WO2016161817A1 - 串联间隙多点放电火花塞 - Google Patents

串联间隙多点放电火花塞 Download PDF

Info

Publication number
WO2016161817A1
WO2016161817A1 PCT/CN2015/097354 CN2015097354W WO2016161817A1 WO 2016161817 A1 WO2016161817 A1 WO 2016161817A1 CN 2015097354 W CN2015097354 W CN 2015097354W WO 2016161817 A1 WO2016161817 A1 WO 2016161817A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ignition
high voltage
insulator
positive
Prior art date
Application number
PCT/CN2015/097354
Other languages
English (en)
French (fr)
Inventor
沈鹤麟
冯江涛
杨世美
颜雯杰
欧其福
Original Assignee
杭州普隆格科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州普隆格科技有限公司 filed Critical 杭州普隆格科技有限公司
Publication of WO2016161817A1 publication Critical patent/WO2016161817A1/zh
Priority to US15/721,820 priority Critical patent/US20190148920A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/46Sparking plugs having two or more spark gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/28Sparking plugs characterised by features of the electrodes or insulation having spherically shaped electrodes, e.g. ball-shaped

Definitions

  • the present invention is a discharge spark plug, and more particularly to a series gap multi-point discharge spark plug for use in a spark-ignition engine.
  • spark plugs used in spark-ignition engines fueled by gasoline, gas, alcohol, etc. generally include insulators, housing gaskets, wiring nuts, etc., the center electrode is provided in the insulator, and a built-in damping resistor is provided.
  • the high temperature sealing and the connecting screw are connected as the positive pole of the ignition; the side electrode of the nickel alloy material is welded on the casing, and is used as the ground pole after the engine is installed, and the center electrode and the side electrode form a hook-like spark gap, when the engine is ignited Under the command of the engine management system (ECU), the high-voltage ignition coil is controlled to generate pulsed high-voltage electric energy, and the high-voltage wire is connected to the spark plug wiring screw (the independent high-voltage coil directly applies the high-voltage positive electrode to the wiring screw), and the pulsed high voltage is at the side electrode and the center.
  • the gap between the electrodes creates a high voltage breakdown spark that in turn ignites the compressed mixture, and the deflagration of the mixture expands to push the piston to work.
  • the insulator of the core portion protruding into the cylinder is the large area of the skirt contacting the high temperature combustion gas, and the heat dissipation is dependent on the inner gasket of the insulator and the small casing.
  • the area is in contact with heat conduction, so the engine has different thermal value design spark plugs for different requirements. It is precisely because of the restriction of the center electrode extension structure that the heat dissipation performance of the conventional spark plug becomes a technical obstacle that is difficult to further perfect the spark plug.
  • the data displayed by the engine torque and horsepower test can reflect that any engine's power output will drop after a certain speed, and it is not possible to increase linearly.
  • the fuel is increased and the power is reduced.
  • the root cause is that the heat of the spark plug reaches the limit value, causing the engine.
  • Premature ignition causes power to drop. Due to the center electrode and side electrode ignition structure of the conventional spark plug, the nonlinearity of the dynamic characteristics is an insurmountable technical barrier.
  • the present invention mainly solves the deficiencies in the prior art, has a compact structure, and provides an ignition device that ignites a mixed gas with multiple points, shortens the total combustion time, and improves the engine without changing other components.
  • the most efficient way is the series gap multi-point discharge spark plug.
  • a series-gap multi-point discharge spark plug includes a wiring screw, the connecting screw is disposed in an insulator, the insulator is riveted in a casing, and a center electrode is disposed inside the insulator tip, and the center is A built-in damping resistor is disposed between the electrode and the connecting screw, and a bottom of the insulator is provided with a ceramic multi-point discharge ignition pad matched with the insulator, and the ceramic multi-point discharge ignition table and the insulator form a cavity assembly, The outer wall of the upper end of the ceramic multi-point discharge ignition table is fastened to the housing, and the bottom of the ceramic multi-point discharge ignition table is provided with an ignition electrode assembly;
  • the cavity assembly includes a positive high voltage connection cavity, the bottom of the insulator extends into a ceramic multi-point discharge ignition stage, and the positive high voltage connection cavity is disposed at the bottom of the insulator and the ceramic multi-point discharge ignition
  • the bottom of the center electrode extends out of the insulator, and the positive electrode is connected to the bottom of the cavity a positive high voltage electrode connection line matched with the bottom of the center electrode is disposed, and the positive high voltage electrode connection line is disposed in the ceramic multi-point discharge ignition stage;
  • the positive high voltage connection cavity assembly includes a labyrinth positive electrode high voltage connection cavity and a labyrinth positive electrode high voltage electrode connection, and the bottom of the insulator extends into the ceramic multi-point discharge ignition stage, the labyrinth
  • the positive electrode high voltage connection cavity is disposed between the bottom of the insulator and the ceramic multi-point discharge ignition table, wherein the labyrinth positive electrode high voltage connection cavity is provided with a boss at a center position, and the boss extends to the bottom of the insulator.
  • the labyrinth positive electrode high voltage electrode connection is arranged at the center of the boss, the labyrinth positive electrode high voltage electrode connection is matched with the bottom of the center electrode, and the labyrinth positive electrode high voltage electrode connection is arranged in the ceramic multi-point discharge In the ignition platform, the boss is integrated with the ceramic multi-point discharge ignition platform;
  • the ignition electrode assembly includes a ground electrode and a positive electrode, and the positive electrode is connected to a positive high voltage electrode connection or a labyrinth positive high voltage electrode connection, and between the ground electrode and the positive electrode Forming a discharge ignition gap, and the ground electrode and the positive electrode are respectively connected through a built-in electrode connection
  • the ignition electrode assembly includes a positive electrode I, at least one jumper electrode, and a ground electrode I, and the positive electrode I is connected to the positive electrode high voltage electrode or the labyrinth positive electrode high voltage electrode Connecting, the positive electrode I and the jumper electrode are respectively connected through the built-in electrode connection I, the discharge ignition gap I is formed between the positive electrode I and the jumper electrode, between the ground electrode I and the jumper electrode;
  • ground electrode and the ground electrode I are respectively in contact with the housing
  • the ground electrode, the positive electrode, the positive electrode I, the jumper electrode and the ground electrode I are respectively needle-shaped vertical electrodes;
  • the built-in electrode connection and the built-in electrode connection I are placed in a ceramic multi-point discharge ignition stage.
  • the outer end of the outer wall of the casing is provided with an outer sealing gasket, and an inner sealing gasket is formed between the insulator and the casing, and the inner sealing gasket is distributed in an inclined manner.
  • a ceramic heat-dissipating surface is formed between the outer wall of the upper end of the ignition point and the housing, and the ceramic multi-point discharge ignition table forms a bottom heat-dissipating contact surface with the bottom of the casing, and the ceramic multi-point discharge ignition table
  • a flexible gasket is provided between the upper portion and the housing.
  • the outer wall of the lower end of the ceramic multi-point discharge ignition table is provided with a uniformly distributed creeping umbrella edge, and the ceramic multi-point discharge ignition table has a cylindrical shape or a tapered shape at the lower end.
  • the jumper electrodes are distributed in an arc shape, and the spacing between the discharge ignition gaps and the spacing of the discharge ignition gaps I are respectively 0.3-5.0 mm, and the built-in electrode wiring and the positive electrode are respectively The high voltage electrode connection or the labyrinth positive electrode high voltage electrode connection is integrated, and the built-in electrode connection line I is integrated with the positive electrode high voltage electrode connection or the labyrinth positive electrode high voltage electrode connection.
  • the discharge ignition gap I is disposed between adjacent jumper electrodes.
  • the ignition electrode assembly is sintered with ceramic to form a ceramic multi-point discharge ignition stage, which is the core content of this patent.
  • the positive electrode high voltage connection cavity may be provided as a labyrinth structure that increases the creepage distance.
  • the engine combustion rate is increased, thereby achieving energy saving, reducing the emission of harmful substances, and ensuring engine reliability improvement targets such as ignition reliability and power boosting.
  • the ceramic multi-point discharge ignition table is provided with an ignition electrode assembly, which is integrated into a ceramic co-firing technology, and a plurality of pairs of ignition electrodes are arranged vertically, and the electrodes are connected in series to form a high-voltage discharge circuit, and the gap between the pair of electrodes can realize multiple points. Synchronous discharge ignition.
  • the ignition platform at the bottom of the insulator has a small area, and is ignited at the end surface of the platform, and the high-pressure discharge generates a multi-point flame core which can be expanded in a semi-cylindrical shape; the initial flame core has a light-off rate significantly higher than that of the conventional spark plug in the form of a single-point discharge, burning
  • the distance is shortened, and the total combustion time is shortened; the shortest pressure in the cylinder is shortened, This is a direct gain on the engine's power performance.
  • a plurality of pairs of discharge electrodes arranged in parallel and in parallel, the surface discharge mode between the electrodes can break down the compressed mixture gas at a lower voltage, and strengthen the high-voltage breakdown and initiate the combustion of the hot ion current to participate in the combustion.
  • the long-distance non-blocking discharge gap helps the formation of the flame core, and is not easily cooled by the electrode to cool the flame; the initial ignition speed is increased, and the dot rate is improved.
  • This structure is advantageous for eliminating carbon deposition factors and ensuring ignition reliability under different working conditions.
  • the side heat dissipating contact surface and the bottom heat dissipating contact surface between the ceramic multi-point discharge ignition table and the housing are welded and connected, and have a good heat conducting structure, thereby ensuring the sealing performance of the spark plug.
  • Micro-loss precious metal discharge electrodes have an infinitely long service life.
  • one or more pairs of ignition electrodes are arranged on the ignition end face to form at least two synchronous discharge gaps, and the multi-point is realized in the high-pressure ignition of the engine. ⁇ (The speed of electricity is much higher than the burning speed of the flame)
  • the ignition ignites the mixed gas at different positions with a distance difference, so that the multi-point flame core rapidly spreads and intersects, so as to shorten the total combustion of the engine.
  • the ceramic multi-point discharge ignition table is made of high-performance alumina or silicon nitride ceramic.
  • the core content of this patent is to install a plurality of pairs of upright placed high-temperature and mutually insulated discharges in a ceramic multi-point discharge ignition table. Electrode, each electrode is connected by a high-temperature resistant alloy conductive lead, the built-in electrode connection and the built-in electrode connection I are respectively high-temperature resistant alloy conductive leads, or a printed wiring process is used to manufacture a conductive connection structure between the electrodes.
  • the series connection of the high-temperature alloy lead between the discharge electrode and the electrode is integrated by the ceramic co-firing technology, thereby effectively solving the high-voltage insulation problem between the structure, the strength, the sealing, the temperature resistance and the electrode, and ensuring the reliability of the product work.
  • the ignition table is provided with an auxiliary sealing step in the housing, and a flexible heat-conductive sealing gasket is arranged between the ignition platform to provide a buffer and auxiliary sealing for the mechanical connection of the ignition platform.
  • the ignition table and the housing are sealed and have a large heat conduction area directly. The close contact of the housing greatly increases the heat dissipation function of the ceramic ignition table.
  • the ground lead of the exposed ground electrode is connected to the end face of the casing by welding or crimping to form a grounding pole of the series high voltage ignition circuit.
  • the upper end face of the ceramic multi-point discharge ignition table is an upright parallel creeping discharge structure between the noble metal electrodes, and the discharge gap between each pair of ignition electrodes is elongated to two to three times of the ordinary structure spark plug (according to different discharges) Point setting parameter), the longitudinal section of the flame core can be formed into a semi-cylindrical type of rapid diffusion (conventional spark plug is a single point of spherical electrode suppression diffusion), because it is a one-way discharge ignition, in the flame nuclear ignition and diffusion process It is not affected by the structure of the spark plug (the traditional spark plug is easily affected by the side electrode and the center electrode and the temperature and structure of the electrode in the initial stage of the flame nucleus formation.
  • the stage will produce defects in ignition failure (high duty cycle).
  • the outer circumference of the ceramic ignition table has an insulating prismatic structure that prevents the creepage distance between the electrode and the housing creepage, ensuring that high-voltage discharge is limited between the pairs of electrodes.
  • the connection point of the center electrode is provided with a labyrinth isolation structure to prevent high-pressure leakage from pulse ignition.
  • the structure uses the surface breakdown discharge form to release the ignition energy, that is, the discharge is performed along the surface of the insulator between the center electrode and the side electrode, because the discharge distance between the center electrode of the conventional spark plug and the hook structure of the side electrode is short. , the performance of jumping fire is poor.
  • the size of the ignition gap is limited by the power supply voltage, it is generally about 0.6 to 1.3 mm. The shorter discharge distance makes the initial spark not fully “developed" into the necessary flame center, and the spark heat is also absorbed and cooled by the side electrode and the center electrode, which reduces the energy of the spark, and there is a hidden danger of ignition failure; If the ignition gap is increased, the ignition voltage needs to be increased.
  • the voltage increase is likely to cause internal breakdown or "fire", which is an insurmountable contradiction between a pair of conventional spark plugs.
  • the creeping discharge occurs at the interface between the insulator ceramic surface and the mixed gas between each pair of upright electrodes. Under the excitation of the high voltage electric field, the distortion of the electric field on the ceramic surface increases the local electric field strength, causing local discharge first, thereby causing discharge. Further development until the entire electrode gap breaks down. This discharge mechanism causes the creeping gap to be reduced more than the breakdown voltage of the same width air gap. If at the same breakdown voltage, the creeping gap is longer than the air gap. Longer discharge distances greatly increase the energy of the spark.
  • the spark discharge is composed of two parts with very different energy densities, namely the capacitor discharge part and the inductor discharge part.
  • the former has a high energy density, a high voltage, and can be discharged in a very short time; the latter has a small energy density, but works in a long time. From the spark energy distribution, it can be seen that the energy of the inductor portion is 20 to 30 times that of the capacitor portion, which plays a major role in heating the surrounding mixture to form a fire core. The longer the inductance part lasts, the better the ignition success rate. Increasing the discharge distance will reduce the "anti-flame effect" of the side electrode.
  • the electric fire burns off the oil deposit along the surface of the insulator to avoid the connection between the electrodes, and also avoids the current leakage caused by the adhesion of the combustion deposit between the insulator and the casing, and ensures the ignition reliability under the idling condition.
  • the engine generally only needs 0.2mJ ignition energy to be successful.
  • the ignition energy is only 3mJ. Due to the non-uniformity of the gas in the cylinder and the existence of turbulence, in order to ensure that the engine can be successfully ignited under various working conditions, the actual ignition energy of the ignition coil applied to the engine is generally 30 ⁇ 50 Mj. All the energy is released to a point in an instant. It turns out that increasing the ignition energy is not likely to improve the efficiency of the engine, but to improve the ignition reliability.
  • the engine kinetic energy is determined by the combustion rate of the mixed gas. The efficiency of the combustion of the mixture depends mainly on the efficiency of the combustion of the mixture.
  • the concentration, temperature, pressure of the mixture, and the turbulence velocity of the mixture in the cylinder are independent of the ignition energy, but are directly related to the ignition position and the development speed of the flame core.
  • This structure utilizes the large energy of the modern automobile ignition system.
  • the characteristics of the ignition coil are more conducive to the uniform distribution of the ignition capability.
  • the first flashover gap and the second flashover gap or the third gap can evenly distribute the ignition energy, so that the excess energy of the ignition coil can ensure the ignition success rate.
  • the ignition point at different positions can actually increase the combustion rate of the engine.
  • the series gap multi-point discharge spark plug provided by the invention improves the temperature and pressure of the ignition enthalpy mixture, improves the ignition performance, and shortens the complete combustion to shorten the turn of the day, thereby improving the power efficiency of the engine.
  • FIG. 2 is a schematic view of the bottom structure of FIG. 1;
  • FIG. 3 is a positional distribution diagram of a single-point creeping discharge ignition electrode in the present invention.
  • FIG. 4 is a positional distribution diagram of a two-point creeping discharge ignition electrode in the present invention.
  • FIG. 5 is a positional distribution diagram of a three-point creeping discharge ignition electrode in the present invention.
  • FIG. 6 is a schematic structural view of a standard type of the present invention.
  • FIG. 7 is a schematic structural view of a riveted type of the present invention.
  • FIG. 8 is a schematic structural view of a rapid heat dissipation type of the present invention.
  • Embodiment 1 As shown in FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 , FIG. 6 , FIG. 7 and FIG. 8 , a series gap multi-point discharge spark plug, including a wiring screw 1 , The wiring screw 1 is placed in the insulator 2, and the insulator 2 is riveted in the casing 3. The center of the insulator 2 is provided with a center electrode 4, and the center electrode 4 and the terminal screw 1 are provided with built-in damping.
  • a bottom of the insulator 2 is provided with a ceramic multi-point discharge ignition table 6 matched with the insulator 2, and the ceramic multi-point discharge ignition table 6 and the insulator 2 form a cavity assembly, and the ceramic is more
  • the outer wall of the upper end of the point discharge ignition table 6 is fastened to the casing 3, and the bottom of the ceramic multi-point discharge ignition table 6 is provided with an ignition electrode assembly;
  • the cavity assembly includes a positive high voltage connection cavity 7,
  • the bottom of the insulator 2 extends into the ceramic multi-point discharge ignition stage 6, and the positive high voltage connection cavity 7 is disposed between the bottom of the insulator 2 and the ceramic multi-point discharge ignition stage 6, and the bottom of the center electrode 4 extends.
  • the bottom of the positive high voltage connection cavity 7 The portion is provided with a positive high voltage electrode connection 8 connected to the bottom of the center electrode 4, and the positive high voltage electrode connection 8 is disposed in the ceramic multi-point discharge ignition stage 6; or, the positive high voltage connection cavity assembly includes a labyrinth positive electrode high voltage connection cavity 9 and a labyrinth positive electrode high voltage electrode connection 10, the bottom of the insulator 2 extends into the ceramic multi-point discharge ignition stage 6, and the labyrinth type positive electrode high voltage connection cavity 7 is disposed in the insulator The bottom of the 2 is connected to the ceramic multi-point discharge ignition table 6.
  • the center of the labyrinth positive electrode connection chamber 9 is provided with a boss 11 which extends to the bottom of the insulator 2, the labyrinth
  • the positive electrode high voltage electrode wire 10 is disposed at the center of the boss 11, the labyrinth positive electrode high voltage electrode wire 10 is matched with the bottom of the center electrode 4, and the labyrinth positive electrode high voltage electrode wire 10 is disposed in the ceramic
  • the boss 11 is integrally distributed with the ceramic multi-point discharge ignition stage 6;
  • the ignition electrode assembly includes a ground electrode 13 and a positive electrode 15 Positive electrode 15 and positive
  • the high voltage electrode connection 8 or the labyrinth positive electrode high voltage electrode connection 10 is connected, the discharge ignition gap 16 is formed between the ground electrode 13 and the positive electrode 15, and the ground electrode 13 and the positive electrode 15 are respectively connected by the built-in electrode connection line 17;
  • the ignition electrode assembly includes a positive electrode 119, at least one jumper electrode 20, and a ground electrode 121.
  • the positive electrode 119 is connected to the positive high voltage electrode connection 8 or the labyrinth positive electrode high voltage electrode connection 10.
  • the positive electrode 119 and the jumper electrode 20 are respectively connected by the built-in electrode wire 122, and the discharge ignition gap 123 is formed between the positive electrode 119 and the jumper electrode 20, and between the ground electrode 121 and the jumper electrode 20, respectively;
  • the ground electrode 121 are respectively in contact with the housing; the built-in electrode connection line 17 and the built-in electrode connection line 122 are placed in the ceramic multi-point discharge In the ignition table 6.
  • the inner end of the outer wall of the casing 3 is sleeved with an outer sealing gasket 24, and the inner sealing gasket 25 is formed between the insulator 2 and the casing 3, and the inner sealing gasket 25 is disposed in an inclined shape.
  • a ceramic heat-dissipating contact surface 26 is formed between the outer wall of the upper end of the ceramic multi-point discharge igniter 6 and the housing 3 , and the ceramic multi-point discharge igniter 6 and the bottom of the housing 3 form a bottom heat-dissipating contact surface 27,
  • a flexible gasket 28 is disposed between the upper portion of the ceramic multi-point discharge ignition table 6 and the casing 3 .
  • the outer wall of the lower end of the ceramic multi-point discharge ignition table 6 is provided with a uniformly distributed creeping umbrella rib (29), and the ceramic multi-point discharge ignition table 6 has a cylindrical shape or a tapered shape at the lower end.
  • the jumper electrodes 20 are arranged in an arc shape, and the pitch between the discharge ignition gaps 16 and the pitch of the discharge ignition gaps 123 are respectively 0.3-5.0 mm, and the built-in electrode wires 17 and the positive electrode high voltage electrode wires 8 or
  • the labyrinth positive electrode high voltage electrode line 10 is integrally distributed, and the built-in electrode line 122 is integrated with the positive electrode high voltage electrode line 8 or the labyrinth type positive electrode high voltage electrode line 10.

Abstract

本发明是一种放电火花塞,特别涉及一种串联间隙多点放电火花塞,用于点燃式发动机。包括接线螺杆,所述的接线螺杆置于绝缘体内,所述的绝缘体铆接在壳体内,所述的绝缘体尖端内部设有中心电极,所述的中心电极与接线螺杆间设有内置阻尼电阻,所述的绝缘体的底部设有与绝缘体相配接的陶瓷多点放电点火台,所述的陶瓷多点放电点火台与绝缘体间形成腔体组件,所述的陶瓷多点放电点火台上端的外壁与壳体相紧固,所述的陶瓷多点放电点火台的底部设有点火电极组件。串联间隙多点放电火花塞提高了点火时混合气的温度和压力,使着火性能得到改善,燃烧持续时间缩短,提高了发动机性能。

Description

说明书
发明名称:串 联间隙多点放电火 花塞
技术领域
[0001] 本发明是一种放电火花塞, 特别涉及一种串联间隙多点放电火花塞, 用于点燃 式发动机。
背景技术
[0002] 目前在以汽油,燃气,醇类等为燃料的点燃式发动机里使用的绝大部分火花塞一 般包括,绝缘体,壳体密封垫圈,接线螺母等,绝缘体内设置中心电极,内置阻尼电阻, 经高温封接和接线螺杆连接作为点火的正极;壳体上焊接有镍合金材料的侧电极, 与发动机安装后作为地极,中心电极与侧电极形成勾状跳火间隙,当发动机点火吋 刻,在发动机管理系统 (ECU) 的指令下控制高压点火线圈产生脉冲高压电能,经 高压导线到火花塞接线螺杆 (独立式高压线圈直接把高压正极加在接线螺杆上), 脉冲高压在侧电极和中心电极之间的间隙产生高压击穿电火花, 进而引燃压缩 的混合气体, 爆燃的混合气膨胀推动活塞使发动机做功。
[0003] 自汽车发明到现在已有 120多年的历史, 火花塞的基本形式没有任何改变。 由 于火花塞结构的限制和传统生产工艺的发展制约, 到目前为止, 不管何种高技 术火花塞包括多侧电极的火花塞, 在实际工作吋只能产生一个放电点来引燃混 合气。 所有的火花塞技术区别只是在点火尖端材料上和点火尖端结构上做了一 些提高, 目地只是延长工作寿命。 即使有所谓的能提高点火性能的技术特点, 也只是和传统普通电极火花塞比较的相对而言, 没有技术本质的区别。 因为火 花塞根本不会产生任何能量, 点火的高压能量是由电脑控制的高压线圈提供的 , 所谓高能火花塞是不存在的。 到目前为止,汽车行业尚无任何企业和个人能提 供一种理论上先进, 切实可行的能在相隔一定距离内同吋多点点火的火花塞。
[0004] 由于传统火花塞绝缘体内中心电极结构上的原因,伸入汽缸点火的核心部分绝缘 体是裙部大面积接触高温燃烧气体吸热,散热是依靠绝缘体后段内密封垫片同壳 体的小面积接触导热,因而针对不同要求的发动机会有不同热值设计的火花塞。 正是由于这种中心电极延伸结构的制约, 传统火花塞的散热性能成了火花塞的 难以进一步完善的技术障碍。 发动机扭矩和马力测试显示的数据可以反映出任 何发动机的动力输出到一定转速吋会下降,而不可能一直线性上升, 既燃油增加, 动力下降,其根本原因就是火花塞的散热到了极限值,引起发动机早燃而导致动力 下降。 正是由于传统火花塞的中心电极和侧电极点火结构,动力特征非线性是不 可克服的技术屏障。
[0005] 现代发动机技术发展方向集中于关注燃烧动力经济性和环保排放的严格要求, 人们对发动机点火燃烧理论和实践进行了大量了的研究, 特别是在燃烧模式, 点火方式, 及其相互之间的关系和对发动机动力性能和油耗, 排放的规律进行 了新层面的研究。 火花塞放电点火机理分为三个过程: 分别是高压击穿, 电弧 放电和辉光放电三个阶段; 如图所示, 火花塞实际只工作极短的吋间, 但是对 发动机的燃烧起了决定性的作用。
技术问题
[0006] 本发明主要是解决现有技术中存在的不足, 结构紧凑, 提供一种多点同吋引燃 混合气体, 使完全燃烧吋间缩短的点火装置, 在不改变其他部件前提下提高发 动机动力性最有效途径的串联间隙多点放电火花塞。
问题的解决方案
技术解决方案
[0007] 本发明的上述技术问题主要是通过下述技术方案得以解决的:
[0008] 一种串联间隙多点放电火花塞, 包括接线螺杆, 所述的接线螺杆置于绝缘体内 , 所述的绝缘体铆接在壳体内, 所述的绝缘体尖端内部设有中心电极, 所述的 中心电极与接线螺杆间设有内置阻尼电阻, 所述的绝缘体的底部设有与绝缘体 相配接的陶瓷多点放电点火台, 所述的陶瓷多点放电点火台与绝缘体间形成腔 体组件, 所述的陶瓷多点放电点火台上端的外壁与壳体相紧固, 所述的陶瓷多 点放电点火台的底部设有点火电极组件;
[0009] 所述的腔体组件包括正极高压连接腔体, 所述的绝缘体的底部伸至陶瓷多点放 电点火台中, 所述的正极高压连接腔体设在绝缘体的底部与陶瓷多点放电点火 台间, 所述的中心电极的底部延伸出绝缘体, 所述的正极高压连接腔体的底部 设有与中心电极底部相配接的正极高压电极连线, 所述的正极高压电极连线设 在陶瓷多点放电点火台中;
[0010] 或, 所述的正极高压连接腔体组件包括迷宫式正极高压连接腔体和迷宫式正极 高压电极连线, 所述的绝缘体的底部伸至陶瓷多点放电点火台中, 所述的迷宫 式正极高压连接腔体设在绝缘体的底部与陶瓷多点放电点火台间, 所述的迷宫 式正极高压连接腔体的中心位设有凸台, 所述的凸台伸至绝缘体的底部, 所述 的迷宫式正极高压电极连线设在凸台的中心位, 所述的迷宫式正极高压电极连 线与中心电极底部相配接, 所述的迷宫式正极高压电极连线设在陶瓷多点放电 点火台中, 所述的凸台与陶瓷多点放电点火台呈一体化分布;
[0011] 所述的点火电极组件包括带有一个接地电极和带有一个正极电极, 所述的正极 电极与正极高压电极连线或迷宫式正极高压电极连线相连接, 接地电极与正极 电极间形成放电点火间隙, 接地电极与正极电极分别通过内置电极连线相连通
[0012] 或, 所述的点火电极组件包括带有一个正极电极 I、 至少一个跨接电极和接地 电极 I, 所述的正极电极 I与正极高压电极连线或迷宫式正极高压电极连线相连接 , 正极电极 I与跨接电极分别通过内置电极连线 I相连通, 正极电极 I与跨接电极 间、 接地电极 I与跨接电极间分别形成放电点火间隙 I;
[0013] 所述的接地电极与接地电极 I分别与壳体相触接;
[0014] 所述的接地电极、 正极电极、 正极电极 I、 跨接电极和接地电极 I分别为针状直 立电极;
[0015] 所述的内置电极连线与内置电极连线 I置于陶瓷多点放电点火台中。
[0016] 作为优选, 所述的壳体外壁的中端套有外密封垫片, 所述的绝缘体与壳体间形 成内密封垫片, 所述的内密封垫片呈倾斜状分布, 所述的陶瓷多点放电点火台 上端的外壁与壳体间形成侧散热接触面, 所述的陶瓷多点放电点火台与壳体的 底部间形成底散热接触面, 所述的陶瓷多点放电点火台的上部与壳体间设有柔 性密封垫片。
[0017] 作为优选, 所述的陶瓷多点放电点火台下端的外壁设有均匀分布的爬电伞棱, 所述的陶瓷多点放电点火台下端呈圆柱状或锥状。 [0018] 作为优选, 所述的跨接电极呈圆弧状分布, 所述的放电点火间隙间的间距、 放 电点火间隙 I的间距分别为 0.3-5.0mm, 所述的内置电极连线与正极高压电极连线 或迷宫式正极高压电极连线呈一体化分布, 所述的内置电极连线 I与正极高压电 极连线或迷宫式正极高压电极连线呈一体化分布。
[0019] 作为优选, 所述的跨接电极有二个, 放电点火间隙 I设在相邻跨接电极间。
[0020] 点火电极组件与陶瓷烧结成一体形成陶瓷多点放电点火台, 是本专利的核心内 容。
[0021] 为防止高压泄露, 正极高压连接腔体可设置为增加爬电距离的迷宫式结构。
[0022] 通过缩短燃烧吋间, 提高发动机燃烧速率, 进而达到节能, 减少有害物质的排 放, 保证点火可靠性和提升动力等发动机技术改进目标。
[0023] 发动机燃烧理论和实践已经证明, 在发动机点火瞬间, 从幵始放电引燃混合气 体到完全爆燃做功是需要一定吋间的, 在压缩的混合气体空间内, 空间越大, 燃烧完全需要的吋间越长, 目前的技术是缩小缸径和是控制发动机点火的提前 角度来使完全燃烧吋间处于发动机活塞过上死点后的某一理想吋刻 (一般控制 在过上死点的 10-15度) ,使燃料完全做功,如果能在受控范围内缩短发动机混合气 体的完全燃烧吋间, 就可以减少点火提前角, 使燃料爆燃性增加,使有效做功吋 刻控制在理想范围内。 如果在燃烧室内有多点同吋产生多个有限距离的火焰中 心情况下, 可以达到缩短完全燃烧吋间, 增加发动机的爆燃性, 从而使发动机 的瞬间受控的爆发动力性得到提升。 因而, 在其他技术已经发展到极致的情况 下, 增加缸内点火点, 有效缩短完全燃烧吋间, 提高缸内压缩混合气的爆燃性 , 在不改变其他零件情况下来提高发动机的燃烧速率,无疑是一项有革命性的进 步。
[0024] 陶瓷多点放电点火台中设有点火电极组件, 采用陶瓷共烧技术成为一体, 直立 安置多对点火电极, 电极间串联连通形成高压放电回路, 各对电极之间的间隙 可实现多点同步放电点火。
[0025] 绝缘体的底部的点火平台面积较小, 在平台端面点火, 高压放电产生多点的火 焰核可成半圆柱状扩张; 初始火焰核的起燃速度明显大于单点放电形式的传统 火花塞, 燃烧距离缩短, 完全燃烧吋间缩短; 既缩短缸内产生最高压力的吋间, 这是对发动机动力性能的直接增益。
[0026] 直立平行设置的多对放电电极, 电极间沿面放电方式, 可在较低的电压下击穿 压缩混合气, 强化高压击穿起燃瞬间激发热离子电流参与助燃。
[0027] 长距离无遮挡放电间隙, 有助于火焰核的形成, 不易被电极冷却消焰; 提高初 始引燃速度, 提高点着率。
[0028] 此结构有利于消除积碳因素, 保证在不同工况条件下的点火可靠性。
[0029] 陶瓷多点放电点火台与壳体间的侧散热接触面和底散热接触面, 采用焊接连接 方式, 有良好的导热结构, 更能保证火花塞的密封性能。
[0030] 有效的热设计跨越热值概念, 通用性强。
[0031] 微损耗贵金属放电电极有无限长的使用寿命。
[0032] 在极其有限的空间内, 利用火花塞断面尺寸的差异, 在点火端面设置各一对或 多对串联的点火电极, 形成至少两个同步放电间隙, 在发动机高压点火吋刻实 现多点同吋 (电的速度远远高于火焰的燃烧速度) 点火引燃有距离差的不同位 置的混合气体, 使多点火焰核迅速扩散交集, 达到缩短发动机总的完全燃烧吋 间的目的。
[0033] 陶瓷多点放电点火台由高性能氧化铝或者氮化硅陶瓷制作而成, 本专利的核心 内容就是在陶瓷多点放电点火台内设置多对直立放置的耐高温且相互绝缘的放 电电极, 各电极由耐高温合金导电引线连通, 内置电极连线与内置电极连线 I分 别为耐高温合金导电引线, 或者采用印刷涂刷工艺制造出电极之间的导电连线 结构。 放电电极、 电极之间的串联高温合金引线、 用陶瓷共烧技术烧接成一体 , 从而有效解决了结构、 强度、 密封、 耐温和电极之间的高压绝缘问题, 确保 了产品工作的可靠性。 点火台同壳体内设置辅助密封台阶, 之间安放有柔性的 导热密封垫片, 为点火台机械式连接方式提供缓冲和辅助密封, 点火台和壳体 安装密封后有较大的导热面积直接和壳体紧密接触, 极大增加了陶瓷点火台的 散热功能。 外露的接地电极的地极端引线通过焊接或压接与壳体端面连通, 形 成串联高压点火回路的接地极。
[0034] 陶瓷多点放电点火台上端面各对贵金属电极之间为直立平行沿面放电结构, 各 对点火电极之间的放电间隙拉长到普通结构火花塞的两到三倍 (根据不同放电 点设定参数) , 可使纵向截面的火焰核形成半圆柱型快速扩散 (传统火花塞是 单点按球形受电极压抑扩散) , 因为是单向幵放式点火, 在火焰核引燃和扩散 过程中不受到火花塞结构的影响 (而传统火花塞在火焰核生成初期极易受到侧 电极的和中心电极的阻挡和电极温度和结构的影响, 由于容易受电极温度消焰 作用, 在燃烧理论的起燃阶段会产生点火失效的缺陷 (占空比高) 。 瓷制点火 台外圆有防止电极与壳体爬电的增加爬电距离的绝缘棱状结构,确保高压放电限 制在各对电极之间发生。 中心电极的连接点设置有迷宫式隔离结构, 防止脉冲 点火高压泄漏。
[0035] 本结构采用沿面击穿放电形式来释放点火能量的, 即放电是沿中心电极与侧电 极之间的绝缘体表面进行的, 由于传统火花塞的中心电极与侧电极的钩状结构 放电距离短, 跳火性能差。 因为点火间隙的大小受电源电压的制约, 一般为 0.6 〜1.3mm左右。 较短的放电距离使初始火花不能充分的"发育"为必需的火焰中心 , 电火花热量也较多地被侧电极和中心电极吸收冷却, 降低了电火花的能量, 存在点火失效的隐患; 若加大点火间隙, 则需要提高点火电压, 由于火花塞结 构的原因, 电压提高极易导致内部击穿或导致 "失火", 这是一对传统火花塞不可 克服的矛盾。 沿面放电发生于每对直立电极之间的绝缘体陶瓷表面和混合气的 交界面, 在高压电场的激励下, 陶瓷表面电场发生畸变会增大局部电场强度, 导致局部先发生放电, 由此促使放电的进一步发展, 直至整个电极间隙击穿。 这种放电机理使沿面间隙比同宽度空气间隙的击穿电压降低要多。 若在相同击 穿电压下, 沿面间隙比空气间隙的放电距离长。 较长的放电距离能大大提高火 花的能量。 因为火花放电是由能量密度非常不一样的 2部分组成, 即电容放电部 分和电感放电部分。 前者具有高能密度, 电压高, 能在极短吋间内放出; 后者 能量密度小, 但在较长吋间起作用。 从电火花能量分布可看出电感部分的能量 是电容部分的 20〜30倍, 对加热周围混合气而形成火核起主要作用。 电感部分 持续吋间越长点火成功率越好。 加长放电距离将降低侧电极的"消焰作用"。 电火 花沿绝缘体表面烧尽油污积炭, 避免电极之间的跨连, 也避免绝缘体和壳体之 间因附着燃烧沉积物导致电流泄漏的现象, 保证怠速工况下的点火可靠性。
[0036] 经实践证明, 发动机在最佳点火条件下, 一般只需 0.2mJ点火能量即可成功点 火, 对较浓和较稀混合气, 点火能量也只需 3mJ。 由于缸内气体的不均匀性和紊 流的存在, 为了保证发动机在各种工况下都能点火成功, 应用于发动机的点火 线圈的实际点火能量一般为 30~50Mj。 所有的能量在瞬间释放于一点.事实证明提 高点火能量并不可能提高发动机的效率,只是提高点火可靠性而已,发动机动能的 提高是由混合气体的燃烧速率决定的,混合气燃烧的效率主要取决于混合气的浓 度、 温度、 压力, 及气缸内混合气扰流速度, 与点火能量大小无关,但是和点火 位置和火焰核的发展速度有直接的关联,本结构利用现代汽车点火系统的大能量 点火线圈的特点, 更有助于点火能力的均布释放, 第一跳火间隙和第二跳火间 隙或者第三间隙可以平均分配点火能量, 使点火线圈过剩的能量即能保证点火 成功率,又可不同位置的点火点真实的提高了发动机的燃烧速率。
发明的有益效果
有益效果
[0037] 因此, 本发明提供的串联间隙多点放电火花塞, 提高了点火吋混合气的温度和 压力, 使着火性能得到改善, 完全燃烧持续吋间缩短, 提高了发动机的动力效 能。
对附图的简要说明
附图说明
[0038] 图 1是本发明的剖视结构示意图;
[0039] 图 2是图 1的底部结构示意图;
[0040] 图 3是本发明中单点沿面放电点火电极的位置分布图;
[0041] 图 4是本发明中两点沿面放电点火电极的位置分布图;
[0042] 图 5是本发明中三点沿面放电点火电极的位置分布图;
[0043] 图 6是本发明标准型的结构示意图;
[0044] 图 7是本发明铆接式的结构示意图;
[0045] 图 8是本发明快速散热型的结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式 [0046] 下面通过实施例, 并结合附图, 对本发明的技术方案作进一步具体的说明。
[0047] 实施例 1 : 如图 1、 图 2、 图 3、 图 4、 图 5、 图 6、 图 7和图 8所示, 一种串联间隙 多点放电火花塞, 包括接线螺杆 1, 所述的接线螺杆 1置于绝缘体 2内, 所述的绝 缘体 2铆接在壳体 3内, 所述的绝缘体 2尖端内部设有中心电极 4, 所述的中心电 极 4与接线螺杆 1间设有内置阻尼电阻 5, 所述的绝缘体 2的底部设有与绝缘体 2相 配接的陶瓷多点放电点火台 6, 所述的陶瓷多点放电点火台 6与绝缘体 2间形成腔 体组件, 所述的陶瓷多点放电点火台 6上端的外壁与壳体 3相紧固, 所述的陶瓷 多点放电点火台 6的底部设有点火电极组件; 所述的腔体组件包括正极高压连接 腔体 7, 所述的绝缘体 2的底部伸至陶瓷多点放电点火台 6中, 所述的正极高压连 接腔体 7设在绝缘体 2的底部与陶瓷多点放电点火台 6间, 所述的中心电极 4的底 部延伸出绝缘体 2, 所述的正极高压连接腔体 7的底部设有与中心电极 4底部相配 接的正极高压电极连线 8, 所述的正极高压电极连线 8设在陶瓷多点放电点火台 6 中; 或, 所述的正极高压连接腔体组件包括迷宫式正极高压连接腔体 9和迷宫式 正极高压电极连线 10, 所述的绝缘体 2的底部伸至陶瓷多点放电点火台 6中, 所 述的迷宫式正极高压连接腔体 7设在绝缘体 2的底部与陶瓷多点放电点火台 6间, 所述的迷宫式正极高压连接腔体 9的中心位设有凸台 11, 所述的凸台 11伸至绝缘 体 2的底部, 所述的迷宫式正极高压电极连线 10设在凸台 11的中心位, 所述的迷 宫式正极高压电极连线 10与中心电极 4底部相配接, 所述的迷宫式正极高压电极 连线 10设在陶瓷多点放电点火台 6中, 所述的凸台 11与陶瓷多点放电点火台 6呈 一体化分布; 所述的点火电极组件包括带有一个接地电极 13和带有一个正极电 极 15, 所述的正极电极 15与正极高压电极连线 8或迷宫式正极高压电极连线 10相 连接, 接地电极 13与正极电极 15间形成放电点火间隙 16, 接地电极 13与正极电 极 15分别通过内置电极连线 17相连通; 或, 所述的点火电极组件包括带有一个 正极电极 119、 至少一个跨接电极 20和接地电极 121, 所述的正极电极 119与正极 高压电极连线 8或迷宫式正极高压电极连线 10相连接, 正极电极 119与跨接电极 20 分别通过内置电极连线 122相连通, 正极电极 119与跨接电极 20间、 接地电极 121 与跨接电极 20间分别形成放电点火间隙 123; 所述的接地电极 13与接地电极 121分 别与壳体相触接; 所述的内置电极连线 17与内置电极连线 122置于陶瓷多点放电 点火台 6中。 所述的壳体 3外壁的中端套有外密封垫片 24, 所述的绝缘体 2与壳体 3间形成内密封垫片 25, 所述的内密封垫片 25呈倾斜状分布, 所述的陶瓷多点放 电点火台 6上端的外壁与壳体 3间形成侧散热接触面 26, 所述的陶瓷多点放电点 火台 6与壳体 3的底部间形成底散热接触面 27, 所述的陶瓷多点放电点火台 6的上 部与壳体 3间设有柔性密封垫片 28。
陶瓷多点放电点火台 6下端的外壁设有均匀分布的爬电伞棱 (29) , 所述的陶 瓷多点放电点火台 6下端呈圆柱状或锥状。 跨接电极 20呈圆弧状分布, 所述的放 电点火间隙 16间的间距、 放电点火间隙 123的间距分别为 0.3-5.0mm, 所述的内置 电极连线 17与正极高压电极连线 8或迷宫式正极高压电极连线 10呈一体化分布, 所述的内置电极连线 122与正极高压电极连线 8或迷宫式正极高压电极连线 10呈一 体化分布。 跨接电极 20有二个, 放电点火间隙 123设在相邻跨接电极 30间。

Claims

权利要求书
[权利要求 1] 一种串联间隙多点放电火花塞, 其特征在于: 包括接线螺杆 (1
所述的接线螺杆 (1) 置于绝缘体 (2) 内, 所述的绝缘体 (2) 铆接 在壳体 (3) 内, 所述的绝缘体 (2) 尖端内部设有中心电极 (4) , 所述的中心电极 (4) 与接线螺杆 (1) 间设有内置阻尼电阻 (5) , 所述的绝缘体 (2) 的底部设有与绝缘体 (2) 相配接的陶瓷多点放电 点火台 (6) , 所述的陶瓷多点放电点火台 (6) 与绝缘体 (2) 间形 成腔体组件, 所述的陶瓷多点放电点火台 (6) 上端的外壁与壳体 (3 ) 相紧固, 所述的陶瓷多点放电点火台 (6) 的底部设有点火电极组 件;
所述的腔体组件包括正极高压连接腔体 (7) , 所述的绝缘体 (2) 的 底部伸至陶瓷多点放电点火台 (6) 中, 所述的正极高压连接腔体 (7 ) 设在绝缘体 (2) 的底部与陶瓷多点放电点火台 (6) 间, 所述的中 心电极 (4) 的底部延伸出绝缘体 (2) , 所述的正极高压连接腔体 ( 7) 的底部设有与中心电极 (4) 底部相配接的正极高压电极连线 (8 ) , 所述的正极高压电极连线 (8) 设在陶瓷多点放电点火台 (6) 中 或, 所述的正极高压连接腔体组件包括迷宫式正极高压连接腔体 (9 ) 和迷宫式正极高压电极连线 (10) , 所述的绝缘体 (2) 的底部伸 至陶瓷多点放电点火台 (6) 中, 所述的迷宫式正极高压连接腔体 (7 ) 设在绝缘体 (2) 的底部与陶瓷多点放电点火台 (6) 间, 所述的迷 宫式正极高压连接腔体 (9) 的中心位设有凸台 (11) , 所述的凸台
(11) 伸至绝缘体 (2) 的底部, 所述的迷宫式正极高压电极连线 (1 0) 设在凸台 (11) 的中心位, 所述的迷宫式正极高压电极连线 (10 ) 与中心电极 (4) 底部相配接, 所述的迷宫式正极高压电极连线 (1 0) 设在陶瓷多点放电点火台 (6) 中, 所述的凸台 (11) 与陶瓷多点 放电点火台 (6) 呈一体化分布;
所述的点火电极组件包括带有一个接地电极 (13) 和带有一个正极电 极 (15) , 所述的正极电极 (15) 与正极高压电极连线 (8) 或迷宫 式正极高压电极连线 (10) 相连接, 接地电极 (13) 与正极电极 (15 ) 间形成放电点火间隙 (16) , 接地电极 (13) 与正极电极 (15) 分 别通过内置电极连线 (17) 相连通;
或, 所述的点火电极组件包括带有一个正极电极 I (19) 、 至少一个 跨接电极 (20) 和接地电极 I (21) , 所述的正极电极 I (19) 与正极 高压电极连线 (8) 或迷宫式正极高压电极连线 (10) 相连接, 正极 电极 I (19) 与跨接电极 (20) 分别通过内置电极连线 I (22) 相连通 , 正极电极 I (19) 与跨接电极 (20) 间、 接地电极 I (21) 与跨接电 极 (20) 间分别形成放电点火间隙 I (23) ;
所述的接地电极 (13) 与接地电极 I (21) 分别与壳体相触接; 所述的内置电极连线 (17) 与内置电极连线 I (22) 置于陶瓷多点放 电点火台 (6) 中。
[权利要求 2] 根据权利要求 1所述的串联间隙多点放电火花塞, 其特征在于: 所述 的壳体 (3) 外壁的中端套有外密封垫片 (24) , 所述的绝缘体 (2) 与壳体 (3) 间形成内密封垫片 (25) , 所述的内密封垫片 (25) 呈 倾斜状分布, 所述的陶瓷多点放电点火台 (6) 上端的外壁与壳体 (3 ) 间形成侧散热接触面 (26) , 所述的陶瓷多点放电点火台 (6) 与 壳体 (3) 的底部间形成底散热接触面 (27) , 所述的陶瓷多点放电 点火台 (6) 的上部与壳体 (3) 间设有柔性密封垫片 (28) 。
[权利要求 3] 根据权利要求 1或 2所述的串联间隙多点放电火花塞, 其特征在于: 所 述的陶瓷多点放电点火台 (6) 下端的外壁设有均匀分布的爬电伞棱 (29) , 所述的陶瓷多点放电点火台 (6) 下端呈圆柱状或锥状。
[权利要求 4] 根据权利要求 1或 2所述的串联间隙多点放电火花塞, 其特征在于: 所 述的跨接电极 (20) 呈圆弧状分布, 所述的放电点火间隙 (16) 间的 间距、 放电点火间隙 I (23) 的间距分别为 0.3-5.0mm, 所述的内置电 极连线 (17) 与正极高压电极连线 (8) 或迷宫式正极高压电极连线 (10) 呈一体化分布, 所述的内置电极连线 I (22) 与正极高压电极 连线 (8) 或迷宫式正极高压电极连线 (10) 呈一体化分布。
[权利要求 5] 根据权利要求 1或 2所述的串联间隙多点放电火花塞, 其特征在于: 所 述的跨接电极 (20) 有二个, 放电点火间隙 I (23) 设在相邻跨接电 极 (20) 间。
PCT/CN2015/097354 2015-04-07 2015-12-15 串联间隙多点放电火花塞 WO2016161817A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/721,820 US20190148920A1 (en) 2015-04-07 2017-09-30 Series clearance multi-point discharging sparking plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510160102.4A CN104752957B (zh) 2015-04-07 2015-04-07 串联间隙多点放电火花塞
CN201510160102.4 2015-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/721,820 Continuation US20190148920A1 (en) 2015-04-07 2017-09-30 Series clearance multi-point discharging sparking plug

Publications (1)

Publication Number Publication Date
WO2016161817A1 true WO2016161817A1 (zh) 2016-10-13

Family

ID=53592250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097354 WO2016161817A1 (zh) 2015-04-07 2015-12-15 串联间隙多点放电火花塞

Country Status (3)

Country Link
US (1) US20190148920A1 (zh)
CN (1) CN104752957B (zh)
WO (1) WO2016161817A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840682A (zh) * 2017-03-27 2017-06-13 武汉理工大学 应用于定容燃烧弹的可对中电极装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752957B (zh) * 2015-04-07 2017-02-22 杭州普隆格科技有限公司 串联间隙多点放电火花塞
CN106705120B (zh) * 2017-01-19 2022-07-12 佛山市科皓燃烧设备制造有限公司 点火电极帽
JP7125289B2 (ja) * 2018-06-29 2022-08-24 株式会社Soken 内燃機関用の点火装置
CN114704385B (zh) * 2021-10-22 2023-12-22 天津航空机电有限公司 一种双通路冷却的点火电嘴

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074262A (en) * 1990-10-15 1991-12-24 Mcabee Mac Spark device for internal combustion engines
CN101242080A (zh) * 2007-02-08 2008-08-13 华迪敏 直线平面嵌入式多极高能量贵金属火花塞
JP2008218204A (ja) * 2007-03-05 2008-09-18 Miyama Kk 多点点火プラグ
CN201146325Y (zh) * 2008-01-14 2008-11-05 席其红 品字形多极节能环保火花塞
CN104752957A (zh) * 2015-04-07 2015-07-01 杭州普隆格科技有限公司 串联间隙多点放电火花塞
CN204633129U (zh) * 2015-04-07 2015-09-09 杭州普隆格科技有限公司 串联间隙多点放电火花塞

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459286A (en) * 1944-05-27 1949-01-18 Gen Motors Corp Combination spark plug and fuel injector
US3639788A (en) * 1970-03-11 1972-02-01 John J Horan High-impedance power for engine ignition and exhaust-system particulate removal
US3737708A (en) * 1972-06-28 1973-06-05 Gen Motors Corp Series gap spark plug
US6603245B1 (en) * 1988-09-23 2003-08-05 Jay W. Fletcher Three-dimensional multiple series gap spark plug
US6155212A (en) * 1989-06-12 2000-12-05 Mcalister; Roy E. Method and apparatus for operation of combustion engines
CN2340105Y (zh) * 1998-03-31 1999-09-22 宝山钢铁(集团)公司 多火花点火塞
CN101872937A (zh) * 2009-04-23 2010-10-27 席其红 并串极多间隙节能环保火花塞

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074262A (en) * 1990-10-15 1991-12-24 Mcabee Mac Spark device for internal combustion engines
CN101242080A (zh) * 2007-02-08 2008-08-13 华迪敏 直线平面嵌入式多极高能量贵金属火花塞
JP2008218204A (ja) * 2007-03-05 2008-09-18 Miyama Kk 多点点火プラグ
CN201146325Y (zh) * 2008-01-14 2008-11-05 席其红 品字形多极节能环保火花塞
CN104752957A (zh) * 2015-04-07 2015-07-01 杭州普隆格科技有限公司 串联间隙多点放电火花塞
CN204633129U (zh) * 2015-04-07 2015-09-09 杭州普隆格科技有限公司 串联间隙多点放电火花塞

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840682A (zh) * 2017-03-27 2017-06-13 武汉理工大学 应用于定容燃烧弹的可对中电极装置
CN106840682B (zh) * 2017-03-27 2023-09-29 武汉理工大学 应用于定容燃烧弹的可对中电极装置

Also Published As

Publication number Publication date
US20190148920A1 (en) 2019-05-16
CN104752957A (zh) 2015-07-01
CN104752957B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US7299785B1 (en) Embedded igniter system for internal combustion engines
WO2016161817A1 (zh) 串联间隙多点放电火花塞
US20120242215A1 (en) Copper core combustion cup for pre-chamber spark plug
CN104836120B (zh) 一种火花塞和一种高压点火线
US9951743B2 (en) Plasma ignition device
JP2018532225A (ja) 内燃機関用点火プラグ
JP2006140072A (ja) 内燃機関の火花点火装置及び当該火花点火装置を備えた内燃機関
WO2011031449A2 (en) Pre-chamber spark plug
US20150337793A1 (en) Combustion ignition system
CN204633129U (zh) 串联间隙多点放电火花塞
CN206506154U (zh) 一种火花塞
JP6645168B2 (ja) 点火プラグ
CN201258812Y (zh) 一种热管式火花塞
JP2010218768A (ja) プラズマ式点火プラグ
CN207664441U (zh) 一种内燃机新型点火装置
CN113565664A (zh) 集群火花塞点火系统
CN207234152U (zh) 高效火花塞
JPS5911432Y2 (ja) 内燃機関の点火プラグ
CN105305232A (zh) 中心电极外延、多极点、突出封闭式的火花塞
CN209993871U (zh) 一种汽油发动机火花塞
CN2459798Y (zh) 火花塞
CN217720252U (zh) 一种新型侧针铱金火花塞
CN201435528Y (zh) 凹形槽火花塞
CN108574200B (zh) 高效火花塞
CN208782240U (zh) 一种火花塞侧电极结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888366

Country of ref document: EP

Kind code of ref document: A1