械式過給機付き内燃機関の制御装置及び制御方法
JP2010168909A (ja) * 2009-01-20 2010-08-05 Denso Corp 制御弁開閉制御装置
EP2696053B1 (en) 2011-04-08 2018-01-17 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine with supercharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110573A (ja) * 1998-09-30 2000-04-18 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2013117267A (ja) * 2011-12-05 2013-06-13 Denso Corp 電動アクチュエータ、および電動アクチュエータを備えた制御弁
JP2015025409A (ja) * 2013-07-26 2015-02-05 三菱自動車工業株式会社 エンジンの制御装置
JP2015040488A (ja) * 2013-08-21 2015-03-02 日産自動車株式会社 過給機付き内燃エンジンの過給圧制御装置及び過給圧制御方法
JP2015059549A (ja) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
DE112015006431T5 (de) 2017-12-21
CN107407196A (zh) 2017-11-28
US10422274B2 (en) 2019-09-24
CN107407196B (zh) 2020-09-08
JPWO2016163001A1 (ja) 2017-07-13
US20180066574A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6351834B2 (ja) アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの異常検知方法
WO2016163001A1 (ja) アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法
JP6320627B2 (ja) ウエストゲートアクチュエータおよびウエストゲートバルブ駆動装置
US8205584B2 (en) Control device for variable valve mechanism
US8040085B2 (en) Brushless motor apparatus
JP2007285173A (ja) バルブ開閉制御装置
WO2006062043A1 (ja) モータ式ポペット弁及びモータ式ポペット弁を用いた内燃機関のegr装置
JP2015218642A (ja) 内燃機関の排気装置
JP6338769B2 (ja) アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法
US6622695B2 (en) Intake control system of internal combustion engine
JP4736601B2 (ja) モータ制御装置
JP4692339B2 (ja) 可変動弁機構の制御装置
JP6115510B2 (ja) 全閉位置学習装置
JP2016200041A (ja) アクチュエータの制御装置、アクチュエータ、バルブ駆動装置およびアクチュエータの制御方法
JP2014126553A (ja) 位置検出装置
JP4888160B2 (ja) 内燃機関の可変動弁装置
JPH0988642A (ja) エンジンのバルブタイミング検出方法及びその装置
JP2010168909A (ja) 制御弁開閉制御装置
JP2011226331A (ja) 内燃機関の可変動弁装置
JP2004011532A (ja) バルブリフト量調整装置
JP2008291747A (ja) 診断装置
JP2000161112A (ja) 電子制御スロットル弁の制御装置
JP2004183526A (ja) 可変動弁系を有する内燃機関の制御装置
JP4400648B2 (ja) 診断装置
CN117287318A (zh) 节流阀控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006431

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888493

Country of ref document: EP

Kind code of ref document: A1