WO2016159305A1 - 中空糸膜の製造方法 - Google Patents

中空糸膜の製造方法 Download PDF

Info

Publication number
WO2016159305A1
WO2016159305A1 PCT/JP2016/060812 JP2016060812W WO2016159305A1 WO 2016159305 A1 WO2016159305 A1 WO 2016159305A1 JP 2016060812 W JP2016060812 W JP 2016060812W WO 2016159305 A1 WO2016159305 A1 WO 2016159305A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
roll
stretching
groove
fiber membrane
Prior art date
Application number
PCT/JP2016/060812
Other languages
English (en)
French (fr)
Inventor
健太 岩井
利之 石崎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US15/563,333 priority Critical patent/US20180057974A1/en
Priority to KR1020177027415A priority patent/KR20170131470A/ko
Priority to JP2016571765A priority patent/JP6195026B2/ja
Priority to CN201680019585.9A priority patent/CN107427781A/zh
Publication of WO2016159305A1 publication Critical patent/WO2016159305A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a microfiltration method for solid-liquid separation such as turbidity and a method for producing a hollow fiber membrane in the field of ultrafiltration.
  • Patent Document 1 describes that a hollow fiber membrane is stretched for modification of the hollow fiber membrane.
  • Patent Document 1 describes a roll stretching method in which stretching is performed between a plurality of stretching drive rolls having different peripheral speeds as a conventional stretching method.
  • the roll drawing method in order to transmit the driving force of the roll to the hollow fiber with frictional force (adhesion force), by setting the holding angle (contact angle) around which the hollow fiber is wound around the driving roll, yarn slippage due to insufficient frictional force Is suppressed.
  • the hollow fiber may be flattened (outer shape deformation) by receiving bending stress (compressive force) on the curved surface in contact with the roll.
  • the flattening of the hollow fiber membrane leads to deterioration of characteristics such as a decrease in pressure resistance and an increase in the flow resistance of permeate when used in external pressure filtration.
  • a coating layer is formed by coating using a hollow fiber drawn by a roll drawing method as a support layer, the coating layer cannot be formed, and structural defects such as coating spots may occur.
  • Patent Document 1 discloses a belt method in which the hollow fiber is stretched by being sandwiched between elastic belts facing each other.
  • this invention aims at providing the extending
  • the present invention provides the following hollow fiber membrane production method and stretching apparatus.
  • the distance between the wall surfaces of the groove is larger than the outer diameter of the hollow fiber at the outermost part in the radial direction of the drawing roll, and smaller than the outer diameter of the hollow fiber at the innermost part.
  • It is disposed in the conveyance path of the hollow fiber and includes a drawing-side stretching roll and a drawing-side stretching roll having grooves provided in the circumferential direction, A drawing apparatus in which the drawing-side drawing roll and the drawing-side drawing roll are arranged such that wall surfaces facing each other in the groove are in contact with a hollow fiber.
  • a hollow fiber membrane having a high roundness and a reduced diameter can be obtained by stretching that suppresses flattening of the hollow fiber.
  • FIG. 1 is a front view showing one embodiment of a drawing roll according to an embodiment of the present invention.
  • Fig.2 (a) and FIG.2 (b) are schematic sectional drawings of an extending
  • FIG. 3 is a schematic flowchart showing one embodiment of the stretching process according to the present invention.
  • the present invention provides a method for producing a hollow fiber membrane having a spinning process and a stretching process. Each of the above steps will be described in detail below.
  • the spinning process for forming the hollow fiber is not limited to a specific method, and any process may be used as long as a hollow fiber that can be used as a separation membrane is obtained through a drawing process described later.
  • a conventional spinning method used for producing a hollow fiber membrane is preferably applied.
  • Such spinning methods include solution spinning and melt spinning.
  • Solution spinning is a method of obtaining fibers by dissolving a raw material in a solvent to obtain a stock solution, and discharging the stock solution from a die.
  • Solution spinning includes dry spinning and wet spinning.
  • Melt spinning is a method in which a raw material melted with heat is discharged from a die and solidified by cooling to obtain fibers.
  • thermoplastic resin made of a chain polymer is used as the resin that is a material of the hollow fiber.
  • resin polyethylene, polypropylene, acrylic resin, polyacrylonitrile, acrylonitrile-butadiene-styrene (ABS) resin, vinyl chloride resin, polyethylene terephthalate, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyvinylidene fluoride, polyamideimide, polyether
  • ABS acrylonitrile-butadiene-styrene
  • vinyl chloride resin polyethylene terephthalate
  • polyamide polyacetal
  • polycarbonate modified polyphenylene ether
  • polyphenylene sulfide polyvinylidene fluoride
  • polyamideimide polyether
  • polyether examples include imide, polysulfone, polyethersulfone, and mixtures and copolymers thereof.
  • the polyvinylidene fluoride resin means a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and may contain a plurality of types of vinylidene fluoride copolymers.
  • the polyvinylidene fluoride-based resin is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers.
  • Examples of such a copolymer include a copolymer of vinylidene fluoride and at least one selected from vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, and ethylene trifluoride chloride.
  • monomers such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired.
  • Solvents applicable to polyvinylidene fluoride resins include, for example, good solvents such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, and trimethyl phosphate, or A poor solvent such as cyclohexane, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate can be used.
  • a membrane-forming stock solution is prepared by dissolving these materials in a solvent, and a hollow fiber membrane is formed by non-solvent phase separation method, thermally induced phase separation method, etc. Can do.
  • FIG. 1 shows a front view of a stretching roll as an example of the stretching roll.
  • FIG. 2 (a) shows a schematic cross-sectional view of the stretching roll at the position of the dashed line in FIG.
  • FIG. 2B shows a schematic cross-sectional view of another embodiment of the stretching roll in FIG.
  • Stretching rolls 10, 7, and 9 have grooves 8 that are continuous in the circumferential direction on the radially outer surface. Opposing wall surfaces are arranged, and a gap therebetween becomes a groove.
  • the drawing roll 10 may have any structure of the drawing rolls 7 and 9, for example.
  • the drawing rolls 7 and 9 are adapted to come into contact with the hollow fiber at the wall surface (side surface) of the groove.
  • a dotted line indicates the position of the hollow fiber.
  • the distance between the wall surfaces of the groove converges while decreasing gradually toward the inside in the radial direction. More specifically, the distance between the wall surfaces of the grooves is larger than the outer diameter of the hollow fiber at the outermost portion (opening portion) in the radial direction of the drawing roll and smaller than the outer diameter of the hollow fiber at the innermost portion (bottom surface). Yes. Thereby, the drawing roll can come into contact with the hollow fiber at both wall surfaces between the innermost part and the outermost part. In particular, in this embodiment, the distance increases monotonously toward the outer side in the radial direction.
  • the hollow fiber spun in the spinning process is not a completely homogeneous material, and its shape and outer diameter change not a little over time. Since the flat roll is in contact with the hollow fiber at only one point, it must be wound around the roll in order to obtain the frictional force (cohesive force) necessary for drawing, and as a result, compressive force is generated in the hollow fiber during drawing. Sometimes the thread is easily crushed by concentrating on one support point.
  • the both wall surfaces of the groove come into contact with the hollow fiber, so that the drawing roll comes into contact with the hollow fiber at two points, and the compressive force applied to the yarn is dispersed at two support points. Can be made. Further, even if the contact position of the yarn (outer diameter) moves, the outer peripheral speed of the yarn changes, and the yarn tension is balanced. As a result, the holding angle in contact with the hollow fiber can be reduced, and a sufficient frictional force can be obtained even if the yarn has a linear trajectory. Further, since the frictional force can be obtained in this way, even if the yarn has a linear trajectory, the yarn can be drawn without requiring another member for pressing the yarn from above the drawing roller.
  • the facing angle ( ⁇ ) of the groove wall surface is preferably 5 ° or more and 90 ° or less, and is preferably 5 ° or more and 80 ° or less, because it increases the gripping force between the support points when contacting the hollow fiber. More preferably.
  • the facing angle ( ⁇ ) refers to a diagonal angle formed by straight portions of both wall surfaces.
  • the distance between the wall surfaces (groove width) or the facing angle ( ⁇ ) is different between the plurality of stretching rolls.
  • the shape of the groove is not particularly limited as long as the hollow fibers are in contact with each other on the wall surfaces facing each other in the groove as described above.
  • the opening width and depth of the groove are applied in the range of 1.5 to 20 times the hollow fiber outer diameter.
  • Examples include a mode in which a groove having a V-shaped cross section is formed in the circumferential direction as in the stretching roll 9 shown in 2 (b).
  • the material of the drawing roll can be appropriately selected from, for example, a metal material, a ceramic material, a plastics material, a rubber material (rubber elastic material), and the like.
  • the rubber elastic material is preferable because the elastic polymer material is deformed by the tensile stress at the time of stretching, and the contact surface with the hollow fiber is increased. As a result, the adhesion force (friction force) is increased.
  • the rubber elastic material has an effect of increasing the contact surface with the hollow fiber and, as a result, increases the adhesion force (frictional force). Therefore, the rubber elastic material is formed on at least the surface of the groove of the drawing roll, particularly on the yarn. It is sufficient to have it in the place where it touches.
  • the rubber elastic material a material having a static shear elastic modulus, which is one of the indices of elastic modulus, of 0.05 MPa to 0.6 MPa is preferable. It is preferable for the elastic modulus to be within the above-mentioned range since the deformation of the hollow fiber that comes into contact by elastic deformation is small. Among them, it has solvent resistance against the solvent contained in the hollow fiber, for example, using rubber elastic resin such as silicon rubber, urethane rubber, isobrene rubber, styrene butadiene rubber, butadiene rubber, ethylene propylene rubber, polysulfide rubber, etc. preferable.
  • rubber elastic resin such as silicon rubber, urethane rubber, isobrene rubber, styrene butadiene rubber, butadiene rubber, ethylene propylene rubber, polysulfide rubber, etc. preferable.
  • the wall surface of the groove of the drawing roll is preferably surface-treated in order to increase the contact resistance with the hollow fiber.
  • a satin finish is suitable for a metal material having high hardness.
  • the satin treatment is performed by blasting (spraying) abrasive grains such as aluminum oxide, dry cinnabar, and glass beads on the roll surface.
  • the surface of the drawing roll (groove wall surface) is processed so that the roughness index Ra (arithmetic mean roughness of 10 points) is 2 ⁇ m or more and 300 ⁇ m or less, and Rz (maximum height) is 3 ⁇ m or more and 400 ⁇ m or less. It is preferred that
  • Ra and Rz JIS B 0601-2001
  • a stylus type surface roughness meter for example.
  • stretching roll, and the surface structure by surface treatment can be made into arbitrary combinations instead of a specific combination.
  • the drawing roll 7 shown in FIG. 2 (a) is made of metal, provided with a groove having a round V-shaped cross section in the circumferential direction, and the surface of the groove is subjected to a matte finish.
  • stretching roll 9 shown in FIG.2 (b) is a rubber roll, and the groove
  • This invention also provides the extending
  • the drawing apparatus of the present invention is disposed in the hollow fiber conveyance path, and includes the above-mentioned drawing-side drawing roll and the drawing-side drawing roll.
  • the delivery-side drawing roll and the drawing-side drawing roll are arranged so that the wall surfaces facing each other in the groove of each drawing roll are in contact with the hollow fiber.
  • FIG. 3 shows an example of a stretching apparatus.
  • the drawing-side drawing rolls 1, 2, 3 and the drawing-side drawing rolls 4, 5, 6 having grooves provided in the circumferential direction are arranged in the conveyance path of the hollow fiber 11. Then, the drawing-side drawing rolls 1, 2, and 3 and the drawing-side drawing rolls 4, 5, and 6 are arranged such that the wall surfaces facing each other in the groove of each drawing roll are in contact with the hollow fiber.
  • the stretching apparatus of this embodiment includes a feed driving device that rotates the stretching rolls 1, 2, and 3 on the delivery side, and a rotational speed of the stretching rolls 4, 5, and 6 on the withdrawal side. And a drawer-side drive device that rotates the drawer-side stretching rolls 4, 5, and 6 so as to be higher than the rotational speeds of 1, 2, and 3.
  • the stretching zone 12 is located between the drawing-side stretching roll and the drawing-side stretching roll.
  • the drawing-side drawing rolls 1, 2, 3 and the drawing-side drawing rolls 4, 5, 6 are arranged in a straight line in this order so that the drawing zone 12 is sandwiched between the rolls 3, 4.
  • the hollow fiber 11 is guided to a linear track from the most upstream drawing roll 1 to the most downstream drawing roll 6 so as not to wind around the drawing roll, and the drawing rolls 1, 2, 3 and the drawing roll
  • the hollow fiber in the drawing zone 12 is drawn with a difference in line speed of 4, 5, and 6.
  • a member for pressing the hollow fiber against the drawing roll is unnecessary.
  • “On a straight track” means that the hollow fibers are in contact with the drawing roll in a straight line. That is, the hollow fiber is not wound around the drawing roll, and the hollow fiber is linear at the contact portion between the drawing roll and the hollow fiber. In other words, the stretching roll is disposed at a position where the hollow fiber is linear. Therefore, when a plurality of drawing rolls are arranged in series, they are arranged so that the contact points with the hollow fiber are arranged in a straight line. In order to guide the hollow fiber to the linear track in this way, another roll is provided so that the hollow fiber is held in a straight line further upstream of the drawing-side drawing roll and further downstream of the drawing-side drawing roll. May be arranged.
  • the outer diameter size of the hollow fiber 11 before drawing is preferably 0.4 mm or more and 50 mm or less, more preferably 0.5 mm or more and 40 mm or less, considering that the diameter is reduced by drawing.
  • the hollow fiber obtained in the spinning process may be of this size, or the outer diameter size may be adjusted to this range by some process after the spinning process and before the stretching process. Within this range, it is preferable because uniform unevenness of elongation / reduction due to stretching can be reduced.
  • the stretching ratio is preferably 1.1 to 5 times, more preferably 1.3 to 4 times, still more preferably 1.5 to 3 times.
  • the draw ratio refers to the ratio of line speeds in the drawing zone (take-up speed / feeding speed).
  • the placement of the draw rolls can be optimized to balance the take-up tension of the hollow fiber.
  • the hollow fiber 11 is preferably heated. Therefore, it is preferable that the extending
  • the heating medium for heating the hollow fiber in the stretching zone 12 is preferably one or more selected from solutions such as water, polyethylene glycol, and glycerin, and gases such as steam, air, and nitrogen.
  • the stretching temperature is preferably 60 to 140 ° C., more preferably 70 to 120 ° C., and further preferably 80 to 100 ° C.
  • This vinylidene fluoride homopolymer solution was discharged from the outer orifice (outer diameter: 4.0 mm ⁇ ) of the tube-in orifice, and at the same time, an 85% by weight aqueous solution of ⁇ -butyrolactone was added to the tube (outer diameter: 1.4 mm ⁇ , From an inner diameter of 1.0 mm ⁇ ), a hollow fiber was spun into a cooling bath composed of an 85% by weight aqueous solution of ⁇ -butyrolactone at a temperature of 15 ° C. The hollow fiber thus spun out was washed with water, and then stretched by three feeding-side stretching rolls and three drawing-side stretching rolls.
  • the drawing side drawing roll and the drawing side drawing roll are arranged in a straight line, and the hollow fiber is linearized by a roll further upstream of the sending side drawing roll and a further downstream roll of the drawing side drawing roll.
  • the drawing roll was in contact with the hollow fiber on a straight track.
  • the hollow fiber was fed out at a speed of 5 m / min by a drawing roll on the feed side, and the hollow fiber was drawn out at 11 m / min by a drawing roll on the drawing side after the drawing zone, so that the draw ratio was 2.2 times.
  • the drawing roll is made of stainless steel on both the sending side and the drawing side, and is formed with a round V-shaped groove having a depth of 10 mm and an opposing angle of 20 °.
  • the groove width (opening width) at the outermost portion in the circumferential direction was 6.5 mm.
  • stretching roll was 17 micrometers, and Rz was 110 micrometers.
  • the surface roughness Ra and Rz (JIS B 0601-2001) were obtained from a roughness curve measured with a stylus type surface roughness meter.
  • the stretching zone was a 95 ° C. hot water tank.
  • the hollow fiber outer diameter before the drawing zone is 1.02 mm and the roundness is 96.2%.
  • the hollow fiber outer diameter after drawing is reduced to 0.59 mm and the roundness is 95.6%. Met.
  • Example 2 A hollow fiber is formed in the same manner as in Example 1 except that a tube-in orifice having a different diameter from that of Example 1 (orifice outer diameter: 2.1 mm ⁇ , tube outer diameter: 0.7 mm ⁇ , tube inner diameter 0.5 mm ⁇ ) is used. Was spun and washed with water. With respect to the hollow fibers thus obtained, the total holding angle (contact angle) formed by the three drawing-side drawing rolls was 270 °, the speed was 7 m / min, and the drawing-side drawing roll holding angle after the drawing zone was In the same manner, the draw ratio was 1.5 times by setting the angle to 270 ° and the speed to 10.5 m / min.
  • a silicon rubber roll having a groove depth of 10 mm, an opposing angle of 35 °, a groove width V-shaped groove at the outermost circumferential direction and having a rubber elastic modulus of 0.24 MPa is used as a drawing roll, Stretching was performed as a hot air chamber heated at 80 ° C. with air. The width (opening width) of the groove at the outermost circumferential direction of the drawing roll was 6.2 mm.
  • the number of the drawing side drawing rolls and the number of drawing side drawing rolls were three.
  • the outer diameter of the hollow fiber before the drawing zone is 1.20 mm and the roundness is 97.4%.
  • the outer diameter of the hollow fiber after drawing is reduced to 0.96 mm and the roundness is 97.0%. Met.
  • the present invention it is possible to provide a method for producing a hollow fiber membrane having a reduced roundness with a high roundness by a simple stretching method. Thereby, it is possible to provide a high-quality composite hollow fiber membrane that can be applied to water treatment fields such as purified water and industrial water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

 本発明は、簡便な延伸プロセスを用いて、中空糸潰れ(偏平化)を抑制し、縮径化された中空糸膜を得る延伸方法を提供することを目的とする。本発明は、延伸により縮径加工する中空糸膜の製造方法であって、紡糸工程を経た中空糸を溝のあるロールで延伸して縮径加工する工程を備えた中空糸膜の製造方法に関する。

Description

中空糸膜の製造方法
 本発明は、除濁などの固液分離する精密濾過、及び限外ろ過分野における中空糸膜の製造方法に関する。
 近年、河川水および地下水などの除濁並びに除菌、工業用水の清澄化などの浄水分野では、膜再生技術の物理洗浄、薬品洗浄に対応するために、耐薬品性、機械的強度、透水性などに優れた精密濾過または限外ろ過の中空糸膜が適用されている。
 特許文献1には、中空糸膜の改質のために中空糸膜を延伸することが記載されている。
 特許文献1では、従来の延伸方法として、周速度の異なる複数の延伸駆動ロールの間で延伸を行なう、ロール延伸法が記載されている。ロール延伸法では、ロールの駆動力を摩擦力(凝着力)で中空糸に伝達するために、駆動ロールに中空糸を巻き付ける抱き角度(接触角度)を設定することで、摩擦力不足による糸滑りを抑制している。
 しかし、中空糸はロールに接する曲面で曲げ応力(圧縮力)をうけて偏平化(外形変形)することがある。中空糸膜の偏平化は、外圧濾過で使用する際には、耐圧性の低下、透過水の流動抵抗の増加など特性低下につながる。また、ロール延伸法により延伸された中空糸を支持層として、コーティングによりコート層を形成する場合、コート層が形成できず、コーティング斑などの構造欠点が発生することがある。
 このような中空糸のロール曲面に起因する中空糸の偏平化を抑制するために、特許文献1には、中空糸を対面する弾性体ベルトに挟んで延伸するベルト方式が開示されている。
日本国特許第3928927号公報
 しかしながら、特許文献1の技術でも、対面する上下の弾性ベルト間で中空糸を挟むので、中空糸が潰れて偏平化するおそれがある。
 そこで本発明は、簡素な延伸プロセスを用いて、中空糸潰れ(偏平化)を抑制し、縮径化された中空糸膜を得る延伸方法を提供することを目的とする。
 上記の目的を達成するために、本発明は以下の中空糸膜の製造方法および延伸装置を提供する。
(1)中空糸を形成する紡糸工程と、円周方向に設けられた溝を備える延伸ロールによって延伸する延伸工程とを備え、前記延伸ロールは、前記中空糸と、前記溝において互いに対向する壁面で接触するようになっている中空糸膜の製造方法。
(2)前記溝の壁面間の距離は、前記延伸ロールの径方向における最外部では中空糸の外径よりも大きく、最内部では前記中空糸の外径より小さくなっている、前記(1)に記載の中空糸膜の製造方法。
(3)前記溝において、互いに対向する壁面が成す角度は、5°以上90°以下である、前記(1)または(2)に記載の中空糸膜の製造方法。
(4)前記延伸ロールの前記溝は、表面が梨地処理されている、前記(1)~(3)のいずれか1項に記載の中空糸膜の製造方法。
(5)前記延伸ロールの前記溝の少なくとも表面にゴム弾性材を有する、前記(1)~(4)のいずれか1項に記載の中空糸膜の製造方法。
(6)中空糸の搬送経路に配置され、円周方向に設けられた溝を有する送り出し側の延伸ロールと引き出し側の延伸ロールと、を備え、
 前記送り出し側の延伸ロールと前記引き出し側の延伸ロールとが、前記溝において互いに対向する壁面が中空糸に接触するように配置される
延伸装置。
 本発明によれば、中空糸の偏平化を抑制する延伸により、高真円度の縮径化した中空糸膜を得ることができる。
図1は、本発明の実施の一形態に係る延伸ロールの一実施様態を示す正面図である。 図2(a)および図2(b)は、延伸ロールの概略断面図である。 図3は、本発明に係わる延伸工程の一実施様態を示す概略フロー図である。
[中空糸膜の製造方法]
 本発明は、紡糸工程と延伸工程とを有する中空糸膜の製造方法を提供する。上記各工程について以下に詳細に説明をする。
 1.紡糸工程
 中空糸を形成する紡糸工程は、具体的な手法に限定されるものではなく、後述の延伸工程を経て、分離膜として利用できる中空糸が得られる工程であればよい。例えば、従来の中空糸膜の製造に用いられる紡糸方法が好ましく適用される。このような紡糸方法としては、溶液紡糸および溶融紡糸が挙げられる。溶液紡糸は、原料を溶剤に溶かして原液を得て、この原液を口金から吐出することで繊維を得る方法である。溶液紡糸は、乾式紡糸および湿式紡糸を含む。溶融紡糸は、熱で溶融さえた原料を口金から吐出し、冷却することで凝固させて繊維を得る方法である。
 例えば、中空糸の材料である樹脂としては、鎖状高分子からなる熱可塑性樹脂が用いられる。例えばポリエチレン、ポリプロピレン、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、変成ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリフッ化ビニリデン、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、およびこれらの混合物や共重合体が挙げられる。中でも耐薬品性、機械的強度の高いポリフッ化ビニリデン系樹脂が好適に用いられる。
 ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂を意味し、複数の種類のフッ化ビニリデン共重合体を含有しても構わない。ポリフッ化ビニリデン系樹脂は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーなどとの共重合体である。
 係る共重合体としては、例えば、フッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンの共重合体が挙げられる。また本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていてもよい。
 ポリフッ化ビニリデン系樹脂に適用できる溶媒としては、例えば、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチルなどの良溶媒、或いはシクロヘキサン、イソホロン、γ-ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテートなどの貧溶媒が適用できる。
 これらの材料を溶媒に溶解させることで製膜原液を作製し、これを口金から凝固浴に吐出することで、非溶媒相分離法、熱誘起相分離法などにより、中空糸膜を形成することができる。
 2.延伸工程
 本工程では、紡糸された中空糸を、円周方向に設けられた溝を備える延伸ロールによって延伸する。
 図1に延伸ロールの一例として延伸ロールの正面図を示す。図1の一点鎖線の位置における延伸ロールの概略断面図を図2(a)に示す。図2(b)に、別の形態の延伸ロールの概略断面図を図2(a)に示す。
 延伸ロール10、7、9は、径方向外側の面に、円周方向に連続する溝8を有する。対向する壁面が配置されており、その間の隙間が溝となる。延伸ロール10は、例えば、延伸ロール7、9のいずれの構造を有してもよい。
 延伸ロール7、9は、溝の壁面(側面)で中空糸に接触するようになっている。点線で、中空糸の位置を示す。このような構造のロールによって延伸することで、中空糸を扁平化させずに、延伸することが可能となる。
 具体的には、溝の壁面間の距離(溝幅)は、径方向の内側に向かって逓減しながら収束する。より詳細には、溝の壁面間の距離は、延伸ロールの径方向における最外部(開口部)では中空糸の外径よりも大きく、最内部(底面)で中空糸の外径より小さくなっている。これによって、延伸ロールは、最内部と最外部との間の両壁面で、中空糸に接することができる。特に本形態では、その距離は、径方向外側に向かうほど単調に増加する。
 紡糸工程で紡糸した中空糸は、完全な均質材料とはいえず、経時的に形状や外径が少なからず変動する。平らなロールは中空糸に1点のみで接するので、延伸に必要な摩擦力(凝集力)を得るためにはロールに巻き付けなければならず、その結果、延伸時に中空糸に圧縮力が発生したとき1箇所の支持点に集中して糸が潰れ易くなる。
 一方、本形態の延伸ロールによれば、溝の両壁面が中空糸に接することで、延伸ロールが2点で中空糸に接することになり、糸に加わる圧縮力を2箇所の支持点で分散させることができる。また糸(外径)の接地位置が移動しても糸の外周速度が変化して、糸張力が均衡化する方向に働く。これにより中空糸に接する抱き角度を減じることができ、糸が直線的な軌道を描いていても、十分な摩擦力を得ることができる。また、このように摩擦力を得ることができるので、糸が直線的な軌道を描いていても、延伸ローラの上から糸を押さえる別の部材を必要とすることなく延伸することができる。
 また、溝壁面の対向角度(θ)は、中空糸に接した際の支持点間の把持力を高めるので、5°以上、90°以下であることが好ましく、5°以上、80°以下であることがより好ましい。対向角度(θ)は、両壁面の直線部分で形成する対角度を指す。
 また、1つのライン上に複数の延伸ロールを並べるときに、これら複数の延伸ロールの間で、壁面間の距離(溝幅)または対向角度(θ)が、互いに異なることが好ましい。これにより、ある延伸ロールに対する中空糸の接触箇所と、他の延伸ロールに対する中空糸の接触箇所とを異ならせることができる。その結果、中空糸に延伸ロールから加わる力を分散させることもでき、より中空糸を扁平化させずに延伸することが可能となる。
 溝の形状は特に限定されず、上述のように中空糸が溝において互いに対向する壁面で接触するような構造であればよい。溝の開口幅、及び深さは、中空糸外径に対して1.5倍~20倍の長さの範囲で適用される。
 具体的な溝の形状としては、例えば、図2(a)に示す延伸ロール7のように、その円周方向に底の丸いV字状の断面を有する溝が設けられている態様や、図2(b)に示す延伸ロール9にように、その円周方向にV字状の断面を有する溝が形成されている態様等が挙げられる。
 延伸ロールの材質は、例えば、金属材、セラミックス材、プラスチックス材、ゴム材(ゴム弾性材)等から適宜選択できる。中でもゴム弾性材は、延伸時の引っ張り応力により弾性高分子材が変形することで、中空糸との接触面が増加し、その結果、凝着力(摩擦力)が増加するので好ましい。なお、ゴム弾性材は、中空糸との接触面が増加し、その結果、凝着力(摩擦力)を増加させる効果を有するため、ゴム弾性材は、延伸ロールの溝の少なくとも表面に、特に糸が接するところに有していれば足りる。
 ゴム弾性材としては、弾性係数の指標の一つである静的せん断弾性係数が0.05MPa以上~0.6MPa以下のものが好ましい。前記の弾性係数範囲にあると、弾性変形により接触する中空糸の変形が小さいので好ましい。中でも中空糸が含有する溶媒などに対する耐溶剤性を兼備するもので、例えばシリコンゴム、ウレタンゴム、イソブレンゴム、スチレンブタジエンゴム、ブタジエンゴム、エチレンプロピレンゴム、多硫化ゴムなどのゴム弾性樹脂を用いることが好ましい。なお、静的せん断弾性係数は、(JIS K 6254の5、低変形引張試験)によって、25%伸長応力σ25(MPa)を測定し、次式により静的せん断弾性係数を算出する
 G=1.639σ25(MPa)
 G:静的せん断弾性係数(MPa)
 延伸ロールの溝の壁面は、中空糸との接触抵抗を高めるために表面処理されていることが好ましい。例えば、硬度の高い金属材では、表面粗度を上げることが好ましく、その加工方法の一例として梨地処理などが好適である。
 梨地処理は、例えば酸化アルミニウム、乾状硅砂、ガラスビーズなどの砥粒をロール表面にブラスト(吹き付け)することで実行される。延伸ロール表面(溝壁面)は、粗さ指標であるRa(10点の算術平均粗さ)が2μm以上、300μm以下であり、Rz(最大高さ)が3μm以上、400μm以下になるように加工されることが好ましい。
 これにより紡糸工程を経た中空糸表面が溶媒などで濡れていても、ロール溝表面のミクロな凸部が直接的に中空糸表面に接触し、凝着力の低下を抑制することができるので好ましい。なお、表面粗さパラメータ指標であるRaとRz(JIS B 0601-2001)は、例えば触針式表面粗さ計で測定した粗さ曲線から求めることができる。
 なお、上述した延伸ロールの溝の形状や、延伸ロールの材質や、表面処理による表面構造は、特定の組み合わせではなく、任意の組み合わせとすることができる。
 例えば、図2(a)に示す延伸ロール7は金属製であり、その円周方向に底の丸いV字状の断面を有する溝が設けられており、溝表面が梨地処理されている。また、図2(b)に示す延伸ロール9はゴムロールであり、その円周方向にV字状の断面を有する溝が設けられている。
 製造工程中、中空糸が延伸される位置を延伸ゾーンと呼ぶ。
[延伸装置]
 本発明はまた、上記延伸工程に使用できる延伸装置を提供する。本発明の延伸装置は、中空糸の搬送経路に配置され、上記送り出し側の延伸ロールと引き出し側の延伸ロールとを備える。そして、上記送り出し側の延伸ロールと引き出し側の延伸ロールは、それぞれの延伸ロールが有する溝において互いに対向する壁面が中空糸に接触するように配置される。
 図3に、延伸装置の一例を示す。本形態では、円周方向に設けられた溝を有する、送り出し側の延伸ロール1,2,3と、引き出し側の延伸ロール4,5,6とが中空糸11の搬送経路に配置される。そして、送り出し側の延伸ロール1,2,3と、引き出し側の延伸ロール4,5,6とが、それぞれの延伸ロールが有する溝において互いに対向する壁面が中空糸に接触するように配置される。また、図示しないが、本形態の延伸装置は、送り出し側の延伸ロール1,2,3を回転させる送り出し駆動装置と、引き出し側の延伸ロール4,5,6の回転速度が送り出し側の延伸ロール1,2,3の回転速度よりも大きくなるように、引き出し側の延伸ロール4,5,6を回転させる引き出し側の駆動装置とを備える。
 図3に示すように、延伸ゾーン12は、送り出し側の延伸ロールと、引き出し側の延伸ロールとの間に位置する。具体的には、送り出し側の延伸ロール1,2,3と、引き出し側の延伸ロール4,5,6が、延伸ゾーン12をロール3,4の間に挟むように、この順に、直線上に、直列に並べられている。ここで、中空糸11は、最上流の延伸ロール1から最下流の延伸ロール6まで、延伸ロールに巻き付かないように、直線状の軌道に誘導され、延伸ロール1,2,3と延伸ロール4,5,6のライン速度の差で延伸ゾーン12にある中空糸が延伸される。上述したように、延伸ロールに中空糸を押しつける部材は不要である。延伸ゾーンを複数設けることで、延伸工程を多段で行うことができる。
 「直線軌道上で」とは、中空糸が直線状に配された状態で、延伸ロールに接することを意味する。つまり、中空糸は、延伸ロールに巻きつかず、延伸ロールと中空糸との接触部分において、中空糸は直線状になっている。言い換えると、中空糸が直線状になっている位置に、延伸ロールが配置される。よって、複数個の延伸ロールが直列に並べられる場合、それらは、中空糸との接触箇所が直線上に並ぶように配置される。中空糸をこのように直線状の軌道に誘導するには、送り出し側の延伸ロールのさらに上流と、引き出し側の延伸ロールのさらに下流とに、中空糸を直線状に保持するように他のロールを配置すればよい。
 延伸前の中空糸11の外径サイズは、延伸によって縮径することを考慮すると、0.4mm以上、50mm以下が好ましく、より好ましくは0.5mm以上、40mm以下である。紡糸工程で得られた中空糸がこのサイズであってもよいし、紡糸工程後、延伸工程前に何らかの工程によって外径サイズをこの範囲に調整してもよい。この範囲にあると、延伸による伸長/縮径の均質ムラを軽減できるので好ましい。
 延伸倍率としては、好ましくは1.1~5倍、より好ましくは1.3~4倍、さらに好ましくは1.5~3倍である。ここで延伸倍(数)とは、延伸ゾーンにおけるライン速度の比(引取速度/供給速度)をいう。
 延伸ロールの配置は、中空糸の引取張力と均衡化するように最適化することができる。
 延伸ゾーン12では、中空糸11は加熱されることが好ましい。よって、延伸ゾーン12は、湿熱、乾熱処理できる浴槽、或いはチャンバー中に設けられることが好ましい。
 延伸ゾーン12で中空糸を加熱する熱媒としては、水、ポリエチレングリコール、グリセリンなどの溶液や、蒸気、空気、窒素など気体から選ばれる1つ以上が好ましい。
 延伸温度としては、特に限定しないが、中空糸のガラス転移温度以上で処理されると塑性加工上好ましい。ポリフッ化ビニリデン系樹脂の中空糸であれば、延伸温度は、好ましくは60~140℃、より好ましくは70~120℃、さらに好ましくは80~100℃である。60℃以上で延伸することで、均質な延伸が容易となり、140℃を以下で延伸することで、可塑性による軟化が抑制されるので、中空糸が潰れにくくなる。
 以下に本発明を実施例をもって説明するが、これにより本発明が限定されるものではない。
[中空糸の真円度の測定方法]
 デジタルマイクロスコープ(VHX-1000,KEYENCE製)を用いて、中空糸断面が観察される任意の倍率(20倍~200倍)で、中空糸断面の長径と短径の長さを計10ヵ所で測定し、短径/長径の比の結果を数平均して求めた。
 〈実施例1〉
 重量平均分子量42万のフッ化ビニリデンホモポリマー36重量%とγ-ブチロラクトン64重量%を140℃で溶解した。このフッ化ビニリデンホモポリマー溶液をチューブインオリフィスの外側オリフィス(外径:4.0mmφ)から吐出し、同時にγ-ブチロラクトン85重量%水溶液をチューブインオリフィスの内側のチューブ(外径:1.4mmφ、内径:1.0mmφ)から、γ-ブチロラクトン85重量%水溶液からなる温度15℃の冷却浴中に中空糸状に紡出させた。こうして曳き出した中空糸を水洗した後、3つの送り出し側の延伸ロールと、3つの引き出し側の延伸ロールとで延伸した。
 送り出し側の延伸ロールと引き出し側の延伸ロールとは直線上に並んでおり、送り出し側の延伸ロールのさらに上流のロールと、引き出し側の延伸ロールのさらに下流のロールとで中空糸を直線状に保持し、直線軌道上で延伸ロールと中空糸とが接するようにした。送り出し側の延伸ロールにより速度5m/分で中空糸を送り出し、延伸ゾーン後の引き出し側の延伸ロールにより11m/分で中空糸を引き出すことで、延伸倍率を2.2倍とした。
 延伸ロールは、送り出し側、引き出し側共に、ステンレス製であり、深さ10mmで対向角度20°の底の丸いV字状の溝が形成されたものである。円周方向最外部における溝の幅(開口幅)は6.5mmであった。また、各延伸ロールの溝の表面粗さRaは17μmであり、Rzは110μmであった。なお、表面粗さRaとRz(JIS B 0601-2001)は、触針式表面粗さ計で測定した粗さ曲線から求めた。
 延伸ゾーンは、95℃の熱水槽であった。
 延伸ゾーン前の中空糸外径は、1.02mmで真円度96.2%であり、延伸後の中空糸外径は、0.59mmに縮径化され、真円度は95.6%であった。
 〈実施例2〉
 実施例1とは異なる口径(オリフィス外径:2.1mmφ、チューブ外径:0.7mmφ、チューブ内径0.5mmφ)を有するチューブインオリフィスを用いた以外は実施例1と同様にして、中空糸を紡糸し、水洗した。
 こうして得られた中空糸について、送り出し側の延伸ロール3本で形成する抱き角度(接触角度)の合計を270°として速度を7m/分とし、かつ延伸ゾーン後の引き出し側の延伸ロールの抱き角度も同様に270°にして、速度を10.5m/分とすることで、延伸倍率を1.5倍とした。また溝深さ10mmで対向角度35°、円周方向最外部における溝の幅V字状の溝を有し、かつゴム弾性係数が0.24MPaであるシリコンゴムロールを延伸ロールとし、さらに延伸ゾーンを80℃の空気加熱の熱風チャンバーとして、延伸を行った。延伸ロールの円周方向最外部における溝の幅(開口幅)は6.2mmであった。送り出し側の延伸ロールおよび引き出し側の延伸ロールは実施例1と同様にそれぞれ3つとした。
 延伸ゾーン前の中空糸外径は、1.20mmで真円度97.4%であり、延伸後の中空糸外径は、0.96mmに縮径化され、真円度は97.0%であった。
 〈比較例1〉
 延伸ロールを平らな金属ロールに変更した以外は、実施例1と同様にして延伸を行った。しかしながら、引き出し側の延伸ロールで中空糸の滑りが起こり、所定の延伸で行うことが出来なかった。
 〈比較例2〉
 延伸ロールを平らなシリコンゴムロールに変更した以外は、実施例2と同様にして、延伸を行った。延伸ゾーン前の中空糸外径は、1.20mmで真円度96.5%であり、延伸後の外径は、0.91mmに縮径化されたが、真円度が68.6%で偏平化した。
 以上の結果から、中空糸と溝において互いに対向する壁面で接触するようになっている延伸ロールを使用した実施例では、真円度の高い中空糸を得ることができることがわかった。一方、平らな延伸ロールを使用した比較例では、真円度が低く偏平化してしまった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年3月31日付で出願された日本特許出願(特願2015-072325)に基づいており、その全体が引用により援用される。
 本発明によれば簡素な延伸方法で、真円度の高い縮径加工した中空糸膜を製造する方法を提供できる。これによりに浄水や工業用水などの水処理分野に適用できる高品質の複合中空糸膜を提供することができる。
 1,2,3,4,5,6,10 延伸ロール
 7 底の丸いV字状溝の金属ロール(延伸ロール)
 8 溝
 9 V字状溝のゴムロール(延伸ロール)
 11 中空糸
 12 延伸ゾーン

Claims (6)

  1.  中空糸を形成する紡糸工程と、
     円周方向に設けられた溝を備える延伸ロールによって延伸する延伸工程と
    を備え、
     前記延伸ロールは、前記中空糸と、前記溝において互いに対向する壁面で接触するようになっている
    中空糸膜の製造方法。
  2.  前記溝の壁面間の距離は、前記延伸ロールの径方向における最外部では前記中空糸の外径よりも大きく、最内部では前記中空糸の外径より小さくなっている、請求項1に記載の中空糸膜の製造方法。
  3.  前記溝において、互いに対向する壁面が成す角度は、5°以上90°以下である、請求項1または2に記載の中空糸膜の製造方法。
  4.  前記延伸ロールの前記溝は、表面が梨地処理されている、請求項1~3のいずれか1項に記載の中空糸膜の製造方法。
  5.  前記延伸ロールの前記溝の少なくとも表面にゴム弾性材を有する、請求項1~4のいずれか1項に記載の中空糸膜の製造方法。
  6.  中空糸の搬送経路に配置され、円周方向に設けられた溝を有する送り出し側の延伸ロールと引き出し側の延伸ロールと、を備え、
     前記送り出し側の延伸ロールと前記引き出し側の延伸ロールとが、前記溝において互いに対向する壁面が中空糸に接触するように配置される
    延伸装置。
PCT/JP2016/060812 2015-03-31 2016-03-31 中空糸膜の製造方法 WO2016159305A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/563,333 US20180057974A1 (en) 2015-03-31 2016-03-31 Hollow fiber membrane manufacturing method
KR1020177027415A KR20170131470A (ko) 2015-03-31 2016-03-31 중공사막의 제조 방법
JP2016571765A JP6195026B2 (ja) 2015-03-31 2016-03-31 中空糸膜の製造方法
CN201680019585.9A CN107427781A (zh) 2015-03-31 2016-03-31 中空丝膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-072325 2015-03-31
JP2015072325 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159305A1 true WO2016159305A1 (ja) 2016-10-06

Family

ID=57004397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060812 WO2016159305A1 (ja) 2015-03-31 2016-03-31 中空糸膜の製造方法

Country Status (5)

Country Link
US (1) US20180057974A1 (ja)
JP (1) JP6195026B2 (ja)
KR (1) KR20170131470A (ja)
CN (1) CN107427781A (ja)
WO (1) WO2016159305A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020026958A1 (ja) * 2018-07-30 2021-08-02 東レ株式会社 分離膜及び分離膜の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992445B1 (ko) * 2018-01-31 2019-06-25 주식회사 휴비스 폴리페닐렌 설파이드 필라멘트 섬유 제조방법 및 이에 의한 섬유
US11253819B2 (en) * 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
US12116326B2 (en) 2021-11-22 2024-10-15 Saudi Arabian Oil Company Conversion of hydrogen sulfide and carbon dioxide into hydrocarbons using non-thermal plasma and a catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210013A (ja) * 1989-02-03 1990-08-21 Unitika Ltd 乾・湿式紡糸方法
WO2000077282A1 (fr) * 1999-06-15 2000-12-21 Mitsubishi Rayon Co., Ltd. Fil acrylique utilise comme precurseur de fibre de carbone epaisse et procede de fabrication de ce film
JP2002301341A (ja) * 2001-04-09 2002-10-15 Mitsubishi Rayon Co Ltd 中空糸膜の製造方法
JP2003213538A (ja) * 2002-01-09 2003-07-30 Asahi Kasei Corp 中空糸膜の延伸方法
WO2013146795A1 (ja) * 2012-03-26 2013-10-03 三菱レイヨン株式会社 多孔質中空糸膜製造装置及び製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2179348A (en) * 1937-07-31 1939-11-07 Westinghouse Electric & Mfg Co Wire drawing machinery
US2418974A (en) * 1944-08-24 1947-04-15 Nelson R Henry Method and apparatus for forming flexible tubes
US2563039A (en) * 1947-08-01 1951-08-07 Moulton L Hudson Apparatus for the manufacture of artificial yarns
US2488272A (en) * 1948-08-06 1949-11-15 Harry E Davis Cellophane stick and method of making it
US3540848A (en) * 1967-07-12 1970-11-17 Hitco Continuous process for preparing electrically conductive carbonaceous fibers
JPS6037029B2 (ja) * 1978-01-10 1985-08-23 東洋紡績株式会社 流体分離用糸条パツケ−ジの製造法
GB2038219B (en) * 1978-12-12 1982-08-18 Marshall Richards Barcro Ltd Wire drawing method and apparatus
JPS587334A (ja) * 1981-07-04 1983-01-17 Sumitomo Electric Ind Ltd 紐状多孔質体の製造方法
DE3840602A1 (de) * 1988-12-02 1990-06-07 Neumuenster Masch App Vorrichtung zum verstrecken von thermoplastischen faeden
JP3863251B2 (ja) * 1996-05-31 2006-12-27 三菱レイヨン株式会社 中空糸膜シート状物及びその製造方法並びに中空糸膜モジュール
US7890158B2 (en) * 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
US20030016196A1 (en) * 2001-07-17 2003-01-23 Display Research Laboratories, Inc. Thin film transistors suitable for use in flat panel displays
US20040110442A1 (en) * 2002-08-30 2004-06-10 Hannong Rhim Stretchable nonwoven materials with controlled retraction force and methods of making same
US8153238B2 (en) * 2005-12-14 2012-04-10 Kimberly-Clark Worldwide, Inc. Stretch bonded laminate including an elastic member containing an adhesive composition
CN101961609B (zh) * 2010-10-15 2013-02-06 浙江理工大学 一种聚四氟乙烯中空纤维拉伸装置
JP6048180B2 (ja) * 2013-02-01 2016-12-21 三菱レイヨン株式会社 多孔質膜の製造方法および製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210013A (ja) * 1989-02-03 1990-08-21 Unitika Ltd 乾・湿式紡糸方法
WO2000077282A1 (fr) * 1999-06-15 2000-12-21 Mitsubishi Rayon Co., Ltd. Fil acrylique utilise comme precurseur de fibre de carbone epaisse et procede de fabrication de ce film
JP2002301341A (ja) * 2001-04-09 2002-10-15 Mitsubishi Rayon Co Ltd 中空糸膜の製造方法
JP2003213538A (ja) * 2002-01-09 2003-07-30 Asahi Kasei Corp 中空糸膜の延伸方法
WO2013146795A1 (ja) * 2012-03-26 2013-10-03 三菱レイヨン株式会社 多孔質中空糸膜製造装置及び製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020026958A1 (ja) * 2018-07-30 2021-08-02 東レ株式会社 分離膜及び分離膜の製造方法
JP7396044B2 (ja) 2018-07-30 2023-12-12 東レ株式会社 分離膜及び分離膜の製造方法

Also Published As

Publication number Publication date
US20180057974A1 (en) 2018-03-01
KR20170131470A (ko) 2017-11-29
JP6195026B2 (ja) 2017-09-13
CN107427781A (zh) 2017-12-01
JPWO2016159305A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6195026B2 (ja) 中空糸膜の製造方法
US20180036930A1 (en) Method of producing microporous plastic film
EP3260266B1 (en) Method for producing microporous plastic film
US20180065289A1 (en) Method of producing microporous plastic film
KR20130098275A (ko) 편광 필름의 제조 방법
WO2016132809A1 (ja) 微多孔プラスチックフィルムの製造方法
EP3260271B1 (en) Method for producing microporous plastic film
JPH07118916A (ja) テトラフルオロエチレンを基剤とする熱可塑性重合体のマルチフィラメント糸、およびそれから得られる繊維
JP2012200635A (ja) 複合中空糸膜の製造方法
WO2013146795A1 (ja) 多孔質中空糸膜製造装置及び製造方法
JP4992501B2 (ja) アクリル系繊維束の製造方法
EP3248923B1 (en) Roller and method for producing thermoplastic resin film roll
JP2018076612A (ja) 炭素繊維前駆体繊維束および炭素繊維束の製造方法
JP3928927B2 (ja) 中空糸膜の延伸方法
CN107297155B (zh) 超高强度聚丙烯中空纤维膜的制备方法
JP2006153983A (ja) 光学フィルムの製造方法及び光学フィルム
KR20180039151A (ko) 폴리비닐알코올 필름 롤
RU2178815C2 (ru) Способ получения акрильных нитей и жгутиков
JPH11179799A (ja) ポリオレフィンシートの多段延伸方法
JP4624580B2 (ja) 繊維状成形物の加熱延伸方法
KR101596037B1 (ko) 복합 중공사막 및 그 제조방법
JPH10225987A (ja) 樹脂管状体の製造方法
JPWO2019188236A1 (ja) アクリロニトリル系繊維束の製造方法および炭素繊維束の製造方法
JP2001181928A (ja) ポリオキシメチレンフィラメントの製造方法
JP2018095992A (ja) 炭素繊維前駆体繊維の製造方法、および炭素繊維の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571765

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177027415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15563333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773185

Country of ref document: EP

Kind code of ref document: A1