WO2016159715A2 - 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치 Download PDF

Info

Publication number
WO2016159715A2
WO2016159715A2 PCT/KR2016/003405 KR2016003405W WO2016159715A2 WO 2016159715 A2 WO2016159715 A2 WO 2016159715A2 KR 2016003405 W KR2016003405 W KR 2016003405W WO 2016159715 A2 WO2016159715 A2 WO 2016159715A2
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
resource pool
signal
resource
transmission
Prior art date
Application number
PCT/KR2016/003405
Other languages
English (en)
French (fr)
Other versions
WO2016159715A3 (ko
Inventor
채혁진
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020177031708A priority Critical patent/KR102592651B1/ko
Priority to JP2017551272A priority patent/JP6501905B2/ja
Priority to CN201680019745.XA priority patent/CN107439036B/zh
Priority to EP16773496.1A priority patent/EP3280172B1/en
Priority to US15/562,873 priority patent/US10827500B2/en
Publication of WO2016159715A2 publication Critical patent/WO2016159715A2/ko
Publication of WO2016159715A3 publication Critical patent/WO2016159715A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/012Measuring and analyzing of parameters relative to traffic conditions based on the source of data from other sources than vehicle or roadside beacons, e.g. mobile networks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/056Detecting movement of traffic to be counted or controlled with provision for distinguishing direction of travel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for a terminal to transmit and receive a vehicle to everything (V2X) related signal.
  • V2X vehicle to everything
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • D2D communication establishes a direct link between user equipments (UEs), and directly communicates voice and data between terminals without passing through an evolved NodeB (eNB).
  • UEs user equipments
  • eNB evolved NodeB
  • the D2D communication may include a scheme such as UE-to-UE communication, Peer-to-Peer communication, and the like.
  • the D2D communication scheme may be applied to machine-to-machine (M2M) communication, machine type communication (MTC), and the like.
  • M2M machine-to-machine
  • MTC machine type communication
  • D2D communication has been considered as a way to solve the burden on the base station due to the rapidly increasing data traffic.
  • the D2D communication unlike the conventional wireless communication system, since the data is exchanged between devices without passing through a base station, the network can be overloaded.
  • the D2D communication it is possible to expect the effect of reducing the procedure of the base station, the power consumption of the devices participating in the D2D, increase the data transmission speed, increase the capacity of the network, load balancing, cell coverage expansion.
  • a signal transmission / reception method for transmitting data after selecting a resource pool in consideration of location information of a V2X terminal is a technical problem.
  • a method of transmitting and receiving a signal related to a vehicle to everything (V2X) in a wireless communication system comprising: selecting a resource pool by comparing one or more measurement information and a resource pool parameter; And transmitting data using the resource pool, wherein the at least one measurement information relates to a geographical location of the terminal.
  • V2X vehicle to everything
  • a terminal device for transmitting and receiving V2X (ehicle to everything) related signals in a wireless communication system, comprising: a transmitting device and a receiving device; And a processor, wherein the processor compares one or more measurement information with a resource pool parameter to select a resource pool and transmits data using the resource pool, wherein the one or more measurement information is stored in a geographical location of the terminal. It is related, and a terminal apparatus.
  • V2X vehicle to everything
  • the resource pool may be configured with a range of values for each parameter related to the geographical location of the terminal.
  • One or more of a transmission period, a transmission probability, and a repetition number may be configured in the resource pool.
  • the one or more measurement information may include the movement direction information of the terminal.
  • the movement direction information of the terminal may be measured by a sensor of the terminal or a global positioning system (GPS).
  • GPS global positioning system
  • the movement direction information of the terminal may be derived from a cell ID change.
  • the cell ID may be identifier information for identifying a road side unit (RSU).
  • RSU road side unit
  • the one or more pieces of measurement information may be an average value of a moving speed of a neighboring terminal of the terminal.
  • the one or more measurement information may include the mobility (mobility) of the terminal.
  • the mobility may be measured by the speed sensor of the terminal.
  • the mobility may be determined according to the number of times the RSRP discovers an RSU that is greater than or equal to a preset value.
  • the terminal may transmit the data on a preset time-frequency resource of the resource pool.
  • the terminal may select a time-frequency resource from the resource pool and transmit the data.
  • ICI can be reduced by classifying resource regions according to a moving direction or mobility of a terminal.
  • 1 is a diagram illustrating a structure of a radio frame.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • FIG. 6 shows a subframe in which the D2D synchronization signal is transmitted.
  • FIG. 7 is a diagram for explaining a relay of a D2D signal.
  • FIG. 8 shows an example of a D2D resource pool for D2D communication.
  • FIG. 12 is a diagram illustrating a configuration of a transmitting and receiving device.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
  • a base station may also be used as a meaning of a scheduling node or a cluster header. If the base station or the relay also transmits a signal transmitted by the terminal, it can be regarded as a kind of terminal.
  • the cell names described below are applied to transmission and reception points such as a base station (eNB), a sector, a remote radio head (RRH), a relay, and the like. It may be used as a generic term for identifying a component carrier.
  • eNB base station
  • RRH remote radio head
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one block.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE / LTE-A system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid Automatic Repeat Request Indicator Channel
  • the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • the DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the number of CCEs required for the PDCCH may vary depending on the size and coding rate of the DCI. For example, any one of 1, 2, 4, and 8 CCEs (corresponding to PDCCH formats 0, 1, 2, and 3, respectively) may be used for PDCCH transmission, and when the size of DCI is large and / or channel state If a low coding rate is required due to poor quality, a relatively large number of CCEs may be used for one PDCCH transmission.
  • the base station determines the PDCCH format in consideration of the size of the DCI transmitted to the terminal, the cell bandwidth, the number of downlink antenna ports, the PHICH resource amount, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is for a specific terminal, the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
  • a paging indicator identifier P-RNTI
  • SI-RNTI system information identifier and system information RNTI
  • RA-RNTI Random Access-RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS Demodulation-Reference Signal
  • SRS sounding reference signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, the UE should be transmitted over a wide band, and the UE should receive the reference signal even if the UE does not receive the downlink data in a specific subframe. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • the transmission rate can be improved and the frequency efficiency can be significantly improved.
  • the transmission rate may theoretically increase as the rate of increase rate Ri multiplied by the maximum transmission rate Ro when using a single antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained. Since the theoretical capacity increase of multi-antenna systems was proved in the mid 90's, various techniques to actively lead to the actual data rate improvement have been actively studied. In addition, some technologies are already being reflected in various wireless communication standards such as 3G mobile communication and next generation WLAN.
  • the research trends related to multi-antennas to date include the study of information theory aspects related to the calculation of multi-antenna communication capacity in various channel environments and multi-access environments, the study of wireless channel measurement and model derivation of multi-antenna systems, improvement of transmission reliability, and improvement of transmission rate. Research is being actively conducted from various viewpoints, such as research on space-time signal processing technology.
  • the communication method in a multi-antenna system will be described in more detail using mathematical modeling. It is assumed that there are Nt transmit antennas and Nt receive antennas in the system.
  • the transmission signal when there are Nt transmit antennas, the maximum information that can be transmitted is NT.
  • the transmission information may be expressed as follows.
  • Each transmission information The transmit power may be different.
  • Each transmit power In this case, the transmission information whose transmission power is adjusted may be expressed as follows.
  • Weighting matrix Nt transmitted signals actually applied by applying Consider the case where is configured.
  • Weighting matrix Plays a role in properly distributing transmission information to each antenna according to a transmission channel situation.
  • Vector It can be expressed as follows.
  • Received signal is received signal of each antenna when there are Nr receiving antennas Can be expressed as a vector as
  • channels may be divided according to transmit / receive antenna indexes. From the transmit antenna j to the channel through the receive antenna i It is indicated by. Note that in the order of the index, the receiving antenna index is first, and the index of the transmitting antenna is later.
  • FIG. 5 (b) shows a channel from NR transmit antennas to receive antenna i .
  • the channels may be bundled and displayed in vector and matrix form.
  • a channel arriving from a total of NT transmit antennas to a receive antenna i may be represented as follows.
  • AWGN Additive White Gaussian Noise
  • the received signal may be expressed as follows through the above-described mathematical modeling.
  • the channel matrix indicating the channel state The number of rows and columns of is determined by the number of transmit and receive antennas.
  • Channel matrix The number of rows is equal to the number of receiving antennas NR, and the number of columns is equal to the number of transmitting antennas Nt. That is, the channel matrix The matrix is NR ⁇ Nt.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
  • Channel matrix Rank of ( ) Is limited to
  • rank may be defined as the number of nonzero eigenvalues when the matrix is eigenvalue decomposition.
  • another definition of rank may be defined as the number of nonzero singular values when singular value decomposition is performed.
  • rank in the channel matrix The physical meaning of is the maximum number of different information that can be sent on a given channel.
  • 'rank' for MIMO transmission refers to the number of paths that can independently transmit signals at specific time points and specific frequency resources, and 'number of layers' denotes each path. It indicates the number of signal streams transmitted through the system. In general, since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
  • some nodes may transmit a D2D signal (where the node may be referred to as an eNB, a UE, a synchronization reference node or a synchronization source), and transmit a D2D synchronization signal (D2DSS, D2D Synchronization Signal).
  • a method of transmitting and receiving signals in synchronization with the remaining terminals may be used.
  • the D2D synchronization signal may be a primary synchronization signal (Primary D2DSS or Primary Sidelink synchronization signal (PSSS)) or a secondary synchronization signal (SD2DSS (Secondary D2DSS or Secondary Sidelink synchronization signal)). It may be a Zadoff-chu sequence or a similar / modified / repeated structure to the PSS, etc. It is also possible to use other Zadoff Chu root indices (eg, 26, 37) unlike the DL PSS. May be a similar / modified / repeated structure to M-sequence or SSS, etc.
  • PD2DSS Physical D2D synchronization channel
  • SRN becomes eNB
  • D2DSS becomes PSS / SSS
  • PD2DSS The / SD2DSS follows the UL subcarrier mapping scheme, and the subframe through which the D2D synchronization signal is transmitted is shown in Fig. 6.
  • the PD2DSCH Physical D2D synchronization channel
  • the PD2DSCH may be transmitted on the same subframe as the D2DSS or on a subsequent subframe DMRS may be used for demodulation of the PD2DSCH.
  • the SRN may be a node transmitting a D2DSS and a Physical D2D Synchronization Channel (PD2DSCH).
  • the D2DSS may be in the form of a specific sequence
  • the PD2DSCH may be in the form of a sequence representing specific information or a code word after a predetermined channel coding.
  • the SRN may be an eNB or a specific D2D terminal.
  • the UE may be an SRN.
  • the D2DSS may be relayed for D2D communication with an out of coverage terminal.
  • the D2DSS can be relayed over multiple hops.
  • relaying a synchronization signal is a concept including not only directly relaying a synchronization signal of a base station, but also transmitting a D2D synchronization signal of a separate format in accordance with the timing of receiving the synchronization signal. As such, since the D2D synchronization signal is relayed, the in-coverage terminal and the out-of-coverage terminal can directly perform communication.
  • a UE refers to a network equipment such as a base station for transmitting and receiving a signal according to a terminal or a D2D communication scheme.
  • the terminal may select a resource unit corresponding to a specific resource in a resource pool representing a set of resources and transmit a D2D signal using the corresponding resource unit.
  • the receiving terminal UE2 may be configured with a resource pool in which UE1 can transmit a signal, and detect a signal of UE1 in the corresponding pool.
  • the resource pool may be notified by the base station when UE1 is in the connection range of the base station.
  • a resource pool is composed of a plurality of resource units, each terminal may select one or a plurality of resource units and use them for transmitting their D2D signals.
  • the resource unit may be as illustrated in FIG. 8 (b). Referring to FIG. 8 (b), it can be seen that total frequency resources are divided into NFs and total time resources are divided into NTs so that a total of NF * NT resource units are defined.
  • the resource pool may be repeated every NT subframe. In particular, one resource unit may appear periodically and repeatedly as shown.
  • a resource pool may mean a set of resource units that can be used for transmission by a terminal that wants to transmit a D2D signal.
  • Resource pools can be divided into several types. First, they may be classified according to contents of D2D signals transmitted from each resource pool. For example, the contents of the D2D signal may be divided, and a separate resource pool may be configured for each.
  • As the content of the D2D signal there may be a scheduling assignment (SA), a D2D data channel, and a discovery channel (SA), where the location of a resource used for transmission of a subsequent D2D data channel by a transmitting terminal and others It may be a signal including information such as a modulation and coding scheme (MCS), a MIMO transmission scheme, a timing advance (TA), etc. required for demodulation of a data channel, which may be multiplexed and transmitted together with D2D data on the same resource unit.
  • MCS modulation and coding scheme
  • TA timing advance
  • the SA resource pool may mean a pool of resources in which the SA is multiplexed with the D2D data and transmitted, or may be referred to as a D2D control channel or a physical sidelink control channel (PSCCH).
  • the D2D data channel (or physical sidelink shared channel (PSSCH)) may be a pool of resources used by a transmitting terminal to transmit user data. If the SA is multiplexed and transmitted together with the D2D data on the same resource unit, only the D2D data channel except for the SA information may be transmitted in the resource pool for the D2D data channel, that is, individual resource units in the SA resource pool.
  • the REs used to transmit SA information on the D2D data channel resource pool can still be used to transmit D2D data in the discovery channel, where a transmitting terminal transmits information such as its own ID and the like so that a neighboring terminal can discover itself. It can be a resource pool for messages to be made.
  • the transmission timing determination method of the D2D signal for example, is it transmitted at the time of reception of a synchronization reference signal or is transmitted by applying a constant TA there
  • a resource allocation method for example, For example, whether an eNB assigns transmission resources of an individual signal to an individual transmitting UE or whether an individual transmitting UE selects an individual signaling resource on its own in a pool, and a signal format (for example, each D2D signal occupies one subframe).
  • the number of symbols, the number of subframes used for transmission of one D2D signal), the signal strength from the eNB, and the transmission power strength of the D2D UE may be further divided into different resource pools.
  • Mode 1 a transmission resource region is set in advance, or the eNB designates a transmission resource region, and the UE directly selects a transmission resource in a method of directly instructing the eNB to transmit resources of the D2D transmitting UE in D2D communication.
  • Mode 2 In the case of D2D discovery, when the eNB directly indicates a resource, a type 2 when a UE directly selects a transmission resource in a preset resource region or a resource region indicated by the eNB is called Type 1.
  • the mode 1 terminal may transmit an SA (or a D2D control signal, Sidelink Control Information (SCI)) through a resource configured from the base station.
  • SA or a D2D control signal, Sidelink Control Information (SCI)
  • SCI Sidelink Control Information
  • the mode 2 terminal is configured with a resource to be used for D2D transmission from the base station.
  • the SA may be transmitted by selecting a time frequency resource from the configured resource.
  • the first SA period may be started in a subframe away from a specific system frame by a predetermined offset SAOffsetIndicator indicated by higher layer signaling.
  • Each SA period may include a SA resource pool and a subframe pool for D2D data transmission.
  • the SA resource pool may include the last subframe of the subframes indicated by which the SA is transmitted in the subframe bitmap (saSubframeBitmap) from the first subframe of the SA period.
  • a sub-frame used for actual data transmission may be determined by applying time-resource pattern for transmission (T-RPT).
  • the T-RPT may be repeatedly applied, and the last applied T-RPT is the number of remaining subframes. As many as truncated can be applied.
  • the SA may indicate the transmission location of the data in the form of T-RPT or in another explicit way. For example, it may be in the form of indicating the transmission start position of the data, the number of repetitions and the like. More generally, SA is a channel indicating time and frequency positions of data transmission resources and including additional information necessary for data decoding.
  • the SA resource pool may be separated from the data pool, but may be partially overlapped with the data pool to use some data areas together. In addition, the data pool and the SA resource pool may not be separated in the time domain but may be separated in the frequency domain.
  • V2X is a concept including V2V between vehicle terminals, V2P between a vehicle and other types of terminals, and V2I communication between a vehicle and a roadside unit (RSU).
  • RSU roadside unit
  • the terminal may be a vehicle or a UE attached to the vehicle.
  • a terminal may compare a resource pool parameter with one or more measurement information, select a resource pool, and transmit data using the resource pool.
  • the terminal may transmit data on a preset time-frequency resource of the resource pool, or select a time-frequency resource from the resource pool and transmit the data.
  • the one or more measurement information may be related to the geographic location of the terminal.
  • the terminal selects a resource pool from a plurality of resource pool (s), but a range of values may be configured in the resource pool (s) for each parameter related to the geographical location of the terminal.
  • the terminal may select a resource pool that matches the condition by comparing the measurement information related to the geographical location with a range of parameter values configured in the resource pool.
  • at least one of a transmission period, a transmission probability, and a repetition number may be configured in the resource pool.
  • transmission may be performed according to a transmission period, a transmission probability, a repetition number, and the like configured in the resource pool.
  • the transmission period, the transmission probability, the number of repetitions, and the like may be forced by the terminal when the resource pool is selected or recommended (depending on the terminal's selection).
  • the one or more measurement information may include the movement direction information of the terminal.
  • the resource pool may be configured in advance for each moving direction.
  • the resource pool may be configured in advance for each moving direction.
  • the resource pool may be configured in advance for each moving direction.
  • the resource pool may be configured in advance for each moving direction.
  • the resource pool may be configured in advance for each moving direction.
  • the movement direction information of the terminal since the movement direction information of the terminal is two kinds, at least two kinds of resource pools may be configured according to the direction.
  • a threshold of a heading value may be configured in the resource pool. If there is one resource pool for each direction, as illustrated in FIG. 10, a terminal having the same moving direction (that is, running in the same direction) uses the same resource (resource pool A), and a terminal running in a different direction is used. And other resource pools (resource pool B).
  • the resource pools are illustrated as being divided on the time axis, but this is only an example and each resource pool may be divided on the frequency axis or on the time-frequency
  • the movement direction information of the terminal may be measured by a sensor of the terminal or a global positioning system (GPS).
  • GPS global positioning system
  • the acquisition / measurement method of the movement direction information is not necessarily limited thereto, and various methods for obtaining a heading value may be used.
  • the traveling direction of the terminal can be known in any manner, the resource regions may be distinguished between terminals having different traveling directions by using values for the traveling directions.
  • the resources may be separated in three ways, time, frequency, time / frequency, the embodiment of the present invention includes all three cases.
  • the heading value may be implicitly identified by tracking the ID of the neighboring cell or the RSU. That is, the movement direction information of the terminal may be derived from a cell ID change, where the cell ID may be identifier information for distinguishing a road side unit (RSU).
  • RSU road side unit
  • the UE does not know the heading value or the heading value is not directly used for resource selection, when the UE performs handover between cells (handover for RRC connected UE and cell reselection for RRC idle UE).
  • By tracking the change of the cell ID it is possible to set different resource pools between terminals having different tendency to change the cell ID, that is, terminals moving in different directions.
  • the network may configure the resource range of the variation range of the sequence or vector or the equivalent information generated by the change of the cell ID or the change of the cell ID when the terminal moves. For example, a resource pool used by a terminal whose cell ID is changed from A-> B-> C and a resource pool used by a terminal whose C-> B-> A is changed in a specific region may be distinguished / separated. . To this end, the network uses a vector between cell ID variation values, differences, and cell IDs so that UEs can distinguish between a resource pool used when the detected cell ID changes from C-> A and a resource pool used when changing from A-> C. A range of values can be configured for each resource pool. As another example, the network may configure, for each resource pool, an order in which the cell ID is detected to be above a certain threshold within a predetermined time.
  • the terminal may track the ID of the detected RSU to estimate the mobility and direction of the terminal.
  • the network may signal the change of the ID of the RSU for each resource pool.
  • the UE moving a particular road may report the detected cell ID order or RSU ID order as a physical layer or a higher layer signal to the network (or separately) together with the heading value or the heading direction of the road. This is for the network to estimate the cell ID / RSU ID variation statistics according to the heading value on a particular road.
  • the network may configure a change value of the cell ID / RSU ID for each resource pool based on the information fed back from the terminal.
  • the heading value or range can be directly configured for each resource pool, several resource pools are simply configured, and the network can configure the usage index of the resource pool according to the heading.
  • the terminal also selects a usage index according to the heading value and proposes a method in which the terminal selects a resource pool according to the selected usage index.
  • the heading value is not used explicitly for resource pool selection, but is replaced by the use index for each resource pool, and implicitly classifies the resource pool according to the heading value.
  • the relative speed between the terminals may be reduced, thereby reducing intercarrier interference (ICI) for mobility.
  • required services may differ depending on whether the progress direction is the same in V2X, and it can support this. For example, when the road is clearly divided into guardrails and tunnels, and the information of the other lane is not important, decoding of information transmitted by the terminal of the other lane may be omitted.
  • vehicle congestion may occur only in a specific direction, or the number of terminals may increase rapidly due to traffic congestion in the opposite direction, which may also be solved. If the shared pool is used regardless of the direction, the D2D signal transmission and reception in a specific direction may not occur smoothly due to congestion in another direction.
  • the one or more measurement information may include mobility of the terminal. That is, the resource pool may be classified according to the mobility of the terminal.
  • the network may be configured with an upper limit value and a lower limit value or an average value of mobility for each resource pool.
  • the UE can transmit its signal only from the resource pool that satisfies the mobility conditions configured by the network by identifying its mobility. In this case, it is possible to classify the resource region between a terminal with low mobility and a terminal with high mobility to prevent the terminal with low mobility from experiencing ICI from the terminal with high mobility.
  • Mobility may be measured by the speed sensor of the terminal. If the vehicle and the wireless terminal are interlocked, the resource region in which the wireless terminal of the vehicle transmits a signal may be selected using the information obtained from the speed sensor of the vehicle. More specifically, if the network or the terminal knows in advance the location or interval where the RSU is installed, or the average distance or density on the road, and only the network can know the information, the terminal can signal the terminal to the physical layer or higher layer signal. In addition, the terminal may estimate the average speed by counting the number of RSUs or the number of handovers per hour or more based on the corresponding information, and may divide and use resource regions according to such mobility.
  • mobility may be determined according to the number of times the RSRP discovers an RSU that is equal to or greater than a preset value. To this end, an average installation distance between RSUs, or positions of RSUs may be signaled to the terminal as a physical layer or a higher layer signal. Alternatively, mobility may be known by counting the number of times that the terminal handovers on average.
  • the resource pool may be set differently according to the lane progressed by the terminal. For example, when there are four lanes, if there is a left turn signal, the relative speed may be slowed down before the signal change in the left turnable lane. Alternatively, when only a specific vehicle moves in a specific lane, such as a bus-only lane, a signal transmitted by a vehicle running in the corresponding lane may be distinguished from a signal transmitted by vehicles running in other lanes and may be transmitted in a separate resource pool.
  • the lane information terminal may be obtained through a location estimation technique, or the network may identify a lane of the terminal and signal the terminal through a network based position estimation technique.
  • a vehicle running on a particular lane can transmit or receive signals in the resource zone configured for that particular lane.
  • 11 shows an example in which the first lane is set as a bus dedicated lane. Referring to FIG. 11, a resource region transmitted and received by a vehicle running in one lane and a vehicle running in the remaining lanes may be separated. This is because the average speed of the vehicle running in one lane may be different from the average speed of the remaining lanes.
  • increased mobility or reduced mobility in inter-vehicle communication may mean that congestion has occurred in the lane or road.
  • the transmission period may be set to be long.
  • all or part of a signal transmission period (or message generation period), a transmission probability, and a repetition number may be adjusted according to the mobility of the terminal. For example, when the speed of the terminal increases, the transmission cycle, the transmission probability, and the number of repetitions are set large.
  • the transmission probability of the signal may be adjusted. For example, when the moving speed of the terminal is lower than a certain threshold, the transmission probability is lowered together to obtain an effect of reducing interference.
  • the vehicle may be equipped with a plurality of multiple antennas.
  • the left and right doors may be equipped with an antenna, and may be mounted with a protruding antenna (dolphin / shark) on the roof of the vehicle.
  • the wireless channel may have a remarkably different characteristic according to the installation position of the antenna of the vehicle.
  • antennas mounted on opposite doors may have significantly different channel characteristics from other vehicles or other UEs.
  • the use as well as the channel characteristics can vary significantly.
  • roof mounted antennas can be used to communicate with infrastructure
  • door-mounted antennas can be used for distance measurement with other vehicles, lane level positioning, and high-speed communications between vehicles traveling in the same direction.
  • a separate resource region (divided by time or frequency) may be used according to the usage of the antenna.
  • a vehicle is equipped with multiple antennas, so it is a single terminal from the viewpoint of a cellular network.
  • different antennas can be used depending on the antenna, so that the receiver can detect the receiver by having the most common channel characteristics in that region.
  • a separate UE ID is provided for each antenna or for each use of the antenna, so that a vehicle may be interpreted as having a plurality of terminals.
  • a usage index is provided for each terminal, and a separate index is used according to the usage index. Rules can be set to use resource zones.
  • All or part of the proposed method may be used for a direct link between terminals such as D2D and V2V, but may also be used when UEs transmit signals (e.g., UL or DL) with a fixed infrastructure (eNB or RSU) such as V2I.
  • UEs transmit signals
  • eNB or RSU fixed infrastructure
  • V2I V2I
  • the base station can apply a common filter in the resource region in anticipation of the common mobility component in the resource region, thereby improving performance or reducing the detection complexity.
  • methods for applying more randomized beamforming for transmission in the region or applying pre-distortion to attenuate common Doppler components Can be considered
  • the moving speed when used as a reference for resource pool allocation / selection, the moving speed may be the moving speed of the terminal, but may be an average value of the moving speeds of the neighboring terminals of the terminal.
  • the transmission parameters transmission period, probability, number of repetitions, transmission power, channel (energy or reference signal) sensing threshold, channel occupancy time window adaptation, etc.
  • the terminal speed is adjusted. Adjusting the transmission parameters alone does not distinguish between adjusting the transmission parameters due to congestion in the actual surroundings or reducing the speed by the driver regardless of the congestion.
  • the network or the RSU signals the transmission parameter determination value according to the average moving speed or the moving speed of the neighboring terminal, or the terminal averages the moving speed value of the neighboring terminal to determine the transmission parameter.
  • the message transmitted by the vehicle terminal may include a movement speed value in a physical layer or a higher layer signal, and a field indicating a transmission parameter according to the movement speed of the terminal may be included in the physical layer or higher layer signal. have.
  • the vehicle terminal may determine the transmission parameter in consideration of the message received from the neighboring terminal and its own moving speed information.
  • FIG. 13 is a diagram showing the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
  • the transmission point apparatus 10 may include a receiver 11, a transmitter 12, a processor 13, a memory 14, and a plurality of antennas 15. .
  • the plurality of antennas 15 refers to a transmission point apparatus that supports MIMO transmission and reception.
  • the reception device 11 may receive various signals, data, and information on the uplink from the terminal.
  • the transmitter 12 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 13 may control the overall operation of the transmission point apparatus 10.
  • the processor 13 of the transmission point apparatus 10 may process matters necessary in the above-described embodiments.
  • the processor 13 of the transmission point apparatus 10 performs a function of processing the information received by the transmission point apparatus 10, information to be transmitted to the outside, and the memory 14 stores the calculated information and the like. It may be stored for a predetermined time and may be replaced by a component such as a buffer (not shown).
  • the terminal device 20 may include a receiver 21, a transmitter 22, a processor 23, a memory 24, and a plurality of antennas 25. have.
  • the plurality of antennas 25 refers to a terminal device that supports MIMO transmission and reception.
  • the receiving device 21 may receive various signals, data, and information on downlink from the base station.
  • the transmitter 22 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 23 may control operations of the entire terminal device 20.
  • the processor 23 of the terminal device 20 may process matters necessary in the above-described embodiments.
  • the processor 23 of the terminal device 20 performs a function of processing the information received by the terminal device 20, information to be transmitted to the outside, etc., and the memory 24 stores the calculated information and the like for a predetermined time. And may be replaced by a component such as a buffer (not shown).
  • the description of the transmission point apparatus 10 may be equally applicable to a relay apparatus as a downlink transmission entity or an uplink reception entity, and the description of the terminal device 20 is a downlink. The same may be applied to the relay apparatus as the receiving subject or the uplink transmitting subject.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 단말이 V2X(vehicle to everything) 관련 신호를 송수신하는 방법에 있어서, 하나 이상의 측정 정보와 리소스 풀 파라미터를 비교하여 리소스 풀을 선택하는 단계; 및 상기 리소스 풀을 사용하여 데이터를 전송하는 단계를 포함하며, 상기 하나 이상의 측정정보는 상기 단말의 지리적 위치에 관련된 것인, 신호 송수신 방법이다.

Description

무선 통신 시스템에서 V2X 단말이 신호를 송수신 하는 방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 단말이 V2X(vehicle to everything) 관련 신호를 송수신하는 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
장치 대 장치(Device-to-Device; D2D) 통신이란 단말(User Equipment; UE)들 간에 직접적인 링크를 설정하여, 기지국(evolved NodeB; eNB)을 거치지 않고 단말 간에 음성, 데이터 등을 직접 주고 받는 통신 방식을 말한다. D2D 통신은 단말-대-단말(UE-to-UE) 통신, 피어-대-피어(Peer-to-Peer) 통신 등의 방식을 포함할 수 있다. 또한, D2D 통신 방식은 M2M(Machine-to-Machine) 통신, MTC(Machine Type Communication) 등에 응용될 수 있다.
D2D 통신은 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. 예를 들어, D2D 통신에 의하면 기존의 무선 통신 시스템과 달리 기지국을 거치지 않고 장치 간에 데이터를 주고 받기 때문에 네트워크의 과부하를 줄일 수 있게 된다. 또한, D2D 통신을 도입함으로써, 기지국의 절차 감소, D2D에 참여하는 장치들의 소비 전력 감소, 데이터 전송 속도 증가, 네트워크의 수용 능력 증가, 부하 분산, 셀 커버리지 확대 등의 효과를 기대할 수 있다.
본 발명에서는 V2X 단말의 위치 정보 등을 고려하여 리소스 풀을 선택한 후 데이터를 전송하는 신호 송수신 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 단말이 V2X(vehicle to everything) 관련 신호를 송수신하는 방법에 있어서, 하나 이상의 측정 정보와 리소스 풀 파라미터를 비교하여 리소스 풀을 선택하는 단계; 및 상기 리소스 풀을 사용하여 데이터를 전송하는 단계를 포함하며, 상기 하나 이상의 측정정보는 상기 단말의 지리적 위치에 관련된 것인, 신호 송수신 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 V2X(ehicle to everything) 관련 신호를 송수신하는 단말 장치에 있어서, 송신 장치와 수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, 하나 이상의 측정 정보와 리소스 풀 파라미터를 비교하여 리소스 풀을 선택하고, 상기 리소스 풀을 사용하여 데이터를 전송하며, 상기 하나 이상의 측정정보는 상기 단말의 지리적 위치에 관련된 것인, 단말 장치이다.
상기 리소스 풀에는 단말의 지리적 위치에 관련된 파라미터 별로 값의 범위가 구성되어 있는 것일 수 있다.
상기 리소스 풀에는 전송 주기, 전송 확률, 반복 횟수 중 하나 이상이 구성되어 있는 것일 수 있다.
상기 하나 이상의 측정 정보는 상기 단말의 이동 방향 정보를 포함할 수 있다.
상기 단말의 이동 방향 정보는 상기 단말의 센서 또는 GPS(Global Positioning System)에 의해 측정된 것일 수 있다.
상기 단말의 이동 방향 정보는 셀 ID 변경으로부터 도출된 것일 수 있다.
상기 셀 ID는 RSU (road side unit)를 구별하는 식별자 정보일 수 있다.
상기 하나 이상의 측정 정보는 상기 단말의 주변 단말의 이동 속도의 평균값일 수 있다.
상기 하나 이상의 측정 정보는 상기 단말의 이동성(mobility)을 포함할 수 있다.
상기 이동성은 상기 단말의 속도 센서에 의해 측정된 것일 수 있다.
상기 이동성은 RSRP가 미리 설정된 값 이상인 RSU를 발견하는 횟수에 따라 결정되는 것일 수 있다.
상기 단말은 상기 리소스 풀의 미리 설정된 시간-주파수 자원 상에서 상기 데이터를 전송할 수 있다.
상기 단말은 상기 리소스 풀에서 시간-주파수 자원을 선택하여 상기 데이터를 전송할 수 있다.
본 발명에 따르면 단말의 진행방향이나, 이동성에 따라 자원영역을 구분하여 ICI를 줄일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 6에는 D2D동기 신호가 전송되는 서브프레임이 도시되어 있다.
도 7은 D2D 신호의 릴레이를 설명하기 위한 도면이다.
도 8에는 D2D 통신을 위한 D2D 리소스 풀의 예가 도시되어 있다.
도 9은 SA 주기를 설명하기 위한 도면이다.
도 10 내지 11은 본 발명의 실시예를 설명하기 위한 도면이다.
도 12는 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. 또한, 이하의 설명에서 기지국이라 함은 스케줄링 수행 노드, 클러스터 헤더(cluster header) 등을 장치를 지칭하는 의미로써도 사용될 수 있다. 만약 기지국이나 릴레이도 단말이 전송하는 신호를 전송한다면, 일종의 단말로 간주할 수 있다.
이하에서 기술되는 셀의 명칭은 기지국(base station, eNB), 섹터(sector), 리모트라디오헤드(remote radio head, RRH), 릴레이(relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파(component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1을 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 개수(NDL)는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케듈링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH를 위해 필요한 CCE의 개수는 DCI의 크기와 코딩 레이트 등에 따라 달라질 수 있다. 예를 들어, PDCCH 전송에는 CCE 개수 1, 2, 4, 8(각각 PDCCH 포맷 0, 1, 2, 3에 대응)개 중 어느 하나가 사용될 수 있으며, DCI의 크기가 큰 경우 및/또는 채널 상태가 좋지 않아 낮은 코딩 레이트가 필요한 경우 상대적으로 많은 개수의 CCE가 하나의 PDCCH 전송을 위해 사용될 수 있다. 기지국은 단말에게 전송되는 DCI의 크기, 셀 대역폭, 하향링크 안테나 포트의 개수, PHICH 자원 양 등을 고려하여 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(port)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
다중안테나(MIMO) 시스템의 모델링
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 5(a)에 도시된 바와 같이 송신 안테나의 수를 Nt 개로, 수신 안테나의 수를 NR 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트(Ro)에 레이트 증가율(Ri)이 곱해진 만큼 증가할 수 있다.
Figure PCTKR2016003405-appb-M000001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되고 있다.
다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 Nt개의 송신 안테나와 Nt개의 수신 안테나가 존재한다고 가정한다.
송신 신호를 살펴보면, Nt개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 NT개이다. 전송 정보는 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000002
각각의 전송 정보
Figure PCTKR2016003405-appb-I000001
는 전송 전력이 다를 수 있다. 각각의 전송 전력을
Figure PCTKR2016003405-appb-I000002
라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000003
또한,
Figure PCTKR2016003405-appb-I000003
는 전송 전력의 대각행렬
Figure PCTKR2016003405-appb-I000004
를 이용해 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000004
전송전력이 조정된 정보 벡터
Figure PCTKR2016003405-appb-I000005
에 가중치 행렬
Figure PCTKR2016003405-appb-I000006
가 적용되어 실제 전송되는 Nt개의 송신신호
Figure PCTKR2016003405-appb-I000007
가 구성되는 경우를 고려해 보자. 가중치 행렬
Figure PCTKR2016003405-appb-I000008
는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다.
Figure PCTKR2016003405-appb-I000009
는 벡터
Figure PCTKR2016003405-appb-I000010
를 이용하여 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000005
여기에서,
Figure PCTKR2016003405-appb-I000011
i번째 송신 안테나와 j번째 정보간의 가중치를 의미한다.
Figure PCTKR2016003405-appb-I000012
는 프리코딩 행렬이라고도 불린다.
수신신호는 Nr개의 수신 안테나가 있는 경우 각 안테나의 수신신호
Figure PCTKR2016003405-appb-I000013
은 벡터로 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000006
다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을
Figure PCTKR2016003405-appb-I000014
로 표시하기로 한다.
Figure PCTKR2016003405-appb-I000015
에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다.
한편, 도 5(b)은 NR개의 송신 안테나에서 수신 안테나 i로의 채널을 도시한 도면이다. 상기 채널을 묶어서 벡터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서, 총 NT개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
Figure PCTKR2016003405-appb-M000007
따라서, Nt개의 송신 안테나로부터 Nr개의 수신 안테나로 도착하는 모든 채널은 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000008
실제 채널에는 채널 행렬
Figure PCTKR2016003405-appb-I000016
를 거친 후에 백색잡음(AWGN; Additive White Gaussian Noise)이 더해진다. NR개의 수신 안테나 각각에 더해지는 백색잡음
Figure PCTKR2016003405-appb-I000017
은 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000009
상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
Figure PCTKR2016003405-appb-M000010
한편, 채널 상태를 나타내는 채널 행렬
Figure PCTKR2016003405-appb-I000018
의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬
Figure PCTKR2016003405-appb-I000019
에서 행의 수는 수신 안테나의 수 NR과 같고, 열의 수는 송신 안테나의 수 Nt와 같다. 즉, 채널 행렬
Figure PCTKR2016003405-appb-I000020
는 행렬이 NR×Nt된다.
행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬
Figure PCTKR2016003405-appb-I000021
의 랭크(
Figure PCTKR2016003405-appb-I000022
)는 다음과 같이 제한된다.
Figure PCTKR2016003405-appb-M000011
랭크의 다른 정의는 행렬을 고유치 분해(Eigen value decomposition) 하였을 때, 0이 아닌 고유치들의 개수로 정의할 수 있다. 유사하게, 랭크의 또 다른 정의는 특이치 분해(singular value decomposition) 하였을 때, 0이 아닌 특이치들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크. 의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 문서의 설명에 있어서, MIMO 전송에 대한 '랭크(Rank)' 는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수' 는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.
D2D 단말의 동기 획득
이하에서는 상술한 설명 및 기존 LTE/LTE-A 시스템에 기초하여, D2D 통신에서 단말간 동기 획득에 대해 설명한다. OFDM 시스템에서는 시간/주파수 동기가 맞지 않을 경우 셀 간 간섭(Inter-Cell Interference)로 인해 OFDM 신호에서 서로 다른 단말 간에 멀티플렉싱이 불가능질 수 있다. 동기를 맞추기 위해 D2D 단말들이 직접 동기 신호를 송수신하여 모든 단말이 개별적으로 동기를 맞추는 것은 비효율적이다. 따라서, D2D와 같은 분산 노드 시스템에서는 특정 노드가 대표 동기 신호를 전송해주고 나머지 UE들이 이에 동기를 맞출 수 있다. 다시 말해, D2D 신호 송수신을 위해 일부 노드들이 (이때 노드는 eNB, UE, SRN(synchronization reference node 또는 synchronization source로 불릴 수도 있다) 일 수도 있다.) D2D 동기 신호(D2DSS, D2D Synchronization Signal)를 전송하고, 나머지 단말들이 이에 동기를 맞추어 신호를 송수신하는 방식이 사용될 수 있다.
D2D 동기신호에는 프라이머리 동기 신호(PD2DSS(Primary D2DSS 또는 PSSS(Primary Sidelink synchronization signal)), 세컨더리 동기 신호(SD2DSS(Secondary D2DSS 또는 SSSS(Secondary Sidelink synchronization signal))가 있을 수 있다. PD2DSS는 소정 길이의 자도프 추 시퀀스(Zadoff-chu 시퀀스) 또는 PSS와 유사/변형/반복된 구조 등일 수 있다. 또한 DL PSS와 달리 다른 자도프 추 루트 인덱스(예를 들어, 26, 37)를 사용할 수 있다. SD2DSS는 M-시퀀스 또는 SSS와 유사/변형/반복된 구조 등일 수 있다. 만약 단말들이 eNB로부터 동기를 맞출 경우, SRN은 eNB가 되며, D2DSS는 PSS/SSS가 된다. DL의 PSS/SSS와 달리 PD2DSS/SD2DSS는 UL 서브캐리어 매핑 방식을 따른다. 도 6에는 D2D동기 신호가 전송되는 서브프레임이 도시되어 있다. PD2DSCH(Physical D2D synchronization channel)는 D2D 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보(예를 들어, D2DSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL 구성, 리소스 풀 관련 정보, D2DSS에 관련된 애플리케이션의 종류, subframe offset, 브로드캐스트 정보 등)가 전송되는 (방송) 채널일 수 있다. PD2DSCH는 D2DSS와 동일한 서브프레임 상에서 또는 후행하는 서브프레임 상에서 전송될 수 있다. DMRS는 PD2DSCH의 복조를 위해 사용될 수 있다.
SRN은 D2DSS, PD2DSCH(Physical D2D synchronization channel)를 전송하는 노드일 수 있다. D2DSS는 특정 시퀀스 형태일 수 있고, PD2DSCH는 특정 정보를 나타내는 시퀀스거나 사전에 정해진 채널 코딩을 거친 후의 코드 워드 형태일 수 있다. 여기서, SRN은 eNB 또는 특정 D2D 단말이 될 수 있다. 부분 네트워크 커버리지(partial network coverage) 또는 커버리지 바깥(out of network coverage)의 경우에는 단말이 SRN이 될 수 있다.
도 7과 같은 상황에서 커버리지 밖(out of coverage) 단말과의 D2D 통신을 위해 D2DSS는 릴레이 될 수 있다. 또한, D2DSS는 다중 홉을 통해 릴레이될 수 있다. 이하의 설명에서 동기 신호를 릴레이 한다는 것은 직접 기지국의 동기신호를 AF 릴레이하는 것뿐만 아니라, 동기 신호 수신 시점에 맞추어 별도의 포맷의 D2D 동기신호를 전송하는 것도 포함하는 개념이다. 이와 같이, D2D 동기 신호가 릴레이 됨으로써 커버리지 안 단말과 커버리지 밖 단말이 직접 통신을 수행할 수 있다.
D2D 리소스
도 8에는 D2D 통신을 수행하는 UE1, UE2 및 이들이 사용하는 D2D 리소스 풀의 예가 도시되어 있다. 도 8(a)에서 UE는 단말 또는 D2D 통신 방식에 따라 신호를 송수신하는 기지국 등의 네트워크 장비를 의미한다. 단말은 일련의 자원의 집합을 의미하는 리소스 풀 내에서 특정한 자원에 해당하는 리소스 유닛을 선택하고 해당 리소스 유닛을 사용하여 D2D 신호를 송신할 수 있다. 수신 단말(UE2)는 UE1이 신호를 전송할 수 있는 리소스 풀을 구성(configured) 받고 해당 pool내에서 UE1의 신호를 검출할 수 있다. 여기서 리소스 풀은 UE1이 기지국의 연결 범위에 있는 경우 기지국이 알려줄 수 있으며, 기지국의 연결 범위 밖에 있는 경우에는 다른 단말이 알려주거나 또는 사전에 정해진 자원으로 결정될 수도 있다. 일반적으로 리소스 풀은 복수의 리소스 유닛으로 구성되며 각 단말은 하나 또는 복수의 리소스 유닛을 선정하여 자신의 D2D 신호 송신에 사용할 수 있다. 리소스 유닛은 도 8(b)에 예시된 것과 같을 수 있다. 도 8(b)를 참조하면, 전체 주파수 자원이 NF개로 분할되고 전체 시간 자원이 NT개로 분할되어 총 NF*NT개의 리소스 유닛이 정의되는 것을 알 수 있다. 여기서는 해당 리소스 풀이 NT 서브프레임을 주기로 반복된다고 할 수 있다. 특히, 하나의 리소스 유닛이 도시된 바와 같이 주기적으로 반복하여 나타날 수 있다. 또는, 시간이나 주파수 차원에서의 다이버시티 효과를 얻기 위해, 하나의 논리적인 리소스 유닛이 매핑되는 물리적 리소스 유닛의 인댁스가 시간에 따라서 사전에 정해진 패턴으로 변화할 수도 있다. 이러한 리소스 유닛 구조에 있어서 리소스 풀이란 D2D 신호를 송신하고자 하는 단말이 송신에 사용할 수 있는 리소스 유닛의 집합을 의미할 수 있다.
리소스 풀은 여러 종류로 세분화될 수 있다. 먼저 각 리소스 풀에서 전송되는 D2D 신호의 컨텐츠(contents)에 따라서 구분될 수 있다. 예를 들어, D2D 신호의 컨텐츠는 구분될 수 있으며, 각각에 대하여 별도의 리소스 풀이 구성될 수 있다. D2D 신호의 컨텐츠로서, SA(Scheduling assignment (SA), D2D 데이터 채널, 디스커버리 채널(Discovery channel)이 있을 수 있다. SA는 송신 단말이 후행하는 D2D 데이터 채널의 전송으로 사용하는 리소스의 위치 및 그 외 데이터 채널의 복조를 위해서 필요한 MCS(modulation and coding scheme)나 MIMO 전송 방식, TA(timing advance)등의 정보를 포함하는 신호일 수 있다. 이 신호는 동일 리소스 유닛 상에서 D2D 데이터와 함께 멀티플렉싱되어 전송되는 것도 가능하며, 이 경우 SA 리소스 풀이란 SA가 D2D 데이터와 멀티플렉싱되어 전송되는 리소스의 풀을 의미할 수 있다. 다른 이름으로 D2D 제어 채널(control channel), PSCCH(physical sidelink control channel)로 불릴 수도 있다. D2D 데이터 채널(또는, PSSCH(Physical sidelink shared channel))은, 송신 단말이 사용자 데이터를 전송하는데 사용하는 리소스의 pool일 수 있다. 만일 동일 리소스 유닛 상에서 D2D 데이터와 함께 SA가 멀티플렉싱되어 전송되는 경우 D2D 데이터 채널을 위한 리소스 풀에서는 SA 정보를 제외한 형태의 D2D 데이터 채널만이 전송 될 수 있다. 다시 말하면 SA 리소스 풀 내의 개별 리소스 유닛 상에서 SA 정보를 전송하는데 사용되었던 REs를 D2D 데이터 채널 리소스 풀에서는 여전히 D2D 데이터를 전송하는데 사용할 수 있다. 디스커버리 채널은 송신 단말이 자신의 ID 등의 정보를 전송하여 인접 단말로 하여금 자신을 발견할 수 있도록 하는 메시지를 위한 리소스 풀일 수 있다.
D2D 신호의 컨텐츠가 동일한 경우에도 D2D 신호의 송수신 속성에 따라서 상이한 리소스 풀을 사용할 수 있다. 예를 들어, 동일한 D2D 데이터 채널이나 디스커버리 메시지라 하더라도 D2D 신호의 송신 타이밍 결정 방식(예를 들어 동기 기준 신호의 수신 시점에서 송신되는지 아니면 거기에서 일정한 TA를 적용하여 전송되는지)이나 자원 할당 방식(예를 들어 개별 신호의 전송 자원을 eNB가 개별 송신 UE에게 지정해주는지 아니면 개별 송신 UE가 pool 내에서 자체적으로 개별 신호 전송 자원을 선택하는지), 신호 포맷(예를 들어 각 D2D 신호가 한 서브프레임에서 차지하는 심볼의 개수나, 한 D2D 신호의 전송에 사용되는 서브프레임의 개수), eNB로부터의 신호 세기, D2D UE의 송신 전력 세기 등에 따라서 다시 상이한 리소스 풀로 구분될 수 있다. 설명의 편의상 D2D 커뮤니케이션에서 eNB가 D2D 송신 UE의 송신 자원을 직접 지시하는 방법을 Mode 1, 전송 자원 영역이 사전에 설정되어 있거나, eNB가 전송 자원 영역을 지정하고, UE가 직접 송신 자원을 선택하는 방법을 Mode 2라 부르기로 한다. D2D discovery의 경우에는 eNB가 직접 자원을 지시하는 경우에는 Type 2, 사전에 설정된 자원영역 또는 eNB가 지시한 자원 영역에서 UE가 직접 전송 자원을 선택하는 경우는 Type 1이라 부르기로 한다.
SA의 송수신
모드 1 단말은 기지국으로부터 구성 받은 자원을 통해 SA(또는, D2D 제어 신호, SCI(Sidelink Control Information))을 전송할 수 있다. 모드 2 단말은 기지국으로부터 D2D 송신에 사용할 리소스를 구성 받는(configured)다. 그리고, 구성 받은 그 리소스에서 시간 주파수 자원을 선택하여 SA를 전송할 수 있다.
SA 주기는 도 9에 도시된 바와 같이 정의된 것일 수 있다. 도 9을 참조하면, 첫 번째 SA 주기는 특정 시스템 프레임으로부터 상위계층시그널링에 의해 지시된 소정 오프셋(SAOffsetIndicator)만큼 떨어진 서브프레임에서 시작될 수 있다. 각 SA 주기는 SA 리소스 풀과 D2D 데이터 전송을 위한 서브프레임 풀을 포함할 수 있다. SA 리소스 풀은 SA 주기의 첫 번째 서브프레임부터 서브프레임 비트맵(saSubframeBitmap)에서 SA가 전송되는 것으로 지시된 서브프레임 중 마지막 서브프레임을 포함할 수 있다. D2D 데이터 전송을 위한 리소스 풀은, 모드 1의 경우, T-RPT(Time-resource pattern for transmission)가 적용됨으로써 실제 데이터 전송에 사용되는 서브프레임이 결정될 수 있다. 도시된 바와 같이, SA 리소스 풀을 제외한 SA 주기에 포함된 서브프레임의 개수가 T-RPT 비트 개수보다 많은 경우 T-RPT는 반복하여 적용될 수 있으며, 마지막으로 적용되는 T-RPT는 남은 서브프레임 개수만큼 truncated되어 적용될 수 있다. SA는 데이터의 전송위치를 T-RPT형태로 지시할 수도 있고, 다른 명시적인 방법으로 지시할 수도 있다. 일례로 데이터의 전송 시작 위치, 반복 횟수등을 지시하는 형태일 수 있다. 보다 일반적으로 SA는 데이터의 전송 자원의 시간, 주파수 위치를 지시하고, 데이터 디코딩에 필요한 부가 정보를 포함하여 전송하는 채널이다. 이러한 SA 리소스 풀은 데이터 풀과 분리될 수도 있지만, 데이터 풀과 일부 중첩 되어 데이터 영역을 일부 함께 사용하는 형태일 수도 있다. 또한 데이터 풀과 SA 리소스 풀이 시간영역에서 분리된 형태가 아니라 주파수 영역에서 분리된 형태일 수 있다.
한편, D2D 통신에 연계된 형태로써, V2X 통신에 대한 논의가 진행되고 있다. V2X는 차량 단말들간의 V2V, 차량과 다른 종류의 단말간의 V2P, 차량과 RSU(roadside unit) 간의 V2I 통신을 포함하는 개념이다. 이하에서는 상술한 설명에 기초하여, V2X에 관련된 자원할당 기법에 관한 본 발명의 실시예에 대해 설명한다. 이하의 설명에서 단말은 이동수단(vehicle) 또는 이동수단에 부착되어 있는 UE일 수 있다.
실시예
본 발명의 실시예에 의한 단말은 하나 이상의 측정 정보와 리소스 풀 파라미터를 비교하여 리소스 풀을 선택하고, 그 리소스 풀을 사용하여 데이터를 전송할 수 있다. 단말은 리소스 풀의 미리 설정된 시간-주파수 자원 상에서 데이터를 전송하거나 또는, 리소스 풀에서 시간-주파수 자원을 선택하여 데이터를 전송할 수 있다.
여기서, 하나 이상의 측정정보는 단말의 지리적 위치에 관련된 것일 수 있다. 단말은 다수 개의 리소스 풀(들)에서 리소스 풀을 선택하되, 그 리소스 풀(들)에는 단말의 지리적 위치에 관련된 파라미터 별로 값의 범위가 구성되어(configured) 있을 수 있다. 단말은 지리적 위치에 관련된 측정 정보와 리소스 풀에 구성되어 있는 파라미터 값의 범위를 비교하여, 조건에 일치하는 리소스 풀을 선택할 수 있다. 또한, 리소스 풀에는 전송 주기, 전송 확률, 반복 횟수 중 하나 이상이 구성되어 있을 수 있다. 이 경우, 단말이 특정 리소스 풀을 선택하면, 그 리소스 풀에 구성되어 있는 전송 주기, 전송 확률, 반복 횟수 등에 따라 전송을 수행될 수 있다. 전송 주기, 전송 확률, 반복 횟수 등은 리소스 풀 선택시 단말에게 강제되거나, 또는 권고(단말의 선택에 따름)되는 것일 수 있다.
상술한 설명에서 하나 이상의 측정 정보는 단말의 이동 방향 정보를 포함할 수 있다. 이 경우, 리소스 풀은 이동 방향 별로 미리 구성되어 있을 수 있다. 예를 들어, 도 10에 예시된 바와 같은 도로 환경에서 단말의 이동 방향 정보는 두 종류이므로, 방향에 따라 최소 두 종류의 리소스 풀이 구성되어 있을 수 있다. 또한, 리소스 풀에 heading 값의 임계치가 구성될 수 있다. 만약, 리소스 풀이 방향 별로 1개인 경우, 도 10에 예시된 바와 같이, 이동 방향이 같은(즉, 같은 방향을 달리는) 단말은 동일한 리소스(resource pool A)를 사용하고, 다른 방향을 달리는 단말은 그와 다른 리소스 풀(resource pool B)을 사용할 수 있다. 도 10의 예시에서는 리소스 풀이 시간 축 상에서 구분되는 것으로 예시되었으나, 이는 어디까지나 예시일 뿐이며 각각의 리소스 풀들은 주파수 축 상으로 구분되거나 또는 시간-주파수 축 상에서 구분될 수도 있다.
단말의 이동 방향 정보는 단말의 센서 또는 GPS(Global Positioning System)에 의해 측정된 것일 수 있다. 다만, 이동 방향 정보의 획득/측정 방법이 반드시 이에 한정되는 것은 아니며, heading 값을 얻을 수 있는 다양한 방법들이 사용될 수 있다. 즉, 단말의 진행방향을 어떠한 방식으로라도 알 수 있다면 그 진행 방향에 대한 값을 이용하여 서로 상이한 진행방향을 가지는 단말끼리 자원영역을 구분하여 사용하는 것이다. 이때, 자원은 시간, 주파수, 시간/주파수 세가지 방식으로 분리 될 수 있으며, 본 발명의 실시예에서는 이 세가지 경우를 모두 포함한다.
단말의 이동 방향 정보를 알 수 있는 또 다른 방법으로써, heading값을 주변 셀이나 RSU의 ID를 추적하여 묵시적(implicit)으로 파악할 수도 있다. 즉, 단말의 이동 방향 정보는 셀 ID 변경으로부터 도출된 것일 수 있으며, 여기서 셀 ID는 RSU (road side unit)를 구별하는 식별자 정보일 수 있다. 단말이 heading값을 알기 힘든 경우 또는 heading값을 직접 리소스 선택에 사용하지 않는 경우에는, 단말이 셀간에 핸드오버 (RRC connected UE의 경우 핸드오버, RRC idle UE의 경우에는 셀 재선택)를 할 때 셀 ID가 변경되는 것을 추적하여, 셀 ID가 변경되는 경향이 상이한 단말, 즉 서로 다른 진행방향으로 이동하는 단말 사이에서는 서로 다른 리소스 풀을 사용하도록 설정할 수 있다. 이를 위해 네트워크는 단말이 이동할때 셀 ID의 변경 사항 또는 셀 ID 변경에 의해 생성된 sequence또는 벡터 또는 그와 동등한 정보의 변동 범위를 리소스 풀 별로 구성할 수 있다. 예를 들어, 특정 지역에서 셀 ID가 A->B->C로 변경되는 단말이 사용하는 리소스 풀과 C->B->A로 변경되는 단말이 사용하는 리소스 풀은 구별/분리될 수 있다. 이를 위해 네트워크는 검출되는 셀 ID가 C->A로 변동할 때 사용하는 리소스 풀과 A->C로 변할 때 사용하는 리소스 풀을 UE들이 구분할 수 있도록 셀 ID 변동 값, 차이, 셀 ID간의 vector값의 range 등을 리소스 풀 별로 구성할 수 있다. 다른 예로써, 네트워크는 셀 ID가 일정 시간 내에 일정 임계이상으로 검출된 순서를 리소스 풀 별로 구성해 줄 수 있다.
만약 도로에 RSU이 설치되어 있는 경우 검출하는 RSU의 ID를 단말이 추적하여 단말의 이동성(mobility) 및 방향을 추정할 수 있다. 이때 네트워크는 RSU의 ID 변화를 리소스 풀 별로 시그널링 할 수 있다. 또한 특정 도로를 이동하는 단말은 검출한 셀 ID 순서 또는 RSU ID 순서를 heading값 또는 도로의 진행 방향과 함께 (또는 별도로) 네트워크로 물리계층 또는 상위계층 신호로 보고할 수 있다. 이는 네트워크가 특정 도로에서 heading값에 따른 셀 ID/RSU ID 변동 통계를 추정하게 하기 위함이다. 네트워크는 단말로부터 궤환된 정보를 바탕으로 리소스 풀 별 cell ID/RSU ID의 변동 값을 구성해 줄 수 있다.
Heading값 또는 범위를 리소스 풀 별로 직접 구성해줄 수도 있지만, 단순히 여러개의 리소스 풀이 구성되어 있고, heading에 따른 리소스 풀의 사용 인덱스(usage index)를 네트워크가 구성해줄 수도 있다. 이 경우 단말 또한 heading값에 따라 사용 인덱스를 선택하여 단말이 선택된 사용 인덱스에 따라 리소스 풀을 선택하는 방법을 제안한다. 이 방법은 heading값이 리소스 풀선택에 explicit하게 사용되는 것이 아니라 리소스 풀 별 사용 인덱스로 치환되어 implicit하게 heading값에 따라 리소스 풀을 구분하는 방법이다.
상술한 바와 같이, 이동 방향 정보를 리소스 풀의 구분 기준으로 삼는 경우, 진행 방향이 같은 단말들이 같은 리소스 풀을 사용할 경우 단말간의 상대속도가 줄어들어서 이동성에 대한 ICI (Inter carrier interference)가 줄어들 수 있다. 또한, V2X에서 진행 방향이 같은지 아닌지에 따라 필요한 서비스가 다를 수 있는데, 이를 지원할 수 있다. 예를 들어, 도로가 가드레일이나 터널 등으로 확실히 구분된 도로여서 반대편 차선의 정보는 중요하지 않는 경우에는 다른 차선의 단말이 송신하는 정보는 디코딩을 생략할 수도 있다. 또한, 차량 정체가 특정 방향으로만 일어날 수도 있고, 반대 방향의 교통 정체로 인해 단말 수가 급격히 늘어날 수 있는데, 이러한 문제도 해결될 수 있다. 만약 방향에 관계없이 공유 풀(shared pool)을 사용한다면 다른 방향의 정체로 인해 특정 방향의 D2D신호 송수신이 원활히 일어나지 않을 수 있기 때문이다.
계속해서, 하나 이상의 측정 정보는 단말의 이동성(mobility)을 포함할 수 있다. 즉, 단말의 이동성에 따라 리소스 풀을 구분할 수도 있다. 이를 위해 네트워크는 리소스 풀 별로 이동성의 상한과 하한 값이 또는 평균 값이 구성할 수 있다. 즉 단말은 자신의 이동성을 파악하여 네트워크가 구성한 이동성 조건을 만족하는 리소스 풀에서만 신호를 송신할 수 있다. 이 경우, 이동성이 작은 단말과 이동성이 큰 단말간에 자원영역을 구분하여 이동성이 작은 단말이 이동성이 큰 단말로부터 ICI를 겪는 것을 방지할 수 있다.
이동성은 단말의 속도 센서에 의해 측정된 것일 수 있다. 차량과 무선 단말기간에 연동이 되어 있다면 차량의 속도센서에서 획득한 정보를 이용하여 해당 차량의 무선 단말이 신호를 전송하는 자원 영역을 선택할 수 있다. 보다 구체적으로 RSU가 설치된 위치, 또는 간격, 또는 해당 도로에서 평균 거리 또는 밀도를 네트워크 또는 단말이 사전에 알고 있고, 만약 해당 정보를 네트워크만 알 수 있다면 물리계층 또는 상위계층 신호로 단말에게 시그널링 할 수 있으며, 단말은 해당 정보를 바탕으로 시간당 일정 RSRP 이상으로 보이는 RSU의 개수 또는 핸드오버횟수를 카운트하여 평균 속도를 추정할 수 있고, 이러한 이동성에 따라 자원 영역을 나누어 사용할 수 있다.
또한, 이동성은 RSRP가 미리 설정된 값 이상인 RSU를 발견하는 횟수에 따라 결정되는 것일 수 있다. 이를 위하여 RSU간 평균 설치 거리, 또는 RSU의 위치 등이 물리계층 또는 상위계층 신호로 단말에게 시그널링 될 수 있다. 또는, 이동성은 단말이 평균적으로 핸드오버하는 횟수를 카운트함으로써 알 수도 있다.
또 다른 예로써, 단말이 진행하는 lane에 따라 리소스 풀을 다르게 설정할 수도 있다. 예를 들어 4차선이 있을 때, 좌회전 신호가 있으면 좌회전 가능 차선의 경우에는 신호 변경 전에 상대 속도가 느려질 수 있기 때문이다. 또는 버스 전용차로와 같이 특정 차선에 특정 차량만 이동할 경우에는 해당 차선에서 달리는 차량이 전송하는 신호는 다른 차선을 달리는 차량들이 전송하는 신호와 구분되어 별도의 리소스 풀에서 전송될 수 있을 것이다. 이러한 lane 정보 단말이 위치 추정 기술을 통해 획득할 수도 있고, 네트워크 기반의 위치 추정 기술을 통해서 네트워크가 단말의 lane을 파악하여, 단말에게 시그널링 할 수도 있다.
lane 정보가 획득이 되면, 특정 lane을 달리는 차량은 그 특정 lane을 위해 구성된 자원영역에서 신호를 송신 또는 수신할 수 있다. 도 11에는 1차선이 버스 전용 차선으로 설정된 경우의 예가 도시되어 있다. 도 11을 참조하면, 1차선을 달리는 차량과 나머지 차선을 달리는 차량이 송수신하는 자원 영역은 분리될 수 있다. 이는 1차선에서 달리는 차량의 평균 속도와 나머지 차선의 평균 속도가 다를 수 있기 때문이다.
한편 차량간 통신에서 이동성이 증가한다거나, 이동성이 감소한다는 것은 해당 차선, 또는 도로에서 차량 정체가 일어났다는 것을 의미할 수도 있다. 이때, 단말이 밀집한 경우 모든 단말이 송수신을 수행할 경우 해당 지역에서 과밀화된 신호 송수신이 발생하여 간섭이 과도하게 발생할 수 있다. 또한 단말의 속도가 느려 졌을 때에는 latency requirement가 상대적으로 느슨(loose)해질 수 있기 때문에, 전송 주기가 길게 설정될 수 있다. 이러한 원리를 구현하기 위해서, 단말의 이동성에 따라 신호의 전송 주기 (혹은 메시지 생성 주기), 전송 확률, 반복(repetition) 횟수 중 전체 또는 일부를 조절할 수 있다. 예를 들어, 단말의 속도가 빨라졌을 때에는 전송주기, 전송 확률, 반복 횟수를 크게 설정하고, 단말의 속도가 느려졌을때에는 전송주기, 전송 확률, 반복 횟수를 작게 설정하는 것이다. 보다 구체적으로 N ms마다 신호를 송수신하도록 구성된 경우를 고려해보자. 이때 단말의 이동 속도가 A km/h 이상 B km/h이하인 경우에 N ms 주기의 자원영역에서 신호를 송신하도록 설정되었을 때, 단말의 속도가 줄어들 경우 전송 주기가 N보다 큰 주기, 예를 들어 N1(=2*N)ms마다 신호를 송수신 하도록 설정될 수 있다. 이 방식에 의하면, 단말의 이동 속도가 줄어들수록, 주변의 차량의 속도가 줄어들어서 차량간 평균 간격이 줄어들고 이에 따라 해당 지역에서 이 증가할 수 있기 때문에 신호의 전송 주기를 크게 설정하여, 간섭을 줄이는 효과를 가져올 수 있다. 다른 방식으로 신호의 송신 확률을 조절할 수 있는데, 예를 들어 단말의 이동속도가 일정 임계 이하인 경우 전송 확률을 함께 낮추어 간섭이 줄어드는 효과를 얻기 위함이다.
한편 차량의 경우에는 다수개의 다중안테나를 장착하고 있을 수 있다. 예를 들어 좌우 문에 안테나가 달려있을 수 있고, 차량 지붕에 돌출된(돌핀/샤크) 형태의 안테나가 장착되어 있을 수 있다. 이때, 차량의 안테나 설치 위치에 따라 무선 채널이 현저히 다른 특성을 가질 수 있다. 예를 들어 서로 반대쪽 문에 장착된 안테나는 다른 차량 또는 다른 UE와의 채널 특성이 현저히 다를 수 있다. 또한, 채널 특성뿐 아니라 용도 또한 현저히 차이날 수 있다. 예를 들어 지붕에 달린 안테나는 인프라와 통신하기 위하여 사용되고, 문에 장착된 안테나는 다른 차량과의 거리 측정, lane level positioning, 같은 방향으로 진행하는 차량간의 고속 통신을 위하여 사용될 수 있다.
이때, 안테나의 용도 (usage)에 따라 별도의 자원영역 (시간 또는 주파수로 구분되는)을 사용할 수 있다. 이 방식은 차량의 안테나는 여러 개를 장착하고 있어서 셀룰러 네트워크의 관점에서는 하나의 단말이지만, 안테나에 따라 서로 다른 자원 영역을 사용하게 하여 해당 영역에서는 최대한 공통의 채널 특성을 가질 수 있게 하여 수신기의 검출 복잡도를 줄이는 것이다. 다른 구현 방식으로 안테나마다 또는 안테나의 용도별로 별도의 UE ID가 부여 되어 마치 차량은 다수개의 단말을 장착한 것으로 해석 될 수 있으며, 이때, 단말 별로 사용 인덱스가 부여되어 있고, 사용 인덱스에 따라 별도의 자원 영역을 사용하도록 규칙이 정해질 수 있다.
한편 상기 제안한 방법 중 전체 또는 일부는 D2D, V2V와 같이 단말간 직접 링크에 사용될 수도 있지만, V2I와 같이 고정된 인프라스트럭처 (eNB나 RSU)으로 단말들이 신호를 전송할 때 (UL 또는 반대로 DL)에도 사용될 수 있다. 예를 들어 이동성이나 heading이 다른 단말들이 같은 자원영역에서 인프라를 향해 신호를 송신하게 되면 서로 ICI를 크게 발생시키기도 하고, 또한 각 패킷을 검출하는 eNB 구현이 복잡해질 수 있다. 하지만 이동성이나 heading에 따라 자원영역을 나누어 두면, 해당 자원영역에서 공통적인 이동성 성분을 예상하여 기지국이 해당 자원영역에서 공통의 필터를 적용할 수 있기 때문에 성능향상 또는 검출복잡도 감소 효과를 얻을 수 있다. DL의 경우에는 이동성이 높은 단말들이 공통된 자원영역에서 수신한다고 가정한다면, 해당 영역에서의 전송을 보다 랜덤화된 빔포밍을 적용한다거나, 공통의 도플러 성분을 감쇄하기 위해 pre-distortion을 적용하는 방법들을 고려할 수 있다.
상술한 설명에서, 이동 속도가 리소스 풀 할당/선택의 기준으로 사용되는 경우 이동 속도는 단말의 이동 속도일 수도 있지만, 단말의 주변 단말의 이동 속도의 평균값일 수 있다. 단말의 이동 속도에 따라서 전송 파라미터 (전송주기, 확률, 반복 횟수, 전송 전력, channel (energy or reference signal) sensing threshold, channel occupancy time window adaptation등 전체 또는 일부)이 조절될 때, 단말이 자신의 속도만으로 전송 파라미터를 조절하는 것은 실제 주변에 혼잡이 일어나서 전송 파라미터를 조절하는 것인지, 아니면 혼잡에 관계없이 운전자 스스로 속도를 줄인 것인지를 구분할 수 없게 된다. 따라서 단말이 이동속도를 통하여 전송 파라미터를 결정할 때에는, 네트워크 또는 RSU가 주변 단말의 평균 이동 속도 또는 이동 속도에 따른 전송 파라미터 결정 값을 시그널링 하거나, 단말이 주변 단말의 이동속도 값을 평균하여 전송 파라미터를 결정할 수 있다. 이를 위해 차량 단말이 전송하는 메시지에는 이동속도 값이 물리계층 또는 상위계층 신호에 포함되어 있을 수도 있고, 단말의 이동 속도에 따른 전송 파라미터를 지시하는 필드가 물리계층 또는 상위계층 신호에 포함되어 있을 수 있다. 차량 단말은 주변 단말로부터 수신 된 메시지와 자신의 이동 속도 정보를 고려하여 전송 파라미터를 결정할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (혹은 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예를 들어, 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
본 발명의 실시예에 의한 장치 구성
도 13은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
도 13을 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신장치(11), 전송장치(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신장치(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송장치(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 13을 참조하면 본 발명에 따른 단말 장치(20)는, 수신장치(21), 전송장치(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신장치(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송장치(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 13에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (14)

  1. 무선통신시스템에서 단말이 V2X(vehicle to everything) 관련 신호를 송수신하는 방법에 있어서,
    하나 이상의 측정 정보와 리소스 풀 파라미터를 비교하여 리소스 풀을 선택하는 단계; 및
    상기 리소스 풀을 사용하여 데이터를 전송하는 단계;
    를 포함하며,
    상기 하나 이상의 측정정보는 상기 단말의 지리적 위치에 관련된 것인, 신호 송수신 방법.
  2. 제1항에 있어서,
    상기 리소스 풀에는 단말의 지리적 위치에 관련된 파라미터 별로 값의 범위가 구성되어 있는 것인, 신호 송수신 방법.
  3. 제1항에 있어서,
    상기 리소스 풀에는 전송 주기, 전송 확률, 반복 횟수 중 하나 이상이 구성되어 있는 것인, 신호 송수신 방법.
  4. 제1항에 있어서,
    상기 하나 이상의 측정 정보는 상기 단말의 이동 방향 정보를 포함하는, 신호 송수신 방법.
  5. 제4항에 있어서,
    상기 단말의 이동 방향 정보는 상기 단말의 센서 또는 GPS(Global Positioning System)에 의해 측정된 것인, 신호 송수신 방법.
  6. 제5항에 있어서,
    상기 단말의 이동 방향 정보는 셀 ID 변경으로부터 도출된 것인, 신호 송수신 방법.
  7. 제6항에 있어서,
    상기 셀 ID는 RSU (road side unit)를 구별하는 식별자 정보인, 신호 송수신 방법.
  8. 제1항에 있어서,
    상기 하나 이상의 측정 정보는 상기 단말의 주변 단말의 이동 속도의 평균값인, 신호 송수신 방법.
  9. 제1항에 있어서,
    상기 하나 이상의 측정 정보는 상기 단말의 이동성(mobility)을 포함하는, 신호 송수신 방법.
  10. 제8항에 있어서,
    상기 이동성은 상기 단말의 속도 센서에 의해 측정된 것인, 신호 송수신 방법.
  11. 제8항에 있어서,
    상기 이동성은 RSRP가 미리 설정된 값 이상인 RSU를 발견하는 횟수에 따라 결정되는 것인, 신호 송수신 방법.
  12. 제1항에 있어서,
    상기 단말은 상기 리소스 풀의 미리 설정된 시간-주파수 자원 상에서 상기 데이터를 전송하는. 신호 송수신 방법.
  13. 제1항에 있어서,
    상기 단말은 상기 리소스 풀에서 시간-주파수 자원을 선택하여 상기 데이터를 전송하는, 신호 송수신 방법.
  14. 무선통신시스템에서 V2X(ehicle to everything) 관련 신호를 송수신하는 단말 장치에 있어서,
    송신 장치와 수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는, 하나 이상의 측정 정보와 리소스 풀 파라미터를 비교하여 리소스 풀을 선택하고, 상기 리소스 풀을 사용하여 데이터를 전송하며,
    상기 하나 이상의 측정정보는 상기 단말의 지리적 위치에 관련된 것인, 단말 장치.
PCT/KR2016/003405 2015-04-01 2016-04-01 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치 WO2016159715A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177031708A KR102592651B1 (ko) 2015-04-01 2016-04-01 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치
JP2017551272A JP6501905B2 (ja) 2015-04-01 2016-04-01 無線通信システムにおいてv2x端末が信号を送受信する方法及び装置
CN201680019745.XA CN107439036B (zh) 2015-04-01 2016-04-01 V2x终端在无线通信系统中发送和接收信号的方法和装置
EP16773496.1A EP3280172B1 (en) 2015-04-01 2016-04-01 Method and device for transmitting, by v2x terminal, signal in wireless communication system
US15/562,873 US10827500B2 (en) 2015-04-01 2016-04-01 Method and device for transmitting and receiving, by V2X terminal, signal in wireless communication system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562141842P 2015-04-01 2015-04-01
US62/141,842 2015-04-01
US201562163364P 2015-05-18 2015-05-18
US62/163,364 2015-05-18
US201562237591P 2015-10-06 2015-10-06
US62/237,591 2015-10-06

Publications (2)

Publication Number Publication Date
WO2016159715A2 true WO2016159715A2 (ko) 2016-10-06
WO2016159715A3 WO2016159715A3 (ko) 2016-11-24

Family

ID=57005243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003405 WO2016159715A2 (ko) 2015-04-01 2016-04-01 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치

Country Status (6)

Country Link
US (1) US10827500B2 (ko)
EP (1) EP3280172B1 (ko)
JP (1) JP6501905B2 (ko)
KR (1) KR102592651B1 (ko)
CN (1) CN107439036B (ko)
WO (1) WO2016159715A2 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166248A1 (en) * 2016-03-31 2017-10-05 Lenovo Innovations Limited (Hong Kong) Triggering transmissions using location information
CN108419294A (zh) * 2017-02-10 2018-08-17 电信科学技术研究院 一种资源池确定方法及相关设备
WO2018160048A1 (ko) * 2017-03-03 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서 단말의 신호 수신 전력 측정 방법 및 상기 방법을 이용하는 단말
WO2018203715A1 (ko) * 2017-05-04 2018-11-08 주식회사 아이티엘 Ev2x를 위한 복조 참조신호 송수신 방법 및 장치
WO2019004727A1 (ko) * 2017-06-28 2019-01-03 엘지전자(주) 무선 통신 시스템에서 차량의 위치를 추적하기 위한 방법 및 이를 위한 장치
CN109691145A (zh) * 2018-01-18 2019-04-26 Oppo广东移动通信有限公司 车联网中的数据传输方法及终端
WO2019084734A1 (zh) * 2017-10-30 2019-05-09 Oppo广东移动通信有限公司 用于资源分配的方法、网络设备和终端设备
WO2019145019A1 (en) * 2018-01-23 2019-08-01 Huawei Technologies Co., Ltd. Transmitting and receiving devices for v2v communication
US10382244B2 (en) 2017-02-14 2019-08-13 Samsung Electronics Co., Ltd. System and method for providing time offset and frequency offset estimation for vehicle to everything communication system
WO2019157730A1 (en) * 2018-02-14 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of wireless communication of same
EP3579658A4 (en) * 2017-03-31 2020-01-22 Huawei Technologies Co., Ltd. METHOD FOR TRANSMITTING A REFERENCE SIGNAL, TERMINAL DEVICE AND ACCESS NETWORK DEVICE
WO2021036345A1 (zh) * 2019-08-27 2021-03-04 中兴通讯股份有限公司 辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质
US20210352146A1 (en) * 2019-08-17 2021-11-11 Charter Communications Operating, Llc Efficient real time vehicular traffic reporting and sharing

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034023A (ko) * 2015-09-18 2017-03-28 삼성전자주식회사 V2x 통신을 위한 자원할당 방법 및 장치
CN107040865B (zh) * 2016-02-04 2021-11-23 北京三星通信技术研究有限公司 一种v2x通信中的功率控制方法和设备
CN107046717B (zh) * 2016-02-05 2021-02-02 上海诺基亚贝尔股份有限公司 在上行信道接入中确定信道感知阈值的方法及设备
CN118510034A (zh) * 2016-04-01 2024-08-16 北京三星通信技术研究有限公司 一种v2x通信中控制信道和数据信道发送方法和设备
EP3487103B1 (en) * 2016-08-11 2021-07-07 Huawei Technologies Co., Ltd. Scheduling assignment information transmission method, device, and system
US11284387B2 (en) * 2016-09-26 2022-03-22 Nec Corporation Methods and system for device-to-device communication
WO2018064131A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Intra- and inter-rat co-existence and congestion control for lte pc5-based vehicle-to-vehicle (v2v) communication
WO2018058594A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 一种v2x通信的方法、设备及系统
KR102204625B1 (ko) 2017-04-10 2021-01-19 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 송신 자원 할당 방법 및 이를 위한 장치
AU2017433235A1 (en) 2017-09-30 2020-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel resource set indication method, terminal device and network device
WO2019139194A1 (ko) * 2018-01-15 2019-07-18 엘지전자(주) V2x 통신 장치 및 지오네트워킹 전송 방법
WO2019153147A1 (en) * 2018-02-07 2019-08-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of wireless communication of same
WO2019174746A1 (en) * 2018-03-16 2019-09-19 Huawei Technologies Co., Ltd. Devices and methods for sidelink resource pool selection based on physical motion
CN109644436B (zh) * 2018-03-20 2020-04-21 Oppo广东移动通信有限公司 资源共享的方法和终端设备
US11791958B2 (en) * 2018-03-28 2023-10-17 Apple Inc. Methods and devices for radio resource allocation
WO2019227354A1 (en) * 2018-05-30 2019-12-05 Nokia Shanghai Bell Co., Ltd. Methods, devices and computer readable medium for configuring resource pools
US10594420B2 (en) 2018-05-31 2020-03-17 At&T Intellectual Property I, L.P. Cellular broadcast messaging and indirection
KR102618497B1 (ko) * 2018-06-01 2023-12-27 삼성전자주식회사 무선 차량 통신 시스템에서 신호 송수신 방법 및 장치
US10986525B2 (en) * 2018-07-12 2021-04-20 Qualcomm Incorporated Relaying vehicular communications using network coding
KR102466899B1 (ko) * 2018-08-17 2022-11-14 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
EP3843345A4 (en) * 2018-08-20 2021-09-08 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND EQUIPMENT FOR CHANNEL ESTIMATION, DEVICE, BASE STATION AND STORAGE MEDIUM
CN110896322B (zh) * 2018-09-11 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11871442B2 (en) 2018-09-14 2024-01-09 Nec Corporation Methods and devices for resource selection
CN110972108B (zh) * 2018-09-29 2021-12-28 华为技术有限公司 车联网消息交互方法以及相关装置
US11930513B2 (en) 2018-10-25 2024-03-12 Lg Electronics Inc. Resource selection method of sidelink terminal in wireless communication system, and terminal using method
CN111132298B (zh) * 2018-10-30 2021-05-28 大唐移动通信设备有限公司 一种功率分配方法和装置
KR20210091361A (ko) 2018-10-31 2021-07-21 엘지전자 주식회사 Nr v2x에서 위치 정보를 송수신하는 방법 및 장치
WO2020106643A1 (en) 2018-11-20 2020-05-28 Intel Corporation Sensing-based distributed scheduling of event-based mission critical (mc) vehicle-to-everything (v2x) traffic
JP7128104B2 (ja) * 2018-12-20 2022-08-30 ルネサスエレクトロニクス株式会社 半導体装置、無線端末装置、無線通信システムおよび無線端末装置の通信方法
CN111586622B (zh) * 2019-02-15 2022-11-22 华为技术有限公司 无线通信的方法和装置
WO2020209658A1 (ko) * 2019-04-12 2020-10-15 한양대학교 산학협력단 사이드링크 harq 피드백 제어하는 방법 및 그 장치
KR20200120535A (ko) 2019-04-12 2020-10-21 한양대학교 산학협력단 사이드링크 harq 피드백 제어하는 방법 및 그 장치
US20220217698A1 (en) * 2019-05-03 2022-07-07 Lg Electronics Inc. Method and apparatus for transmitting location information in nr v2x
US11962417B2 (en) 2019-05-13 2024-04-16 Qualcomm Incorporated Feedback adaptation for V2X communication
JP7521527B2 (ja) 2019-06-03 2024-07-24 ソニーグループ株式会社 通信装置及び通信方法
CN112153597B (zh) * 2019-06-28 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11444743B2 (en) * 2019-07-03 2022-09-13 Qualcomm Incorporated Deactivating resources for repetitions of periodic communications
AU2019460048C1 (en) * 2019-08-08 2024-09-12 Zte Corporation Feedback channel allocation and transmission method and device
KR20220097857A (ko) * 2019-11-08 2022-07-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 슬롯 포맷을 결정하는 방법 및 장치
WO2021177492A1 (ko) * 2020-03-06 2021-09-10 엘지전자 주식회사 취약한 도로 사용자들로 구성된 클러스터에 대한 정보 전송 방법 및 장치
US11751056B2 (en) 2020-08-31 2023-09-05 Oracle International Corporation Methods, systems, and computer readable media for 5G user equipment (UE) historical mobility tracking and security screening using mobility patterns
US11832172B2 (en) 2020-09-25 2023-11-28 Oracle International Corporation Methods, systems, and computer readable media for mitigating spoofing attacks on security edge protection proxy (SEPP) inter-public land mobile network (inter-PLMN) forwarding interface
US11825310B2 (en) 2020-09-25 2023-11-21 Oracle International Corporation Methods, systems, and computer readable media for mitigating 5G roaming spoofing attacks
US11622255B2 (en) 2020-10-21 2023-04-04 Oracle International Corporation Methods, systems, and computer readable media for validating a session management function (SMF) registration request
US11770694B2 (en) * 2020-11-16 2023-09-26 Oracle International Corporation Methods, systems, and computer readable media for validating location update messages
US11818570B2 (en) 2020-12-15 2023-11-14 Oracle International Corporation Methods, systems, and computer readable media for message validation in fifth generation (5G) communications networks
US11812271B2 (en) 2020-12-17 2023-11-07 Oracle International Corporation Methods, systems, and computer readable media for mitigating 5G roaming attacks for internet of things (IoT) devices based on expected user equipment (UE) behavior patterns
US11700510B2 (en) 2021-02-12 2023-07-11 Oracle International Corporation Methods, systems, and computer readable media for short message delivery status report validation
US11689912B2 (en) 2021-05-12 2023-06-27 Oracle International Corporation Methods, systems, and computer readable media for conducting a velocity check for outbound subscribers roaming to neighboring countries
US11711829B2 (en) * 2021-06-24 2023-07-25 Meta Platforms Technologies, Llc Context aware mode switching of wireless device
US11641640B2 (en) * 2021-07-28 2023-05-02 Qualcomm Incorporated Sidelink-assisted position estimation procedure
KR102698889B1 (ko) * 2022-06-20 2024-08-27 경북대학교 산학협력단 Ris 장착 차량과 통신하는 기지국 서버, 이를 포함하는 차량용 무선통신 서비스 커버리지 향상 시스템 및 통신 방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080032712A1 (en) 2006-08-03 2008-02-07 Bemmel Jeroen Van Determining movement context of a mobile user terminal in a wireless telecommunications network
US8520673B2 (en) * 2006-10-23 2013-08-27 Telcordia Technologies, Inc. Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network
US20100164789A1 (en) * 2008-12-30 2010-07-01 Gm Global Technology Operations, Inc. Measurement Level Integration of GPS and Other Range and Bearing Measurement-Capable Sensors for Ubiquitous Positioning Capability
JP5440601B2 (ja) * 2009-04-01 2014-03-12 富士通株式会社 移動局通信装置、移動局間通信システムおよび移動局間通信方法
JP4883149B2 (ja) * 2009-07-28 2012-02-22 富士通株式会社 移動通信装置、通信方法および通信システム
US8331929B2 (en) * 2009-11-24 2012-12-11 At&T Mobility Ii Llc Mobility-based reselection scan scheduling
EP2648442A1 (en) * 2010-11-30 2013-10-09 Fujitsu Limited Method for obtaining parameters, base station and terminal equipment
JP5644689B2 (ja) 2011-06-15 2014-12-24 株式会社デンソー 車両用無線通信装置および通信システム
US9842498B2 (en) * 2011-07-05 2017-12-12 Qualcomm Incorporated Road-traffic-based group, identifier, and resource selection in vehicular peer-to-peer networks
US8934403B2 (en) * 2011-08-09 2015-01-13 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for uplink power control
JP2013080286A (ja) * 2011-09-30 2013-05-02 Pioneer Electronic Corp 移動体識別装置及び移動体情報発信装置
US8923147B2 (en) * 2011-10-03 2014-12-30 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
US20130278441A1 (en) * 2012-04-24 2013-10-24 Zetta Research and Development, LLC - ForC Series Vehicle proxying
US9253753B2 (en) * 2012-04-24 2016-02-02 Zetta Research And Development Llc-Forc Series Vehicle-to-vehicle safety transceiver using time slots
US20150296411A1 (en) * 2012-09-28 2015-10-15 Telefonaktiebolaget L M Ericsson (Publ) Cellular-Network Based Control of Vehicle-to-Vehicle Communication
WO2014134538A1 (en) * 2013-02-28 2014-09-04 Xaptum, Inc. Systems, methods, and devices for adaptive communication in a data communication network
US20140348273A1 (en) * 2013-05-22 2014-11-27 Nokia Siemens Networks Oy Offset estimation using channel state information reference symbols and demodulation reference symbols
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
JP6501776B2 (ja) 2013-08-07 2019-04-17 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるリソース割り当て情報を送受信する方法及び装置
WO2015021317A1 (en) 2013-08-08 2015-02-12 Intel Corporation User equipment and method for packet based device-to-device (d2d) discovery in an lte network
CN104427617B (zh) * 2013-08-19 2018-03-30 大唐电信科技产业控股有限公司 一种资源指示及确定方法、装置
KR20150024691A (ko) * 2013-08-27 2015-03-09 한국전자통신연구원 차량 통신 환경에서의 핸드오버 방법 및 그 장치
EP3042524B1 (en) 2013-09-06 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Cluster-based resource allocation for vehicle-to-vehicle communication
US9288048B2 (en) * 2013-09-24 2016-03-15 The Regents Of The University Of Michigan Real-time frame authentication using ID anonymization in automotive networks
EP3101946B1 (en) * 2014-02-24 2020-09-16 Huawei Technologies Co., Ltd. Method for ensuring continuous reception of a service in user equipment and in wireless network
US9510229B2 (en) * 2014-09-19 2016-11-29 Sony Corporation System, method, and computer program product for progressively adjusting an offload setting
CN104410975B (zh) 2014-11-06 2018-06-15 东莞宇龙通信科技有限公司 资源配置方法、系统、具有基站功能的设备和终端
CN104408306B (zh) * 2014-11-24 2017-05-24 大连理工大学 Vanet中利用演化博弈来激励停靠车辆合作转发进行分析建模的方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166248A1 (en) * 2016-03-31 2017-10-05 Lenovo Innovations Limited (Hong Kong) Triggering transmissions using location information
US10257657B2 (en) 2016-03-31 2019-04-09 Lenovo Innovations Limited (Hong Kong) Triggering transmissions using location information
CN108419294A (zh) * 2017-02-10 2018-08-17 电信科学技术研究院 一种资源池确定方法及相关设备
US11039451B2 (en) 2017-02-10 2021-06-15 China Academy Of Telecommunications Technology Resource pool determining method and related device
US10382244B2 (en) 2017-02-14 2019-08-13 Samsung Electronics Co., Ltd. System and method for providing time offset and frequency offset estimation for vehicle to everything communication system
US10785079B2 (en) 2017-02-14 2020-09-22 Samsung Electronics Co., Ltd System and method for providing time offset and frequency offset estimation for vehicle to everything communication system
US11101902B2 (en) 2017-03-03 2021-08-24 Lg Electronics Inc. Method for measuring signal reception power of terminal in wireless communication system and terminal using method
WO2018160048A1 (ko) * 2017-03-03 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서 단말의 신호 수신 전력 측정 방법 및 상기 방법을 이용하는 단말
EP3579658A4 (en) * 2017-03-31 2020-01-22 Huawei Technologies Co., Ltd. METHOD FOR TRANSMITTING A REFERENCE SIGNAL, TERMINAL DEVICE AND ACCESS NETWORK DEVICE
US11246125B2 (en) 2017-03-31 2022-02-08 Huawei Technologies Co., Ltd. Reference signal sending method, terminal device, and access network device
WO2018203715A1 (ko) * 2017-05-04 2018-11-08 주식회사 아이티엘 Ev2x를 위한 복조 참조신호 송수신 방법 및 장치
WO2019004727A1 (ko) * 2017-06-28 2019-01-03 엘지전자(주) 무선 통신 시스템에서 차량의 위치를 추적하기 위한 방법 및 이를 위한 장치
WO2019084734A1 (zh) * 2017-10-30 2019-05-09 Oppo广东移动通信有限公司 用于资源分配的方法、网络设备和终端设备
US10979989B2 (en) 2017-10-30 2021-04-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for resource allocation, network device and terminal device
US10972883B2 (en) 2018-01-18 2021-04-06 Guandong Oppo Mobile Telecommunications Corp., Ltd. Terminal and data transmission to perform terminal to terminal data transmission in an internet of vehicles (IoV) system
CN109691145A (zh) * 2018-01-18 2019-04-26 Oppo广东移动通信有限公司 车联网中的数据传输方法及终端
WO2019145019A1 (en) * 2018-01-23 2019-08-01 Huawei Technologies Co., Ltd. Transmitting and receiving devices for v2v communication
US10904726B2 (en) 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. Transmitting and receiving devices for V2V communication
CN111557085A (zh) * 2018-01-23 2020-08-18 华为技术有限公司 用于v2v通信的发送设备和接收设备
WO2019157730A1 (en) * 2018-02-14 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of wireless communication of same
US20210352146A1 (en) * 2019-08-17 2021-11-11 Charter Communications Operating, Llc Efficient real time vehicular traffic reporting and sharing
US11689622B2 (en) * 2019-08-17 2023-06-27 Charter Communications Operating, Llc Efficient real time vehicular traffic reporting and sharing
WO2021036345A1 (zh) * 2019-08-27 2021-03-04 中兴通讯股份有限公司 辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质

Also Published As

Publication number Publication date
US10827500B2 (en) 2020-11-03
KR102592651B1 (ko) 2023-10-23
WO2016159715A3 (ko) 2016-11-24
US20180115970A1 (en) 2018-04-26
KR20170138458A (ko) 2017-12-15
JP2018513626A (ja) 2018-05-24
JP6501905B2 (ja) 2019-04-17
EP3280172B1 (en) 2024-05-29
EP3280172A2 (en) 2018-02-07
CN107439036A (zh) 2017-12-05
CN107439036B (zh) 2021-12-03
EP3280172A4 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2016159715A2 (ko) 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치
JP7010933B2 (ja) 無線通信システムにおいてリソースを選択しpscchを伝送する方法及び装置
WO2018062846A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2018199652A1 (ko) 무선 통신 시스템에서 wake up 신호를 수신하는 방법 및 장치
WO2016171495A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 선택 및 신호 송수신 방법 및 장치
WO2016159716A1 (ko) 무선 통신 시스템에서 레인징 관련 동작 수행 방법
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2017048100A1 (ko) 무선 통신 시스템에서 v2x 단말의 메시지 송수신 방법 및 장치
WO2017196124A1 (ko) 무선 통신 시스템에서 빔 탐색 또는 빔 전송을 수행하는 방법
WO2017171447A2 (ko) 무선 통신 시스템에서 gnss 타이밍을 사용하는 ue의 사이드링크 신호 송수신 방법
WO2018131934A1 (ko) 무선 통신 시스템에서 위치 에러 정보에 기초한 빔 탐색 또는 빔 전송을 수행하는 방법 및 장치
WO2018131927A1 (ko) 무선 통신 시스템에서 카운터 정보에 기초한 릴레이 통신을 수행하는 방법 및 장치
WO2018143725A1 (ko) 무선 통신 시스템에서 단말이 cr을 측정하고 전송을 수행하는 방법 및 장치
WO2018174684A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
WO2017095095A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 qcl과 관련된 신호 송수신 방법 및 장치
WO2018038496A1 (ko) 무선 통신 시스템에서 단말의 측정을 통한 자원 선택 및 데이터 전송 방법 및 장치
WO2019031952A1 (ko) 무선통신시스템에서 v2x 단말이 pscch 스케쥴링 정보를 수신하고 pscch를 전송하는 방법 및 장치
WO2018030788A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 신호 송수신 방법
WO2017034265A1 (ko) 무선 통신 시스템에서 v2x 단말의 신호 송수신 방법 및 장치
WO2018084570A1 (ko) 무선 통신 시스템에서 오프셋을 적용한 d2d 신호 전송 방법 및 장치
WO2017111466A1 (ko) 무선 통신 시스템에서 참조신호와 데이터를 생성하고 전송하는 방법 및 장치
WO2018021784A1 (ko) 무선 통신 시스템에서 플래툰 통신에 관련된 신호 송수신 방법
WO2017191999A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2018131933A1 (ko) 무선 통신 시스템에서 혼잡 제어와 관련된 sa와 데이터 전송 방법 및 장치
WO2018212526A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 송신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773496

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15562873

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017551272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016773496

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177031708

Country of ref document: KR

Kind code of ref document: A