WO2021036345A1 - 辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质 - Google Patents

辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2021036345A1
WO2021036345A1 PCT/CN2020/089809 CN2020089809W WO2021036345A1 WO 2021036345 A1 WO2021036345 A1 WO 2021036345A1 CN 2020089809 W CN2020089809 W CN 2020089809W WO 2021036345 A1 WO2021036345 A1 WO 2021036345A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
terminal
signal
driving
signal strength
Prior art date
Application number
PCT/CN2020/089809
Other languages
English (en)
French (fr)
Inventor
罗玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021036345A1 publication Critical patent/WO2021036345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the field of communication technology, and in particular to an assisted driving method, terminal, assisted driving system, and computer-readable storage medium.
  • mobile terminals implement assisted driving through the following methods: the target mobile terminal corresponding to the target vehicle obtains its own position in real time according to the Global Positioning System (GPS), and receives the surrounding vehicle positions sent from the mobile terminal corresponding to the surrounding vehicles; The mobile terminal judges the real-time distance between the target vehicle and the surrounding vehicles according to its own position and the location of the surrounding vehicles; when the real-time distance is decreasing, the target mobile terminal sends prompt information to the mobile terminals corresponding to the surrounding vehicles to inform the surrounding vehicles that the target vehicle is Approaching; so as to realize the function of assisting driving and achieve the effect of improving driving safety.
  • GPS Global Positioning System
  • the related technology has at least the following problems:
  • the related technical solution sends prompt information, it will send prompt information to all mobile terminals in the surrounding area, but the vehicle does not need to be sent to the surrounding area during driving. All mobile terminals in the area send reminder information.
  • two vehicles with different driving directions and different driving paths do not need to send reminder information to each other; sending reminder information frequently will inevitably affect the driver who receives the reminder information.
  • Reduce driving safety
  • the existing assisted driving solutions must be connected to the mobile data network to be realized. Therefore, if the vehicle is driving in tunnels, caves and other areas where there is no network, the existing assisted driving technology cannot be realized or the information is delayed, thereby reducing driving safety and reducing Reliability of assisted driving solutions.
  • the embodiments of the present invention provide a method, a system, a terminal, and a computer-readable storage medium for assisting driving, which are not limited to the quality of a mobile data network, and improve the reliability of assisted driving, thereby improving the user experience.
  • an assisted driving method applied to a terminal, includes: sending a first V2X signal; receiving a second V2X signal fed back by a peer end to obtain the signal strength of the second V2X signal; the signal strength is the first V2X signal The signal strength when the opposite end is received; the signal strength change status is determined according to the acquired signal strength, and when the signal strength changes, a prompt message is sent; and the first V2X signal sent by the opposite end is received, and the first V2X signal is detected The signal strength of the signal; the detected signal strength is fed back to the opposite end as the second V2X signal; the prompt information sent by the opposite end according to the change of the signal strength is received.
  • an embodiment of the present invention also provides an assisted driving method, which is applied to an assisted driving system, including: a first terminal or a second terminal sends a first V2X signal; the second terminal or a first terminal receives the first V2X signal; V2X signal, and detect the signal strength of the first V2X signal; feedback the signal strength to the first terminal or the second terminal as a second V2X signal; the first terminal or the second terminal receives the second V2X signal, And obtain the first signal strength in the second V2X signal; the first terminal or the second terminal determines the signal strength change state according to the signal strength, and sends a prompt message when the signal strength changes; the second terminal or the first terminal Receive the prompt information.
  • the embodiments of the present invention also provide a terminal, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, The driving assistance method described in the first aspect.
  • an embodiment of the present invention also provides an assisted driving system, including a first terminal and a second terminal; the first terminal or the second terminal sends a first V2X signal; the second terminal or the first terminal receives the first terminal A V2X signal, and detect the signal strength of the first V2X signal; feed back the signal strength to the first terminal or the second terminal as a second V2X signal; the first terminal or the second terminal receives the second V2X signal , And obtain the first signal strength in the second V2X signal; the first terminal or the second terminal determines the signal strength change state according to the signal strength, and sends a prompt message when the signal strength changes; the second terminal or the first terminal The terminal receives the prompt information.
  • an embodiment of the present invention also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the driving assistance method described in the first aspect or to execute the second The assisted driving method described in the aspect.
  • FIG. 1 is a flowchart of a driving assist method in a first direction according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a driving assist method in a second direction according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of an assisted driving method in the first direction according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart in the first direction of an assisted driving method according to Embodiment 3 of the present invention.
  • FIG. 6 is a flowchart of judging whether different vehicles are traveling on the same route when the vehicle is traveling in a straight line according to the third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of driving paths of different vehicles when the vehicle is traveling in a straight line according to the third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of driving paths of different vehicles when the vehicle is traveling on a curve according to the third embodiment of the present invention.
  • FIG. 9 is a flowchart of judging whether different vehicles are traveling on the same route when the vehicle is traveling on a curve according to the third embodiment of the present invention.
  • FIG. 10 is a flowchart of an assisted driving method in the first direction according to Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart of an assisted driving method in the first direction according to Embodiment 5 of the present invention.
  • FIG. 12 is a structural block diagram of a terminal according to Embodiment 6 of the present invention.
  • FIG. 13 is a structural block diagram of a driving assistance system provided by Embodiment 7 of the present invention.
  • the driver assistance program must be connected to the mobile data network to realize the real-time distance change trend judgment. Limited by the quality of the mobile data network, the driver assistance technology cannot be realized or the information is delayed, thereby reducing the safety of driving and the reliability of the driver assistance program. , Affecting the user experience.
  • the embodiment of the present invention proposes an assisted driving method, terminal, assisted driving system, and computer-readable storage medium, and uses V2X (Vehicle to Everything, information exchange between vehicles to the outside world) technology to implement a solution for assisted driving, using V2X
  • V2X Vehicle to Everything, information exchange between vehicles to the outside world
  • the signal strength change trend of the signal judges the change of the distance between the unavailable traffic, avoids being restricted by the quality of the mobile data network, improves the safety of driving and the reliability of the assisted driving scheme, thereby improving the user experience.
  • Figure 1 is a flowchart of an assisted driving method in the first direction provided by this embodiment
  • Figure 2 is a flowchart of an assisted driving method in the second direction provided by this embodiment , The method includes:
  • Step S100 Send the first V2X signal.
  • the first V2X signal includes but is not limited to: a wireless fidelity signal, a wireless Bluetooth signal, or a wireless WiFi signal.
  • the method of sending the first V2X signal includes but is not limited to: real-time sending; periodic sending; setting a plurality of preset time periods with different durations, and sending once every other preset time period.
  • before sending the first V2X signal includes but is not limited to: judging the current road condition of the vehicle.
  • the traffic volume is large, start to send the first V2X signal to enter the assisted driving mode; when the traffic volume is high , Do not send the first V2X signal.
  • the amount of traffic volume is determined based on the number of first V2X signals received in real time, and the number of received first V2X signals is larger.
  • Step S200 The second V2X signal is fed back by the receiving peer, and the signal strength in the second V2X signal is obtained; the signal strength is the signal strength of the first V2X signal when the peer is received.
  • the signal strength of the V2X signal at a certain position is related to the distance from the position to the V2X signal sending point, and the signal strength in the V2X signal attenuates as the distance increases. Therefore, after the first V2X signal sent in this implementation is received by all terminals within its radiation range that are applied to this method, the signal strength of the first V2X signal at the terminal has been attenuated.
  • the receiving terminal detects the signal strength of the first V2X signal at the receiving terminal when the first V2X signal is received, and feeds back the signal strength through the second V2X signal, and obtains the signal strength when the second V2X signal is received.
  • Step S300 Determine the signal strength change state according to the acquired signal strength. If the signal strength changes (in some embodiments, a reminder message is sent when the signal strength increases), send a reminder message, the reminder information being used to indicate that different vehicles The distance changes; otherwise, steps S100 to S300 are executed cyclically.
  • the signal strength change may be the change between the signal strength of the previous and the next two times, or the change trend of the signal strength, and the change trend is an enhancement trend or a decay trend;
  • the signal strength judges the change trend of the signal strength, and determines whether to send prompt information according to the change trend of the signal strength.
  • the change trend of the signal strength is an enhanced trend, and prompt information is sent; for the attenuation trend, the signal strength may not be sent.
  • the signal strength obtained multiple times in sequence here is not necessarily obtained continuously, as long as the time point of each signal strength is obtained It can be incremented.
  • how to determine the change trend of the signal strength change in this embodiment includes but not limited to the following steps:
  • a preset time period includes N cycles
  • the second signal strength when the second V2X signal is fed back is detected, and N+1 signal strength values R 0 are sequentially obtained.
  • R 1 , R 2 , R 3 , ..., R N when the values of R 0 , R 1 , R 2 , R 3 , ..., R N are in an increasing trend, it means that the signal strength is in an increasing trend;
  • R 0 , R 1 , R 2 , R 3 , ..., R N are attenuation trends, it means that the signal strength is at a decay trend.
  • the value is an increasing trend
  • the value is a declining trend here does not mean that the latter value must be greater than the previous value, but an overall trend of the value change. For example, if 5 signal strengths are detected, they are 1, 2, 3, 4, and 5, or the 5 signal strengths detected are 1, 2, 2, 3, and 4, or 5 signals are detected. The intensities are 2, 1, 2, 3, and 4, all of which indicate that the value change trend is an increasing trend.
  • the numerical attenuation trend is similar to the numerical enhancement trend, so I won’t go into details here.
  • the change trend of signal strength can also be determined in the following ways:
  • the signal strength increases as the distance decreases, and attenuates as the distance increases, when it is determined that the signal strength is in an increasing trend, it indicates that the distance between the two opposite terminals is decreasing, that is, between different vehicles The distance is decreasing; when the distance between different vehicles decreases, driving safety is correspondingly reduced, so an information prompt is sent to inform the vehicle corresponding to the terminal receiving the first V2X signal, and other vehicles are approaching, thereby reminding the user of the vehicle Drive carefully to improve driving safety, especially when overtaking, emergency braking, heavy fog, heavy rain and other low visibility weather or emergency avoidance (emergency or police, etc.) occur during driving.
  • emergency braking heavy fog, heavy rain and other low visibility weather or emergency avoidance
  • the first terminal does not need to send an information prompt to the second terminal; of course, the first terminal can also send an information prompt to the second terminal to inform the user of the second terminal that the distance between the first vehicle and the second vehicle is increasing, and driving is relatively Safety.
  • the terminal mentioned in this embodiment can be any type of smart terminal, such as a smart phone, a tablet computer or other handheld mobile devices, etc., or it can be a T-box device with a V2X module in the vehicle, which can send and receive V2X signals, including V2I (Vehicle-To-Infrastructure, vehicle-infrastructure), V2N (Vehicle-To-Network, vehicle-Internet), V2V (Vehicle-To-Vehicle, vehicle-vehicle), V2P (Vehicle-To- Pedestrian, car-pedestrian).
  • V2I Vehicle-To-Infrastructure, vehicle-infrastructure
  • V2N Vehicle-Internet
  • V2V Vehicle-To-Vehicle, vehicle-vehicle
  • V2P Vehicle-To- Pedestrian, car-pedestrian.
  • the assisted driving method provided by this embodiment plays a key role in improving the driving safety of the vehicle.
  • the assisted driving method provided by the embodiment of the present invention can also be executed separately.
  • the method of using GPS for assisted driving is a conventional technology and will not be detailed here.
  • Step A100 Receive the first V2X signal sent by the opposite end, and detect the signal strength of the first V2X signal.
  • the terminal of this embodiment not only the opposite end sends the first V2X signal, but also the first V2X signal sent by the opposite end is received.
  • the first V2X signal is The signal strength has been attenuated during reception.
  • Step A200 Feed back the detected signal strength to the opposite end as a second V2X signal. Similarly, the signal strength of the first V2X signal at the time of reception needs to be fed back to the opposite end with the second V2X signal. When the opposite end receives the second V2X signal, the signal strength in the second V2X signal is obtained, so that the opposite end can go back and forth. Two or more signal strengths to determine whether to send prompt information.
  • Step A300 Receive the prompt information sent by the opposite end due to the change in signal strength, and drive safely according to the prompt information.
  • this embodiment sends V2X signals through two opposite terminals, detects the signal strength of the V2X signals twice, and judges the change in signal strength according to it, and sends a prompt message on the change in signal strength to remind the vehicle where the terminal is located.
  • the distance between them is changing to assist users in driving, thereby improving driving safety.
  • the driving assistance method judges the distance between different vehicles, the judgment is made through the V2X signal.
  • this embodiment does not require the terminal to be within the coverage of the mobile data network, even if it is In tunnels, deep mountains or other places where the mobile data network does not cover, the assisted driving method is still feasible, so the requirements for assisted driving are reduced, and the convenience of assisted driving is improved; and the terminal will not be able to use wireless signals for assisted driving. Generate costs, save user consumption, and improve user experience.
  • this embodiment adds the step of judging whether different vehicles are driving in the same direction on the basis of the first embodiment. Only when the vehicles are driving in the same direction, the prompt message is sent to exclude the situation that different vehicles are driving in different directions.
  • the method includes the following steps:
  • Step S100 Send a V2X signal.
  • Step S200 The second V2X signal is fed back by the receiving peer, and the signal strength in the second V2X signal is obtained; the signal strength is the signal strength of the first V2X signal when the peer is received.
  • Step S300 Determine the signal strength change state according to the acquired signal strength. If the signal strength changes, it can only indicate that the distance between different vehicles is changing (increasing or decreasing), but if the different vehicles are driving in different directions, Even if the signal strength is increased, different vehicles must be driving in different lanes, so that the driving of different vehicles will generally not affect each other.
  • step S400 is executed; Otherwise, steps S100 to S300 are executed cyclically.
  • Step S400 It is judged whether different vehicles are driving in the same direction, and if they are driving in the same direction, a prompt message is sent; otherwise, it is not sent.
  • Fig. 4 is a flowchart of determining whether different vehicles are driving in the same direction provided by the embodiment, including the following steps:
  • Step S411 Obtain the first speed of the first vehicle and the second speed of the second vehicle.
  • the first vehicle sends a first V2X signal; the second vehicle sends a second V2X signal.
  • the first acceleration of the first vehicle is acquired through the acceleration sensor, and the acquired first acceleration is analyzed to obtain the first speed.
  • the second speed of the second vehicle is obtained, which will not be described in detail here.
  • the second speed is sent to the first car through wireless communication (V2X signal), and the first car receives the second speed.
  • acceleration and speed can be instantaneous acceleration.
  • the speed obtained by acceleration is a conventional technique and will not be introduced here.
  • the first acceleration and the second acceleration after the first acceleration and the second acceleration are obtained, it can be determined whether the first vehicle and the second vehicle are traveling in a straight line or a curve according to the respective accelerations. Specifically, when the direction of acceleration is the same as the direction of travel, it is determined that the vehicle is traveling in a straight line; when the direction of acceleration is different from the direction of travel, it is determined that the vehicle is traveling in a curve.
  • the acquisition of the driving direction is a conventional technique and will not be introduced here.
  • the steps to determine whether different vehicles are traveling in the same direction are performed on the premise that different vehicles are traveling in a straight line, it is possible to determine whether different vehicles are traveling in a straight line before performing the steps to determine whether different vehicles are traveling in the same direction. To improve the accuracy of this embodiment.
  • the method for determining whether different vehicles are traveling in the same direction provided in this embodiment is also applicable.
  • the first time period that is, the first speed and the second speed in this step are actually average speeds.
  • the acceleration obtained by the acceleration sensor is an instantaneous acceleration
  • the first speed and the second speed obtained by the acceleration are also instantaneous speeds.
  • the instantaneous speed can be used instead of the average speed.
  • the first time period can be selected as small as possible to reduce the error between the instantaneous speed and the average speed.
  • Step S412 Obtain the relative travel speed of the first vehicle and the second vehicle.
  • obtaining the relative travel speed of the first vehicle and the second vehicle includes:
  • the first step is to detect the signal strength at the start time at the start time of the first time period.
  • the second step is to detect the signal strength at the end time at the end of the first time period.
  • the third step is to calculate the difference between the signal strength at the start time and the signal strength at the end time to obtain the signal strength difference for the first time period.
  • the fourth step is to calculate the distance L between the first vehicle and the second vehicle according to a preset calculation.
  • ⁇ R is the signal strength difference in the first time period
  • K is a constant coefficient
  • the fifth step is to calculate the quotient of the distance and the first time period to obtain the relative travel speed.
  • Step S413 Calculate the absolute value of the difference between the first speed and the second speed to obtain the relative travel speed in the same direction; and calculate the sum of the first speed and the second speed to obtain the relative travel speed in the opposite direction.
  • the relative travel speed of the first vehicle and the second vehicle is the difference between the speed of the first vehicle and the speed of the second vehicle, that is, the first speed and the speed of the second vehicle.
  • the difference between the speed of the second speed; when the first vehicle and the second vehicle travel in different directions, the relative travel speed of the first vehicle and the second vehicle is the sum of the speed of the first vehicle and the speed of the second vehicle, that is Is the sum of the first speed and the second speed.
  • Step S414 Calculate the absolute value of the difference between the relative travel speed and the relative travel speed in the same direction to obtain the speed difference degree in the same direction; calculate the absolute value of the difference between the relative travel speed and the relative travel speed in the opposite direction to obtain the speed difference degree in the opposite direction.
  • Step S415 When the speed difference in the same direction is less than the speed difference in the opposite direction, it is determined that the first vehicle and the second vehicle are driving in the same direction; when the speed difference in the opposite direction is less than the speed difference in the same direction, it is determined that the first vehicle and the first vehicle are traveling in the same direction. 2. The vehicle is traveling in different directions.
  • this embodiment does not directly send the prompt information, but judges whether different vehicles are driving in the same direction, and only sends when it is judged that different vehicles are driving in the same direction.
  • Prompt information so the process of sending prompt information when different vehicles are driving in different directions is omitted, so the process of receiving prompt information by the terminal is also omitted, so that the terminal does not need to receive prompt information frequently, thereby reducing the impact on the driver , Thereby improving driving safety.
  • this embodiment adds the step of judging whether different vehicles are traveling on the same path. Only when the signal strength is enhanced, and different vehicles are traveling on the same path, Only send reminders to exclude vehicles traveling on different routes from sending reminders. As shown in Figure 5, the method includes the following steps:
  • Step S100 Send the first V2X signal.
  • Step S200 The second V2X signal is fed back by the receiving peer, and the signal strength in the second V2X signal is obtained; the signal strength is the signal strength of the first V2X signal when the peer is received.
  • Step S300 Determine the signal strength change state according to the signal strength. If the signal strength changes, it can only indicate that the distance between different vehicles is changing (increasing or decreasing), but if different vehicles are driving on different paths (lanes) ) When driving, the impact of different vehicles on each other during driving is also small. For example, when a vehicle on a path brakes, it will generally only affect vehicles on the same path, but not on different paths. At this time, it is only necessary to send prompt information to vehicles traveling on the same route, but does not need to send prompt information to vehicles on different routes, that is, step S500 is executed; otherwise, steps S100 to S300 are executed in a loop.
  • Step S500 It is judged whether different vehicles are driving on the same route, if yes, a prompt message is sent, otherwise, it is not sent.
  • the driving state of the vehicle includes straight driving and curved driving
  • different methods are used to determine whether different vehicles are driving on the same path.
  • Figure 6 is a flowchart for judging whether different vehicles are traveling on the same path when the vehicle is traveling in a straight line.
  • Figure 7 is the traveling path when the vehicle is traveling in a straight line. In the schematic diagram, judging whether different vehicles are traveling on the same route when the vehicle is traveling in a straight line includes the following steps:
  • Step S511 Acquire the driving distance of the first vehicle in the second time period, the first vehicle sends a first V2X signal; the second vehicle sends a second V2X signal.
  • the average speed of the first vehicle is obtained; the product of the average speed of the first vehicle and the second time period is calculated to obtain the travel distance of the first vehicle in the second time period ( Figure 7 L 1 ).
  • the average speed of the first vehicle if the second time period is short, you can use an instantaneous speed in the second time period instead, or obtain multiple instantaneous speeds in the second time period, and combine the values of multiple instantaneous speeds.
  • the average value is determined as the average speed of the first vehicle.
  • the average speed of the first vehicle can also be obtained by other methods, which is not limited in this embodiment.
  • Step S512 At the start time of the second time period, obtain the first distance between the first vehicle and the second vehicle according to the obtained signal strength, and at the end time of the second time period, the first distance between the first vehicle and the second vehicle The second distance between two vehicles.
  • the second vehicle is stationary and only the first vehicle is moving.
  • the start time is represented by t 1 and the end time is represented by t 2.
  • the first distance is represented by L 2 and the second distance is represented by L 3.
  • the first distance is represented by L 4
  • the second distance is represented by L 5 .
  • step S412 the acquisition of the distance between two vehicles according to the signal strength has been described in detail in step S412, and will not be repeated here.
  • Step S513 Calculate the distance difference between the first distance and the second distance.
  • the distance difference between the first distance L 2 and the second distance L 3 is L 1
  • the first distance L 4 and the second distance L is L 6 .
  • Step S514 Compare the travel distance with the distance difference. When the travel distance is equal to the distance difference, the first terminal determines that the first vehicle and the second vehicle are traveling on the same route; otherwise, it is determined that the first vehicle and the second vehicle are not Drive on the same route.
  • the travel distance L 1 of the first vehicle is equal to the distance difference L 1 , and the first vehicle and the second vehicle travel on the same path.
  • the travel distance L 1 of the first vehicle is not equal to the distance difference L 6 , and the first vehicle and the third vehicle travel on different paths.
  • the equality here is not absolute equality, but approximate equality within the allowable range of error. For example, when the driving distance is 20 meters and the distance difference is 19 meters, the driving distance and the distance difference are 1 meter, but if the error tolerance is 2 meters, the driving distance is considered to be equal to the distance difference.
  • FIG. 8 is a schematic diagram of the travel paths of different vehicles when the vehicle is traveling in a curve provided by this embodiment.
  • the first vehicle sends the first V2X signal; the second vehicle sends the second V2X signal.
  • the first vehicle and a second vehicle travel on the same path, and the first vehicle and another second vehicle are not the same Route driving, the two second vehicles are not driving on the same route.
  • judging whether different vehicles are traveling on the same path includes the following steps:
  • Step S521 Obtain the first linear velocity and the first angular velocity of the first vehicle, and the second linear velocity and the second angular velocity of all the second vehicles.
  • each acceleration is obtained through an angular velocity sensor; the linear velocity and angular velocity of each terminal are obtained by analyzing the acceleration.
  • the own first linear velocity and the first angular velocity are saved.
  • the acquired linear velocity and angular velocity are sent to the first vehicle.
  • the obtained first linear velocity is 10 kilometers/hour
  • the first angular velocity is 10 degrees/hour
  • the second linear velocity of the first second vehicle is 20 kilometers/hour
  • the second angular velocity is 20 degrees/hour
  • the second linear velocity of the second vehicle is 20 kilometers/hour
  • the second angular velocity is 20.2 degrees/hour.
  • Step S522 Calculate the quotient of the first linear velocity and the first angular velocity to obtain the first travel radius of the first vehicle (denoted as r 1 ); calculate the quotient of the second linear velocity and the second angular velocity of the second vehicle to obtain the second The second driving radius of the vehicle (denoted as r 2 );
  • r 1 is the first travel radius
  • r 2 is the second travel radius of the first second vehicle
  • r 3 is the second travel radius to the second second vehicle; still use this embodiment
  • the first travel radius is 1 km
  • the second travel radius of the first second vehicle is 1 km
  • the second travel radius of the second second vehicle is 0.99 km.
  • step S523 the first travel radius is compared with all second travel radii respectively.
  • the first travel radius is equal to any second travel radius, it is determined that two vehicles corresponding to the same two travel radii are traveling on the same path.
  • step S522 From the calculation in step S522, it can be seen that the first travel radius r 1 and the second travel radius of the first second vehicle are equal, and both are 1 km. Then the first vehicle and the first second vehicle travel on the same path; The second driving radius of the second vehicle is different from the first driving radius, so the second second vehicle does not travel on the same path as the first vehicle, and so on.
  • two module functions, curve driving assisted driving and straight driving assisted driving can be set on each terminal, and different module functions can be switched by judging the current vehicle driving state (including straight driving and curved driving).
  • this embodiment does not directly send prompt information after judging the change in the distance between different vehicles, but judges whether different vehicles are driving on the same route, and only sends prompts when it is judged that different vehicles are driving on the same route.
  • Information because the process of sending prompt information when different vehicles are driving on different routes is omitted, so the process of receiving prompt information by the terminal is also omitted, so that the terminal does not need to receive prompt information frequently, thereby reducing the impact on the driver. In turn, driving safety is improved.
  • this embodiment adds to determine whether different vehicles are traveling in the same direction. When different vehicles are traveling in the same direction, continue to determine whether different vehicles are traveling in the same path. When the signal strength is enhanced, different vehicles are driving in the same direction, and the conditions of different vehicles driving on the same path are all met, the prompt message is sent, and the prompt message is excluded to the vehicles driving in different directions and different paths. As shown in Figure 10, it includes the following steps:
  • Step S100 Send the first V2X signal.
  • Step S200 The second V2X signal is fed back by the receiving peer, and the signal strength in the second V2X signal is obtained; the signal strength is the signal strength of the first V2X signal when the peer is received.
  • Step S300 Determine the signal strength change state according to the signal strength. If the signal strength changes, perform step S400; otherwise, perform steps S100 to S300 in a loop.
  • Step S400 It is judged whether different vehicles are driving in the same direction. If they are driving in the same direction, step S500 is executed; otherwise, steps S100 to S400 are executed cyclically.
  • Step S500 It is judged whether different vehicles are traveling on the same route, if yes, a prompt message is sent; otherwise, steps S100 to S500 are executed in a loop.
  • this embodiment does not directly send prompt information, but judges whether different vehicles are driving in the same direction and on the same route, only judging that different vehicles are in the same direction and The prompt information is only sent when driving on the same route, so the process of sending prompt information when different vehicles are driving in different directions and different paths is omitted, so the process of receiving prompt information by the terminal is also omitted, so that the terminal does not need to receive prompts frequently Information, thereby reducing the impact on the driver, thereby improving driving safety.
  • this embodiment provides an assisted driving method, which is applied to an assisted driving system.
  • the assisted driving system includes multiple terminals.
  • the first terminal and the second terminal are not only one terminal, but It is a pair of terminals that can communicate with each other.
  • the first terminal is the first V2X signal sending end
  • the second terminal is the first V2X signal receiving terminal
  • the first terminal is the first V2X signal sending end
  • the second terminal That is the first V2X signal receiving terminal
  • the method includes:
  • Step B100 The first terminal or the second terminal sends a first V2X signal
  • Step B200 The second terminal or the first terminal receives the first V2X signal, and detects the signal strength of the first V2X signal; feeds back the signal strength to the first terminal or the second terminal as the second V2X signal;
  • Step B300 The first terminal or the second terminal receives the second V2X signal, and obtains the signal strength in the second V2X signal;
  • Step B400 The first terminal or the second terminal determines the signal strength change state according to the signal strength, and sends a prompt message when the signal strength changes (becomes stronger or weaker); in some embodiments, only the signal strength Send a prompt message when it becomes stronger.
  • Step B500 The second terminal or the first terminal receives the prompt information.
  • the signal strength change is a change trend of the signal strength, and the change trend is an enhancement trend or a decay trend; the first terminal or the second terminal determines whether to move to the second terminal according to the change trend of the signal strength.
  • the terminal or the first terminal sends prompt information. In some embodiments, when the change trend of the signal strength is an increasing trend, the prompt information is sent; when it is a declining trend, it may not be sent.
  • the first terminal or the second terminal adds the step of judging whether different vehicles are driving in the same direction. Only when the signal strength is increased and different vehicles are driving in the same direction, the prompt information is sent to exclude Send reminder information to vehicles traveling in different directions to reduce unnecessary reminder information transmission, so that the peer can reduce the receipt and viewing of reminder information, and reduce the impact on the driver.
  • step S411 to step S415) The specific steps of the first terminal or the second terminal judging whether the vehicle corresponding to the second terminal or the first terminal is driving in the same direction are the same as those in the second embodiment (step S411 to step S415), and will not be repeated here; wherein, the first vehicle Is the corresponding vehicle that sends the first V2X signal; the second vehicle is the corresponding vehicle that receives the first V2X signal and feeds back the second V2X signal; when the first terminal or the second terminal corresponds to the first vehicle, the second vehicle The second terminal or the first terminal corresponds to the second vehicle.
  • the first terminal or the second terminal adds the step of judging whether different vehicles are driving on the same route. Only when the signal strength is increased and different vehicles are driving on the same route, the prompt information is sent. Eliminates sending reminders to vehicles traveling on different paths, reducing the impact on drivers.
  • the first terminal or the second terminal determines whether the vehicle corresponding to the second terminal or the first terminal is traveling on the same route, it first determines the current driving state of different vehicles; the driving state includes straight or curved driving; The method corresponding to the driving state selection determines whether different vehicles are driving in the same direction. If driving in a straight line, use steps S511 to S514 of the third embodiment as a method for judging whether the vehicle corresponding to the second terminal or the first terminal is traveling on the same path; if driving in a curve, use steps S521 to S523 of the third embodiment as A method for judging whether the vehicle is traveling on the same path as the second terminal or the first terminal.
  • the first vehicle is the corresponding vehicle that sends the first V2X signal
  • the second vehicle is the corresponding vehicle that receives the first V2X signal and feeds back the second V2X signal; when the first terminal or the second terminal corresponds to the first terminal In the case of a vehicle, the second terminal or the first terminal corresponds to the second vehicle.
  • this embodiment can also add the two steps of judging whether different vehicles are driving in the same direction and judging whether different vehicles are driving in the same path after the signal strength changes, that is, the same path driving is satisfied at the same time under the premise of meeting the same direction driving. Or, under the premise of driving on the same route, the same direction driving is satisfied at the same time, and only when two conditions are met at the same time, the prompt information is sent, eliminating the sending of prompt information to vehicles driving in different directions and different routes, and reducing the amount of prompt information received by surrounding vehicles.
  • this embodiment also provides a terminal.
  • the terminal can be any type of smart terminal, such as a smart phone, a tablet computer or other handheld mobile devices, etc., or it can be a T-car with a V2X module.
  • the box device can send and receive V2X signals, including V2I, V2N, and V2V (Vehicle-To-Vehicle, vehicle-to-vehicle).
  • the terminal includes: a memory 100, a processor 200, and a computer program that is stored on the memory 100 and can run on the processor.
  • the processor 200 executes the computer program as described in the first to fourth embodiments. The assisted driving method described.
  • the terminal in this embodiment is based on the same inventive concept as the terminal, the first terminal, and the second terminal in other embodiments. Therefore, the two have the same implementation principles and beneficial effects, which will not be detailed here. Narrated.
  • this embodiment also provides a driving assistance system, including: a first terminal 10 and a second terminal 20;
  • the first terminal 10 or the second terminal 20 sends the first V2X signal
  • the second terminal 20 or the first terminal 10 receives the first V2X signal, and detects the signal strength of the first V2X signal; feeds back the signal strength to the first terminal 10 or the second terminal 20 as the second V2X signal ;
  • the first terminal 10 or the second terminal 20 receives the second V2X signal, and obtains the signal strength in the second V2X signal;
  • the first terminal 10 or the second terminal 20 determines the signal strength change state according to the signal strength, and sends a prompt message when the signal strength changes;
  • the second terminal 20 or the first terminal 10 receives the prompt information
  • first terminal and second terminal have the same inventive concept, implementation principle and beneficial effects as the terminals in the first to sixth embodiments; the first terminal 10 and the second terminal 20 are not only one terminal , But multiple pairs of terminals that can communicate with each other.
  • first terminal 10 is the first V2X signal sending end
  • second terminals 20 that can receive the first V2X signal
  • first terminals 10 capable of receiving the first V2X signal.
  • an embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, the computer-executable instructions are executed by a processor or a controller, and the computer-executable instructions It is used to execute the assisted driving method (applied to the terminal) as provided in the first to fourth embodiments, or is used to execute the assisted driving method (applied to the assisted driving system) provided in the fifth embodiment of the claims.
  • the embodiment of the present invention uses the opposite terminal to send the V2X signal, detects the signal strength of the V2X signal multiple times, and sends a prompt message when the signal strength changes to indicate that the distance between the vehicle where the terminal is located is changing, to assist the user in driving, and to improve driving.
  • Safety Using V2X signals to determine the distance changes between different vehicles.
  • the terminal does not need to be within the coverage of the mobile data network, even in tunnels, deep mountains or other places where the mobile data network cannot cover.
  • the assisted driving method is still feasible, so that the realization of assisted driving is no longer limited by the quality of the mobile data network, ensuring that the driver is always driving in the assisted driving mode, improving the reliability of assisted driving, and improving user experience.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质。该方法包括:第一终端或第二终端发送第一V2X信号(B100);第二终端或第一终端接收第一V2X信号,并检测第一V2X信号的信号强度;将该信号强度以第二V2X信号反馈给第一终端或第二终端(B200);第一终端或第二终端接收第二V2X信号,并获取第二V2X信号中的信号强度(B300);第一终端或第二终端根据该信号强度判定信号强度变化状态,信号强度发生变化,发送提示信息(B400);第二终端或第一终端接收提示信息(B500)。

Description

辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201910797435.6、申请日为2019年8月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明实施例涉及但不限于通信技术领域,尤其涉及一种辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质。
背景技术
随着终端技术的不断发展,终端的功能越来越多,应用也越来越广泛。比如,将移动终端应用到车辆辅助驾驶中。目前,移动终端通过如下方法实现辅助驾驶:目标车辆对应的目标移动终端根据全球定位系统(Global Positioning System,GPS)实时获取自身位置,并接收来自周围车辆对应的移动终端发送的周围车辆位置;目标移动终端根据自身位置和周围车辆位置,判断目标车辆与周围车辆之间的实时距离;当实时距离正在减小时,目标移动终端向周围车辆对应的移动终端发送提示信息,以告知周围车辆目标车辆正在靠近;从而实现辅助驾驶的功能,达到提高行车安全的效果。
在实现上述技术方案的过程中,发明人发现相关技术至少存在如下问题:相关技术方案在发送提示信息时,会向周围区域内所有移动终端发送提示信息,但是车辆驾驶过程中并不需要向周围区域内所有移动终端都发送提示信息,比如,行驶方向不同、行驶路径不同的两个车辆,并不需要相互发送提示信息;频繁地发送提示信息,必然对接收提示信息的驾驶员造成影响,从而降低行车安全。另外,现有辅助驾驶方案必须要求连接移动数据网络才能实现,因此如果车辆行驶在隧道、山洞等没有网络的区域时,现有的辅助驾驶技术就无法实现或信息延迟,从而降低行车安全,降低辅助驾驶方案的可靠性。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种辅助驾驶的方法、系统、终端及计算机可读存储介质,不受限于移动数据网络质量,提高辅助驾驶的可靠性,从而可提高用户的使用体验。
第一方面,一种辅助驾驶方法,应用于终端,包括:发送第一V2X信号;接收对端反馈第二V2X信号,获取第二V2X信号中的信号强度;所述信号强度为第一V2X信号在对端被接收时的信号强度;根据获取的信号强度判定信号强度变化状态,并在信号强度发生变化时,发送提示信息;以及,接收对端发送的第一V2X信号,并检测第一V2X信号的信号强度;将检测得到的所述信号强度以第二V2X信号反馈给对端;接收对端根据信号强度发生变化发送的提示信息。
第二方面,本发明实施例还提供了一种辅助驾驶方法,应用于辅助驾驶系统,包括:第一终端或第二终端发送第一V2X信号;第二终端或第一终端接收所述第一V2X信号,并检测所述第一V2X信号的信号强度;将所述信号强度以第二V2X信号反馈给第一终端或第二终端;第一终端或第二终端接收所述第二V2X信号,并获取第二V2X信号中的第一信号强度;第一终端或第二终端根据所述信号强度判定信号强度变化状态,并在信号强度发生变化时,发送提示信息;第二终端或第一终端接收所述提示信息。
第三方面,本发明实施例还提供了,一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的辅助驾驶方法。
第四方面,本发明实施例还提供了一种辅助驾驶系统,包括第一终端和第二终端;第一终端或第二终端发送第一V2X信号;第二终端或第一终端接收所述第一V2X信号,并检测所述第一V2X信号的信号 强度;将所述信号强度以第二V2X信号反馈给第一终端或第二终端;第一终端或第二终端接收所述第二V2X信号,并获取第二V2X信号中的第一信号强度;第一终端或第二终端根据所述信号强度判定信号强度变化状态,并在信号强度发生变化时,发送提示信息;第二终端或第一终端接收所述提示信息。
第五方面,本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行第一方面所述的辅助驾驶方法或用于执行第二方面所述的辅助驾驶方法。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例一提供的一种辅助驾驶方法在第一方向上的流程图;
图2为本发明实施例一提供的一种辅助驾驶方法在第二方向上的流程图;
图3为本发明实施例二提供的一种辅助驾驶方法在第一方向上的流程图;
图4为本发明实施例二提供的判读不同车辆是否同向行驶的流程图;
图5为本发明实施例三提供的一种辅助驾驶方法在第一方向上的流程图;
图6为本发明实施例三提供的在车辆为直线行驶时判断不同车辆是否同路径行驶的流程图;
图7为本发明实施例三提供的当车辆为直线行驶时不同车辆的行驶路径示意图;
图8为本发明实施例三提供的当车辆为曲线行驶时不同车辆的行驶路径示意图;
图9为本发明实施例三提供的在车辆为曲线行驶时判断不同车辆是否同路径行驶的流程图;
图10为本发明实施例四提供的一种辅助驾驶方法在第一方向上的流程图;
图11为本发明实施例五提供的一种辅助驾驶方法在第一方向上的流程图;
图12为本发明实施例六提供的一种终端的结构框图;
图13为本发明实施例七提供的一种驾驶辅助系统的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
目前,辅助驾驶方案必须要求连接移动数据网络才能实现实时距离的变化趋势判断,受限于移动数据网络质量,致使辅助驾驶技术就无法实现或信息延迟,从而降低行车安全以及辅助驾驶方案的可靠性,影响用户的使用体验。
基于此,本发明实施例提出一种辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质,运用V2X(Vehicle to Everything,车对外界的信息交换)技术来实现辅助驾驶的方案,使用V2X信号的信号强度变化趋势判断不通车量间的距离变化,避免受限于移动数据网络质量,提高了行车安全的效果以及辅助驾驶方案的可靠性,从而提高用户的使用体验。
下面结合附图,对本发明进行阐述。
实施例一。
如图1、图2所示,图1为本实施例提供一种辅助驾驶方法在第一方向上的流程图;图2为本实施例提供一种辅助驾驶方法在第二方向上的流程图,该方法包括:
第一方向上,
步骤S100、发送第一V2X信号。
在本实施例中,所述第一V2X信号包括但不限于:无线保真信号、无线蓝牙信号或无线WiFi信号。
在一实施例中,发送第一V2X信号方式包括但不限于:实时发送;周期性发送;设置多个时长不同的预设时间段,每隔一个预设时间段发送一次。
在一实施例中,在发送第一V2X信号前,包括但不限于:判断当前车辆行驶的路况,当车流量较大时,开始发送第一V2X信号,进入辅助驾驶模式;当车流量较时,不发送第一V2X信号。在本实施例中,车流量大小的判断根据实时接收到的第一V2X信号数量,接收到的第一V2X信号数量车流量越大。
步骤S200、接收对端反馈第二V2X信号,获取第二V2X信号中的信号强度;所述信号强度为第一V2X信号在对端被接收时的信号强度。
在本实施例中,由于V2X信号在某个位置的信号强度与该位置到V2X信号发送点的距离相关,并随着距离的增加V2X信号中的信号强度衰减。所以,本实施发送的第一V2X信号被其辐射范围内的所有应用于本方法的终端接收到后,该第一V2X信号在该终端的信号强度已经衰减。接收终端检测接收到第一V2X信号时第一V2X信号在接收终端的信号强度,并将该信号强度通过第二V2X信号进行反馈,并在第二V2X信号被接收时获取到该信号强度。
步骤S300,根据获取的信号强度判定信号强度变化状态,如果信号强度发生变化(在一些实施例中,信号强度增强时发送提示信息),发送提示信息,所述提示信息用于表示不同车辆之间距离变化;否则,循环执行步骤S100至S300。
在本实施例中,所述信号强度变化可以为前后两次信号强度间的变化,也可以为所述信号强度的变化趋势,该变化趋势为增强趋势或衰减趋势;根据顺序获取的多次所述信号强度判断所述信号强度的变化趋势,并根据所述信号强度的变化趋势决定是否发送提示信息。所述信号强度的变化趋势为增强趋势,发送提示信息;为衰减趋势可不进行发送,这里的顺序获取的多次所述信号强度,不一定是连续获得的,只要获取每次信号强度的时间点为递增即可。
以周期性发送第一V2X信号为例,说明本实施例如何判断信号强度变化的变化趋势,包括但不限于以下步骤:
周期性发送第一V2X;
在一个预设时间段内(在本实施例中一个预设时间段包括N个周期),检测接收到反馈第二V2X信号时的第二信号强度,依次得到N+1个信号强度值R 0、R 1、R 2、R 3、……、R N;当R 0、R 1、R 2、R 3、……、R N的数值为增强趋势时,则表示信号强度处于增强趋势;当R 0、R 1、R 2、R 3、……、R N的数值为衰减趋势时,则表示信号强度处于衰减趋势。
需要说明的是,这里的“数值为增加趋势”和“数值为衰减趋势”,并不是后一个数值一定大于前一个数值,而是数值变化的一个整体趋势。比如,如果检测到5个信号强度,依次为1、2、3、4和5,或者检测到的5个信号强度值依次为1、2、2、3和4,或者检测到的5个信号强度依次为2、1、2、3和4,则均表示数值变化趋势为增强趋势。数值衰减趋势与数值增强趋势相似,在此不做赘述。
另外,确定信号强度的变化趋势还可以通过如下方式:
分别计算每一个信号强度(包括R 1、R 2、R 3、……、R N)与第一个信号强度R 0的差值,依次得到ΔR 1、ΔR 2、ΔR 3、……、ΔR N,当ΔR 1、ΔR 2、ΔR 3、……、ΔR N的数值处于增强趋势时,则说明信号强度处于增强趋势,当ΔR 1、ΔR 2、ΔR 3、……、ΔR N,的数值处于衰减趋势时,则说明信号强度处于衰减趋势。
由于信号强度随着距离减小而增强,随着距离的增大而衰减,所以当确定信号强度处于增强趋势时,说明相对的两个终端之间的距离正在减小,也即不同车辆之间的距离正在减小;当不同车辆之间的距离 减小时,行车安全相应降低,所以发送信息提示,以告知接收第一V2X信号终端所对应的车辆,其它车辆正在靠近,从而提醒该车辆的用户小心驾驶,进而提高行车安全,尤其是驾驶过程中出现超车、紧急制动、大雾、大雨等能见度较低天气或紧急情况避让(急救或匪警等)等。相反的,当确定信号强度处于衰减趋势时,说明相对的两个终端之间的距离在增加,也即不同车辆之间的距离在增加;当不同车辆之间的距离增加时,行车安全提高,所以第一终端不需要向第二终端发送信息提示;当然第一终端也可以向第二终端发送信息提示,告知第二终端的用户第一车辆与第二车辆之间的距离正在增加,行车相对安全。
需要说明的是,本实施例中所说的终端可以是任意类型的智能终端,例如智能手机、平板电脑或其他手持式移动设备等,也可以是车载具有V2X模块的T-box设备,可以收发V2X信号,包括V2I(Vehicle-To-Infrastructure,车-基础设施)、V2N(Vehicle-To-Network,车-互联网)、V2V(Vehicle-To-Vehicle,车-车)、V2P(Vehicle-To-Pedestrian,车-行人)。
在本实施例中,当车辆运行在没有移动数据网络的道路时,现有的使用GPS进行辅助驾驶的方法无法执行,则可以使用本实施例提供的辅助驾驶方法进行辅助驾驶,因此,当车辆运行在没有移动数据网络覆盖的道路时,本实施例提供的辅助驾驶方法对提高车辆的行车安全起到关键作用。当然,本发明实施例提供的辅助驾驶方法还可以单独执行。有关使用GPS进行辅助驾驶的方法为惯用技术,在此不做详述。
第二方向上,
步骤A100、接收对端发送的第一V2X信号,并检测第一V2X信号的信号强度。
在本实施例的终端中,不仅相对端发送第一V2X信号,也会接收到对端发送的第一V2X信号,作为对端第一V2X信号辐射范围内的一个接收终端,第一V2X信号在接收时信号强度已经衰减。
步骤A200、将检测得到的所述信号强度以第二V2X信号反馈给对端。同样的,需要将被接收时第一V2X信号的信号强度以第二V2X信号反馈对端,对端接收第二V2X信号时,获取第二V2X信号中的该信号强度,这样对端就可以前后两次或多次信号强度,判断是否发送提示信息。
步骤A300、接收对端因信号强度发生变化而发送的提示信息,并根据提示信息进行安全驾驶。
综上所述,本实施例通过相对的两个终端发送V2X信号,检测两次V2X信号的信号强度,并根据其判断信号强度的变化,在信号强度的变化发送提示信息,以提示终端所在车辆之间的距离正变化,辅助用户驾驶,进而提高行车安全。而且该辅助驾驶方法在判断不同车辆之间的距离时,是通过V2X信号进行判断的,因此相较与使用移动数据网络,本实施例不要求终端必须在移动数据网络的覆盖范围内,即使在隧道,深山或是其它移动数据网络覆盖不到的地方,该辅助驾驶方法仍然可行,因此降低了辅助驾驶的要求,提高了辅助驾驶使用的方便性;而且使用无线信号进行辅助驾驶时终端不会产生费用,节省用户消费,提高用户体验。
实施例二。
本实施例提供的辅助驾驶方法,与实施例一的区别在于,本实施例在实施例一的基础上增加了判断不同车辆是否同向行驶这一步骤,只有既满足信号强度增强,又满足不同车辆同向行驶时,才发送提示信息,以排除不同车辆异向行驶的情况。如图3所示,该方法包括以下步骤:
步骤S100、发送V2X信号。
步骤S200、接收对端反馈第二V2X信号,获取第二V2X信号中的信号强度;所述信号强度为第一V2X信号在对端被接收时的信号强度。
步骤S300、根据获取的信号强判定信号强度变化状态,如果信号强度发生变化,此时只能说明不同车辆之间的距离在变化(变大或变小),但是如果不同车辆是异向行驶,即使是信号强度增强,但是 不同车辆一定行驶在不同车道,这样不同车辆的行驶相互之间一般不会产生影响行(一般情况下,异向行驶导向行驶的车辆之间不存在超车情况,或者即使是一个车道的车辆出现故障也不会影响另一个车道内车辆的行驶),则不同车辆的行车安全相对较高;相应的,但是如果不同车辆是同向行驶,则不同车辆之间会出现超车情况,或是行驶在同一车道的不同车辆中,前方车辆出现故障必定会影响后方车辆的行车,所以不同车辆行车的安全性都会降低,所以需要判定不同车辆是否同向行驶,即执行步骤S400;否则,循环执行步骤S100至S300。
步骤S400、判断不同车辆是否同向行驶,如果同向行驶,发送提示信息,否则,不发送。
如图4所示,图4是实施例提供的判读不同车辆是否同向行驶的流程图,包括以下步骤:
步骤S411、获取第一车辆的行驶第一速度、第二车辆的行驶第二速度,所述第一车辆发送第一V2X信号;所述第二车辆发送第二V2X信号。
具体的,通过加速度传感器获取第一车辆的第一加速度,解析获取到的第一加速度得到第一速度。同理,获得第二车辆的行驶第二速度,在此不做详述。当获取第二速度后,将第二速度通过无线通讯(V2X信号)发送给第一辆车,第一辆车接收第二速度。其中,加速度和速度可以为瞬时加速度。另外,通过加速度得到速度为惯用技术,在此不做介绍。
在一实施例中,在获取到第一加速度和第二加速度后,可以根据各自的加速度判断第一车辆和第二车辆是直线行驶还是曲线行驶。具体的,当加速度的方向与行驶方向相同时,则确定车辆为直线行驶;当加速度的方向与行驶方向不相同时,则确定车辆为曲线行驶。有关行驶方向的获取为惯用技术,在此不做介绍。
另外,由于确定不同车辆是否同向行驶的各步骤是以不同车辆是直线行驶为前提进行的,因此,在执行确定不同车辆是否同向行驶的各步骤之前可以先判断不同车辆是否为直线行驶,以提高本实施例的准确性。当然在误差允许范围内,不同车辆即使是曲线行驶,本实施例中提供的确定不同车辆是否同向行驶的方法同样适用。
在一实施例中,确定不同车辆是否同向行驶时,需要在第一时间段内进行判断,也即本步骤中的第一速度和第二速度实际为平均速度。但是加速度传感器获取的加速度为瞬时加速度,则通过加速度得到的第一速度和第二速度也是瞬时速度,在误差允许范围内,可以使用瞬时速度代替平均速度。另外,可以将第一时间段尽可能的选取为较小的值,以减小瞬时速度与平均速度之间的误差。另外,还可以获取多个瞬时速度,计算多个瞬时速度的平均值,用多个瞬时速度的平均值代替平均速度,同样可以减小误差。
步骤S412、获取第一车辆与第二车辆的相对行驶速度。
在一实施例中,获取第一车辆与第二车辆的相对行驶速度,包括:
第一步、在第一时间段的起始时刻,检测起始时刻的信号强度。
第二步、在第一时间段的结束时刻,检测结束时刻的信号强度。
第三步、计算起始时刻的信号强度与结束时刻的信号强度的差值,得到第一时间段的信号强度差。
第四步、根据预设运算计算第一车辆与第二车辆之间的距离L。
在一实施例中,所述预设运算可以为L=ΔR·K,
其中,ΔR为第一时间段的信号强度差,K为常数系数。
第五步、计算距离与第一时间段的商值,得到相对行驶速度。
步骤S413、计算第一速度与第二速度之差的绝对值,得到同向相对行驶速度;并计算第一速度与第二速度之和,得到异向相对行驶速度。
具体的,当第一车辆和第二车辆为同向行驶时,第一车辆与第二车辆的相对行驶速度为第一车辆的 速度与第二车辆的速度之差,也即为第一速度与第二速度的速度之差;当第一车辆和第二车辆为异向行驶时,第一车辆与第二车辆的相对行驶速度为第一车辆的速度与第二车辆的速度之和,也即为第一速度与第二速度的速度之和。
步骤S414、计算相对行驶速度与同向相对行驶速度之差的绝对值,得到同向速度差异度;计算相对行驶速度与异向相对行驶速度之差的绝对值,得到异向速度差异度。
步骤S415、当同向速度差异度小于异向速度差异度时,确定第一车辆与第二车辆是同向行驶;当异向速度差异度小于同向速度差异度时,确定第一车辆与第二车辆异向行驶。
综上所述,本实施例在判断出不同车辆之间的距离减小后,并不直接发送提示信息,而是判断不同车辆是否同向行驶,只有判断出不同车辆是同向行驶时才发送提示信息,所以省去了不同车辆是异向行驶时发送提示信息的过程,因此也省去了终端接收提示信息的过程,这样就使终端不需要频繁接收提示信息,从而减少对驾驶员的影响,进而提高行车安全。
实施例三。
本实施例与实施例一的区别在于,本实施例在实施例一的基础上增加了判断不同车辆是否同路径行驶这一步骤,只有既满足信号强度增强,又满足不同车辆同路径行驶时,才发送提示信息,排除向不同路径行驶的的车辆发送提示信息。如图5所示,该方法包括以下步骤:
步骤S100、发送第一V2X信号。
步骤S200、接收对端反馈第二V2X信号,获取第二V2X信号中的信号强度;所述信号强度为第一V2X信号在对端被接收时的信号强度。
步骤S300、根据信号强度判定信号强度变化状态,如果信号强度发生变化,此时只能说明不同车辆之间的距离在变化(变大或变小),但是如果不同车辆行驶在不同的路径(车道)上时,行车过程中不同车辆相互之间的影响也较小,比如,一个路径上的车辆刹车时,一般只会影响到同路径上的车辆,而不会影响到不同路径上的车辆,此时只需要向同路径上行驶的车辆发送提示信息,而不需要向不同路径的车辆发送提示信息,即执行步骤S500;否则,循环执行步骤S100至S300。
步骤S500、判断不同车辆是否同路径行驶,如果是,发送提示信息,否则,不发送。
由于车辆行驶状态包括直线行驶和曲线行驶,在本实施例中,直线行驶和曲线行驶分别采用不同的方法判断不同车辆是否同路径行驶。
当车辆为直线行驶时,如图6、7所示,图6为本实施例在车辆为直线行驶时判断不同车辆是否同路径行驶的流程图,图7为当车辆为直线行驶时的行驶路径示意图,在车辆为直线行驶时判断不同车辆是否同路径行驶包括以下步骤:
步骤S511、获取第一车辆在第二时间段内的行驶距离,所述第一车辆发送第一V2X信号;第二车辆发送第二V2X信号。
具体的,在第二时间段内,获取第一车辆的平均速度;计算第一车辆的平均速度与第二时间段的乘积,得到第一车辆在第二时间段内的行驶距离(图7中的L 1)。
对于第一车辆的平均速度,如果第二时间段较短时,可以使用第二时间段内的一个瞬时速度代替,或是在第二时间段内获取多个瞬时速度,将多个瞬时速度的平均值确定为第一车辆的平均速度。当然还可以通过其它方法获取第一车辆的平均速度,本实施例对此不做限制。
步骤S512、在第二时间段的起始时刻时,根据获得的信号强度获取第一车辆与第二车辆之间的第一距离,及在第二时间段的结束时刻时,第一车辆与第二车辆之间的第二距离。
为了便于理解,可以假设第二车辆是静止的,只有第一车辆是运动的。如图7所示,起始时刻用t 1表示,结束时刻用t 2表示,其中一辆第二车辆,第一距离用L 2,第二距离用L 3表示,对于另外一辆 第三车辆,第一距离用L 4,第二距离用L 5表示。
在本实施例中,有关根据信号强度获取两个车辆之间的距离在步骤S412中已经详细介绍,在此不做赘述。
步骤S513、计算第一距离与第二距离的距离差。
如图7所示,对于其中一辆第二车辆,第一距离L 2与第二距离L 3的距离差为L 1,对于另一辆第二车辆,第一距离L 4与第二距离L 5的距离差为L 6
步骤S514、比较所述行驶距离和所述距离差,当行驶距离等于距离差时,第一终端确定第一车辆与第二车辆为同路径行驶;否则,确定第一车辆与第二车辆不为同路径行驶。
如图7所示,对于一辆第二车辆,第一车辆的行驶距离L 1等于距离差L 1,第一车辆与第二车辆为同路径行驶。对于另一辆第二车辆,第一车辆的行驶距离L 1不等于距离差L 6,第一车辆与第三车辆为不同路径行驶。
需要说明的是,这里的等于并不是绝对的相等,而是在误差允许范围内的近似相等。比如,当行驶距离为20米,距离差为19米,则行驶距离与距离差相差1米,但是如果误差允许范围为2米时,则认为行驶距离等于距离差。
图8是本实施例提供的当车辆为曲线行驶时,不同车辆的行驶路径示意图。第一车辆发送第一V2X信号;第二车辆发送第二V2X信号,在图8中,第一车辆和一辆第二车辆为同路径行驶,第一车辆和另一辆第二车辆不为同路径行驶,两辆第二车辆不为同路径行驶。当车辆为曲线行驶时,判断不同车辆是否同路径行驶,如图9所示,包括以下步骤:
步骤S521、获取第一车辆的第一线速度和第一角速度,所有第二车辆的第二线速度和第二角速度。
具体的,通过角速度传感器获取各加速度;解析加速度得到各终端的线速度和角速度。
在本实施例中,获取到自身的第一线速度和第一角速度后,保存自身的第一线速度和第一角速度。对于第二车辆将获取取到自身的线速度和角速度发送给第一车辆。
示例性的,获取到的第一线速度为10公里/小时,第一角速度为10度/小时,第一辆第二车辆的第二线速度为20公里/小时,第二角速度为20度/小时,第二辆第二车辆的第二线速度为20公里/小时,第二角速度20.2度/小时。
另外,解析加速度得到各终端的线速度和角速度为惯用技术,在此不做详述。
步骤S522、计算第一线速度与第一角速度的商,得到第一车辆的第一行驶半径(记为r 1);计算第二车辆的第二线速度与第二角速度的商,得到该第二车辆的第二行驶半径(记为r 2);
如图8所示,r 1为第一行驶半径;r 2为第一辆第二车辆的第二行驶半径,r 3为到第二辆第二车辆的第二行驶半径;仍以本实施例中步骤S521的例子为例,则第一行驶半径为1公里,第一辆第二车辆第二行驶半径为1公里,第二辆第二车辆第二行驶半径为0.99公里。
步骤S523、第一行驶半径分别与所有第二行驶半径比较大小,当第一行驶半径与任意第二行驶半径相等时,确定相等的两个行驶半径对应的两个车辆为同路径行驶。
由步骤S522计算可知,第一行驶半径r 1和第一辆第二车辆的第二行驶半径相等,均为1公里,则第一车辆与第一辆第二车辆为同路径上行驶;第二辆第二车辆的第二行驶半径与第一行驶半径不同,所以第二辆第二车辆与第一车辆不为同路径行驶,以此类推。
需要说明的是,在比较行驶半径是否相等时,并不是绝对相等或是绝对不相等,在误差允许范围内的近似相等或近似不相等。
在实现时,可以在各终端上设置曲线行驶辅助驾驶和直线行驶辅助驾驶两个模块功能,通过判断当前车辆行驶状态(包括直线行驶和曲线行驶)进行不同的模块功能进行切换。
综上所述,本实施例在判断出不同车辆之间的距离变化后,并不直接发送提示信息,而是判断不同车辆是否同路径行驶,只有判断出不同车辆是同路径行驶时才发送提示信息,由于省去了不同车辆是不同路径行驶时发送提示信息的过程,因此也省去了终端接收提示信息的过程,这样就使终端不需要频繁接收提示信息,从而减少对驾驶员的影响,进而提高行车安全。
实施例四。
本实施例提供与实施例一的区别在于,本实施例在实施例一的基础上增加了判断不同车辆是否同向行驶,当不同车辆同向行驶时,继续判断不同车辆是否同路径行驶,只有信号强度增强、不同车辆同向行驶、且不同车辆同路径行驶几个条件均满足时,才发送提示信息,排除向异向行驶和不同路径行驶的车辆发送提示信息。如图10所示,包括以下步骤:
步骤S100、发送第一V2X信号。
步骤S200、接收对端反馈第二V2X信号,获取第二V2X信号中的信号强度;所述信号强度为第一V2X信号在对端被接收时的信号强度。
步骤S300、根据信号强度判定信号强度变化状态,如果信号强度发生变化,执行步骤S400;否则,循环执行步骤S100至S300。
步骤S400、判断不同车辆是否同向行驶,如果同向行驶,执行步骤S500,否则,循环执行步骤S100至S400。
步骤S500、判断不同车辆是否同路径行驶,如果是,发送提示信息,否则,循环执行步骤S100至S500。
当然,也可以先判断是否同路径行驶,如果是如路径行驶再判断是否同向行驶,具体执行过程下本实施例类似,在此不做详述。
综上所述,本实施例在判断出不同车辆之间的距离减小后,并不直接发送提示信息,而是判断不同车辆是否同向并且同路径行驶,只有判断出不同车辆是同向并且同路径行驶时才发送提示信息,所以省去了不同车辆是异向和不同路径行驶时发送提示信息的过程,因此也省去了终端接收提示信息的过程,这样就使终端不需要频繁接收提示信息,从而减少对驾驶员的影响,进而提高行车安全。
实施例五。
如图11所示,本实施例提供了一种辅助驾驶方法,应用于辅助驾驶系统,辅助驾驶系统包括多个终端,在本实施例中第一终端和第二终端的不仅只一个终端,而是能够互相通信的多对终端,当第一终端为第一V2X信号发送端时,第二终端即为第一V2X信号接收终端;当第一终端为第一V2X信号发送端时,第二终端即为第一V2X信号接收终端;该方法包括:
步骤B100、第一终端或第二终端发送第一V2X信号;
步骤B200、第二终端或第一终端接收所述第一V2X信号,并检测所述第一V2X信号的信号强度;将该信号强度以第二V2X信号反馈给第一终端或第二终端;
步骤B300、第一终端或第二终端接收所述第二V2X信号,并获取第二V2X信号中的信号强度;
步骤B400、第一终端或第二终端根据所述信号强度判定信号强度变化状态,并在信号强度发生变化(变强或变弱)时,发送提示信息;在一些实施例中,只在信号强度变强时发送提示信息。
步骤B500、第二终端或第一终端接收所述提示信息。
在本实施例中,所述信号强度变化为所述信号强度的变化趋势,该变化趋势为增强趋势或衰减趋势;第一终端或第二终端根据所述信号强度的变化趋势决定是否向第二终端或第一终端发送提示信息。在一些实施例中,当所述信号强度的变化趋势为增强趋势时,发送提示信息;当为衰减趋势时可不进行发送。
在本实施例中,第一终端或第二终端在增加了判断不同车辆是否同向行驶这一步骤,只有既满足信 号强度增强,又满足不同车辆同向行驶时,才发送提示信息,以排除向不同车辆异向行驶的车辆发送提示信息,减少不必要的提示信息发送,从而使对端减少提示信息的接收及查看,减少对驾驶员的影响。
所述第一终端或第二终端判断是否与第二终端或第一终端对应车辆同向行驶具体步骤与实施例二(步骤S411至步骤S415)相同,在此不再赘述;其中,第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;当第一终端或第二终端对应第一车辆时,第二终端或第一终端对应第二车辆。
在一本实施例中,所述第一终端或第二终端增加了判断不同车辆是否同路径行驶这一步骤,只有既满足信号强度增强,又满足不同车辆同路径行驶时,才发送提示信息,排除向不同路径行驶的车辆发送提示信息,减少对驾驶员的影响。
所述第一终端或第二终端在判断是否与第二终端或第一终端对应车辆同路径行驶前,先判断当前不同车辆的行驶状态;所述行驶状态包括直线行驶或曲线行驶;再根据所述行驶状态选择对应的方法判断不同车辆是否同向行驶。如果为直线行驶,采用实施例三的步骤S511至S514,作为判断是否与第二终端或第一终端对应车辆同路径行的方法;如果为曲线行驶,采用实施例三的步骤S521至S523,作为判断是否与第二终端或第一终端对应车辆同路径行的方法。其中,第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;当第一终端或第二终端对应第一车辆时,第二终端或第一终端对应第二车辆。
当然,本实施例也可以在信号强度发生变化后,同时增加判断不同车辆是否同向行驶以及判断不同车辆是否同路径行驶两个步骤,即在满足同向行驶的前提下同时满足同路径行驶,或者在满足同路径行驶前提下同时满足同向行驶,只有同时满足两个条件才发送提示信息,排除向异向行驶和不同路径行驶的车辆发送提示信息,减少周围车辆接收提示信息量。
实施例六。
如图12所示,本实施例还提供了一种终端,该终端可以是任意类型的智能终端,例如智能手机、平板电脑或其他手持式移动设备等,也可以是车载具有V2X模块的T-box设备,可以收发V2X信号,包括V2I、V2N、V2V(Vehicle-To-Vehicle,车-车)。
具体地,该终端包括:存储器100、处理器200及存储在存储器100上并可在处理器上运行的计算机程序,所述处理器200执行所述计算机程序时实现如实施例一至实施例四所述的辅助驾驶方法。
需要说明的是,本实施例中的终端,与其他实施例中的终端、第一终端、第二终端基于相同的发明构思,因此两者具有相同的实现原理以及有益效果,此处不再详述。
实施例七。
如图13所示,本实施例还提供了一种驾驶辅助系统,包括:第一终端10和第二终端20;
第一终端10或第二终端20发送第一V2X信号;
第二终端20或第一终端10接收所述第一V2X信号,并检测所述第一V2X信号的信号强度;将所述信号强度以第二V2X信号反馈给第一终端10或第二终端20;
第一终端10或第二终端20接收所述第二V2X信号,并获取第二V2X信号中的信号强度;
第一终端10或第二终端20根据所述信号强度判定信号强度变化状态,并在信号强度发生变化,发送提示信息;
第二终端20或第一终端10接收所述提示信息
需要说明的是,“第一终端”、“第二终端”与实施例一至实施例六中终端有相同发明构思、实现原理以及有益效果;第一终端10和第二终端20的不仅只一个终端,而是能够互相通信的多对终端,当第一终端10为第一V2X信号发送端时,存在多个能够接收第一V2X信号的第二终端20;当第二终端20 为第一V2X信号发送端时,存在多个能够接收第一V2X信号的第一终端10。
另外,本发明的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,计算机可执行指令用于执行如实施例一至实施例四提供的辅助驾驶方法(应用于终端),或用于执行权利要求实施例五中提供的辅助驾驶方法(应用于辅助驾驶系统)。
本发明实施例利用相对终端发送V2X信号,检测多次V2X信号的信号强度,并在信号强度的变化时发送提示信息,以提示终端所在车辆之间的距离正变化,辅助用户驾驶,进而提高行车安全。通过V2X信号判断不同车辆之间的距离变化,相较与使用移动数据网络,不要求终端必须在移动数据网络的覆盖范围内,即使在隧道,深山或是其它移动数据网络覆盖不到的地方,该辅助驾驶方法仍然可行,使辅助驾驶的实现不在受限于移动数据网络质量,保证一直驾驶员在辅助驾驶模式下驾驶,提高了辅助驾驶的可靠性,提高用户体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。

Claims (21)

  1. 一种辅助驾驶方法,应用于终端,包括,
    发送第一V2X信号;
    接收对端反馈的第二V2X信号,获取第二V2X信号中的信号强度;所述信号强度为第一V2X信号在对端被接收时的信号强度;
    根据获取的信号强度判定信号强度变化状态,并在信号强度发生变化时,发送提示信息;
    以及,
    接收对端发送的第一V2X信号,并检测第一V2X信号的信号强度;
    将检测得到的所述信号强度以第二V2X信号反馈给对端;
    接收对端根据信号强度发生变化发送的提示信息。
  2. 根据权利要求1所述的一种辅助驾驶方法,其中,当所述信号强度发生变化,判断不同车辆是否同向行驶,并在同向行驶时发送提示信息。
  3. 根据权利要求1所述的一种辅助驾驶方法,其中,当所述信号强度发生变化,判断不同车辆是否同路径行驶,并在同路径行驶时发送提示信息。
  4. 根据权利要求1所述的一种辅助驾驶方法,其中,所述信号强度发生变化为所述信号强度的变化趋势,所述变化趋势为增强趋势或衰减趋势;
    根据顺序获取的多次所述信号强度判断所述信号强度的变化趋势;
    如果所述信号强度的变化趋势为增强趋势,发送提示信息。
  5. 根据权利要求2所述的一种辅助驾驶方法,其中,所述判断不同车辆是否同向行驶,包括:
    获取第一车辆的行驶第一速度、第二车辆的行驶第二速度,所述第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;
    获取所述第一车辆与所述第二车辆的相对行驶速度;
    计算所述第一速度与第二速度之差的绝对值以及所述第一速度与第二速度之和,分别得到同向相对行驶速度以及异向相对行驶速度;
    计算所述相对行驶速度与所述同向相对行驶速度之差的绝对值,以及计算所述相对行驶速度与所述异向相对行驶速度之差的绝对值,分别得到同向速度差异度和异向速度差异度;
    比较所述同向速度差异度与所述异向速度差异度,如果所述同向速度差异度小于所述异向速度差异度,所述第一车辆与所述第二车辆为同向行驶;如果所述异向速度差异度小于所述同向速度差异度,所述第一车辆与第二车辆异向行驶。
  6. 根据权利要求5所述的一种辅助驾驶方法,其中,所述获取所述第一车辆与所述第二车辆的相对行驶速度,包括:
    在第一时间段的起始时刻及结束时刻,分别检测得到起始时刻及结束时刻的信号强度;
    计算所述起始时刻与结束时刻的信号强度的差值,得到第一时间段的第二信号强度差;
    根据所述第一时间段的信号强度差计算所述第一车辆与第二车辆之间的距离;
    计算所述第一车辆与第二车辆的距离与所述第一时间段的商值,得到相对行驶速度。
  7. 根据权利要求3所述的一种辅助驾驶方法,其中,还包括判断当前不同车辆的行驶状态;所述行驶状态包括直线行驶或曲线行驶;
    选择与所述行驶状态对应的方法判断不同车辆是否同路径行驶。
  8. 根据权利要求7所述的一种辅助驾驶方法,其中,当所述行驶状态为直线行驶,判断不同车辆是否同路径行驶包括以下步骤:
    获取第一车辆在第二时间段内的行驶距离;所述第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;
    在第二时间段的起始时刻及第二时间段的结束时刻,根据信号强度分别获取第一车辆与第二车辆之间的第一距离及第二距离,并计算两者距离差;
    比较所述行驶距离和所述距离差,如果行驶距离等于距离差,第一车辆与第二车辆为同路径行驶。
  9. 根据权利要求7所述的一种辅助驾驶方法,其中,当所述行驶状态为曲线行驶,判断不同车辆是否同路径行驶包括以下步骤:
    获取第一车辆的第一线速度和第一角速度,第二车辆的第二线速度和第二角速度;
    计算第一线速度和第一角速度以及第二线速度与第二角速度之商,分别得到第一车辆的第一行驶半径以及第二车辆的第二行驶半径;
    第一行驶半径与第二行驶半径进行比较,如果第一行驶半径与第二行驶半径相等,第一车辆与对应的第二车辆为同路径行驶。
  10. 一种辅助驾驶方法,应用于辅助驾驶系统,包括:
    第一终端或第二终端发送第一V2X信号;
    第二终端或第一终端接收所述第一V2X信号,并检测所述第一V2X信号的信号强度;将所述信号强度以第二V2X信号反馈给第一终端或第二终端;
    第一终端或第二终端接收所述第二V2X信号,并获取第二V2X信号中的第一信号强度;
    第一终端或第二终端根据所述信号强度判定信号强度变化状态,并在信号强度发生变化时,发送提示信息;
    第二终端或第一终端接收所述提示信息。
  11. 根据权利要求10所述的一种辅助驾驶方法,其中,所述第一终端或第二终端在信号强度发生变化时,判断是与否第二终端或第一终端同向行驶;
    在同向行驶时,向第二终端或第一终端发送提示信息。
  12. 根据权利要求10所述的一种辅助驾驶方法,其中,所述第一终端或第二终端在信号强度发生变化时,判断是否与第二终端或第一终端同路径行驶;
    在同路径行驶时,向第二终端或第一终端发送提示信息。
  13. 根据权利要求10所述的一种辅助驾驶方法,其中,所述信号强度发生变化为所述信号强度的变化趋势,所述变化趋势为增强趋势或衰减趋势;
    所述第一终端或第二终端根据顺序检测到的多次信号强度判断所述信号强度的变化趋势;并在所述信号强度的变化趋势为增强趋势时发送提示信息。
  14. 根据权利要求11所述的一种辅助驾驶方法,其中,所述第一终端或第二终端判断不同车辆是否同向行驶,包括:
    获取第一车辆行驶的第一速度、第二车辆行驶的第二速度;其中,所述第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;当第一终端或第二终端对应第一车辆时,第二终端或第一终端对应第二车辆;
    获取所述第一车辆与所述第二车辆的相对行驶速度;
    计算所述第一速度与第二速度之差的绝对值以及所述第一速度与第二速度之和,分别得到同向相对行驶速度以及异向相对行驶速度;
    计算所述相对行驶速度与所述同向相对行驶速度之差的绝对值,以及计算所述相对行驶速度与所述异向相对行驶速度之差的绝对值,分别得到同向速度差异度和异向速度差异度;
    比较所述同向速度差异度与所述异向速度差异度,如果所述同向速度差异度小于所述异向速度差异度,所述第一车辆与所述第二车辆为同向行驶;如果所述异向速度差异度小于所述同向速度差异度,所述第一车辆与第二车辆异向行驶。
  15. 根据权利要求14所述的一种辅助驾驶方法,其中,所述第一终端或第二终端获取所述第一车辆与所述第二车辆的相对行驶速度,包括:
    在第一时间段的起始时刻及结束时刻,分别获得起始时刻及结束时刻的信号强度;
    计算所述起始时刻与结束时刻的信号强度的差值,得到第一时间段的信号强度差;
    根据所述第一时间段的信号强度差计算所述第一车辆与第二车辆之间的距离;
    计算所述第一车辆与第二车辆的距离与所述第一时间段的商值,得到相对行驶速度。
  16. 根据权利要求12所述的一种辅助驾驶方法,其中,所述第一终端或第二终端还包括判断当前不同车辆的行驶状态;所述行驶状态包括直线行驶或曲线行驶;
    根据所述行驶状态选择对应的方法判断不同车辆是否同向行驶。
  17. 根据权利要求16所述的一种辅助驾驶方法,其中,所述第一终端或第二终端在行驶状态为直线行驶时,判断不同车辆是否同向行驶包括以下步骤:
    获取第一车辆在第二时间段内的行驶距离;其中,所述第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;当第一终端或第二终端对应第一车辆时,第二终端或第一终端对应第二车辆;
    在第二时间段的起始时刻及第二时间段的结束时刻,根据信号强度分别获取第一车辆与第二车辆之间的第一距离及第二距离,并计算两者距离差;
    比较所述行驶距离和所述距离差,如果行驶距离等于距离差,第一车辆与第二车辆为同路径行驶。
  18. 根据权利要求16所述的一种辅助驾驶方法,其中,所述第一终端或第二终端在行驶状态为曲线行驶时,判断不同车辆是否同向行驶包括以下步骤:
    获取第一车辆的第一线速度和第一角速度,第二车辆的第二线速度和第二角速度;其中,所述第一车辆为发送第一V2X信号的对应车辆;所述第二车辆为接收到所述第一V2X信号,并反馈第二V2X信号的对应车辆;当第一终端或第二终端对应第一车辆时,第二终端或第一终端对应第二车辆;
    计算第一线速度和第一角速度以及第二线速度与第二角速度之商,分别得到第一车辆的第一行驶半径以及第二车辆的第二行驶半径;
    第一行驶半径与第二行驶半径进行比较,如果第一行驶半径与第二行驶半径相等,第一车辆与对应的第二车辆为同路径行驶。
  19. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至9中任意一项所述的辅助驾驶方法。
  20. 一种辅助驾驶系统,包括第一终端和第二终端;其中:
    第一终端或第二终端发送第一V2X信号;
    第二终端或第一终端接收所述第一V2X信号,并检测所述第一V2X信号的信号强度;将所述信号强度以第二V2X信号反馈给第一终端或第二终端;
    第一终端或第二终端接收所述第二V2X信号,并获取第二V2X信号中的第一信号强度;
    第一终端或第二终端根据所述信号强度判定信号强度变化状态,并在信号强度发生变化时,发送提示信息;
    第二终端或第一终端接收所述提示信息。
  21. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要 求1至9中任意一项所述的辅助驾驶方法或用于执行权利要求10至18中任意一项所述的辅助驾驶方法。
PCT/CN2020/089809 2019-08-27 2020-05-12 辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质 WO2021036345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910797435.6A CN112449324A (zh) 2019-08-27 2019-08-27 辅助驾驶方法、终端及辅助驾驶系统
CN201910797435.6 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021036345A1 true WO2021036345A1 (zh) 2021-03-04

Family

ID=74685482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089809 WO2021036345A1 (zh) 2019-08-27 2020-05-12 辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112449324A (zh)
WO (1) WO2021036345A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150019080A1 (en) * 2013-07-09 2015-01-15 GM Global Technology Operations LLC Driver assistance system for a motor vehicle
CN105280005A (zh) * 2014-06-06 2016-01-27 电信科学技术研究院 一种道路安全消息的发送方法及装置
WO2016159715A2 (ko) * 2015-04-01 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치
WO2018113946A1 (en) * 2016-12-21 2018-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Its status indication
CN108428366A (zh) * 2017-02-15 2018-08-21 中兴通讯股份有限公司 一种辅助驾驶方法及装置
WO2019075238A1 (en) * 2017-10-11 2019-04-18 Qualcomm Incorporated METHODS AND APPARATUS FOR DEVICE DEVICE FEEDBACK

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076502B (zh) * 2016-05-12 2020-12-15 华为技术有限公司 信息传输的方法及用户设备
DE102017223360A1 (de) * 2017-01-04 2018-07-05 Honda Motor Co., Ltd. System und verfahren zur fahrzeugsteuerung in drängelsituationen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150019080A1 (en) * 2013-07-09 2015-01-15 GM Global Technology Operations LLC Driver assistance system for a motor vehicle
CN105280005A (zh) * 2014-06-06 2016-01-27 电信科学技术研究院 一种道路安全消息的发送方法及装置
WO2016159715A2 (ko) * 2015-04-01 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치
CN107439036A (zh) * 2015-04-01 2017-12-05 Lg电子株式会社 V2x终端在无线通信系统中发送和接收信号的方法和装置
WO2018113946A1 (en) * 2016-12-21 2018-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Its status indication
CN108428366A (zh) * 2017-02-15 2018-08-21 中兴通讯股份有限公司 一种辅助驾驶方法及装置
WO2019075238A1 (en) * 2017-10-11 2019-04-18 Qualcomm Incorporated METHODS AND APPARATUS FOR DEVICE DEVICE FEEDBACK

Also Published As

Publication number Publication date
CN112449324A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
US20230406340A1 (en) System and method for providing driving assistance to safely overtake a vehicle
US9928746B1 (en) Vehicle-to-vehicle cooperation to marshal traffic
US9791864B2 (en) Systems and methods for driving risk index estimation
US9020728B2 (en) Vehicle turn monitoring system and method
JP2020518503A (ja) 車両運転を制御するための方法及び装置
US9031776B2 (en) Vehicle intersection monitoring system and method
US9349291B2 (en) Vehicle intersection monitoring system and method
EP3663155B1 (en) Autonomous driving system
US8847787B2 (en) Vehicle intersection warning system and method
EP3052356B1 (en) System and method for controlling a vehicle platoon with a common position-based driving strategy
US9620014B2 (en) Vehicle intersection monitoring system and method
US20180227729A1 (en) Coordinated driving through driver-to-driver v2x communication
JP2016168985A (ja) 走行制御装置
US9778349B2 (en) Method and system of monitoring emergency vehicles
JP2013037621A (ja) 走行支援装置及び走行支援システム
JP2016192150A (ja) 車両走行制御装置
US20140368330A1 (en) Mobile body communication device and travel assistance method
US20200278684A1 (en) Methods and systems for controlling lateral position of vehicle through intersection
JP4225190B2 (ja) 車両運転支援装置
JP2015064733A (ja) 運転支援装置及び運転支援方法
CN108428366B (zh) 一种辅助驾驶方法及装置
US11590971B2 (en) Apparatus and method for determining traveling position of vehicle
WO2021036345A1 (zh) 辅助驾驶方法、终端、辅助驾驶系统及计算机可读存储介质
EP3854645B1 (en) Method, apparatus, and computer program product for dynamically detecting dangerous merging situations
JP2005202693A (ja) 車載警報装置および車両用警報システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856855

Country of ref document: EP

Kind code of ref document: A1