WO2016159140A1 - 多層構造体、真空包装袋および真空断熱体 - Google Patents

多層構造体、真空包装袋および真空断熱体 Download PDF

Info

Publication number
WO2016159140A1
WO2016159140A1 PCT/JP2016/060493 JP2016060493W WO2016159140A1 WO 2016159140 A1 WO2016159140 A1 WO 2016159140A1 JP 2016060493 W JP2016060493 W JP 2016060493W WO 2016159140 A1 WO2016159140 A1 WO 2016159140A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
multilayer structure
packaging bag
vacuum
Prior art date
Application number
PCT/JP2016/060493
Other languages
English (en)
French (fr)
Inventor
中谷 正和
直樹 片岡
吉田 直樹
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017510139A priority Critical patent/JP6788576B2/ja
Publication of WO2016159140A1 publication Critical patent/WO2016159140A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present invention comprises a multilayer structure having excellent barrier properties, a vacuum packaging bag containing the multilayer structure, and a core material disposed inside the vacuum packaging bag and the vacuum packaging bag,
  • the inside relates to a vacuum insulator whose pressure is reduced.
  • a heat insulator made of urethane foam (polyurethane foam) is used as a heat insulating material for a refrigerator, a heat insulating panel for a house, and the like.
  • vacuum insulators have also been used as an alternative insulator.
  • the vacuum insulator makes it possible to achieve a heat insulation characteristic equivalent to that of a heat insulator made of urethane foam with a thinner and lighter heat insulator.
  • Vacuum insulators are expanding their applications and demands as insulators used to insulate heat transfer devices such as heat pump applied devices, heat storage devices, living spaces, vehicle interior spaces, and the like.
  • Patent Document 1 discloses a coating containing a vapor deposition film on one side of a polyethylene vinyl alcohol copolymer film, and an inorganic substance in polyvinyl alcohol so as to be adjacent to the vapor deposition film.
  • a film having a layer is described
  • Patent Document 2 discloses an intermediate formed by applying a vapor-deposited thin film layer and a coating agent containing a water-soluble polymer to one side of a base material made of a plastic material, and drying by heating.
  • a laminated body in which a layer and a vapor-deposited thin film layer are sequentially laminated is described.
  • Patent Document 3 discloses a gas barrier laminate including a base material and a gas barrier layer laminated on at least one surface of the base material, wherein the gas barrier layer has a functional group selected from a carboxyl group and a carboxylic acid anhydride group.
  • a gas barrier laminate comprising a composition containing a polymer to be contained, wherein at least a part of —COO— group contained in a functional group is neutralized with a divalent or higher metal ion.
  • Patent Document 4 describes a multilayer structure in which a base material includes a layer containing aluminum atoms and a layer containing a polymer containing vinylphosphonic acids.
  • the vacuum packaging bag using the conventional film described above has a certain improvement effect in the barrier property, it may not be sufficient as the heat insulating performance of the vacuum heat insulating body.
  • the reason is that the barrier property of the aluminum vapor deposition layer itself is not sufficient, so even if it has a coating layer, the barrier property of the film may not be sufficient, and the barrier property may be reduced due to physical stress applied during the production of the vacuum insulator. Since the heat conductivity and the aluminum vapor deposition layer itself have a relatively high thermal conductivity, heat conduction through the vacuum packaging bag may occur, and the heat insulation performance may be reduced.
  • An object of the present invention is to provide a vacuum packaging bag in which the barrier property inherent to the vacuum packaging bag is maintained at a high level even under physical stress, and the vacuum packaging bag itself has low thermal conductivity, and a vacuum using the same. It is to provide a heat insulating body and a multilayer structure useful for the vacuum packaging bag.
  • the present inventors include a vapor-deposited layer made of an inorganic oxide and a specific organic polymer on at least one surface on a substrate made of a polyvinyl alcohol film.
  • the present inventors have completed the present invention by further studying based on this new knowledge.
  • the present invention provides [1] a vapor-deposited layer (Y) made of an inorganic oxide and a layer (Z) containing an organic polymer on at least one surface of a substrate (X) made of a biaxially stretched polyvinyl alcohol film.
  • the substrate (X) / the layer (Y) / the layer (Z) are stacked in this order, and the layer (Y) and the layer (Z) are adjacent to each other, and the layer (Z)
  • the surface water contact angle is 10 to 70 °
  • the stretching ratio of the base material (X) is 2.5 times to 4.5 times in the machine direction (MD direction), and 2.5 times in the transverse direction (TD direction).
  • the substrate (X) is a film made of an ethylene-vinyl alcohol copolymer having an ethylene content of 10 to 65 mol% and a saponification degree of 90 mol% or more.
  • the layer (Y) is a vapor deposition layer containing at least one inorganic oxide selected from the group consisting of aluminum oxide and silicon oxide.
  • the organic polymer contained in the layer (Z) has at least one functional group selected from the group consisting of a functional group containing a hydroxyl group, a carboxylic acid group, and a phosphorus atom. Any one multilayer structure, [5] The layer (Z) contains a hydrolysis condensate of at least one compound (L) containing a metal atom to which at least one group selected from a halogen atom and an alkoxy group is bonded. [1] to [4] Any one multilayer structure, [6] Oxygen permeability under conditions of 40 ° C.
  • the present invention relates to a vacuum heat insulating body comprising the vacuum packaging bag according to [8] and a core member disposed inside the vacuum packaging bag, the inside of which is decompressed.
  • the multilayer structure of the present invention maintains a high level of barrier properties inherent to the multilayer structure even when subjected to physical stress, and the multilayer structure itself has low thermal conductivity. Therefore, the vacuum packaging bag including the multilayer structure of the present invention maintains a high level of barrier properties inherent to the vacuum packaging bag even when subjected to physical stress, and the vacuum packaging bag itself has low thermal conductivity. Therefore, according to the present invention, the vacuum heat insulating body formed by sealing the inside of the vacuum packaging bag under reduced pressure can maintain excellent heat insulating performance for a long period of time.
  • the meaning of “lamination of a specific layer on a specific member (substrate, layer, etc.)” means that the specific layer is in contact with the member.
  • the case where the specific layer is laminated above the member with another layer interposed therebetween is included.
  • a specific layer is formed on a specific member (base material, layer, etc.)” and “a specific layer is arranged on a specific member (base material, layer, etc.)”.
  • the meaning of “application of a liquid (coating liquid, etc.) on a specific member (base material, layer, etc.)” means that the liquid is directly applied to the member.
  • the case where the liquid is applied to another layer formed on the member is included.
  • gas barrier property means the ability to barrier gas other than water vapor unless otherwise specified. Further, in this specification, when “barrier property” is simply described, it means both a gas barrier property and a water vapor barrier property.
  • a vapor deposition layer (Y) made of an inorganic oxide and a layer (Z) containing an organic polymer are formed on at least one surface of a base material (X) made of a biaxially stretched polyvinyl alcohol film.
  • the substrate (X) / the layer (Y) / the layer (Z) are stacked in this order, and the layer (Y) and the layer (Z) are adjacent to each other, and the layer (Z)
  • the surface water contact angle is 10 to 70 °, and the stretching ratio of the base material (X) is 2.5 times to 4.5 times in the machine direction (MD direction), and 2.5 times in the transverse direction (TD direction).
  • a vacuum packaging bag and a vacuum heat insulating material produced using such a multilayer structure can maintain good gas barrier performance and low heat conduction performance over a long period of time.
  • the water contact angle on the surface of the layer (Z) is in a certain range among the constituent requirements of the multilayer structure of the present invention, and the base material. It is important that the draw ratio and the surface draw ratio of (X) are in a certain range.
  • the base material (X), the layer (Y) and / or the layer (Z) in the multilayer structure may be two or more layers.
  • the multilayer structure of the present invention exhibits excellent gas barrier properties by having a base material (X) made of a biaxially stretched polyvinyl alcohol film.
  • a polyvinyl alcohol-based resin any resin having a vinyl alcohol unit obtained by saponifying a vinyl ester unit may be used.
  • Polymer (hereinafter sometimes abbreviated as EVOH) resin examples of the PVA resin include a PVA resin obtained by homopolymerizing vinyl acetate and saponifying it, and a modified PVA resin obtained by modifying it. Such modified PVA may be copolymerized or post-modified. These resins will be described below.
  • such polyvinyl alcohol-type resin can also be used individually, respectively, and 2 or more types can also be mixed and used for it.
  • PVA examples include PVA and modified PVA as described above.
  • PVA is produced by homopolymerizing vinyl acetate and further saponifying it.
  • the modified PVA is produced, for example, by saponification after copolymerizing an unsaturated monomer copolymerizable with vinyl acetate and vinyl acetate, and the amount of modification is usually less than 10 mol%. is there.
  • Examples of the unsaturated monomer copolymerizable with vinyl acetate include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, 3-buten-1-ol, and 4-pentyne.
  • Hydroxyl group-containing ⁇ -olefins such as -1-ol and 5-hexen-1-ol and derivatives thereof, such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, undecylenic acid
  • Unsaturated acids such as salts, monoesters or dialkyl esters, nitriles such as acrylonitrile and methacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid Olefin sulfonic acids such as Or its salts, alkyl vinyl ethers, dimethylallyl vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4-vinyl-1,3-dioquinrane, glycerin monoallyl ether
  • the modified PVA can be produced by post-modifying PVA.
  • post-modification methods include a method of converting PVA into acetoacetate ester, acetalization, urethanization, etherification, grafting, phosphoric esterification, and oxyalkylene.
  • the polymerization degree of the PVA is preferably 1,100 or more and the saponification degree is 90 mol% or more.
  • the polymerization degree of PVA is more preferably 1,100 to 4,000, and further preferably 1,200 to 2,600. If the degree of polymerization is too low, the mechanical strength of the resulting vacuum packaging bag tends to decrease. On the other hand, if the degree of polymerization is too high, the workability during film formation and stretching tends to decrease.
  • the degree of saponification of PVA is more preferably 95 to 100 mol%, further preferably 99 to 100 mol%. If the degree of saponification is too low, the water resistance is lowered, and the gas barrier property is easily affected by humidity, which is not preferable.
  • EVOH is usually obtained by saponifying a copolymer of 10 to 60 mol% of ethylene and vinyl ester, and vinyl acetate is a typical example of such vinyl ester.
  • Fatty acid vinyl esters (such as vinyl propionate and vinyl pivalate) can also be used.
  • the EVOH may contain 0.0002 to 0.2 mol% of a vinylsilane compound as a copolymerization component in order to improve stability during heating and melting.
  • a vinylsilane compound examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxy-ethoxy) silane, and ⁇ -methacryloxypropylmethoxysilane. Of these, vinyltrimethoxysilane and vinyltriethoxysilane are preferably used.
  • copolymerizable monomers such as propylene, butylene; unsaturated (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, etc., as long as the object of the present invention is not inhibited.
  • Carboxylic acid or its ester; vinylpyrrolidone such as N-vinylpyrrolidone can also be copolymerized.
  • the ethylene content of EVOH is preferably 10 to 65 mol% from the viewpoint of achieving good stretchability, more preferably 15 to 55 mol%, and even more preferably 20 to 50 mol%. . If the ethylene content is less than 10 mol%, the melt moldability tends to deteriorate, whereas if it exceeds 65 mol%, the gas barrier property may be insufficient.
  • the ethylene content of EVOH can be determined by a nuclear magnetic resonance (NMR) method.
  • the saponification degree of EVOH is preferably 90 mol% or more, more preferably 95 mol% or more, and further preferably 99 mol% or more.
  • the degree of saponification is less than 90 mol%, the gas barrier property under high humidity tends to decrease.
  • the upper limit of the saponification degree of EVOH is preferably 100 mol%, more preferably 99.99 mol%.
  • EVOH resin contains the mixture of 2 or more types of different EVOH, let each ethylene content or saponification degree calculated from mixing
  • the EVOH resin used in the present invention preferably contains various additives such as acids and metal salts from the viewpoint of thermal stability and viscosity adjustment.
  • additives such as acids and metal salts from the viewpoint of thermal stability and viscosity adjustment.
  • the additive include alkali metal salts, carboxylic acids and / or salts thereof, phosphoric acid compounds and boron compounds.
  • a film formed using the polyvinyl alcohol-based resin can be used as the substrate (X) used in the present invention.
  • a film forming method may be a known one, and is not particularly limited.
  • a casting type forming method in which a solution of a polyvinyl alcohol-based resin is cast on a metal surface such as a drum or an endless belt, or an extrusion method is used.
  • the film is formed by a melt molding method in which it is melt extruded by a machine.
  • Such a polyvinyl alcohol-based resin film has a stretching ratio of 2.5 times to 4.5 times in the machine direction (MD direction) and 2.5 times to 4 times in the transverse direction (TD direction) from the viewpoint of dimensional stability and gas barrier properties.
  • a biaxially stretched film having a surface draw ratio of 5 times or less and 7 times or more and 15 times or less is used, it is a biaxially stretched film in which the draw ratio and the face draw ratio are in the above range from the viewpoint of low thermal conductivity. This is very important.
  • the stretching ratio is 2.5 to 3.5 times in the longitudinal direction, 2.5 to 3.5 times in the transverse direction, and surface stretching.
  • the magnification is preferably 8 times or more and 12 times or less.
  • Such a stretching treatment method can be performed according to a known method such as simultaneous biaxial stretching or sequential biaxial stretching that is usually performed.
  • a biaxially stretched PVA resin film and a biaxially stretched EVOH resin film can be used, and a biaxially stretched EVOH resin film is preferred.
  • the thickness of the substrate (X) used in the present invention is not particularly limited, but is preferably 5 to 100 ⁇ m and more preferably 8 to 50 ⁇ m from the viewpoint of industrial productivity. More specifically, the thickness of the biaxially stretched PVA resin film is preferably 5 to 50 ⁇ m, and more preferably 8 to 30 ⁇ m. The thickness of the biaxially stretched EVOH resin film is preferably 5 to 50 ⁇ m, and more preferably 10 to 40 ⁇ m.
  • the layer (Y) contained in the multilayer structure of the present invention is a vapor deposition layer made of an inorganic oxide.
  • the layer (Y) preferably has a barrier property against oxygen gas or water vapor.
  • a layer having a light shielding property or a layer having transparency can be appropriately used.
  • the inorganic oxide vapor-deposited layer having transparency include a layer formed from an inorganic oxide such as aluminum oxide, silicon oxide, silicon oxynitride, magnesium oxide, tin oxide, or a mixture thereof. Among these, a layer formed from aluminum oxide, silicon oxide, and a mixture thereof is preferable from the viewpoint of excellent barrier properties against oxygen gas and water vapor.
  • the preferred thickness of the layer (Y) varies depending on the type of components constituting the layer (Y), but is usually in the range of 2 to 500 nm. Within this range, a thickness that improves the barrier properties and mechanical properties of the multilayer structure may be selected.
  • the thickness of the layer (Y) is less than 2 nm, the reproducibility of the barrier property expression of the inorganic oxide vapor deposition layer against oxygen gas or water vapor tends to decrease, and the inorganic oxide vapor deposition layer has sufficient barrier properties. May not be expressed.
  • the thickness of the layer (Y) exceeds 500 nm, the barrier property of the inorganic oxide vapor deposition layer tends to be lowered when the multilayer structure is pulled or bent.
  • the thickness of the inorganic oxide vapor deposition layer is more preferably in the range of 5 to 200 nm, and still more preferably in the range of 10 to 100 nm.
  • Examples of the method for forming the layer (Y) include vacuum deposition, sputtering, ion plating, and chemical vapor deposition (CVD).
  • the vacuum evaporation method is preferable from the viewpoint of productivity.
  • a heating method in performing vacuum vapor deposition any of an electron beam heating method, a resistance heating method, and an induction heating method is preferable.
  • in order to obtain an inorganic oxide vapor deposition layer you may employ
  • the layer (Z) included in the multilayer structure of the present invention contains an organic polymer, is adjacent to the layer (Y), and has a water contact angle of 10 to 70 ° on the surface of the layer (Z).
  • “adjacent” means that at least one layer (Y) and layer (Z) are directly laminated in the multilayer structure.
  • the organic polymer contained in the layer (Z) is not necessarily limited as long as it has a surface water contact angle of 10 to 70 ° when the layer is formed. It is preferable that an organic polymer having at least one functional group selected from the group consisting of functional groups containing atoms is included.
  • the organic polymer may be a mixture of two or more types of organic polymers having different functional groups.
  • Examples of the organic polymer having a hydroxyl group include polyvinyl alcohol resins exemplified as the material for the substrate (X).
  • As the organic polymer having a carboxylic acid group for example, polyacrylic acid, polymethacrylic acid, or a copolymer of acrylic acid and methacrylic acid, and a part of the carboxyl group in these polymers is a salt.
  • a polymer can be used.
  • Examples of the functional group containing a phosphorus atom include a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphonous acid group, a phosphinic acid group, a phosphinic acid group, and functional groups derived therefrom (for example, salts , (Partial) ester compounds, halides (for example, chloride), dehydrates) and the like, among which a phosphoric acid group and a phosphonic acid group are preferable, and a phosphonic acid group is more preferable.
  • a phosphoric acid group and a phosphonic acid group are preferable, and a phosphonic acid group is more preferable.
  • Examples of the polymer having a functional group containing a phosphorus atom include 6-[(2-phosphonoacetyl) oxy] hexyl acrylate, 2-phosphonooxyethyl methacrylate, phosphonomethyl methacrylate, and 11-phosphonown methacrylate.
  • Polymers of phosphono (meth) acrylic esters such as decyl and 1,1-diphosphonoethyl methacrylate; vinyl phosphonic acid, 2-propene-1-phosphonic acid, 4-vinylbenzylphosphonic acid, 4-vinylphenylphosphonic acid, etc.
  • Examples thereof include polymers of phosphonic acids, polymers of phosphinic acids such as vinylphosphinic acid and 4-vinylbenzylphosphinic acid, and phosphorylated starch.
  • the polymer may be a homopolymer of a monomer having a functional group containing at least one phosphorus atom, or may be a copolymer of two or more monomers. Further, as the polymer, two or more kinds of polymers composed of a single monomer may be mixed and used. Among these, a polymer of phosphono (meth) acrylic acid esters and a polymer of vinylphosphonic acids are preferable, and a polymer of vinylphosphonic acids is more preferable. That is, the polymer is preferably poly (vinyl phosphonic acid).
  • the polymer can also be obtained by hydrolyzing a vinylphosphonic acid derivative such as vinylphosphonic acid halide or vinylphosphonic acid ester, either alone or copolymerized.
  • the layer (Z) included in the multilayer structure of the present invention further includes a hydrolysis condensate of at least one compound (L) containing a metal atom to which at least one group selected from a halogen atom and an alkoxy group is bonded. You can leave. The case where barrier property improved by the hydrolysis condensate of a compound (L) being contained in a layer (Z) was recognized. Although the cause is not clarified, it is considered that the presence of the compound (L) has an effect of improving the adhesion between the layer (Y) and the layer (Z).
  • Compound (A) is at least one compound represented by the following chemical formula (I).
  • M 1 (OR 1) n X 1 k Z 1 m-n-k ⁇ (I)
  • M 1 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La and Represents an atom selected from Nd.
  • M 1 is preferably Si, Al, Ti, or Zr, and particularly preferably Si.
  • R 1 is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group or a t-butyl group, preferably a methyl group or an ethyl group It is a group.
  • X 1 represents a halogen atom. Examples of the halogen atom represented by X 1 include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • Z 1 represents an alkyl group substituted with a functional group having reactivity with a carboxyl group.
  • examples of the functional group having reactivity with a carboxyl group include an epoxy group, an amino group, a hydroxyl group, a halogen atom, a mercapto group, an isocyanate group, a ureido group, an oxazoline group, or a carbodiimide group.
  • An amino group, an isocyanate group, a ureido group, or a halogen atom is preferable, for example, at least one selected from an epoxy group, an amino group, and an isocyanate group.
  • Examples of the alkyl group substituted with such a functional group include those described above.
  • m is equal to the valence of the metal element M 1 .
  • n represents an integer of 0 to (m ⁇ 1).
  • k represents an integer of 0 to (m ⁇ 1), and 1 ⁇ n + k ⁇ (m ⁇ 1).
  • the compound (A) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrichlorosilane, ⁇ -aminopropyltrimethoxysilane, ⁇ - Aminopropyltriethoxysilane, ⁇ -aminopropyltrichlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -chloropropyltriethoxysilane, ⁇ -chloropropyltrichlorosilane, ⁇ -bromopropyltrimethoxysilane, ⁇ -bromopropyltriethoxysilane Silane, ⁇ -bromopropyltrichlorosilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercap
  • Preferred compounds (A) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -chloropropyltriethoxysilane, ⁇ -aminopropyltrimethoxy Examples include silane and ⁇ -aminopropyltriethoxysilane.
  • the compound (B) is at least one compound represented by the following chemical formula (II).
  • M 2 is Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La and It represents an atom selected from Nd, preferably Si, Al, Ti, or Zr, and particularly preferably Si, Al, or Ti.
  • R 2 represents an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, preferably a methyl group. Or it is an ethyl group.
  • X 2 represents a halogen atom. Examples of the halogen atom represented by X 2 include a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom is preferred.
  • R 3 represents an alkyl group, an aralkyl group, an aryl group, or an alkenyl group.
  • Examples of the alkyl group represented by R 3 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and an n-octyl group.
  • Examples of the aralkyl group represented by R 3 include a benzyl group, a phenethyl group, and a trityl group.
  • Examples of the aryl group represented by R 3 include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, and a mesityl group.
  • examples of the alkenyl group represented by R 3 include a vinyl group and an allyl group.
  • p is equal to the valence of the metal element M2.
  • q represents an integer of 0 to p.
  • r represents an integer of 0 to p, and 1 ⁇ q + r ⁇ p.
  • M 1 and M 2 may be the same or different.
  • R 1 and R 2 may be the same or different.
  • the compound (B) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, octyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, chlorotri Silicon alkoxides such as methoxysilane, chlorotriethoxysilane, dichlorodimethoxysilane, dichlorodiethoxysilane, trichloromethoxysilane, and trichloroethoxysilane; halogenated silanes such as vinyltrichlorosilane, tetrachlorosilane, and tetrabromosilane; tetramethoxytitanium, tetra Alkoxytitanium compounds such as ethoxytitanium, tetraisopropoxytit
  • the hydrolysis condensate of compound (L) preferably has a degree of condensation P defined below of 65 to 99%, more preferably 70 to 99%, and even more preferably 75 to 99%. preferable.
  • the degree of condensation P (%) in the hydrolysis condensate of compound (L) is calculated as follows.
  • i is an integer of 1 to a (including 1 and a) for each value ⁇ (i / a) ⁇ yi ⁇ And add them. That is, the degree of condensation P (%) is defined by the following mathematical formula.
  • yi The value of yi described above can be measured by solid-state NMR (DD / MAS method) or the like for the hydrolysis condensate of the compound (L) in the layer (Z).
  • the hydrolysis-condensation product is a compound (L), a compound (L) partially hydrolyzed, a compound (L) completely hydrolyzed, or a compound (L) partially hydrolyzed and condensed.
  • a compound obtained by completely hydrolyzing the compound (L) and partially condensing it, or a combination thereof can be produced by a method used in a known sol-gel method, for example. These raw materials may be produced by a known method, or commercially available ones may be used.
  • a condensate obtained by hydrolysis and condensation of about 2 to 10 molecules can be used as a raw material.
  • tetramethoxysilane hydrolyzed and condensed to obtain a linear condensate of 2 to 10 mer can be used as a raw material.
  • the number of molecules condensed in the hydrolysis condensate of the compound (L) in the composition constituting the layer (Z) depends on the amount of water used in the hydrolysis and condensation, the type and concentration of the catalyst, and the hydrolysis condensation. It can be controlled by the temperature to be performed.
  • the production method of the hydrolyzed condensate of compound (L) is not particularly limited.
  • hydrolysis and condensation are performed by adding water, an acid and an alcohol to the above-described raw material.
  • the compound (L) may be described as a metal alkoxide (a compound containing a metal to which an alkoxy group is bonded), but a compound containing a metal to which a halogen is bonded may be used instead of the metal alkoxide.
  • Compound (L) can be at least one of compound (A) and / or compound (B) as described above. It is preferable that the compound (L) contains both the compound (A) and the compound (B) because the resulting multilayer structure has good gas barrier properties.
  • the compound (L) substantially consists of both the compound (A) and the compound (B), and the molar ratio of the compound (A) / the compound (B) is 0.5 / 99.5 to 40 / More preferably, it is in the range of 60. When the compound (A) and the compound (B) are used in this ratio, the resulting multilayer structure is excellent in performance such as gas barrier properties, mechanical properties such as tensile strength and elongation, appearance, and handleability.
  • the molar ratio of compound (A) / compound (B) is more preferably in the range of 3/97 to 40/60, and still more preferably in the range of 4/96 to 30/70.
  • an organic group having at least one characteristic group selected from a halogen atom, a mercapto group, and a hydroxyl group may further be bonded to the metal atom of the compound (L).
  • the compound (L) to which such an organic group is bonded may be referred to as a compound (L ′).
  • the metal atom of the compound (L ′) for example, silicon, tin, or titanium can be used.
  • silicon atoms are sometimes classified as non-metallic elements, but are treated as metallic elements in this specification.
  • a silicon atom is preferable in that the reaction is easy to control and a stable product is obtained and is easily available.
  • An organic group having at least one characteristic group selected from a halogen atom, a mercapto group, and a hydroxyl group and at least one characteristic group selected from a halogen atom and an alkoxy group are bonded to the silicon atom. As long as the effect of the present invention is obtained, other substituents may be bonded to the silicon atom.
  • Examples of such other substituents include a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and an amino group.
  • Examples of the compound (L ′) containing a silicon atom include a compound represented by the following formula (I ′), allyl (chloropropyl) dichlorosilane, bis (chloromethyldimethylsiloxy) benzene, N- (3- And triethoxysilylpropyl) gluconamide and N- (3-triethoxysilylpropyl) -4-hydroxybutyramide.
  • the compound (L ′) may include at least one compound (A ′) represented by the following chemical formula (I ′).
  • R 1 and R 4 each independently represents an alkyl group.
  • X 1 represents halogen.
  • Z 2 represents an organic group having at least one characteristic group selected from a halogen atom, a mercapto group, and a hydroxyl group.
  • s represents an integer of 0 to 3.
  • t represents an integer of 0-2.
  • u represents an integer of 0 to 3. 1 ⁇ s + u ⁇ 3. 1 ⁇ s + t + u ⁇ 3.
  • R 1 and R 4 are each independently an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, preferably a methyl group or an ethyl group It is.
  • the halogen represented by X 1 include chlorine, bromine and iodine, and preferably chlorine.
  • the organic group Z 2 may be a hydrocarbon group (having about 1 to 5 carbon atoms) substituted with at least one characteristic group selected from a halogen atom, a mercapto group, an isocyanate group, a ureido group, and a hydroxyl group.
  • a chloromethyl group, a chloroethyl group, a chloropropyl group, a chloroethylmethyl group, or a chloro group thereof is changed to a bromo group, an iodine group, a fluorine group, a mercapto group, or a hydroxyl group.
  • An organic group is mentioned.
  • the organic group Z 2 is a halogen atom, and at least one characteristic group selected from a mercapto group and a hydroxyl group may be an organic group having an amide structure.
  • Specific examples of the compound (A ′) in which t is 1 or 2 in the formula (I ′) include, for example, chloromethylmethyldimethoxysilane, chloromethyldimethylmethoxysilane, 2-chloroethylmethyldimethoxysilane, 2-chloroethyl Dimethylmethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyldimethylmethoxysilane, mercaptomethylmethyldimethoxysilane, mercaptomethyldimethylmethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethyldimethylmethoxysilane, 3- Examples include mercaptopropylmethyldimethoxysilane, 3-mercaptopropyldimethylmethoxysilane, and bis (chloromethyl) methylchlorosilane.
  • methoxy group portion of these compounds is an alkoxy group or a chlorine group such as ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, t-butoxy group may be used.
  • Specific examples of the compound (A ′) in which t is 0 in the formula (I ′) include, for example, chloromethyltrimethoxysilane, 2-chloroethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 2-chloro Propyltrimethoxysilane, 4-chlorobutyltrimethoxysilane, 5-chloropentyltrimethoxysilane, 6-chlorohexyltrimethoxysilane, (dichloromethyl) dimethoxysilane, (dichloroethyl) dimethoxysilane, (dichloropropyl) dimethoxysilane , (Trichloromethyl) methoxysilane, (trichloroethyl) methoxysilane, (trichloropropyl) methoxysilane, mercaptomethyltrimethoxysilane, 2-mercaptoethyltrime
  • methoxy group portion of these compounds is an alkoxy group or a chlorine group such as ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, t-butoxy group may be used.
  • Compound (L ′) is chloromethyltrimethoxysilane, chloromethyltriethoxysilane, chloromethyltrichlorosilane, 2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 2-chloroethyltrichlorosilane, 3 -Chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-chloropropyltrichlorosilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltrichlorosilane, 2-mercaptoethyltrimethoxysilane, 2-mercapto Ethyltriethoxysilane, 2-mercaptoethyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-
  • the compound (L ′) includes chloromethyltrialkoxysilane, chloromethyltrichlorosilane, 2-chloroethyltrialkoxysilane, 2-chloroethyltrichlorosilane, 3-chloropropyltrialkoxysilane, 3-chloropropyltrialkoxysilane.
  • Particularly preferred compounds (L ′) include chloromethyltrimethoxysilane, chloromethyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxy. Examples thereof include silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
  • These compounds (L ′) may be commercially available or may be synthesized by a known method.
  • the compound (L) may further include at least one compound (B) represented by the above-described chemical formula (II) in addition to the compound (A ′).
  • R 1 and R 2 may be the same or different.
  • the molar ratio of compound (A ′) / compound (B) is in the range of 0.1 / 99.9 to 40/60. It is preferably in the range of 0.5 / 99.5 to 30/70, more preferably in the range of 1/99 to 20/80 (for example, 5/95 to 20/80).
  • the layer (Z) is a hydrolysis condensate of at least one compound (L) containing a metal atom to which at least one characteristic group selected from a halogen atom and an alkoxy group is bonded, and a carboxyl group and a carboxylic acid anhydride group. And a neutralized product of a polymer containing at least one functional group selected from: wherein at least a part of the —COO— group contained in the at least one functional group is a divalent or higher metal ion. In the case of neutralization, there were cases where the barrier properties were further improved. In this specification, the layer (Z) having such characteristics is particularly referred to as a layer (Z1). Although the cause of the further improvement of the barrier property has not been clarified, there is an effect that the layer (Z1) itself has a gas barrier property and the adhesion between the layer (Y) and the layer (Z1) is improved. This is probably because of this.
  • the layer (Z1) contains a neutralized product of a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group.
  • the content of the polymer neutralized product in the layer (Z1) is not particularly limited, and can be, for example, in the range of 25 wt% to 95 wt%.
  • the neutralized product of this polymer is a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group (hereinafter sometimes referred to as “carboxylic acid-containing polymer”). It is a polymer obtained by neutralizing at least part of one functional group with a divalent or higher metal ion.
  • the carboxylic acid-containing polymer has two or more carboxyl groups or one or more carboxylic anhydride groups in one polymer molecule.
  • a polymer containing two or more structural units having one or more carboxyl groups such as an acrylic acid unit, a methacrylic acid unit, a maleic acid unit, and an itaconic acid unit in one molecule of the polymer is used. it can.
  • the polymer containing the structural unit which has the structure of carboxylic anhydrides, such as a maleic anhydride unit and a phthalic anhydride unit can also be used.
  • carboxylic acid-containing unit (C) There may be one type of structural unit having at least one carboxyl group and / or structural unit having a structure of carboxylic anhydride (hereinafter, both may be abbreviated as carboxylic acid-containing unit (C)). Two or more types may be included.
  • the content of the carboxylic acid-containing unit (C) in the total structural unit of the carboxylic acid-containing polymer is set to 10 mol% or more, a gas barrier laminate having a good gas barrier property under high humidity can be obtained.
  • the content is more preferably 20 mol% or more, further preferably 40 mol% or more, and particularly preferably 70 mol% or more.
  • a carboxylic acid containing polymer contains both the structural unit containing 1 or more of carboxyl groups, and the structural unit which has a structure of carboxylic anhydride, both should just be the said range.
  • the structural unit other than the carboxylic acid-containing unit (C) that may be contained in the carboxylic acid-containing polymer is not particularly limited, but is a methyl acrylate unit, a methyl methacrylate unit, an ethyl acrylate unit, methacrylic acid.
  • Structural units derived from (meth) acrylates such as ethyl units, butyl acrylate units and butyl methacrylate units; structural units derived from vinyl esters such as vinyl formate units and vinyl acetate units; styrene units, One or more structural units selected from p-styrenesulfonic acid units; structural units derived from olefins such as ethylene units, propylene units, and isobutylene units.
  • the carboxylic acid-containing polymer contains two or more structural units, the carboxylic acid-containing polymer is in the form of an alternating copolymer, a random copolymer, a block copolymer, or a taper. It may be in the form of a type copolymer.
  • the carboxylic acid-containing polymer include polyacrylic acid, polymethacrylic acid, and poly (acrylic acid / methacrylic acid).
  • the carboxylic acid-containing polymer may be one kind or a mixture of two or more kinds of polymers.
  • at least one polymer selected from polyacrylic acid and polymethacrylic acid may be used.
  • Specific examples in the case of containing other structural units described above include ethylene-maleic anhydride copolymer, styrene-maleic anhydride copolymer, isobutylene-maleic anhydride alternating copolymer, ethylene-acrylic acid. And a saponified product of an ethylene-ethyl acrylate copolymer.
  • the molecular weight of the carboxylic acid-containing polymer is not particularly limited, but the number average molecular weight is 5,000 or more because the gas barrier property of the obtained gas-barrier laminate is excellent and the mechanical properties such as drop impact strength are excellent. Preferably, it is preferably 10,000 or more, and more preferably 20,000 or more.
  • the upper limit of the molecular weight of the carboxylic acid-containing polymer is not particularly limited, but is generally 1,500,000 or less.
  • the molecular weight distribution of the carboxylic acid-containing polymer is not particularly limited, but from the viewpoint of improving the surface appearance such as haze of the gas barrier laminate and the storage stability of the solution, the carboxylic acid-containing polymer.
  • the molecular weight distribution represented by the weight average molecular weight / number average molecular weight ratio is preferably in the range of 1 to 6, more preferably in the range of 1 to 5, and further preferably in the range of 1 to 4. preferable.
  • the polymer constituting the layer (Z1) is at least a part of at least one functional group selected from the carboxyl group and carboxylic anhydride group of the carboxylic acid-containing polymer (hereinafter sometimes referred to as functional group (F)). Is obtained by neutralizing with a divalent or higher metal ion. In other words, this polymer contains a carboxyl group neutralized with a divalent or higher metal ion.
  • the polymer constituting the layer (Z1) for example, 10 mol% or more (for example, 15 mol% or more) of —COO— group contained in the functional group (F) is neutralized with a divalent or higher metal ion.
  • the carboxylic anhydride group is considered to contain two —COO— groups. That is, when there are a moles of carboxyl groups and b moles of carboxylic acid anhydride groups, the total —COO— groups contained are (a + 2b) moles.
  • the proportion of the —COO— group contained in the functional group (F) is neutralized with a divalent or higher metal ion is preferably 20 mol% or more, more preferably 30 mol% or more.
  • the layer (Z1) can be used under both dry and high humidity conditions. Good gas barrier properties.
  • the degree of neutralization (ionization degree) of the functional group (F) is determined by measuring the infrared absorption spectrum of the layer (Z1) by the ATR (total reflection measurement) method, or scraping the layer (Z1) from the multilayer structure,
  • the infrared absorption spectrum can be obtained by measuring by the KBr method.
  • the ratio can be obtained from the maximum absorbance in each range, and the ionization degree of the polymer constituting the layer (Z1) in the multilayer structure can be calculated using a calibration curve prepared in advance.
  • a calibration curve can be created by measuring infrared absorption spectra for a plurality of standard samples having different degrees of neutralization.
  • the metal ion neutralizing the functional group (F) is divalent or higher.
  • the functional group (F) is not neutralized or is neutralized only by monovalent ions described later, a layer (Z1) having good gas barrier properties cannot be obtained.
  • the functional group (F) is neutralized with a small amount of monovalent ions (cations) in addition to divalent or higher metal ions, the haze of the multilayer structure is reduced and the surface appearance is reduced. It becomes good.
  • the present invention includes the case where the functional group (F) of the carboxylic acid-containing polymer is neutralized with both a divalent or higher-valent metal ion and a monovalent ion.
  • divalent or higher metal ion examples include calcium ion, magnesium ion, divalent iron ion, trivalent iron ion, zinc ion, divalent copper ion, lead ion, divalent mercury ion, barium ion, A nickel ion, a zirconium ion, an aluminum ion, a titanium ion, etc. can be mentioned.
  • at least one ion selected from calcium ions, magnesium ions, barium ions, and zinc ions may be used as the divalent or higher metal ion.
  • 0.1 to 10 mol% of the —COO— group contained in the functional group (F) (carboxyl group and / or carboxylic anhydride) of the carboxylic acid-containing polymer is a monovalent ion. It is preferable that they are summed. However, when the degree of neutralization with monovalent ions is high, the gas barrier properties of the layer (Z1) are lowered.
  • the degree of neutralization of the functional group (F) with monovalent ions is more preferably in the range of 0.5 to 5 mol%, and still more preferably in the range of 0.7 to 3 mol%.
  • monovalent ions include ammonium ions, pyridinium ions, sodium ions, potassium ions, and lithium ions, with ammonium ions being preferred.
  • the content of the inorganic component in the composition constituting the layer (Z1) is preferably in the range of 5 to 50% by weight from the viewpoint of improving the gas barrier property of the layer (Z1). This content is more preferably in the range of 10 to 45% by weight, further preferably in the range of 15 to 40% by weight, still more preferably in the range of 25 to 40% by weight.
  • the content of the inorganic component in the composition can be calculated from the weight of the raw material used when preparing the composition.
  • the weight of the metal oxide is calculated on the assumption that the product is completely hydrolyzed and partly condensed, or a combination of these is completely hydrolyzed and condensed into a metal oxide. Then, the content of the inorganic component is calculated by regarding the calculated weight of the metal oxide as the weight of the inorganic component in the composition.
  • inorganic additives such as a metal salt, a metal complex, and a metal oxide which are mentioned later, the weight of the added inorganic additive is added to the weight of an inorganic component as it is.
  • the composition formula is M 1 O (n + k) / 2 Z 1 represented by the compound m-n-k.
  • the portion of M 1 O (n + k) / 2 is a metal oxide.
  • Z 1 is regarded as an organic component without being included in the inorganic component.
  • the compound (B) represented by the chemical formula (II) is completely hydrolyzed and condensed, the composition formula becomes a compound represented by M 2 O (q + r) / 2 R 3 pqr .
  • the part of M 2 O (q + r) / 2 is a metal oxide.
  • the value obtained by multiplying the value divided by 100 by 100 is the content (%) of the inorganic component here.
  • composition constituting the layer (Z1) may be carbonate, hydrochloride, nitrate, hydrogencarbonate, sulfate, hydrogensulfate, phosphate, within a range not impairing the effects of the present invention, if desired.
  • Inorganic acid metal salts such as borate and aluminate; Organic acid metal salts such as oxalate, acetate, tartrate and stearate; Acetylacetonate metal complexes such as aluminum acetylacetonate, Titanocene Metal complexes such as cyclopentadienyl metal complexes, cyano metal complexes, etc .; layered clay compounds, crosslinking agents, polyalcohols or other polymer compounds, plasticizers, antioxidants, UV absorbers, flame retardants, etc. You may contain.
  • the composition constituting the gas barrier layer is a fine powder of a metal oxide produced by hydrolyzing and condensing the above metal alkoxide; a metal oxide prepared by hydrolyzing, condensing or burning the metal alkoxide dry.
  • a fine powder of silica; a fine silica powder prepared from water glass may be contained.
  • the surface appearance of the gas barrier laminate is improved by further adding polyalcohols to the composition constituting the layer (Z1) of the present invention. More specifically, by containing polyalcohols, cracks are hardly generated in the layer (Z1) during production of the gas barrier laminate, and a gas barrier laminate having a good surface appearance can be obtained.
  • Such polyalcohols used in the present invention are compounds having at least two hydroxyl groups in the molecule, and include from low molecular weight compounds to high molecular weight compounds.
  • polyvinyl alcohol partially saponified polyvinyl acetate, ethylene-vinyl alcohol copolymer, polyethylene glycol, polyhydroxyethyl (meth) acrylate, polysaccharides such as starch, polysaccharides derived from polysaccharides such as starch High molecular weight compounds such as derivatives.
  • the amount of the polyalcohol used is preferably such that the weight ratio of the carboxylic acid-containing polymer / polyalcohol is in the range of 10/90 to 99.5 / 0.5.
  • the weight ratio is more preferably in the range of 30/70 to 99/1, further preferably 50/50 to 99/1, and most preferably 70/30 to 98/2.
  • the method described in International Publication WO2005 / 053954 pamphlet can be used.
  • the layer (Z) is a hydrolysis condensate of at least one compound (L) containing a metal atom to which at least one group selected from a halogen atom and an alkoxy group is bonded, a vinyl alcohol polymer, and a carboxylic acid unit.
  • a polymer-containing composition comprising a polymer (C1) and a carboxylic acid unit-containing polymer (C2), wherein the carboxylic acid unit-containing polymer (C1) comprises an acrylic acid unit, an acrylate unit, a methacrylic acid unit, and It contains at least one monomer unit selected from methacrylate units in a ratio of 30 mol% or more in total, and the carboxylic acid unit-containing polymer (C2) is a maleic acid unit, a maleic acid ester unit, and maleic acid
  • the barrier property is further improved. Case to was observed.
  • the layer (Z) having such characteristics is particularly referred to as a layer (Z2).
  • a layer (Z2) the layer (Z2) itself has a gas barrier property and the adhesion between the layer (Y) and the layer (Z2) is improved. This is probably because of this.
  • the vinyl alcohol polymer contained in the layer (Z2) examples include polyvinyl alcohol resins exemplified as the material for the substrate (X).
  • the vinyl alcohol polymer used for the production of the layer (Z2) is a group derived from at least one compound (L1) containing a metal atom to which at least one group selected from a halogen atom and an alkoxy group is bonded. It is preferable to contain.
  • the compound (L1) undergoes an exchange reaction with the ester group contained in the vinyl ester polymer, and binds to the polymer.
  • the vinyl alcohol polymer includes a group derived from the compound (L1) including a metal atom to which at least one selected from a halogen atom and an alkoxy group is bonded.
  • the compound demonstrated about the compound (L) is applicable to a compound (L1), a compound (L) and a compound (L1) may be the same or different.
  • the carboxylic acid unit-containing polymer (C1) contained in the layer (Z2) is a total of at least one monomer unit selected from an acrylic acid unit, an acrylate unit, a methacrylic acid unit, and a methacrylate unit, It is contained in a proportion of mol% or more (in all monomer units). That is, the carboxylic acid unit-containing polymer (C1) is a polymer in which at least one monomer selected from acrylic acid, acrylate, methacrylic acid, and methacrylate is copolymerized at a ratio of 30 mol% or more. is there.
  • the gas barrier property of the layer (Z2) is inferior.
  • the content of the monomer unit contained in the carboxylic acid unit-containing polymer (C1) is preferably 50 mol% or more, and more preferably 70 mol% or more.
  • carboxylic acid unit-containing polymer (C1) polyacrylic acid, polymethacrylic acid, or a copolymer of acrylic acid and methacrylic acid, and a part of the carboxyl groups in these polymers are salts.
  • a polymer etc. can be used.
  • a copolymer of acrylic acid and / or methacrylic acid and one or more vinyl compounds, and a polymer in which a part of the carboxyl groups in these polymers is a salt can also be used.
  • Copolymerized vinyl compounds include (meth) acrylates such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate; vinyl oxalate and vinyl acetate
  • vinyl esters such as olefins; olefins such as styrene, p-styrene sulfonic acid, propylene, and isobutylene can be used.
  • the carboxylic acid unit-containing polymer (C2) contained in the layer (Z2) is a total of 30 mol% of at least one monomer unit selected from a maleic acid unit, a maleic acid ester unit and a maleate unit. Included in the above ratio (in all monomer units). That is, the carboxylic acid unit-containing polymer (C2) is a polymer in which at least one monomer selected from maleic acid, maleic acid ester and maleate is copolymerized in a proportion of 30 mol% or more in total. .
  • Maleic anhydride may be copolymerized instead of maleic acid. In this case, maleic anhydride becomes maleic acid in the process of forming the composition. Accordingly, in this specification, maleic anhydride units are described as being included in maleic acid units and maleate units.
  • the gas barrier property of the layer (Z2) is inferior.
  • the content of the monomer units contained in the carboxylic acid unit-containing polymer (C2) is preferably 50 mol% or more, and more preferably 70 mol% or more.
  • carboxylic acid unit-containing polymer (C2) maleic acid and / or a copolymer of maleic acid ester and one or more vinyl compounds, and a part of the carboxyl groups in these polymers are converted into salts. Can be used.
  • Examples of the vinyl compound to be copolymerized include olefins such as ethylene, propylene, isobutylene, styrene, and p-styrene sulfonic acid; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate And (meth) acrylic acid esters such as butyl methacrylate; vinyl esters such as vinyl formate and vinyl acetate.
  • the carboxylic acid unit-containing polymer (C2) it is preferable to use at least one selected from isobutylene-maleic acid copolymers and partially neutralized products of isobutylene-maleic acid copolymers.
  • the content of the metal oxide (or hydrolysis condensate of compound (L)) contained in the layer (Z2) during drying is in the range of 10 to 65% by weight. It is preferable.
  • the content is less than 10% by weight, the gas barrier property of the layer (Z2), particularly the oxygen barrier property in a high humidity atmosphere may be deteriorated.
  • this content rate exceeds 65 weight% soot, there exists a possibility that the gas barrier property of a layer (Z2) may fall and also a mechanical physical property may fall.
  • the content is more preferably in the range of 20 to 55% by weight, still more preferably in the range of 25 to 45% by weight.
  • the content of the metal oxide (or the hydrolyzed condensate of the compound (L)) in the composition is the weight of the metal oxide obtained after pyrolyzing and removing the organic component of the composition, It is determined from the weight of the composition before pyrolysis.
  • the total content of the vinyl alcohol polymer and the carboxylic acid unit-containing polymers (C1) and (C2) during drying is preferably in the range of 45 wt% to 80 wt%. More preferably, it is in the range of 55 wt% to 75 wt%.
  • the weight ratio of [carboxylic acid unit-containing polymer (C1)] / [carboxylic acid unit-containing polymer (C2)] is preferably in the range of 99/1 to 10/90.
  • the layer (Z2) having a weight ratio within this range is excellent in gas barrier properties.
  • the weight ratio of [carboxylic acid unit-containing polymer (C1)] / [carboxylic acid unit-containing polymer (C2)] is more preferably in the range of 95/5 to 20/80, and still more preferably 90/10 to The range is 30/70.
  • the weight ratio of [vinyl alcohol polymer] / [total of carboxylic acid unit-containing polymers (C 1) and (C2)] is in the range of 99.5 / 0.5 to 70/30. It is preferable that In order to maintain gas barrier properties and mechanical properties, it is important that the polymer-containing composition contains the carboxylic acid unit-containing polymers (C1) and (C2).
  • the weight ratio is preferably in the range of 99/1 to 80/20, more preferably in the range of 98/2 to 90/10.
  • the present inventors have found that the carboxylic acid unit-containing polymer (C1) is at least one selected from polyacrylic acid and a partially neutralized product of polyacrylic acid, and the carboxylic acid unit-containing polymer (C2).
  • the carboxylic acid unit-containing polymer (C2) has been found to be at least one selected from isobutylene-maleic acid copolymers and partially neutralized products of isobutylene-maleic acid copolymers.
  • the gas barrier property of the layer (Z2) is particularly excellent.
  • the weight ratio of [carboxylic acid unit-containing polymer (C1)] / [carboxylic acid unit-containing polymer (C2)] is preferably in the range of 90/10 to 30/70.
  • the gas barrier property of a layer (Z2) is excellent.
  • the weight ratio of [vinyl alcohol polymer] / [total of carboxylic acid unit-containing polymers (C1) and (C2)] is 98/2 to 90/10. It is preferable that it exists in the range.
  • the layer (Z2) for example, a method described in JP-A-2005-307042 can be used.
  • the composition forming the layer (Z) may be dispersed in a solvent such as an organic solvent to form a liquid.
  • a solvent such as an organic solvent
  • Such a composition can be used as a coating agent (coating composition) or a raw material for a film.
  • the amount of solvent is determined depending on the use of the composition.
  • the solvent for example, the solvent exemplified in the description of the method for producing the layer (Z1) and the layer (Z2) can be used.
  • the layer (Z) can also be prepared by melt molding such as extrusion coating depending on the physical properties of the composition forming the layer (Z).
  • the layer (Z) is preferably a layer formed by directly applying a coating agent to the layer (Y).
  • the water contact angle on the surface of the layer (Z) is 10 to 70 °.
  • the water contact angle can be measured by using a contact angle meter described in Examples described later.
  • the lower limit of the water contact angle is preferably 15 ° or more, more preferably 20 ° or more, and particularly preferably 30 ° or more.
  • the upper limit of the water contact angle is preferably 65 ° or less, and more preferably 60 ° or less.
  • the layer (Y) may be laminated so as to be in direct contact with the substrate (X), but is disposed between the substrate (X) and the layer (Y).
  • the layer (Y) may be laminated on the substrate (X) via the adhesive layer (H). According to this structure, the adhesiveness of a base material (X) and a layer (Y) may be able to be improved.
  • the adhesive layer (H) is disposed on the surface of the base material (X) and / or the layer (Z) of the multilayer structure, so that the film (layer) other than the multilayer structure and other than the multilayer structure It can be laminated with a member (for example, other layers such as a thermoplastic resin film layer and a paper layer).
  • a member for example, other layers such as a thermoplastic resin film layer and a paper layer.
  • the adhesive layer (H) may be formed of an adhesive resin.
  • the adhesive layer (H) made of an adhesive resin is obtained by treating the surface of the substrate (X) or the layer (Z) with a known anchor coating agent, or is known on the surface of the substrate (X) or the layer (Z). It can be formed by applying an adhesive.
  • a two-component reactive polyurethane adhesive in which a polyisocyanate component and a polyol component are mixed and reacted is preferable.
  • adhesiveness may be further improved by adding a small amount of additives such as a known silane coupling agent to the anchor coating agent or adhesive.
  • silane coupling agent examples include silane coupling agents having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group, and a mercapto group.
  • a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group, and a mercapto group.
  • the thickness of the adhesive layer (H) is preferably in the range of 0.03 to 0.18 ⁇ m. By making the thickness of the adhesive layer (H) within this range, the barrier property and the appearance are more effectively deteriorated when the vacuum packaging bag used in the vacuum heat insulating body of the present invention is manufactured or processed. In addition, the impact resistance of the vacuum heat insulating body of the present invention can be enhanced.
  • the thickness of the adhesive layer (H) is more preferably in the range of 0.04 to 0.14 ⁇ m, and further preferably in the range of 0.05 to 0.10 ⁇ m.
  • the multilayer structure of the present invention comprising the substrate (X), the layer (Y), the layer (Z) or the substrate (X), the layer (Y), the layer (Z) and the adhesive layer (H) has the multilayer structure. It can be laminated
  • a multilayer structure satisfying the following performance can be obtained.
  • (Performance 1) Oxygen permeability under conditions of 40 ° C., 0% RH (carrier gas side) / 65% RH (oxygen supply side) 65% RH is 1.0 ml / (m 2 ⁇ day ⁇ atm) or less .
  • (Performance 2) After holding for 5 minutes in a state stretched 5% in one direction under conditions of 23 ° C. and 50% RH, 40 ° C., 0% RH (carrier gas side) / 65% RH (oxygen supply side) 65
  • the oxygen permeability measured under the condition of% RH is 2.0 ml / (m 2 ⁇ day ⁇ atm) or less.
  • the vacuum packaging bag is a packaging material that is used with the inside being decompressed, and includes a film material (hereinafter sometimes referred to as a “laminate”) as a partition that separates the inside and the outside.
  • the vacuum packaging bag of the present invention comprises a substrate (X), a layer (Y), a layer (Z) or a substrate (X), a layer (Y), a layer (Z) and an adhesive layer (H). It is comprised from a multilayer structure and other members (for example, other layers, such as a thermoplastic resin film layer and a paper layer) other than this multilayer structure.
  • the vacuum packaging bag may include a plurality of the multilayer structures.
  • a vacuum packaging bag having such other members can be manufactured by bonding or forming the other members (such as other layers) directly or via an adhesive layer.
  • the characteristics of the vacuum packaging bag can be improved or new characteristics can be imparted.
  • heat sealability can be imparted to the vacuum packaging bag of the present invention, and barrier properties and mechanical properties can be further improved.
  • metal vapor deposition layers such as an aluminum vapor deposition layer, from a viewpoint that the vacuum package itself has low thermal conductivity.
  • the surface layer of the vacuum packaging bag a polyolefin layer (hereinafter sometimes abbreviated as PO layer), heat sealability is imparted to the vacuum packaging bag, or the mechanical properties of the vacuum packaging bag are improved.
  • the polyolefin is preferably polypropylene or polyethylene.
  • at least one film selected from the group consisting of a biaxially stretched polypropylene film, a polyester film, a polyamide film and a polyvinyl alcohol film is laminated. Is preferred.
  • the polyester is preferably polyethylene terephthalate (PET), the polyamide is preferably nylon-6, and the polyvinyl alcohol is preferably an ethylene-vinyl alcohol copolymer.
  • PET polyethylene terephthalate
  • the polyamide is preferably nylon-6
  • the polyvinyl alcohol is preferably an ethylene-vinyl alcohol copolymer.
  • the vacuum packaging bag used for the vacuum heat insulating body of the present invention may have, for example, the following configuration from the outer layer to the inner layer.
  • “/” indicates that two layers sandwiching “/” are directly laminated (however, the adhesive layer (H) may be interposed).
  • “//” indicates that two layers sandwiching “//” are indirectly laminated through an adhesive.
  • the structures (1), (2), (4), and (6) to (25) are particularly preferable. Further, in the above layer configurations (1), (2), (4), (6) to (21), (24), (25), transparency can be obtained. For example, the internal state is confirmed by color. It is further preferable when it is necessary to visually check the contents containing the indicating substance that can be displayed.
  • a vacuum insulation body in which the vacuum packaging bag is transparent and has an indicator substance therein is also a preferred embodiment of the present invention.
  • At least one layer of base material (X) is located closer to the core material than at least one layer (Y).
  • At least one layer (Y) is directly laminated on at least one layer of substrate (X).
  • the core material used for the vacuum heat insulating body of the present invention is not particularly limited as long as it has heat insulating properties.
  • the core material include pearlite powder, silica powder, precipitated silica powder, diatomaceous earth, calcium silicate, glass wool, rock wool, and resin foam (for example, styrene foam and urethane foam).
  • resin foam for example, styrene foam and urethane foam.
  • a hollow container made of resin or inorganic material, a honeycomb structure, or the like may be used as the core material.
  • an adsorbent that adsorbs water vapor or gas may be included in the core material.
  • the space in the vacuum packaging bag is in a vacuum state.
  • a vacuum state here does not necessarily mean an absolute vacuum state, but shows that the pressure of the space part in a vacuum packaging bag is fully lower than atmospheric pressure.
  • the internal pressure is determined based on required performance, ease of manufacture, and the like, but is usually 2 kPa (about 15 Torr) or less in order to exhibit heat insulation performance.
  • the internal pressure of the vacuum packaging bag is preferably 200 Pa (about 1.5 Torr) or less, more preferably 20 Pa or less, and 2 Pa or less. More preferably it is.
  • the lower limit of the pressure in the space in the vacuum packaging bag is not limited, but the pressure may be in the range of 0.001 Pa to 2 KPa.
  • the upper limit of the thermal conductivity one day after the creation of the vacuum heat insulator is preferably 3.0 mW / (m ⁇ K), more preferably 2.5 mW / (m ⁇ K).
  • the lower limit of the thermal conductivity one day after the preparation is preferably 1.0 mW / (m ⁇ K), more preferably 1.2 mW / (m ⁇ K). If the thermal conductivity exceeds the upper limit, the heat insulation performance of the vacuum heat insulator may be insufficient. Conversely, when the thermal conductivity is less than the lower limit, the manufacturing cost of the vacuum heat insulator may increase.
  • “thermal conductivity” is a value measured in accordance with JIS-A1412-1 (1999).
  • the vacuum heat insulator of the present invention can maintain heat insulation performance for a long time.
  • the thermal conductivity (Q) after 90 days in the measurement of the thermal conductivity of the vacuum heat insulator described later (7) is 4.8 mW / (m ⁇ K) or less, and 4.5 mW. / (M ⁇ K) or less is more preferable.
  • the thermal conductivity (Q) 90 days after the production is usually 2.0 mW / (m ⁇ K) or more.
  • the vacuum heat insulating body of the present invention can be manufactured by a usual method.
  • a vacuum heat insulator having an arbitrary shape and size can be formed according to the purpose of use.
  • the vacuum heat insulator of the present invention can be produced by the following methods 1 to 3. (Method 1) First, two multilayer structures in which a heat seal layer is disposed on at least one surface are prepared. The two multilayer structures are overlaid so that each heat seal layer is on the inside, and any three sides are heat sealed to produce a vacuum packaging bag. Next, the core material is filled into the vacuum packaging bag. Next, the space inside the vacuum packaging bag is evacuated and the last side is heat-sealed as it is. In this way, a vacuum insulator is obtained.
  • Method 2 First, a single multilayer structure is bent so that the heat seal layer is on the inside, and any two sides are heat-sealed to produce a vacuum packaging bag. Next, the core material is filled into the vacuum packaging bag. Next, the space inside the vacuum packaging bag is evacuated and the last side is heat-sealed as it is. In this way, a vacuum insulator is obtained.
  • Method 3 First, the core material is sandwiched between two multilayer structures, or the core material is sandwiched by bending the multilayer structure. Next, the peripheral edge where the multilayer structure is overlapped is heat-sealed leaving a vacuum exhaust port to produce a vacuum packaging bag in which a core material is disposed. Next, the space inside the vacuum packaging bag is evacuated, and the vacuum exhaust port is heat-sealed as it is. In this way, a vacuum insulator is obtained.
  • the vacuum heat insulating body of the present invention can be used for various applications that require cold insulation and heat insulation.
  • the vacuum heat insulator of the present invention is extremely unlikely to deteriorate over time in the heat insulation performance even when used under high temperature and high humidity, so that it is possible to achieve a sufficient lifetime as a heat insulating material, Water heater tanks, hot water toilet tanks, vending machine tanks, fuel cell tanks, car tanks, heat insulation bags for food, warm bottles and cans, washing machine drums, coffee It is also useful for all types of heat insulation applications that require heat insulation, such as tea, tea servers and jar pots.
  • Oxygen permeability (Os) of multilayer structure The oxygen transmission rate was measured using an oxygen transmission amount measuring device (“MOCON OX-TRAN 2/20” manufactured by Modern Control). Specifically, the multilayer structure is set so that the layer (Y or Z) faces the oxygen supply side and the substrate (X) faces the carrier gas side, the temperature is 40 ° C., and the humidity on the oxygen supply side is 65.
  • the oxygen permeability (unit: ml / (m 2 ⁇ day ⁇ atm)) was measured under the conditions of% RH, carrier gas side humidity of 0% RH, oxygen pressure of 1 atm, and carrier gas pressure of 1 atm. Nitrogen gas containing 2% by volume of hydrogen gas was used as the carrier gas.
  • Oxygen permeability (Of) of multilayer structure after 5% stretching and holding The produced multilayer structure was cut into a size of 21 cm ⁇ 30 cm, left for 24 hours or more under the conditions of 23 ° C. and 50% RH, and then stretched 5% in one direction corresponding to the major axis direction under the same conditions, By maintaining the stretched state for 5 minutes, a multilayer structure after stretching was obtained. About the multilayer structure after extending
  • Oxygen permeability (Og) of multilayer structure after transport test The end of the vacuum packaging bag was folded along the shape of the core material, and the obtained vacuum heat insulating body was put into a cardboard box (67 ⁇ 61 ⁇ 45 cm). A transport test was carried out in which cardboard boxes were stacked on a truck, and 10 round trips were made between Okayama Prefecture and Tokyo. A 10 ⁇ 10 cm multi-layer structure sample for measurement was cut out from the vacuum heat insulator after the transport test so that the folded corner was included, and the oxygen permeability of the sample was measured in the same manner as in (4) above.
  • Example 1 An ethylene-vinyl alcohol copolymer (EVOH) film (thickness 12 ⁇ m) biaxially stretched 3 times (MD) ⁇ 3 times (TD) was prepared as the substrate (X).
  • the ethylene content of EVOH used for the substrate (X) was 32.0 mol%, and the degree of saponification was 100%.
  • a batch type vapor deposition facility (“EWA-105” from Nippon Vacuum Engineering Co., Ltd.)
  • aluminum is melted and evaporated while oxygen is introduced, so that a layer made of aluminum oxide (Y ) was formed.
  • the layer (Z) was created by the following method. First, polyacrylic acid (PAA) having a number average molecular weight of 150,000 is dissolved in distilled water, and then ammonia water is added to neutralize 1.5 mol% of the carboxyl group of the polyacrylic acid, thereby solidifying the aqueous solution. A polyacrylic acid aqueous solution having a partial concentration of 10% by weight was obtained.
  • PAA polyacrylic acid
  • TMOS tetramethoxysilane
  • S-1 tetramethoxysilane
  • the solution (S-1) was coated with a bar coater so that the thickness after drying was 0.5 ⁇ m, and then 5 ° C. at 80 ° C. The mixture was then dried at 50 ° C. for 3 days (72 hours), and further heat-treated at 160 ° C. for 5 minutes in dry air.
  • a C O stretching vibration contained in the layer (Z) in a mode of ATR (total reflection measurement) using a Fourier transform infrared spectrophotometer (manufactured by Shimadzu Corporation, “8200PC”).
  • the peak of was observed.
  • the ratio was calculated from the maximum absorbance in each range, and the degree of ionization was determined using the ratio and a calibration curve prepared in advance by the following method. As a result, it was found that 60 mol% of the carboxyl groups were neutralized with calcium ions.
  • the infrared absorption spectrum was measured in the mode of ATR (total reflection measurement) using the Fourier-transform infrared spectrophotometer (the Shimadzu Corporation make, 8200PC). Then, two peaks corresponding to C ⁇ O stretching vibration contained in the layer made of the polyacrylic acid neutralized product, that is, a peak observed in the range of 1,600 cm ⁇ 1 to 1,850 cm ⁇ 1 , for a peak observed in the range of 500cm -1 ⁇ 1,600cm -1, and calculating the ratio of the maximum absorbance value. Then, a calibration curve was created using the calculated ratio and the ionization degree of each standard sample.
  • the obtained multilayer structure was evaluated by the methods (1) to (5) above.
  • Example 2 The base material (X) was multilayered in the same manner as in Example 1 except that an ethylene-vinyl alcohol copolymer film (thickness 15 ⁇ m) biaxially stretched 3 times (MD) ⁇ 3 times (TD) was used. A structure was prepared and evaluated in the same manner as in Example 1.
  • Example 3 As the substrate (X), an ethylene-vinyl alcohol copolymer film (thickness: 12 ⁇ m) biaxially stretched 3 times (MD) ⁇ 3 times (TD) was prepared. A layer (Y) made of silicon oxide on one side of the substrate (X) by melting and evaporating silicon oxide on the film using a batch type vapor deposition facility (“EWA-105” manufactured by Nippon Vacuum Engineering Co., Ltd.) Formed. About the obtained base material (X) / layer (Y), the multilayer structure was obtained by creating a layer (Z) by the method similar to Example 1. FIG. The evaluation was performed in the same manner as in Example 1.
  • Example 4 The base material (X) was multilayered in the same manner as in Example 3 except that an ethylene-vinyl alcohol copolymer film (thickness 15 ⁇ m) biaxially stretched 3 times (MD) ⁇ 3 times (TD) was used. A structure was prepared and evaluated in the same manner as in Example 1.
  • Example 5 A multilayer structure was prepared in the same manner as in Example 1 except that the average thickness of the layer (Y) was changed, and the evaluation was performed in the same manner as in Example 1.
  • Example 6 A multilayer structure was prepared in the same manner as in Example 3 except that the average thickness of the layer (Y) was changed, and the evaluation was performed in the same manner as in Example 1.
  • Example 7 A multilayer structure was prepared by the same method as in Example 1 except that the layer (Z) was prepared by the method shown below, and the evaluation was performed by the same method as in Example 1.
  • a polyvinyl alcohol resin PVA-110H (degree of saponification of 98 mol% or more) manufactured by Kuraray Co., Ltd. was placed in distilled water and stirred at 90 ° C. for 1 hour or more to obtain an aqueous solution (S-2).
  • the substrate (X) / layer (Y) layer (Y) is coated with the solution (S-2) by a bar coater so that the thickness after drying is 0.5 ⁇ m, and then at 100 ° C. for 3 minutes. A multilayer structure was produced by drying.
  • Example 8 A multilayer structure was prepared in the same manner as in Example 7 except that the layer (Y) was silicon oxide, and the evaluation was performed in the same manner as in Example 1.
  • Example 9 A multilayer structure was prepared by the same method as in Example 1 except that the layer (Z) was prepared by the method shown below, and the evaluation was performed by the same method as in Example 1.
  • the substrate (X) / layer (Y) layer (Y) was coated with the solution (S-3) by a bar coater so that the thickness after drying was 0.5 ⁇ m, and then at 100 ° C. for 3 minutes. A multilayer structure was produced by drying.
  • Example 10 A multilayer structure was prepared by the same method as in Example 1 except that the layer (Z) was prepared by the method shown below, and the evaluation was performed by the same method as in Example 1.
  • a methanol solution containing an ethylene-vinyl acetate copolymer having a polymerization degree of 500 (ethylene modification rate of 8 mol%) at a content of 38% by weight was prepared.
  • To 400 parts by weight of this methanol solution 13.3 parts by weight of tetramethoxysilane and 84.1 parts by weight of methanol were added and stirred for about 10 minutes so that the solution was uniform. Thereafter, the solution was sampled, and the amount of water contained in the solution was measured. And water was added so that the moisture content contained in a solution might be set to 5,000 ppm.
  • the substrate (X) / layer (Y) layer (Y) is coated with the solution (S-5) by a bar coater so that the thickness after drying is 0.5 ⁇ m, and dried at 80 ° C. for 5 minutes. After that, heat treatment was further performed at 160 ° C. for 5 minutes to prepare a multilayer structure.
  • Example 11 A multilayer structure was prepared in the same manner as in Example 10 except that the layer (Y) was silicon oxide, and evaluated in the same manner as in Example 1.
  • Example 12 The same method as in Example 3 except that an ethylene-vinyl alcohol copolymer film (thickness 12 ⁇ m) biaxially stretched 3.5 times (MD) ⁇ 4 times (TD) was used as the substrate (X). A multilayer structure was prepared and evaluated in the same manner as in Example 1.
  • Example 13 The same method as in Example 3 except that an ethylene-vinyl alcohol copolymer film (thickness 12 ⁇ m) biaxially stretched 2.5 times (MD) ⁇ 3 times (TD) was used as the substrate (X). A multilayer structure was prepared and evaluated in the same manner as in Example 1.
  • Example 1 The same method as in Example 1, except that an unstretched ethylene-vinyl alcohol copolymer film (“EVAL (registered trademark) EF-F” manufactured by Kuraray Co., Ltd., thickness 12 ⁇ m) was used as the substrate (X).
  • EVAL unstretched ethylene-vinyl alcohol copolymer film
  • X thickness 12 ⁇ m
  • a multilayer structure was prepared and evaluated in the same manner as in Example 1. However, the water contact angle could not be measured due to the poor surface condition of the multilayer structure. In addition, the oxygen permeability was not measured due to poor appearance.
  • Example 2 The same method as in Example 2 except that an unstretched ethylene-vinyl alcohol copolymer film (“EVAL (registered trademark) EF-F” manufactured by Kuraray Co., Ltd., thickness 12 ⁇ m) was used as the substrate (X).
  • EVAL unstretched ethylene-vinyl alcohol copolymer film
  • X thickness 12 ⁇ m
  • a multilayer structure was prepared and evaluated in the same manner as in Example 1. However, the water contact angle could not be measured due to the poor surface condition of the multilayer structure. In addition, the oxygen permeability was not measured due to poor appearance.
  • Example 3 A multilayer structure was prepared in the same manner as in Example 1 except that a biaxially stretched polyester film (“Lumirror (registered trademark)” manufactured by Toray Industries, Inc., thickness 12 ⁇ m) was used as the substrate (X). The evaluation was performed in the same manner as in Example 1.
  • a biaxially stretched polyester film (“Lumirror (registered trademark)” manufactured by Toray Industries, Inc., thickness 12 ⁇ m) was used as the substrate (X).
  • the evaluation was performed in the same manner as in Example 1.
  • Example 4 A multilayer structure was prepared in the same manner as in Example 3 except that a biaxially stretched polyester film (“Lumirror (registered trademark)” manufactured by Toray Industries, Inc., thickness 12 ⁇ m) was used as the substrate (X). The evaluation was performed in the same manner as in Example 1.
  • a biaxially stretched polyester film (“Lumirror (registered trademark)” manufactured by Toray Industries, Inc., thickness 12 ⁇ m) was used as the substrate (X).
  • the evaluation was performed in the same manner as in Example 1.
  • Example 5 A multilayer structure was prepared in the same manner as in Example 1 except that the layer (Y) was aluminum, and the evaluation was performed in the same manner as in Example 1.
  • the layer (Y) was formed on one surface of the substrate (X) by melting and evaporating aluminum using a batch type vapor deposition facility (“EWA-105” manufactured by Nippon Vacuum Engineering Co., Ltd.).
  • Comparative Example 7 The multilayer structure in which the layer (Y) was formed on one surface of the substrate (X) by the same method as in Example 1 was used as Comparative Example 7, and the evaluation was performed in the same manner as in Example 1.
  • Comparative Example 8 A multilayer structure in which a layer (Y) was formed on one surface of the substrate (X) by the same method as in Example 2 was used as Comparative Example 8, and the evaluation was performed in the same manner as in Example 1.
  • Example 9 A multilayer structure was prepared by the same method as in Example 1 except that the layer (Z) was prepared by the method shown below, and the evaluation was performed by the same method as in Example 1.
  • a polyethylene resin (density: 0.917 g / cm 3, melt flow rate: 8 g / 10 min) is formed on the base (X) / layer (Y) layer (Y) so that the thickness is 5 ⁇ m. It was extrusion coated and laminated at 295 ° C.
  • Example 10 A multilayer structure was prepared by the same method as in Example 3 except that the layer (Z) was prepared by the method shown below, and the evaluation was performed by the same method as in Example 1.
  • a polyethylene resin (density: 0.917 g / cm 3, melt flow rate: 8 g / 10 min) is formed on the base (X) / layer (Y) layer (Y) so that the thickness is 5 ⁇ m. It was extrusion coated and laminated at 295 ° C.
  • Example 11 As Example 3 except that an ethylene-vinyl alcohol copolymer film (thickness 12 ⁇ m) biaxially stretched 2.5 times (MD) ⁇ 2.5 times (TD) was used as the substrate (X). A multilayer structure was prepared by the method described above and evaluated in the same manner as in Example 1.
  • Example 12 A multilayer was formed in the same manner as in Example 3 except that a biaxially stretched ethylene-vinyl alcohol copolymer film (thickness: 12 ⁇ m) was used as the substrate (X) 2 times (MD) ⁇ 4 times (TD). A structure was prepared and evaluated in the same manner as in Example 1.
  • Tables 1 and 2 show the production conditions of the multilayer structure and the evaluation results of the multilayer structure for Examples 1 to 13 and Comparative Examples 1 to 13, respectively.
  • Example 14 Using the multilayer structure obtained in Example 1, a laminate (a) composed of “OPA / multilayer structure / CPP” was produced by the following method. Stretched polyamide film with a thickness of 15 ⁇ m (Unitika Ltd., “Emblem (registered trademark) ON-BC”, (OPA)) and unstretched polypropylene film with a thickness of 60 ⁇ m (“CP RXC-18” manufactured by Mitsui Chemicals, Inc.) , (CPP)) is coated with a two-component adhesive (“A-520” and “A-50” manufactured by Mitsui Chemicals, Inc.) on each side, and the OPA layer / adhesive layer / multilayer structure / A laminate (a) was obtained by laminating a CPP film, an OPA film, and a multilayer structure so as to have an adhesive layer / CPP layer configuration. The multilayer structure was laminated so that the side having the layer (Y) was adjacent to the adhesive layer adjacent to OPA.
  • the obtained laminate was cut to obtain two coating materials having a size of 20 cm ⁇ 25 cm.
  • the two laminates were overlapped so that the CPP layers were the inner surfaces, and the three sides were heat-sealed with a width of 10 mm to produce a vacuum packaging bag that was a three-sided bag.
  • the opening of the obtained vacuum packaging bag is filled with a heat-insulating core material and a small bag containing calcium oxide as an adsorbent, and the temperature is measured using a vacuum heat-insulating panel manufacturing apparatus (KT-500RD type manufactured by NPC Corporation).
  • a vacuum heat insulating body was produced by sealing the vacuum packaging bag at 20 ° C. and an internal pressure of 0.5 Pa.
  • As the heat insulating core material glass fiber dried for 4 hours under an atmosphere of 120 ° C. was used. Evaluation of the obtained vacuum heat insulating body was performed by the method of said (6) and (7).
  • Examples 15 to 26 and Comparative Examples 14 to 23 Using the multilayer structures obtained in Examples 2 to 13 and Comparative Examples 3 to 12, a vacuum heat insulating material was prepared in the same manner as in Example 14, and evaluation was performed in the same manner as in Example 14. However, the evaluation of the vacuum insulators of Comparative Examples 20 and 21 was stopped because peeling was observed immediately after production.
  • Example 27 Using the multilayer structure obtained in Example 1, a laminate (b) composed of “OPA / multilayer structure / multilayer structure / CPP” was produced by the following method. The two-part adhesive is applied to each of the CPP, the OPA, and one side of the multilayer structure, and the OPA layer / adhesive layer / multilayer structure / adhesive layer / CPP. A laminate was obtained by laminating the CPP film, the OPA film, and the multilayer structure so as to have a layer structure. The multilayer structure was laminated so that the side having both layers (Y) was adjacent to each other with the adhesive layer interposed therebetween.
  • Example 14 Using the obtained laminate, a vacuum packaging bag and a vacuum insulator were produced in the same manner as in Example 14, and the obtained vacuum insulator was evaluated by the methods (6) and (7).
  • Example 28 Using the multilayer structure obtained in Example 3, a vacuum heat insulating material was created and evaluated in the same manner as in Example 27.
  • Tables 3 and 4 show the structures of the vacuum packaging bags and the evaluation results of the vacuum insulators for Examples 14 to 28 and Comparative Examples 14 to 23.
  • the vacuum insulators obtained in Examples 14 to 28 have a smaller change in thermal conductivity over time than the vacuum insulators obtained in Comparative Examples 14 to 23, and the level of barrier properties inherently possessed by the vacuum packaging bag is high. It can be seen that
  • Example 29 Using the multilayer structure obtained in Example 1, a laminate (c) composed of “OPA / VM-PET / multilayer structure / CPP” was produced by the following method.
  • the bicomponent stretched polyester film (VM-PET) on which the CPP, the OPA, and the aluminum vapor-deposited layer are formed is coated with the two-part adhesive on each side, and the OPA layer / adhesive layer / VM-PET is applied.
  • a laminate was obtained by laminating the CPP film, the OPA film, the VM-PET film and the multilayer structure so as to have a structure of layer / adhesive layer / multilayer structure / adhesive layer / CPP layer.
  • the VM-PET was laminated with the side having the aluminum vapor deposition layer as the multilayer structure side.
  • the multilayer structure was laminated with the side having the layer (Y) as the VM-PET side.
  • Example 14 Using the obtained laminate, a vacuum packaging bag and a vacuum insulator were produced in the same manner as in Example 14, and the obtained vacuum insulator was evaluated by the methods (6) and (7).
  • Example 30 and Comparative Examples 24 and 25 Using the multilayer structures obtained in Example 3 and Comparative Examples 5 and 6, a vacuum heat insulator was created and evaluated in the same manner as in Example 29.
  • Table 5 shows the structure of the vacuum packaging bag and the evaluation results of the vacuum heat insulator for Examples 29 and 30 and Comparative Examples 24 and 25.
  • the multilayer structure of the present invention and the vacuum packaging bag including the multilayer structure are maintained at a high barrier property inherent to the vacuum packaging bag even under physical stress, and are vacuum
  • the packaging bag itself can have low thermal conductivity. Therefore, the vacuum heat insulating material produced using the vacuum packaging bag can maintain excellent heat insulating performance for a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Refrigerator Housings (AREA)

Abstract

 二軸延伸ポリビニルアルコール系フィルムからなる基材(X)の少なくとも一方の面に、無機酸化物からなる蒸着層(Y)および有機高分子を含む層(Z)が、前記基材(X)/前記層(Y)/前記層(Z)の順に積層された構造を有し、さらに前記層(Y)と前記層(Z)が隣接し、前記層(Z)表面の水接触角が10~70°であり、前記基材(X)の延伸倍率が縦方向(MD方向)2.5倍以上4.5倍以下、横方向(TD方向)2.5倍以上4.5倍以下、且つ面延伸倍率として7倍以上15倍以下である多層構造体であることを特徴とする。これにより、物理的ストレスを受けても、真空包装袋が元来有するバリア性が高いレベルで維持され、かつ真空包装袋自体が低熱伝導性を有する真空包装袋およびそれを用いた真空断熱体、並びに該真空包装袋に有用な多層構造体が提供される。

Description

多層構造体、真空包装袋および真空断熱体
 本発明は、優れたバリア性を有する多層構造体と、該多層構造体を含む真空包装袋、および該真空包装袋と該真空包装袋により囲まれた内部に配置された芯材とを備え、その内部が減圧された真空断熱体に関する。
 ウレタンフォーム(ポリウレタンフォーム)からなる断熱体が、冷蔵庫用断熱材、住宅用断熱パネルなどとして用いられている。近年、これに代わる断熱体として真空断熱体も使用されている。真空断熱体は、ウレタンフォームからなる断熱体による断熱特性と同等の断熱特性を、より薄くより軽い断熱体で達成することを可能にする。真空断熱体は、ヒートポンプ応用機器などの熱移動機器、蓄熱機器、居住空間、車両内空間などを断熱するために用いる断熱体として、その用途と需要とを広げつつある。
 真空断熱体の真空包装袋に要求される特性の一つはバリア性である。このため、バリア性を高めた真空包装袋が提案されている。
 バリア性を高めた真空包装袋に用いられるフィルムとして、特許文献1には、ポリエチレンビニルアルコール共重合体フィルムの片面に蒸着膜と、該蒸着膜と隣接するようにポリビニルアルコールに無機物を含んだコート層とを有したフィルムが記載されており、特許文献2には、プラスチック材料からなる基材の片面に蒸着薄膜層と、水溶性高分子を含むコーティング剤を塗布して加熱乾燥してなる中間層と、更に蒸着薄膜層とを順次積層した積層体が記載されている。特許文献3には、基材と、基材の少なくとも一方の面に積層されたガスバリア層とを含むガスバリア積層体であって、ガスバリア層がカルボキシル基およびカルボン酸無水物基から選ばれる官能基を含有する重合体を含む組成物からなり、官能基に含まれる-COO-基の少なくとも一部が2価以上の金属イオンで中和されてなるガスバリア性積層体が記載されている。また、特許文献4には、基材にアルミニウム原子を含む層と、ビニルホスホン酸類を含む重合体を含む層とが積層された多層構造体が記載されている。
特開2008-114520号公報 特開2004-130654号公報 特開2006-308086号公報 国際公開2014/122942
 しかしながら、上記従来のフィルムを用いた真空包装袋は、バリア性にある一定の改善効果は認められるものの、真空断熱体の断熱性能として十分ではない場合がある。その理由として、アルミ蒸着層自体のバリア性が十分ではないためコート層を有した場合でもフィルムのバリア性が十分にならない可能性、真空断熱体作製時にかかる物理的ストレスによりバリア性が低下する可能性、およびアルミ蒸着層自体が相対的に高い熱伝導率を有するため真空包装袋を経由した熱伝導が生じる結果断熱性能が低下する可能性が考えられる。特に真空包装袋を経由した熱伝導については比較的小型の真空断熱体では影響が大きく、所望の真空断熱体を設計する際の大きな制限となっている。このため、真空包装袋のバリア性を高いレベルで維持しつつ、長期間に亘り熱伝導率が低い真空包装袋が求められている。
 本発明の目的は、物理的ストレスを受けても、真空包装袋が元来有するバリア性が高いレベルで維持され、かつ真空包装袋自体が低熱伝導性を有する真空包装袋およびそれを用いた真空断熱体、並びに該真空包装袋に有用な多層構造体を提供することである。
 上記目的を達成すべく鋭意検討を重ねた結果、本発明者らは、ポリビニルアルコール系フィルムからなる基材上の少なくとも一方の面に、無機酸化物からなる蒸着層および特定の有機高分子を含む層が積層された多層構造体を含む真空包装袋で芯材を覆って、前記真空包装袋の内部を減圧シールしてなる真空断熱体が、長期間に渡り優れた断熱性能を保持することを見出した。この新たな知見に基づいてさらに検討を重ねることによって、本発明者らは本発明を完成させた。
 すなわち、本発明は[1]二軸延伸ポリビニルアルコール系フィルムからなる基材(X)の少なくとも一方の面に、無機酸化物からなる蒸着層(Y)および有機高分子を含む層(Z)が、前記基材(X)/前記層(Y)/前記層(Z)の順に積層された構造を有し、さらに前記層(Y)と前記層(Z)が隣接し、前記層(Z)表面の水接触角が10~70°であり、前記基材(X)の延伸倍率が縦方向(MD方向)2.5倍以上4.5倍以下、横方向(TD方向)2.5倍以上4.5倍以下、且つ面延伸倍率として7倍以上15倍以下である多層構造体、
[2]前記基材(X)がエチレン含有量10~65モル%、けん化度90モル%以上のエチレン-ビニルアルコール共重合体からなるフィルムである[1]の多層構造体、
[3]前記層(Y)が酸化アルミニウムおよび酸化ケイ素からなる群より選択される少なくとも1種の無機酸化物を含む蒸着層である[1]または[2]の多層構造体、
[4]前記層(Z)に含まれる有機高分子が水酸基、カルボン酸基およびリン原子を含む官能基からなる群より選択される少なくとも1種の官能基を有する[1]~[3]のいずれか1つの多層構造体、
[5]前記層(Z)がハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物を含む[1]~[4]のいずれか1つの多層構造体、
[6]40℃、0%RH(キャリアガス側)/65%RH(酸素供給側)の条件下における酸素透過度が1.0ml/(m・day・atm)以下である、[1]~[5]のいずれか1つの多層構造体、
[7]23℃、50%RHの条件下で一方向に5%延伸した状態で5分間保持した後に、40℃、0%RH(キャリアガス側)/65%RH(酸素供給側)の条件下において測定した酸素透過度が、2.0ml/(m・day・atm)以下である、[1]~[6]のいずれか1つの多層構造体、
[8]内部と外部とを隔てる隔壁としてフィルム材を備え、前記内部が減圧された真空包装袋であって、前記フィルム材が[1]~[7]のいずれか1つの多層構造体を含む真空包装袋、
[9][8]の真空包装袋と前記真空包装袋により囲まれた内部に配置された芯材とを備え、その内部が減圧された真空断熱体
に関する。
 本発明の多層構造体は、物理的ストレスを受けても、多層構造体が元来有するバリア性が高いレベルで維持され、かつ多層構造体自体が低熱伝導性を有する。そのため、本発明の多層構造体を含む真空包装袋は物理的ストレスを受けても真空包装袋が元来有するバリア性が高いレベルで維持され、かつ真空包装袋自体が低熱伝導性を有する。そのため、本発明によれば、真空包装袋の内部を減圧シールしてなる真空断熱体が、長期間に渡り優れた断熱性能を保持することができる。
 以下、本発明の実施形態について説明する。なお、以下の説明において特定の機能を発現する材料として具体的な材料(化合物等)を例示する場合があるが、本発明はそのような材料を使用した態様に限定されない。また、例示される材料は、特に記載がない限り、1種を単独で使用してもよいし2種以上を併用してもよい。
 特に注釈がない限り、この明細書において、「特定の部材(基材や層等)上に特定の層を積層する」という記載の意味には、該部材と接触するように該特定の層を積層する場合に加え、他の層を挟んで該部材の上方に該特定の層を積層する場合が含まれる。「特定の部材(基材や層等)上に特定の層を形成する」、「特定の部材(基材や層等)上に特定の層を配置する」という記載も同様である。また、特に注釈がない限り、「特定の部材(基材や層等)上に液体(コーティング液等)を塗工する」という記載の意味には、該部材に該液体を直接塗工する場合に加え、該部材上に形成された他の層に該液体を塗工する場合が含まれる。
 この明細書において「ガスバリア性」とは、特に説明がない限り、水蒸気以外のガスをバリアする性能を意味する。また、この明細書において、単に「バリア性」と記載した場合は、ガスバリア性および水蒸気バリア性の両バリア性を意味する。
[多層構造体]
 本発明の多層構造体は、二軸延伸ポリビニルアルコール系フィルムからなる基材(X)の少なくとも一方の面に、無機酸化物からなる蒸着層(Y)および有機高分子を含む層(Z)が、前記基材(X)/前記層(Y)/前記層(Z)の順に積層された構造を有し、さらに前記層(Y)と前記層(Z)が隣接し、前記層(Z)表面の水接触角が10~70°であり、前記基材(X)の延伸倍率が縦方向(MD方向)2.5倍以上4.5倍以下、横方向(TD方向)2.5倍以上4.5倍以下、且つ面延伸倍率として7倍以上15倍以下であることを特徴とする。このような多層構造体を用いて作製した真空包装袋および真空断熱材は、長期間に亘り良好なガスバリア性能と低い熱伝導性能を保持することができる。後述する実施例と比較例との対比からもわかるように、本発明の多層構造体の構成要件の中でも、特に、前記層(Z)表面の水接触角が一定範囲にあり、かつ前記基材(X)の延伸倍率と面延伸倍率が一定範囲にあることが重要である。ここで、多層構造体における上記基材(X)、層(Y)および/または層(Z)は、2層以上であってもよい。以下、本発明の多層構造体に用いられる各材料について詳細に説明する。
[基材(X)]
 本発明の多層構造体は、二軸延伸ポリビニルアルコール系フィルムからなる基材(X)を有することによって、優れたガスバリア性を奏する。ポリビニルアルコール系樹脂としては、ビニルエステル単位がけん化されてなるビニルアルコール単位を有するものであればよく、例えば、ポリビニルアルコール(以下、PVAと略記することがある。)樹脂や、エチレン-ビニルアルコール共重合体(以下、EVOHと略記することがある。)樹脂が挙げられる。さらに、PVA樹脂としては、酢酸ビニルを単独重合し、それをけん化したPVA樹脂や、それを変性して得られる変性PVA樹脂が挙げられる。このような変性PVAは、共重合変性であっても後変性であってもよい。これらの樹脂について以下に説明する。なお、このようなポリビニルアルコール系樹脂は、それぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。
 PVAとしては、上述の通りPVAや変性PVAが挙げられ、たとえば、PVAは、酢酸ビニルを単独重合し、さらにそれをけん化して製造される。また、変性PVAは、たとえば、酢酸ビニルと酢酸ビニルと共重合可能な不飽和単量体を共重合させた後にけん化して製造されるものであり、その変性量としては通常10モル%未満である。
 上記酢酸ビニルと共重合可能な不飽和単量体としては、例えばエチレンやプロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類、3-ブテン-1-オール、4-ペンチン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類およびそのアシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキンラン、グリセリンモノアリルエーテル、3,4-ジアセトキシ-1-ブテン、等のビニル化合物、酢酸イソプロペニル、1-メトキシビニルアセテート等の置換酢酸ビニル類、塩化ビニリデン、1,4-ジアセトキシ-2-ブテン、ビニレンカーボネート、等が挙げられる。
 また、変性PVAとしては、PVAを後変性することにより製造することもできる。かかる後変性の方法としては、PVAをアセト酢酸エステル化、アセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化、オキシアルキレン化する方法等が挙げられる。
 本発明においては、上記PVAの重合度が1,100以上、けん化度が90モル%以上であることが好ましい。そして、PVAの重合度は1,100~4,000であることがより好ましく、1,200~2,600であることがさらに好ましい。かかる重合度が低すぎると得られる真空包装袋の機械強度が低下する傾向にあり、一方、重合度が高すぎると製膜および延伸時の加工性が低下する傾向にある。また、PVAのけん化度は95~100モル%であることがより好ましく、99~100モル%であることがさらに好ましい。かかるけん化度が低すぎると耐水性が低下し、ガスバリア性が湿度の影響を受けやすくなるので好ましくない。
 そして、EVOHは、通常10~60モル%のエチレンとビニルエステルとの共重合体をけん化して得られるものであり、かかるビニルエステルとしては酢酸ビニルが代表的なものとして挙げられるが、その他の脂肪酸ビニルエステル(プロピオン酸ビニル、ピバリン酸ビニルなど)も使用できる。
 また、EVOHには、加熱溶融時の安定性向上のために共重合成分としてビニルシラン化合物を0.0002~0.2モル%含有させることもできる。ここで、ビニルシラン系化合物としては、たとえば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシーエトキシ)シラン、γ-メタクリルオキシプロピルメトキシシランが挙げられる。なかでも、ビニルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。
 さらに、本発明の目的が阻害されない範囲で、他の共重合性単量体、例えば、プロピレン、ブチレン;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの不飽和カルボン酸またはそのエステル;N-ビニルピロリドンなどのビニルピロリドン等を共重合することもできる。
 EVOHのエチレン含有量は10~65モル%であることが、良好な延伸性を奏する観点からは好ましく、15~55モル%であることがより好ましく、20~50モル%であることがさらに好ましい。エチレン含有量が10モル%未満であると溶融成形性が悪化する傾向があり、一方、65モル%を超えるとガスバリア性が不充分となるおそれがある。なお、かかるEVOHのエチレン含有量は、核磁気共鳴(NMR)法により求めることができる。
 また、EVOHのけん化度は、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることがさらに好ましい。けん化度が90モル%未満であると、高湿度下でのガスバリア性が低下する傾向がある。一方、EVOHのけん化度の上限としては100モル%が好ましく、99.99モル%がさらに好ましい。なお、EVOH樹脂が、異なる2種類以上のEVOHの配合物を含む場合には、配合重量比から算出されるそれぞれのエチレン含有量またはけん化度を、EVOH樹脂のエチレン含有量またはけん化度とする。
 本発明に用いられるEVOH樹脂は、熱安定性や粘度調整の観点で種々の酸や金属塩等の添加物を含有していることが好ましい。該添加物としては、アルカリ金属塩、カルボン酸および/またはその塩、リン酸化合物およびホウ素化合物などが挙げられる。
 本発明に用いられる基材(X)としては、上記ポリビニルアルコール系樹脂を用いて製膜されたフィルムを使用することができる。かかる製膜方法も公知のものでよく、特に限定されず、例えば、ドラム、エンドレスベルト等の金属面上にポリビニルアルコール系樹脂の溶液を流延してフィルム形成する流延式成形法、あるいは押出機により溶融押出する溶融成形法によって製膜される。
 かかるポリビニルアルコール系樹脂フィルムとしては、寸法安定性およびガスバリア性の観点より延伸倍率が縦方向(MD方向)2.5倍以上4.5倍以下、横方向(TD方向)2.5倍以上4.5倍以下且つ面延伸倍率として7倍以上15倍以下である二軸延伸フィルムが用いられるが、特に低熱伝導性の観点より延伸倍率と面延伸倍率が上記範囲にある二軸延伸フィルムであることが重要である。厚みの均一性、バリア性、機械物性、成膜性の観点から、延伸倍率は縦方向が2.5倍以上3.5倍以下、横方向が2.5以上3.5倍以下且つ面延伸倍率が8倍以上12倍以下であることが好ましい。かかる延伸処理方法は、通常行われる同時二軸延伸、逐次二軸延伸など、公知方法に従い行うことが可能である。
 本発明に用いられる基材(X)としては、二軸延伸PVA樹脂フィルムおよび二軸延伸EVOH樹脂フィルムを使用することができ、二軸延伸EVOH樹脂フィルムが好ましい。
 本発明に用いられる基材(X)の厚みは特に制限されないが、工業的な生産性の観点から、5~100μmであることが好ましく、8~50μmであることがより好ましい。さらに具体的には、二軸延伸PVA樹脂フィルムの厚みは、5~50μmであることが好ましく、8~30μmであることがより好ましい。そして、二軸延伸EVOH樹脂フィルムの厚みは、5~50μmであることが好ましく、10~40μmであることがより好ましい。
[層(Y)]
 本発明の多層構造体に含まれる層(Y)は、無機酸化物からなる蒸着層からなる。層(Y)は、酸素ガスや水蒸気に対するバリア性を有するものであることが好ましい。層(Y)は、遮光性を有するものや、透明性を有するものを適宜使用することができる。透明性を有する無機酸化物蒸着層としては、例えば、酸化アルミニウム、酸化ケイ素、酸窒化ケイ素、酸化マグネシウム、酸化錫、またはそれらの混合物等の無機酸化物から形成される層などが挙げられる。これらの中でも、酸化アルミニウム、酸化ケイ素、およびそれらの混合物から形成される層は、酸素ガスや水蒸気に対するバリア性が優れる観点から好ましい。
 層(Y)の好ましい厚さは、層(Y)を構成する成分の種類によって異なるが、通常、2~500nmの範囲内である。この範囲で、多層構造体のバリア性や機械的物性が良好になる厚さを選択すればよい。層(Y)の厚さが2nm未満であると、酸素ガスや水蒸気に対する無機酸化物蒸着層のバリア性発現の再現性が低下する傾向があり、また、無機酸化物蒸着層が充分なバリア性を発現しない場合もある。また、層(Y)の厚さが500nmを超えると、多層構造体を引っ張ったり屈曲させたりした場合に無機酸化物蒸着層のバリア性が低下しやすくなる傾向がある。無機酸化物蒸着層の厚さは、より好ましくは5~200nmの範囲にあり、さらに好ましくは10~100nmの範囲にある。
 層(Y)の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、生産性の観点から、真空蒸着法が好ましい。真空蒸着を行う際の加熱方式としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また、無機酸化物蒸着層が形成される基体との密着性および無機酸化物蒸着層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を採用して蒸着してもよい。また、無機酸化物蒸着層を得るために、蒸着の際に、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。
[層(Z)]
 本発明の多層構造体に含まれる層(Z)は、有機高分子を含み、前記層(Y)と隣接し、かつ層(Z)の表面の水接触角が10~70°である。ここで、「隣接」とは、多層構造体の中に少なくとも1組の層(Y)と層(Z)が直接的に積層されていることを意味する。
層(Z)に含まれる有機高分子は、層を形成した場合の表面水接触角が10~70°を示す物質であれば必ずしも限定されるものではないが、中でも水酸基、カルボン酸基およびリン原子を含む官能基からなる群より選択される少なくとも1種の官能基を有する有機高分子が含まれることが好ましい。また、該有機高分子は異なる官能基を有する2種類以上の有機高分子の混合物であっても良い。
 水酸基を有する有機高分子としては、例えば基材(X)の材料として例示されたポリビニルアルコール系樹脂が挙げられる。カルボン酸基を有する有機高分子としては、例えばポリアクリル酸、ポリメタクリル酸、またはアクリル酸とメタクリル酸との共重合体、およびこれらの重合体中のカルボキシル基の一部が塩になっている重合体を用いる事ができる。
 リン原子を含む官能基としては、例えば、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、亜ホスフィン酸基、およびこれらから誘導される官能基(例えば、塩、(部分)エステル化合物、ハロゲン化物(例えば、塩化物)、脱水物)等を挙げることができ、中でもリン酸基およびホスホン酸基が好ましく、ホスホン酸基がより好ましい。リン原子を含む官能基を有する高分子としては、例えば、アクリル酸6-[(2-ホスホノアセチル)オキシ]ヘキシル、メタクリル酸2-ホスホノオキシエチル、メタクリル酸ホスホノメチル、メタクリル酸11-ホスホノウンデシル、メタクリル酸1,1-ジホスホノエチル等のホスホノ(メタ)アクリル酸エステル類の重合体;ビニルホスホン酸、2-プロペン-1-ホスホン酸、4-ビニルベンジルホスホン酸、4-ビニルフェニルホスホン酸等のホスホン酸類の重合体;ビニルホスフィン酸、4-ビニルベンジルホスフィン酸等のホスフィン酸類の重合体;リン酸化デンプン等が挙げられる。重合体は、少なくとも1種のリン原子を含む官能基を有する単量体の単独重合体であってもよいし、2種以上の単量体の共重合体であってもよい。また、重合体として、単一の単量体からなる重合体を2種以上混合して使用してもよい。中でも、ホスホノ(メタ)アクリル酸エステル類の重合体およびビニルホスホン酸類の重合体が好ましく、ビニルホスホン酸類の重合体がより好ましい。すなわち、重合体としては、ポリ(ビニルホスホン酸)が好ましい。また、重合体は、ビニルホスホン酸ハロゲン化物やビニルホスホン酸エステル等のビニルホスホン酸誘導体を単独または共重合した後、加水分解することによっても得ることができる。
 本発明の多層構造体に含まれる層(Z)は、さらにハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物を含んでいても良い。化合物(L)の加水分解縮合物が層(Z)に含まれることによりバリア性が改善する事例が認められた。その原因については明確にはなっていないが、化合物(L)の存在により層(Y)と層(Z)の密着性を改善する効果があるものと考えられる。
 (化合物(L)の加水分解縮合物)
 化合物(L)には、以下で説明する化合物(A)および/または化合物(B)の少なくとも1種を適用できる。以下、化合物(A)および化合物(B)について説明する。
 化合物(A)は、次に示す化学式(I)で表される少なくとも1種の化合物である。
(OR m-n-k・・・(I)
 化学式(I)中、Mは、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaおよびNdから選択される原子を表す。Mは、好ましくはSi、Al、Ti、またはZrであり、特に好ましくはSiである。また、化学式(I)中、Rはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基などのアルキル基であり、好ましくは、メチル基またはエチル基である。また、化学式(I)中、Xはハロゲン原子を表す。Xが表すハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、塩素原子が好ましい。また、化学式(I)中、Zは、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。ここで、カルボキシル基との反応性を有する官能基としては、エポキシ基、アミノ基、水酸基、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、オキサゾリン基、またはカルボジイミド基などが挙げられるが、エポキシ基、アミノ基、イソシアネート基、ウレイド基、またはハロゲン原子が好ましく、たとえばエポキシ基、アミノ基およびイソシアネート基から選ばれる少なくとも1種である。このような官能基で置換されるアルキル基としては、前出のものを例示することができる。また、化学式(I)中、mは金属元素Mの原子価と等しい。化学式(I)中、nは0~(m-1)の整数を表す。また、化学式(I)中、kは0~(m-1)の整数を表し、1≦n+k≦(m-1)である。
 化合物(A)の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリクロロシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリクロロシラン、γ-ブロモプロピルトリメトキシシラン、γ-ブロモプロピルトリエトキシシラン、γ-ブロモプロピルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルトリクロロシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリクロロシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリクロロシランなどが挙げられる。好ましい化合物(A)としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランが挙げられる。
 また、化合物(B)は次の化学式(II)で表される少なくとも1種の化合物である。
(OR p-q-r ・・・(II)
 化学式(II)中、Mは、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaおよびNdから選択される原子を表すが、好ましくはSi、Al、Ti、またはZrであり、特に好ましくはSi、Al、またはTiである。また、化学式(II)中、Rは、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基などのアルキル基を表すが、好ましくは、メチル基またはエチル基である。また、化学式(II)中、Xはハロゲン原子を表す。Xが表すハロゲン原子としては塩素原子、臭素原子、ヨウ素原子などが挙げられるが塩素原子が好ましい。また、化学式(II)中、Rは、アルキル基、アラルキル基、アリール基、またはアルケニル基を表す。Rが表すアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基、n-オクチル基などが挙げられる。また、Rが表すアラルキル基としては、ベンジル基、フェネチル基、トリチル基などが挙げられる。また、Rが表すアリール基としては、フェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられる。また、Rが表すアルケニル基としては、ビニル基、アリル基などが挙げられる。さらに、化学式(II)中、pは金属元素M2の原子価と等しい。化学式(II)中、qは0~pの整数を表す。また、化学式(II)中、rは0~pの整数を表し、1≦q+r≦pである。
 化学式(I)および(II)において、MとMとは同じであってもよいし異なっていてもよい。また、RとRとは同じであってもよいし異なっていてもよい。
 化合物(B)の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン等のシリコンアルコキシド;ビニルトリクロロシラン、テトラクロロシラン、テトラブロモシラン等のハロゲン化シラン;テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン等のアルコキシチタン化合物;テトラクロロチタン等のハロゲン化チタン;トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、トリブトキシアルミニウム、ジエトキシアルミニウムクロリド等のアルコキシアルミニウム化合物;テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム等のアルコキシジルコニウム化合物等が挙げられる。
 化合物(L)が加水分解されることによって、化合物(L)のハロゲンおよびアルコキシ基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属元素が酸素を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物となる。ここで、この加水分解、縮合が起こるためには金属にハロゲン原子またはアルコキシ基が結合していることが重要であり、ハロゲン原子やアルコキシ基が結合していない場合、加水分解、縮合反応が起こらないか極めて緩慢であるため、化合物(L)の加水分解縮合物に由来する層(Z)のバリア性向上効果を得ることは困難である。
 化合物(L)の加水分解縮合物は、以下で定義される縮合度Pが65~99%であることが好ましく、70~99%であることがより好ましく、75~99%であることがさらに好ましい。化合物(L)の加水分解縮合物における縮合度P(%)は、以下のようにして算出されるものである。
 化合物(L)の1分子中のアルコキシ基とハロゲン原子の合計数をaとし、該化合物(L)の加水分解縮合物中、縮合したアルコキシ基とハロゲン原子の合計がi(個)である化合物(L)の割合が、全化合物(L)中のyi(%)である時、iが1~aの整数(1とaを含む)のそれぞれの値について{(i/a)×yi}を算出し、それらを加算する。すなわち、縮合度P(%)は、以下の数式で定義される。
Figure JPOXMLDOC01-appb-M000001
 上記したyiの値は、層(Z)中の化合物(L)の加水分解縮合物については固体のNMR(DD/MAS法)等によって測定することができる。
 該加水分解縮合物は、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解、縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものなどを原料として、たとえば公知のゾルゲル法で用いられる手法で製造できる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、たとえば2~10個程度の分子が加水分解、縮合して得られる縮合物を、原料として用いることができる。具体的には、たとえば、テトラメトキシシランを加水分解、縮合させて、2~10量体の線状縮合物としたものなどを原料として用いることができる。
 層(Z)を構成する組成物における化合物(L)の加水分解縮合物において縮合される分子の数は、加水分解、縮合に際して使用する、水の量、触媒の種類や濃度、加水分解縮合を行う温度などによって制御できる。
 化合物(L)の加水分解縮合物の製造方法に特に限定はないが、ゾルゲル法の代表的な一例では、上記した原料に水と酸とアルコールとを加えることによって、加水分解および縮合を行う。
 以下では、化合物(L)を金属アルコキシド(アルコキシ基が結合した金属を含む化合物)として説明する場合があるが、金属アルコキシドに代えて、ハロゲンが結合した金属を含む化合物を用いてもよい。
 化合物(L)は、上述したように、化合物(A)および/または化合物(B)の少なくとも1種とすることができる。化合物(L)が化合物(A)と化合物(B)の両方を含む場合には、得られる多層構造体のガスバリア性が良好となるため、好ましい。そして、化合物(L)が、実質的に、化合物(A)と化合物(B)の両方からなり、さらに化合物(A)/化合物(B)のモル比が0.5/99.5~40/60の範囲にあることがより好ましい。化合物(A)と化合物(B)とをこの比率で併用する場合には、得られる多層構造体のガスバリア性、引張り強伸度などの力学的物性、外観、取り扱い性などの性能が優れる。化合物(A)/化合物(B)のモル比は、3/97~40/60の範囲であることがより好ましく、4/96~30/70の範囲であることがさらに好ましい。
 また、本発明の他の例では、化合物(L)の金属原子には、ハロゲン原子、メルカプト基および水酸基から選ばれる少なくとも1つの特性基を有する有機基がさらに結合していてもよい。以下、そのような有機基が結合している化合物(L)を化合物(L’)という場合がある。
 化合物(L’)の金属原子には、たとえば、ケイ素、スズ、チタンを用いることができる。なお、ケイ素原子は非金属元素に分類される場合もあるが、この明細書では金属元素として扱う。この中でも、反応がコントロールしやすく安定な製品が得られ且つ入手が容易という点で、ケイ素原子が好ましい。ケイ素原子には、ハロゲン原子、メルカプト基および水酸基から選ばれる少なくとも1つの特性基を有する有機基と、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基とが結合している。本発明の効果が得られる限り、ケイ素原子には他の置換基が結合していてもよい。そのような他の置換基としては、たとえば、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基およびアミノ基が挙げられる。ケイ素原子を含む化合物(L’)としては、たとえば、以下の式(I’)で表される化合物や、アリル(クロロプロピル)ジクロロシラン、ビス(クロロメチルジメチルシロキシ)ベンゼン、N-(3-トリエトキシシリルプロピル)グルコンアミド、N-(3-トリエトキシシリルプロピル)-4-ヒドロキシブチルアミドが挙げられる。
 化合物(L’)は、以下の化学式(I’)で表される少なくとも1種の化合物(A’)を含んでもよい。
Si(OR 4-s-t-u・・・(I’)
[化学式(I’)中、RおよびRはそれぞれ独立にアルキル基を表す。Xはハロゲンを表す。Zはハロゲン原子、メルカプト基および水酸基から選ばれる少なくとも1つの特性基を有する有機基を表す。sは0~3の整数を表す。tは0~2の整数を表す。uは0~3の整数を表す。1≦s+u≦3である。1≦s+t+u≦3である。]
 RおよびRは、それぞれ独立にメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基などのアルキル基であり、好ましくは、メチル基またはエチル基である。Xが表すハロゲンとしては、例えば、塩素、臭素およびヨウ素などが挙げられ、好ましくは塩素である。
 有機基Zは、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、および水酸基から選ばれる少なくとも1つの特性基で置換された炭化水素基(炭素数がたとえば1~5程度)であってもよい。このような有機基としては、たとえば、クロロメチル基、クロロエチル基、クロロプロピル基、クロロエチルメチル基、またはこれらのクロロ基を、ブロモ基、ヨウ素基、フッ素基、メルカプト基、または水酸基に変更した有機基が挙げられる。また、有機基Zは、ハロゲン原子、メルカプト基および水酸基から選ばれる少なくとも1つの特性基と、アミド構造とを有する有機基であってもよい。
 式(I’)においてtが1または2である化合物(A’)の具体例としては、たとえば、クロロメチルメチルジメトキシシラン、クロロメチルジメチルメトキシシラン、2-クロロエチルメチルジメトキシシラン、2-クロロエチルジメチルメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルジメチルメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルジメチルメトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルジメチルメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルジメチルメトキシシラン、ビス(クロロメチル)メチルクロロシランが挙げられる。また、これらの化合物のメトキシ基の部分を、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、t-ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。
 式(I’)においてtが0である化合物(A’)の具体例としては、たとえば、クロロメチルトリメトキシシシラン、2-クロロエチルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、2-クロロプロピルトリメトキシシラン、4-クロロブチルトリメトキシシラン、5-クロロペンチルトリメトキシシラン、6-クロロヘキシルトリメトキシシラン、(ジクロロメチル)ジメトキシシシラン、(ジクロロエチル)ジメトキシシラン、(ジクロロプロピル)ジメトキシシラン、(トリクロロメチル)メトキシシシラン、(トリクロロエチル)メトキシシラン、(トリクロロプロピル)メトキシシラン、メルカプトメチルトリメトキシシラン、2-メルカプトエチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-メルカプトプロピルトリメトキシシラン、4-メルカプトブチルトリメトキシシラン、5-メルカプトペンチルトリメトキシシラン、6-メルカプトヘキシルトリメトキシシラン、(ジメルカプトメチル)ジメトキシシシラン、(ジメルカプトエチル)ジメトキシシラン、(ジメルカプトプロピル)ジメトキシシラン、(トリメルカプトメチル)メトキシシシラン、(トリメルカプトエチル)メトキシシラン、(トリメルカプトプロピル)メトキシシラン、フルオロメチルトリメトキシシシラン、2-フルオロエチルトリメトキシシラン、3-フルオロプロピルトリメトキシシラン、ブロモメチルトリメトキシシシラン、2-ブロモエチルトリメトキシシラン、3-ブロモプロピルトリメトキシシラン、ヨードメチルトリメトキシシシラン、2-ヨードエチルトリメトキシシラン、3-ヨードプロピルトリメトキシシラン、(クロロメチル)フェニルトリメトキシシシラン、(クロロメチル)フェニルエチルトリメトキシシラン、1-クロロエチルトリメトキシシラン、2-(クロロメチル)アリルトリメトキシシラン、(3-クロロシクロヘキシル)トリメトキシシラン、(4-クロロシクロヘキシル)トリメトキシシラン、(メルカプトメチル)フェニルトリメトキシシシラン、(メルカプトメチル)フェニルエチルトリメトキシシラン、1-メルカプトエチルトリメトキシシラン、2-(メルカプトメチル)アリルトリメトキシシラン、(3-メルカプトシクロヘキシル)トリメトキシシラン、(4-メルカプトシクロヘキシル)トリメトキシシラン、N-(3-トリエトキシシリルプロピル)グルコンアミド、N-(3-トリエトキシシリルプロピル)-4-ヒドロキシブチルアミドが挙げられる。また、これらの化合物のメトキシ基の部分を、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、t-ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。
 化合物(L’)は、クロロメチルトリメトキシシシラン、クロロメチルトリエトキシシシラン、クロロメチルトリクロロシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン、2-クロロエチルトリクロロシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-クロロプロピルトリクロロシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリクロロシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリクロロシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリクロロシラン、(クロロメチル)フェニルトリメトキシシシラン、(クロロメチル)フェニルトリエトキシシシラン、(クロロメチル)フェニルトリクロロシラン、(クロロメチル)フェニルエチルトリメトキシシラン、(クロロメチル)フェニルエチルトリエトキシシラン、(クロロメチル)フェニルエチルトリクロロシラン、(メルカプトメチル)フェニルトリメトキシシシラン、(メルカプトメチル)フェニルトリエトキシシシラン、(メルカプトメチル)フェニルトリクロロシラン、(メルカプトメチル)フェニルエチルトリメトキシシラン、(メルカプトメチル)フェニルエチルトリエトキシシラン、(メルカプトメチル)フェニルエチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシプロピルトリメトキシシラン、N-(ヒドロキシエチル)-N-メチルアミノプロピルトリメトキシシラン、N-(3-トリエトキシシリルプロピル)グルコンアミド、およびN-(3-トリエトキシシリルプロピル)-4-ヒドロキシブチルアミドから選ばれる少なくとも1種の化合物を含むことが好ましい。
 これらの中でも、化合物(L’)は、クロロメチルトリアルコキシシラン、クロロメチルトリクロロシラン、2-クロロエチルトリアルコキシシラン、2-クロロエチルトリクロロシラン、3-クロロプロピルトリアルコキシシラン、3-クロロプロピルトリクロロシラン、メルカプトメチルトリアルコキシシラン、メルカプトメチルトリクロロシラン、2-メルカプトエチルトリアルコキシシラン、2-メルカプトエチルトリクロロシラン、3-メルカプトプロピルトリアルコキシシシラン、3-メルカプトプロピルトリクロロシラン、N-(3-トリアルコキシシリルプロピル)グルコンアミド、N-(3-トリアルコキシシリルプロピル)-4-ヒドロキシブチルアミドから選ばれる少なくとも1種の化合物を含むことが好ましい。これらの化合物を用いることによって、透明性に優れる多層構造体が得られる。特に好ましい化合物(L’)としては、クロロメチルトリメトキシシシラン、クロロメチルトリエトキシシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが挙げられる。化合物(L’)としてこれらの化合物を用いることによって、ガスバリア性と透明性が共に優れる多層構造体が得られる。本発明によれば、ヘイズ値が3%以下であり透明性に優れた多層構造体を得ることが可能である。
 これらの化合物(L’)は、市販されているものを用いてもよいし、公知の方法で合成してもよい。
 上記他の例では、化合物(L)は、化合物(A’)に加えて、上述した化学式(II)で表される少なくとも1種の化合物(B)をさらに含んでもよい。なお、化学式(I’)および(II)において、RとRとは同じであってもよいし異なっていてもよい。
 化合物(L)が化合物(A’)と化合物(B)とを含む場合、化合物(A’)/化合物(B)のモル比は、0.1/99.9~40/60の範囲にあることが好ましく、0.5/99.5~30/70の範囲にあることがより好ましく、1/99~20/80の範囲(たとえば5/95~20/80)にあることが最も好ましい。化合物(A’)と化合物(B)とをこの比率で併用することによって、バリア性、引張り強伸度などの力学的物性、外観、取り扱い性などの性能が優れる多層構造体が得られる。
 (層(Z1))
 特に、層(Z)がハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物とを含む組成物からなり、前記少なくとも1つの官能基に含まれる-COO-基の少なくとも一部が2価以上の金属イオンで中和されている場合には、バリア性が一層改善する事例が認められた。本明細書では該特徴を有する層(Z)を特に層(Z1)と称する。バリア性が一層改善する原因については明確にはなっていないが、層(Z1)自身がガスバリア性を有することと、層(Y)と層(Z1)の密着性が改善している効果があるためと考えられる。
 層(Z1)は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物を含む。層(Z1)における、重合体の中和物の含有率は、特に限定はなく、たとえば25重量%~95重量%の範囲とすることができる。この重合体の中和物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含む重合体(以下、「カルボン酸含有重合体」という場合がある)に対して、上記少なくとも1つの官能基の少なくとも一部を2価以上の金属イオンで中和することによって得られる重合体である。カルボン酸含有重合体は、重合体1分子中に、2個以上のカルボキシル基または1個以上のカルボン酸無水物基を有する。具体的には、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位などの、カルボキシル基を1個以上有する構造単位を重合体1分子中に2個以上含有する重合体を用いることができる。また、無水マレイン酸単位や無水フタル酸単位などのカルボン酸無水物の構造を有する構造単位を含有する重合体を用いることもできる。カルボキシル基を1個以上有する構造単位および/またはカルボン酸無水物の構造を有する構造単位(以下、両者をまとめてカルボン酸含有単位(C)と略記する場合がある)は、1種類でもよいし、2種類以上含まれていてもよい。
 また、カルボン酸含有重合体の全構造単位に占めるカルボン酸含有単位(C)の含有率を10モル%以上とすることによって、高湿度下でのガスバリア性が良好なガスバリア性積層体が得られる。この含有率は、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。なお、カルボン酸含有重合体が、カルボキシル基を1個以上含有する構造単位と、カルボン酸無水物の構造を有する構造単位の両方を含む場合、両者の合計が上記の範囲であればよい。
 カルボン酸含有重合体が含有していてもよい、カルボン酸含有単位(C)以外の他の構造単位は、特に限定されないが、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、メタクリル酸ブチル単位等の(メタ)アクリル酸エステル類から誘導される構造単位;ギ酸ビニル単位、酢酸ビニル単位などのビニルエステル類から誘導される構造単位;スチレン単位、p-スチレンスルホン酸単位;エチレン単位、プロピレン単位、イソブチレン単位などのオレフィン類から誘導される構造単位などから選ばれる1種類以上の構造単位を挙げることができる。カルボン酸含有重合体が、2種以上の構造単位を含有する場合、該カルボン酸含有重合体は、交互共重合体の形態、ランダム共重合体の形態、ブロック共重合体の形態、さらにはテーパー型の共重合体の形態のいずれであってもよい。
 カルボン酸含有重合体の好ましい例としては、ポリアクリル酸、ポリメタクリル酸、ポリ(アクリル酸/メタクリル酸)を挙げることができる。カルボン酸含有重合体は、1種類であってもよいし、2種類以上の重合体の混合物であってもよい。たとえば、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体を用いてもよい。また、上記した他の構造単位を含有する場合の具体例としては、エチレン-無水マレイン酸共重合体、スチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸交互共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体のけん化物などが挙げられる。
 カルボン酸含有重合体の分子量は特に制限されないが、得られるガスバリ性積層体のガスバリア性が優れる点、および落下衝撃強さなどの力学的物性が優れる点から、数平均分子量が5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることがさらに好ましい。カルボン酸含有重合体の分子量の上限は特に制限がないが、一般的には1,500,000以下である。
 また、カルボン酸含有重合体の分子量分布も特に制限されるものではないが、ガスバリア性積層体のヘイズなどの表面外観、および溶液の貯蔵安定性などが良好となる観点から、カルボン酸含有重合体の重量平均分子量/数平均分子量の比で表される分子量分布は1~6の範囲であることが好ましく、1~5の範囲であることがより好ましく、1~4の範囲であることがさらに好ましい。
 層(Z1)を構成する重合体は、カルボン酸含有重合体のカルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基(以下、官能基(F)という場合がある)の少なくとも一部を2価以上の金属イオンで中和して得られる。換言すれば、この重合体は、2価以上の金属イオンで中和されたカルボキシル基を含む。
 層(Z1)を構成する重合体は、官能基(F)に含まれる-COO-基のたとえば10モル%以上(たとえば15モル%以上)が、2価以上の金属イオンで中和されている。なお、カルボン酸無水物基は、-COO-基を2つ含んでいるとみなす。すなわち、aモルのカルボキシル基とbモルのカルボン酸無水物基とが存在する場合、それに含まれる-COO-基は、全体で(a+2b)モルである。官能基(F)に含まれる-COO-基のうち、2価以上の金属イオンで中和されている割合は、好ましくは20モル%以上であり、より好ましくは30モル%以上であり、さらに好ましくは40モル%以上であり、特に好ましくは50モル%以上(たとえば60モル%以上)である。官能基(F)に含まれる-COO-基のうち、2価以上の金属イオンで中和されている割合の上限は、特に制限はないが、たとえば、95モル%以下とすることができる。カルボン酸含有重合体中のカルボキシル基および/またはカルボン酸無水物基が2価以上の金属イオンで中和されることによって、層(Z1)は、乾燥条件下および高湿条件下の双方において、良好なガスバリア性を示す。
 官能基(F)の中和度(イオン化度)は、層(Z1)の赤外吸収スペクトルをATR(全反射測定)法で測定するか、または、多層構造体から層(Z1)をかきとり、その赤外吸収スペクトルをKBr法で測定することによって求めることができる。中和前(イオン化前)のカルボキシル基またはカルボン酸無水物基のC=O伸縮振動に帰属されるピークは1600cm-1~1850cm-1の範囲に観察され、中和(イオン化)された後のカルボキシル基のC=O伸縮振動は1500cm-1~1600cm-1の範囲に観察されるため、赤外吸収スペクトルにおいて両者を分離して評価することができる。具体的には、それぞれの範囲における最大の吸光度からその比を求め、予め作成した検量線を用いて多層構造体における層(Z1)を構成する重合体のイオン化度を算出することができる。なお、検量線は、中和度が異なる複数の標準サンプルについて赤外吸収スペクトルを測定することによって作成できる。
 官能基(F)を中和する金属イオンは2価以上であることが重要である。官能基(F)が未中和または後述する1価のイオンのみによって中和されている場合には、良好なガスバリア性を有する層(Z1)が得られない。ただし、2価以上の金属イオンに加えて少量の1価のイオン(陽イオン)で官能基(F)が中和されている場合には、多層構造体のヘイズが低減して表面の外観が良好となる。このように、本発明は、カルボン酸含有重合体の官能基(F)が2価以上の金属イオンと1価のイオンとの双方で中和される場合を含む。2価以上の金属イオンとしては、たとえば、カルシウムイオン、マグネシウムイオン、2価の鉄イオン、3価の鉄イオン、亜鉛イオン、2価の銅イオン、鉛イオン、2価の水銀イオン、バリウムイオン、ニッケルイオン、ジルコニウムイオン、アルミニウムイオン、チタンイオンなどを挙げることができる。たとえば、2価以上の金属イオンとして、カルシウムイオン、マグネシウムイオン、バリウムイオンおよび亜鉛イオンから選ばれる少なくとも1つのイオンを用いてもよい。
 本発明においては、カルボン酸含有重合体の官能基(F)(カルボキシル基および/またはカルボン酸無水物)に含まれる-COO-基の0.1~10モル%が、1価のイオンで中和されていることが好ましい。ただし、1価のイオンによる中和度が高い場合には、層(Z1)のガスバリア性が低下する。1価イオンによる官能基(F)の中和度は、0.5~5モル%の範囲であることがより好ましく、0.7~3モル%の範囲であることがさらに好ましい。1価のイオンとしては、たとえば、アンモニウムイオン、ピリジニウムイオン、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられ、アンモニウムイオンが好ましい。
 層(Z1)を構成する組成物中の無機成分の含有率は、5~50重量%の範囲であることが、層(Z1)のガスバリア性が良好となる観点から好ましい。この含有率は、より好ましくは10~45重量%の範囲であり、さらに好ましくは15~40重量%、さらに好ましくは25~40重量%の範囲である。組成物中の無機成分の含有率は、該組成物を調製する際に使用する原料の重量から算出することができる。すなわち、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、化合物(L)が完全に加水分解し、その一部が縮合したもの、あるいはこれらを組み合わせたものなどが完全に加水分解・縮合して金属酸化物になったと仮定し、その金属酸化物の重量を算出する。そして算出された金属酸化物の重量を組成物中の無機成分の重量とみなして、無機成分の含有率を算出する。なお、後述するような金属塩、金属錯体、金属酸化物などの無機添加物を加える場合は、加えた無機添加物の重量を、そのまま無機成分の重量に合算する。金属酸化物の重量の算出をより具体的に説明すると、化学式(I)で示される化合物(A)が完全に加水分解、縮合したときには、組成式が、M(n+k)/2 m-n-kで表される化合物となる。この化合物のうちM(n+k)/2の部分が金属酸化物である。Zについては、無機成分に含めず有機成分であるとみなす。また、化学式(II)で示される化合物(B)が完全に加水分解、縮合したときには、組成式が、M(q+r)/2 p-q-rで表される化合物になる。このうち、M(q+r)/2の部分が金属酸化物である。この金属酸化物の重量を、第一の工程までに加えた全ての成分から、溶剤、上述した化合物(L)が金属酸化物に変化する過程で発生する化合物など、の揮発成分を除いた成分の重量で、割った値を100倍した値が、ここでいう無機成分の含有率(%)である。
 また、層(Z1)を構成する組成物は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、ポリアルコール類またはそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含有していてもよい。また、ガスバリア層を構成する組成物は、上記金属アルコキシドを湿式で加水分解、縮合して製造した金属酸化物の微粉末;金属アルコキシドを乾式で加水分解、縮合又は燃焼して調製した金属酸化物の微粉末;水ガラスから調製したシリカ微粉末などを含有していてもよい。
 本発明の層(Z1)を構成する組成物に、さらにポリアルコール類を含有させることによって、ガスバリア性積層体の表面外観が良好となる。より具体的には、ポリアルコール類を含有させることによって、ガスバリア性積層体の製造時に、層(Z1)にクラックが発生しにくくなり、表面外観が良好なガスバリア性積層体が得られる。
 本発明に用いるそのようなポリアルコール類とは、分子内に少なくとも2個以上の水酸基を有する化合物であって、低分子量の化合物から高分子量の化合物までを包含する。好ましくは、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、エチレン-ビニルアルコール共重合体、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、でんぷんなどの多糖類から誘導される多糖類誘導体などの高分子量化合物である。
 上記したポリアルコール類の使用量は、カルボン酸含有重合体/ポリアルコール類の重量比が10/90~99.5/0.5の範囲であることが好ましい。該重量比は、より好ましくは30/70~99/1、さらに好ましくは50/50~99/1、最も好ましくは70/30~98/2の範囲である。
 層(Z1)を製造するための方法については、例えば国際公開WO2005/053954号パンフレットに記載の方法を用いる事ができる。
 (層(Z2))
 一方、層(Z)がハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物、ビニルアルコール系重合体、カルボン酸単位含有重合体(C1)およびカルボン酸単位含有重合体(C2)を含む重合体含有組成物からなり、前記カルボン酸単位含有重合体(C1)が、アクリル酸単位、アクリル酸塩単位、メタクリル酸単位およびメタクリル酸塩単位から選ばれる少なくとも1つの単量体単位を合計で30モル%以上の割合で含有し、前記カルボン酸単位含有重合体(C2)が、マレイン酸単位、マレイン酸エステル単位およびマレイン酸塩単位から選ばれる少なくとも1つの単量体単位を合計で30モル%以上の割合で含有する場合には、バリア性が一層改善する事例が認められた。本明細書では該特徴を有する層(Z)を特に層(Z2)と称する。バリア性が一層改善する原因については明確にはなっていないが、層(Z2)自身がガスバリア性を有することと、層(Y)と層(Z2)の密着性が改善している効果があるためと考えられる。
 層(Z2)に含まれるビニルアルコール系重合体としては、例えば基材(X)の材料として例示されたポリビニルアルコール系樹脂が挙げられる。このとき、層(Z2)の製造に用いられるビニルアルコール系重合体は、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの基が結合した金属原子を含む少なくとも1種の化合物(L1)に由来する基を含むことが好ましい。化合物(L1)は、ビニルエステル系重合体に含まれるエステル基と交換反応を生じて重合体と結合する。その場合、ビニルアルコール系重合体は、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つが結合した金属原子を含む化合物(L1)に由来する基を含む。化合物(L1)には、化合物(L)について説明した化合物を適用できるが、化合物(L)と化合物(L1)とは同じであっても異なってもよい。
 層(Z2)に含まれるカルボン酸単位含有重合体(C1)は、アクリル酸単位、アクリル酸塩単位、メタクリル酸単位およびメタクリル酸塩単位から選ばれる少なくとも1つの単量体単位を合計で、30モル%以上の割合(全単量体単位中)で含む。すなわち、カルボン酸単位含有重合体(C1)は、アクリル酸、アクリル酸塩、メタクリル酸およびメタクリル酸塩から選ばれる少なくとも1つの単量体が30モル% 以上の割合で共重合された重合体である。
 カルボン酸単位含有重合体(C1)に含まれる上記単量体単位の割合が30モル%未満である場合には、層(Z2)のガスバリア性が劣る。カルボン酸単位含有重合体(C1)に含まれる上記単量体単位の含有率は、50モル% 以上であることが好ましく、70モル%以上であることがより好ましい。
 カルボン酸単位含有重合体(C1)としては、ポリアクリル酸、ポリメタクリル酸、またはアクリル酸とメタクリル酸との共重合体、およびこれらの重合体中のカルボキシル基の一部が塩になっている重合体などを用いることができる。また、アクリル酸および/またはメタクリル酸と、1 種以上のビニル化合物との共重合体、およびこれらの重合体中のカルボキシル基の一部が塩になっている重合体を用いることもできる。共重合されるビニル化合物には、アクリル酸メチル、メタアクリル酸メチル、アクリル酸エチル、メタアクリル酸エチル、アクリル酸ブチル、メタアクリル酸ブチル等の(メタ) アクリル酸エステル類; ギ酸ビニルや酢酸ビニルなどのビニルエステル類; スチレン、p-スチレンスルホン酸、プロピレン、イソブチレンなどのオレフィン類などから選ばれる1種以上のビニル化合物を用いることができる。これらの中でも、カルボン酸単位含有重合体(C1)として、ポリアクリル酸およびポリアクリル酸の部分中和物から選ばれる少なくとも1つを用いることが好ましい。
 また、層(Z2)に含まれるカルボン酸単位含有重合体(C2)は、マレイン酸単位、マレイン酸エステル単位およびマレイン酸塩単位から選ばれる少なくとも1つの単量体単位を合計で、30モル%以上の割合(全単量体単位中)で含む。すなわち、カルボン酸単位含有重合体(C2)は、マレイン酸、マレイン酸エステルおよびマレイン酸塩から選ばれる少なくとも1つの単量体が合計で30モル%以上の割合で共重合された重合体である。なお、マレイン酸の代わりに無水マレイン酸を共重合してもよい。この場合、組成物を形成する過程で無水マレイン酸はマレイン酸となる。したがって、この明細書では、無水マレイン酸単位は、マレイン酸単位およびマレイン酸塩単位に含まれるものとして説明する。
 カルボン酸単位含有重合体(C2)に含まれる上記単量体単位の割合が30モル%未満である場合には、層(Z2)のガスバリア性が劣る。カルボン酸単位含有重合体(C2)に含まれる上記単量体単位の含有率は、50モル%以上であることが好ましく、70モル%以上であることがより好ましい。
 カルボン酸単位含有重合体(C2)としては、マレイン酸および/またはマレイン酸エステルと、1種以上のビニル化合物との共重合体、およびこれらの重合体中のカルボキシル基の一部が塩になっている重合体を用いることができる。共重合されるビニル化合物としては、たとえば、エチレン、プロピレン、イソブチレン、スチレン、p-スチレンスルホン酸などのオレフィン類;アクリル酸メチル、メタアクリル酸メチル、アクリル酸エチル、メタアクリル酸エチル、アクリル酸ブチル、メタアクリル酸ブチル等の(メタ)アクリル酸エステル類;蟻酸ビニル、酢酸ビニルなどのビニルエステル類が挙げられる。これらの中でも、カルボン酸単位含有重合体(C2)として、イソブチレン-マレイン酸共重合体およびイソブチレン-マレイン酸共重合体の部分中和物から選ばれる少なくとも1つを用いることが好ましい。
 層(Z2)に含まれる乾燥時における金属酸化物(または化合物(L)の加水分解縮合物)の含有率、すなわち、溶媒以外の成分に占める含有率は、10~65重量%の範囲であることが好ましい。該含有率が10重量%未満である場合、層(Z2)のガスバリア性、特に高湿度雰囲気下での酸素バリア性が低下するおそれがある。また、該含有率が65重量% を超える場合も、層(Z2)のガスバリア性が低下し、さらに力学的物性も低下するおそれがある。該含有率は、より好ましくは20~55重量%の範囲であり、さらに好ましくは25~45重量%の範囲である。
 本発明において、組成物中の金属酸化物(または化合物(L)の加水分解縮合物)の含有率は、組成物の有機成分を熱分解して除去した後に得られる金属酸化物の重量と、熱分解前の組成物の重量とから求められる。
 層(Z2)では、乾燥時における、ビニルアルコール系重合体、カルボン酸単位含有重合体(C1)および(C2)の含有率の合計は、45重量%~80重量%の範囲であることが好ましく、55重量%~75重量%の範囲であることがより好ましい。
 層(Z2)において、[カルボン酸単位含有重合体(C1)]/[カルボン酸単位含有重合体(C2)]の重量比は、99/1~10/90の範囲であることが好ましい。重量比がこの範囲である層(Z2)は、ガスバリア性に優れる。[カルボン酸単位含有重合体(C1)]/[カルボン酸単位含有重合体(C2)]の重量比は、より好ましくは95/5~20/80の範囲であり、さらに好ましくは90/10~30/70の範囲である。
 層(Z2)において、[ビニルアルコール系重合体]/[カルボン酸単位含有重合体(C 1)および(C2)の合計]の重量比は、99.5/0.5~70/30の範囲であることが好ましい。ガスバリア性および力学的物性を保持するためには、重合体含有組成物がカルボン酸単位含有重合体(C1)および(C2)を含むことが重要である。上記重量比は、好ましくは99/1~80/20の範囲であり、より好ましくは98/2~90/10の範囲である。
 さらに、本発明者らは、カルボン酸単位含有重合体(C1)がポリアクリル酸およびポリアクリル酸の部分中和物から選ばれる少なくとも1つであり、且つ、カルボン酸単位含
有重合体(C2)がイソブチレン-マレイン酸共重合体およびイソブチレン-マレイン酸共重合体の部分中和物から選ばれる少なくとも1つであることが好ましいことを見出した。この組み合わせによれば、層(Z2)のガスバリア性が特に優れる。この組み合わせを用いる場合、[カルボン酸単位含有重合体(C1)]/[カルボン酸単位含有重合体(C2)]の重量比が90/10~30/70の範囲にあることが好ましい。この範囲にある場合には、層(Z2)のガスバリア性が優れる。同様の理由によって、上記組み合わせを用いる場合には、[ビニルアルコール系重合体]/[カルボン酸単位含有重合体(C1)および(C2)の合計]の重量比は、98/2~90/10の範囲にあることが好ましい。
 層(Z2)を製造するための方法については、例えば特開2005-307042号公報に記載の方法を用いる事ができる。
 層(Z)を作成するにあたり、層(Z)を形成する組成物を有機溶媒などの溶媒に分散させて液状としたものであってもよい。このような組成物は、コーティング剤(塗液組成物)やフィルムの原料として用いることができる。溶媒の量は、組成物の用途に応じて決定される。溶媒には、例えば層(Z1)および層(Z2)の製造方法の説明において例示される溶媒を用いることができる。またあるいは、層(Z)を形成する組成物の物性により、例えば押出コーティングなどの溶融成形により層(Z)を作成することもできる。層(Z)は層(Y)にコーティング剤を直接塗工することにより形成された層であることが好ましい。
 層(Z)表面の水接触角は10~70°である。水接触角は後述する実施例において説明する接触角計を用いて測定することができる。水接触角が10°未満あるいは70°を超える場合には、層(Y)と層(Z)の表面特性が著しく異なることから、層(Z)の形成が困難であったり、形成しても十分な層間接着性が得られず、本発明の目的を達成することができない。水接触角の下限は15°以上であることが好ましく、20°以上であることがより好ましく、30°以上であることが特に好ましい。一方、水接触角の上限は65°以下であることが好ましく、60°以下であることがより好ましい。
[接着層(H)]
 本発明の多層構造体において、層(Y)は、基材(X)と直接接触するように積層されていてもよいが、基材(X)と層(Y)との間に配置された接着層(H)を介して層(Y)が基材(X)に積層されていてもよい。この構成によれば、基材(X)と層(Y)との接着性を高めることができる場合がある。また、接着層(H)は、多層構造体の基材(X)および/または層(Z)表面に配置することで、多層構造体以外のフィルム(層)と該多層構造体以外の他の部材(例えば熱可塑性樹脂フィルム層、紙層等の他の層など)と積層することができる。層(X)、層(Y)、層(Z)および層(H)がこの順に積層された多層構造体も本願の好ましい態様のひとつである。なお、接着層(H)は、接着性樹脂で形成してもよい。接着性樹脂からなる接着層(H)は、基材(X)や層(Z)の表面を公知のアンカーコーティング剤で処理するか、基材(X)や層(Z)の表面に公知の接着剤を塗布することによって形成できる。当該接着剤としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる二液反応型ポリウレタン系接着剤が好ましい。また、アンカーコーティング剤や接着剤に、公知のシランカップリング剤などの少量の添加剤を加えることによって、さらに接着性を高めることができる場合がある。シランカップリング剤の好適な例としては、イソシアネート基、エポキシ基、アミノ基、ウレイド基、メルカプト基などの反応性基を有するシランカップリング剤を挙げることができる。基材(X)と層(Y)とを接着層(H)を介して強く接着することによって、本発明の真空断熱体の真空包装袋を製造する際や加工を施す際に、バリア性や外観の悪化をより効果的に抑制することができる。
 接着層(H)を厚くすることによって、本発明の多層構造体の強度を高めることができる。しかし、接着層(H)を厚くしすぎると、外観が悪化する傾向がある。接着層(H)の厚さは0.03~0.18μmの範囲にあることが好ましい。接着層(H)の厚さをこの範囲とすることで、本発明の真空断熱体に用いられる真空包装袋を製造する際や加工を施す際に、バリア性や外観の悪化をより効果的に抑制することができ、さらに、本発明の真空断熱体の耐衝撃性を高めることができる。接着層(H)の厚さは、0.04~0.14μmの範囲にあることがより好ましく、0.05~0.10μmの範囲にあることがさらに好ましい。
 基材(X)、層(Y)、層(Z)あるいは基材(X)、層(Y)、層(Z)および接着層(H)からなる本発明の多層構造体は、該多層構造体以外の他の部材(例えば熱可塑性樹脂フィルム層、紙層等の他の層など)と積層することができる。積層は直接または接着層(H)を介して接着または形成することにより可能である。具体的な構成は、後述する真空包装袋の構成例で示すものを挙げることができる。なお、多層構造体自体が低熱伝導性を有する観点からは、アルミ蒸着層等の金属蒸着層を有さないほうが好ましい。
 本発明によれば、以下の性能を満たす多層構造体を得ることが可能である。
(性能1)40℃、0%RH(キャリアガス側)/65%RH(酸素供給側)65%RHの条件下における酸素透過度が1.0ml/(m・day・atm)以下である。
(性能2)23℃、50%RHの条件下で一方向に5%延伸した状態で5分間保持した後に、40℃、0%RH(キャリアガス側)/65%RH(酸素供給側)65%RHの条件下において測定した酸素透過度が、2.0ml/(m・day・atm)以下である。
[真空包装袋]
 真空包装袋は、内部を減圧して用いられる包装材であり、内部と外部とを隔てる隔壁としてフィルム材(以下、「ラミネート体」と呼ぶことがある)を備えている。本発明の真空包装袋は、基材(X)、層(Y)、層(Z)あるいは基材(X)、層(Y)、層(Z)および接着層(H)からなる本発明の多層構造体と該多層構造体以外の他の部材(例えば熱可塑性樹脂フィルム層、紙層等の他の層など)から構成される。また、真空包装袋は、該多層構造体を複数含んでもよい。そのような他の部材(他の層など)を有する真空包装袋は、当該他の部材(他の層など)を直接または接着層を介して接着または形成することによって製造することができる。真空包装袋が、このような他の部材(他の層など)を備えることによって、真空包装袋の特性を向上させたり、新たな特性を付与したりすることができる。例えば、本発明の真空包装袋にヒートシール性を付与したり、バリア性や力学的物性をさらに向上させたりすることができる。なお、真空包装体自体が低熱伝導性を有する観点からは、アルミ蒸着層等の金属蒸着層を有さないほうが好ましい。
 特に、真空包装袋の表面層をポリオレフィン層(以下、PO層と略すことがある)とすることによって、真空包装袋にヒートシール性を付与したり、真空包装袋の力学的特性を向上させたりすることができるため好ましい。ヒートシール性や力学的特性をより一層向上させる観点から、ポリオレフィンはポリプロピレンまたはポリエチレンであることが好ましい。また、真空包装袋の力学的特性を向上させるために、他の層として、二軸延伸ポリプロピレンフィルム、ポリエステルフィルム、ポリアミドフィルムおよびポリビニルアルコール系フィルムからなる群より選ばれる少なくとも1つのフィルムを積層することが好ましい。力学的特性の向上の観点から、ポリエステルとしてはポリエチレンテレフタレート(PET)が好ましく、ポリアミドとしてはナイロン-6が好ましく、ポリビニルアルコールとしてはエチレン-ビニルアルコール共重合体が好ましい。なお各層の間には必要に応じて、アンカーコート層や接着剤層を設けてもよい。
 本発明の真空断熱体に用いられる真空包装袋は、たとえば、真空断熱体の外側となる層から内側となる層に向かって、以下の構成を有していてもよい。以下の構成において、「/」は、「/」を挟む2層が直接的に積層されていることを表す(ただし、接着層(H)は介していてもよい)。また、「//」は、「//」を挟む2層が接着剤を介して間接的に積層されていることを表す。
(1)層(Z)/層(Y)/基材(X)//PO層、
(2)ポリエステル層//層(Z)/層(Y)/基材(X)//PO層、
(3)ポリエステル層//基材(X)/層(Y)/層(Z)//PO層、
(4)ポリアミド層//層(Z)/層(Y)/基材(X)//PO層、
(5)ポリアミド層//基材(X)/層(Y)/層(Z)//PO層、
(6)PO層//層(Z)/層(Y)/基材(X)//PO層、
(7)層(Z)/層(Y)/基材(X)/層(Y)/層(Z)//PO層、
(8)ポリエステル層//層(Z)/層(Y)/基材(X)/層(Y)/層(Z)//PO層、
(9)ポリアミド層//層(Z)/層(Y)/基材(X)/層(Y)/層(Z)//PO層、
(10)PO層//層(Z)/層(Y)/基材(X)/層(Y)/層(Z)//PO層、
(11)ポリエステル層/層(Z)/層(Y)//基材(X)//PO層、
(12)ポリアミド層/層(Z)/層(Y)//基材(X)//PO層、
(13)PO層/層(Z)/層(Y)//基材(X)//PO層、
(14)ポリエステル層/層(Y)//層(Z)/層(Y)/基材(X)//PO層、
(15)ポリアミド層/層(Y)//層(Z)/層(Y)/基材(X)//PO層、
(16)PO層/層(Y)//層(Z)/層(Y)/基材(X)//PO層、
(17)ポリエステル層/層(Y)//層(Z)/層(Y)/基材(X)/層(Y)//層(Z)/PO層、
(18)ポリアミド層/層(Y)//層(Z)/層(Y)/基材(X)/層(Y)/層(Z)//PO層、
(19)PO層/層(Y)//層(Z)/層(Y)/基材(X)/層(Y)/層(Z)//PO層、
(20)ポリアミド層//ポリエステル層/層(Y)//層(Z)/層(Y)/基材(X)//PO層、
(21)PO層//ポリエステル層/層(Y)//層(Z)/層(Y)/基材(X)//PO層、
(22)ポリアミド層//ポリエステル層/アルミ蒸着層//層(Z)/層(Y)/基材(X)//PO層、
(23)PO層//ポリエステル層/アルミ蒸着層//層(Z)/層(Y)/基材(X)//PO層、
(24)ポリアミド層//基材(X)/層(Y)/層(Z)//層(Z)/層(Y)/基材(X)//PO層、
(25)PO層//基材(X)/層(Y)/層(Z)//層(Z)/層(Y)/基材(X)//PO層。
 これらの中でも、物理的ストレスを受けても、真空包装袋が元来有するバリア性が高いレベルで維持され、かつ真空包装袋自体が低熱伝導性を有する真空断熱体を得るためには、上記層構成(1)、(2)、(4)、(6)~(25)が特に好ましい。また、上記層構成(1)、(2)、(4)、(6)~(21)、(24)、(25)では透明性も得ることができ、例えば色により内部の状態を確認することができる指示物質を含む内容物を視認する必要がある場合には更に好ましい。真空包装袋が透明であり、内部に指示物質を備える真空断熱体も本発明の好適な実施態様の1つである。
 以上に例示した真空包装袋の構成の中でも、下記の要件の少なくとも1つ以上を備えていることが好ましい。
 (1)少なくとも1層の基材(X)が少なくとも1層の層(Y)よりも芯材側に位置する。
 (2)少なくとも1層の層(Y)が、少なくとも1層の基材(X)に直接積層されている。
[芯材]
 本発明の真空断熱体に使用される芯材は、断熱性を有するものである限り特に制限はない。たとえば、芯材として、パーライト粉末、シリカ粉末、沈降シリカ粉末、ケイソウ土、ケイ酸カルシウム、ガラスウール、ロックウール、および樹脂の発泡体(たとえばスチレンフォームやウレタンフォーム)などが例示できる。また、芯材として、樹脂や無機材料製の中空容器や、ハニカム状構造体などを使用してもよい。また、必要に応じて、水蒸気やガスなどを吸着する吸着材を芯材に含んでもよい。
[真空断熱体]
 本発明の真空断熱体においては、真空包装袋内の空間部は真空状態にある。ここでいう真空状態とは必ずしも絶対的な真空状態を意味せず、真空包装袋内の空間部の圧力が大気圧より充分に低いことを示す。内部圧力は、必要な性能と製造の容易さなどから決定されるが、通常、断熱性能を発揮させるためには2kPa(約15Torr)以下である。本発明の真空断熱体の断熱効果を充分に発現させるためには、真空包装袋内部圧力は200Pa(約1.5Torr)以下であることが好ましく、20Pa以下であることがより好ましく、2Pa以下であることがさらに好ましい。真空包装袋内の空間部の圧力の下限に限定はないが、圧力は0.001Pa~2KPaの範囲にあってもよい。
 当該真空断熱体の作成1日後の熱伝導率の上限としては、3.0mW/(m・K)が好ましく、2.5mW/(m・K)がより好ましい。一方、上記作成1日後の熱伝導率の下限としては、1.0mW/(m・K)が好ましく、1.2mW/(m・K)がより好ましい。上記熱伝導率が上記上限を超えると、当該真空断熱体の断熱性能が不十分となるおそれがある。逆に、上記熱伝導率が上記下限未満の場合、当該真空断熱体の製造コストが増大するおそれがある。ここで、「熱伝導率」とは、JIS-A1412-1(1999)に準拠し測定される値である。
 本発明の真空断熱体は長期間に亘り断熱性能を保持することができる。断熱性能としては、後述する(7)真空断熱体の熱伝導率の測定における作成90日後の熱伝導率(Q)が4.8mW/(m・K)以下であることが好ましく、4.5mW/(m・K)以下であることがより好ましい。作成90日後の熱伝導率(Q)は、通常2.0mW/(m・K)以上である。
 本発明の真空断熱体は、通常行なわれている方法によって製造できる。使用目的等に応じ、任意の形状および大きさの真空断熱体を形成できる。例えば、以下の方法1~3によって本発明の真空断熱体を製造できる。
(方法1)まず、少なくとも一方の表面にヒートシール層が配置された2枚の多層構造体を用意する。その2枚の多層構造体を、各々のヒートシール層が内側となるように重ね合わせ、任意の3辺をヒートシールして真空包装袋を作製する。次に、真空包装袋の内部に芯材を充填する。次に、真空包装袋の内部の空間を真空状態にし、そのままの状態で最後の辺をヒートシールする。このようにして真空断熱体が得られる。
(方法2)まず、1枚の多層構造体をヒートシ-ル層が内側となるように折り曲げ、任意の2辺をヒートシールして真空包装袋を作製する。次に、真空包装袋の内部に芯材を充填する。次に、真空包装袋の内部の空間を真空状態にし、そのままの状態で最後の辺をヒートシールする。このようにして真空断熱体が得られる。
(方法3)まず、2枚の多層構造体で芯材を挟むか、または多層構造体を折り曲げるようにして芯材を挟む。次に、多層構造体が重なっている周縁部を、真空排気口を残してヒートシールして内部に芯材が配置された真空包装袋を作製する。次に、真空包装袋の内部の空間を真空状態にし、そのままの状態で真空排気口をヒートシールする。このようにして真空断熱体が得られる。
[用途]
 本発明の真空断熱体は、保冷や保温が必要な各種用途に使用することができる。特に、本発明の真空断熱体は、高温高湿下で使用される場合にも、断熱性能の経時的な劣化が極めて起こり難いので、断熱材として充分な耐用期間を達成することが可能となり、給湯機用タンク、温水トイレ用タンク、自動販売機用タンク、燃料電池用タンク、自動車用タンク、食品などの保温用バッグ、温かいペットボトルや缶の保温用、洗濯機のドラムの保温用、コーヒーやお茶のサーバー、ジャーポットといった断熱性を必要とするあらゆる保温の用途にも有用である。
 以下に、実施例によって本発明をより具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。なお、実施例および比較例における各測定および評価は、以下の(1)~(7)の方法によって実施した。
(1)多層構造体の外観
 得られた多層構造体の外観を、目視によって下記のように評価した。
  A:無色透明で均一であり、極めて良好な外観であった。
  B:不透明で均一であり、極めて良好な外観であった。
  C:著しい皺、寸法変化が認められ、実用に耐えられないと判断、測定および評価を中止した。
(2)無機酸化物蒸着層の平均厚み
 多層シートをミクロトームでカットし断面を露出させた後、この断面を走査型電子顕微鏡(エス・アイ・アイナノテクノロジー社の「ZEISS ULTRA 55」)の反射電子検出器を用いて測定することで無機酸化物蒸着層の平均厚みを測定した。
(3)水接触角の測定
 接触角計を用いて、水接触角の測定を行った。測定条件は以下の通りとした。
  装置:協和界面科学株式会社製DM-700
  液量:1.0μL
  着滴後待ち時間:1.0秒
  解析法:θ/2法
(4)多層構造体の酸素透過度(Os)
 酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX-TRAN2/20」)を用いて測定した。具体的には、酸素供給側に層(YあるいはZ)が向き、キャリアガス側に基材(X)が向くように多層構造体をセットし、温度が40℃、酸素供給側の湿度が65%RH、キャリアガス側の湿度が0%RH、酸素圧が1気圧、キャリアガス圧力が1気圧の条件下で酸素透過度(単位:ml/(m・day・atm))を測定した。キャリアガスとしては2体積%の水素ガスを含む窒素ガスを使用した。
(5)5%延伸、保持後の多層構造体の酸素透過度(Of)
 作製した多層構造体を21cm×30cmの大きさに切り出し、23℃、50%RHの条件下で24時間以上放置した後、同条件下で長軸方向に相当する一方向に5%延伸し、延伸した状態を5分間保持することで、延伸後の多層構造体を得た。延伸後の多層構造体について、上記(4)と同様に酸素透過度を測定した。
(6)輸送試験後の多層構造体の酸素透過度(Og)
 得られた真空断熱体を、芯材の形状に沿って真空包装袋の端部を折り畳み、ダンボール箱(67×61×45cm)に入れた。ダンボール箱をトラックに積み、岡山県と東京都の間を10往復させる輸送試験を実施した。輸送試験後の真空断熱体から折り畳み角部が含まれるように10×10cmの測定用の多層構造体サンプルを切り出し、該サンプルの酸素透過度を上記(4)と同様に測定した。
(7)真空断熱体の熱伝導率
 得られた真空断熱体を100℃で一定期間保管した後、熱伝導率測定装置(英弘精機株式会社製FOX314型)用い、真空断熱体の一方の側を38℃とし、他方の面側を12℃とすることで真空断熱体の熱伝導率を測定した。測定は真空断熱体を作成してから1、30、90日後に測定した。
[実施例1]
 基材(X)として、3倍(MD)×3倍(TD)に二軸延伸したエチレン-ビニルアルコール共重合体(EVOH)フィルム(厚さ12μm)を準備した。基材(X)に用いられたEVOHのエチレン含有量は32.0モル%であり、けん化度は100%であった。バッチ式蒸着設備(日本真空技術社の「EWA-105」)を用い、酸素を導入しながらアルミを溶融、蒸発させることで、基材(X)の一方の面に酸化アルミニウムからなる層(Y)を形成した。
 層(Z)は以下に示す方法で作成した。まず、数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、その後、アンモニア水を加えてポリアクリル酸のカルボキシル基の1.5モル%を中和し、水溶液中の固形分濃度が10重量%であるポリアクリル酸水溶液を得た。
 次に、テトラメトキシシラン(TMOS)68.4重量部をメタノール82.0重量部に溶解し、続いてγ-グリシドキシプロピルトリメトキシシラン13.6重量部を溶解した後、蒸留水5.13重量部と0.1N(0.1規定)の塩酸12.7重量部とを加えてゾルを調製し、これを攪拌しながら10℃で1時間、加水分解および縮合反応を行った。得られたゾルを蒸留水185重量部で希釈した後、攪拌下の上記10重量%ポリアクリル酸水溶液634重量部に速やかに添加し、溶液(S-1)を得た。
 上記基材(X)/層(Y)の層(Y)上に、乾燥後の厚さが0.5μmになるようにバーコーターによって溶液(S-1)をコートしたのち、80℃で5分間乾燥し、その後50℃で3日間(72時間)熟成処理し、さらに、乾燥空気中で160℃で5分間熱処理を施した。
 次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液に、上記で得られた積層体を約20秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、基材(X)/層(Y)/層(Z)からなる多層構造体を得た。
 上記多層構造体について、フーリエ変換赤外分光光度計(株式会社島津製作所製、「8200PC」)を用いて、ATR(全反射測定)のモードで、層(Z)に含まれるC=O伸縮振動のピークを観察した。イオン化前のカルボン酸含有重合体のカルボキシル基のC=O伸縮振動に帰属されるピークは1,600cm-1~1,850cm-1の範囲に観察され、イオン化された後のカルボキシル基のC=O伸縮振動は1,500cm-1~1,600cm-1の範囲に観察された。そして、それぞれの範囲における最大の吸光度からその比を算出し、その比と予め下記の方法で作成した検量線とを用いてイオン化度を求めた。その結果、カルボキシル基の60モル%がカルシウムイオンで中和されていることが分かった。
 (検量線の作成)
 数平均分子量150,000のポリアクリル酸を蒸留水に溶解し、所定量の水酸化ナトリウムでカルボキシル基を中和した。得られたポリアクリル酸の中和物の水溶液を、上記基材(X)/層(Y)の層(Y)上に、イオン化度の測定の対象となる層(Z)と同じ厚さになるようにコートし、乾燥させた。このようにして、カルボキシル基の中和度が、0~100モル%間で10モル%ずつ異なる11種類の標準サンプル[積層体(ポリアクリル酸の中和物からなる層/層(Y)/基材(X))]を作製した。これらのサンプルについて、フーリエ変換赤外分光光度計(島津製作所製、8200PC)を用いて、ATR(全反射測定)のモードで、赤外吸収スペクトルを測定した。そして、ポリアクリル酸の中和物からなる層に含まれるC=O伸縮振動に対応する2つのピーク、すなわち、1,600cm-1~1,850cm-1の範囲に観察されるピークと1,500cm-1~1,600cm-1の範囲に観察されるピークとについて、吸光度の最大値の比を算出した。そして、算出した比と、各標準サンプルのイオン化度とを用いて検量線を作成した。
 得られた多層構造体について、上記(1)~(5)の方法でその評価を行った。
[実施例2]
 基材(X)として、3倍(MD)×3倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ15μm)を用いた以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例3]
 基材(X)として、3倍(MD)×3倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ12μm)を準備した。バッチ式蒸着設備(日本真空技術社の「EWA-105」)を用い、該フィルムに酸化ケイ素を溶融、蒸発させることで、基材(X)の一方の面に酸化ケイ素からなる層(Y)を形成した。
 得られた基材(X)/層(Y)について、実施例1と同様の方法で層(Z)を作成することで多層構造体を得た。実施例1と同様の方法でその評価を行った。
[実施例4]
 基材(X)として、3倍(MD)×3倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ15μm)を用いた以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例5]
 層(Y)の平均厚みを変更した以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例6]
 層(Y)の平均厚みを変更した以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例7]
 層(Z)を以下に示す方法で作成した以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
 株式会社クラレ製ポリビニルアルコール樹脂であるPVA-110H(けん化度98モル%以上)を蒸留水に入れ、90℃に加熱しながら1時間以上撹拌して、水溶液(S-2)を得た。
 基材(X)/層(Y)の層(Y)上に、乾燥後の厚さが0.5μmになるようにバーコーターによって溶液(S-2)をコートしたのち、100℃で3分間乾燥して多層構造体を作成した。
[実施例8]
 層(Y)が酸化ケイ素である以外は実施例7と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例9]
 層(Z)を以下に示す方法で作成した以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
 窒素雰囲気下、ビニルホスホン酸10gおよび2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.025gを水5gに溶解させ、80℃で3時間攪拌した。冷却後、重合溶液に水15gを加えて希釈し、セルロース膜であるスペクトラムラボラトリーズ社製の「Spectra/Por」(登録商標)を用いてろ過した。ろ液中の水を留去した後、50℃で24時間真空乾燥することによって、ポリ(ビニルホスホン酸)を得た。GPC分析の結果、該重合体の数平均分子量はポリエチレングリコール換算で10,000であった。該重合体に蒸留水を加え、90℃に加熱しながら1時間以上撹拌して、水溶液(S-3)を得た。
 基材(X)/層(Y)の層(Y)上に、乾燥後の厚さが0.5μmになるようにバーコーターによって溶液(S-3)をコートしたのち、100℃で3分間乾燥して多層構造体を作成した。
[実施例10]
 層(Z)を以下に示す方法で作成した以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
 重合度500のエチレン-酢酸ビニル共重合体(エチレン変性率8モル%)を38重量%の含有量で含むメタノール溶液を調整した。このメタノール溶液400重量部に、テトラメトキシシラン13.3重量部およびメタノール84.1重量部を加え、溶液が均一になるように約10分間撹拌した。その後、溶液をサンプリングし、溶液中に含まれる水分量を測定した。そして、溶液中に含まれる水分量が5,000ppmになるように水を添加した。
 得られた溶液に、水酸化ナトリウムのメタノール溶液(水酸化ナトリウム10%)20.9重量部を加え、40℃でけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから約10分間で溶液がゲル化した。ゲル化した後も、40℃の温度で生成物をさらに20分間放置し、けん化反応を進めた。けん化反応後、得られたゲルを粉砕し、これに1500重量部のメタノールを加え、系の温度を40℃に保持して1時間撹拌した。撹拌後、ろ過によってメタノールを除去し、再度1,500重量部のメタノールを加えた。次に、系の温度を40℃に保持して1時間撹拌した。その後、ろ過によって生成物からメタノールを除去し、65℃に調整された熱風乾燥器内で、生成物を20時間かけて乾燥した。このようにして、ビニルアルコール系重合体を得た。このビニルアルコール系重合体およびその組成物を分析したところ、エチレン-酢酸ビニル共重合体中のカルボン酸ビニル単位に由来するアシル基の残存率が1.0モル%で、残存酢酸ナトリウム量が1.0重量%であった。また、ビニルアルコール系重合体に結合しているSi原子の量は、けん化前のカルボン酸ビニル単位に由来するアシル基100モルに対し5.0モルであった。
 このビニルアルコール系重合体50.0重量部を蒸留水に溶解させ、固形分濃度が10重量%である水溶液を調整した。これとは別に、ポリアクリル酸(株式会社日本触媒製 PSA-HL415、数平均分子量1万)の水溶液を、固形分濃度が10重量%になるように調整した。さらに、イソブチレン-無水マレイン酸交互共重合体(株式会社クラレ製イソバン600:無水マレイン酸単位の含有率50モル%)を、無水マレイン酸のカルボキシル基に対して0.75部モルのアンモニアを含むアンモニア水に溶解させ、イソブチレン-マレイン酸交互共重合体塩の水溶液を得た。このとき、イソブチレン-マレイン酸交互共重合体塩の濃度が10重量%となるように、それをアンモニア水に溶解した。
 該ビニルアルコール系重合体の水溶液500.0重量部、該ポリアクリル酸の水溶液16.0重量部、およびイソブチレン-マレイン酸交互共重合体塩の水溶液16.0重量部を混合し、ビニルアルコール系重合体(エチレン変性PVA/ポリアクリル酸(PAA)/イソブチレン-マレイン酸交互共重合体塩(P(MA/IB))の重量比が94/3/3である溶液(S-4)を調整した。
 次に、テトラメトキシシラン72.3重量部をメタノール72.3重量部に溶解した後、蒸留水4.8重量部と0.1N(0.1規定)-塩酸11.9重量部とを加え、これを撹拌しながら40℃で1時間反応を行うことによってゾルを調整した。得られたゾルを蒸留水124.3重量部で希釈した後、これを撹拌しながら、速やかに上記溶液(S-4)を添加し、溶液(S-5)を調整した。溶液(S-5)は、その調整後に、25℃の雰囲気下で1時間放置した。
 基材(X)/層(Y)の層(Y)上に、乾燥後の厚さが0.5μmになるようにバーコーターによって溶液(S-5)をコートし、80℃で5分間乾燥した後、さらに160℃で5分間熱処理を行って多層構造体を作成した。
[実施例11]
 層(Y)が酸化ケイ素である以外は実施例10と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例12]
 基材(X)として、3.5倍(MD)×4倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ12μm)を用いた以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[実施例13]
 基材(X)として、2.5倍(MD)×3倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ12μm)を用いた以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[比較例1]
 基材(X)として、無延伸エチレンービニルアルコール共重合体フィルム(株式会社クラレ製「エバール(登録商標)EF-F」、厚さ12μm)を用いた以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。ただし、多層構造体の表面状態不良により水接触角の測定はできなかった。また、外観不良のため酸素透過度の測定は行わなかった。
[比較例2]
 基材(X)として、無延伸エチレンービニルアルコール共重合体フィルム(株式会社クラレ製「エバール(登録商標)EF-F」、厚さ12μm)を用いた以外は実施例2と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。ただし、多層構造体の表面状態不良により水接触角の測定はできなかった。また、外観不良のため酸素透過度の測定は行わなかった。
[比較例3]
 基材(X)として、二軸延伸ポリエステルフィルム(東レ株式会社製「ルミラー(登録商標)」、厚さ12μm)を用いた以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[比較例4]
 基材(X)として、二軸延伸ポリエステルフィルム(東レ株式会社製「ルミラー(登録商標)」、厚さ12μm)を用いた以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[比較例5]
 層(Y)がアルミである以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。なお、層(Y)はバッチ式蒸着設備(日本真空技術社の「EWA-105」)を用い、アルミを溶融、蒸発させることで、基材(X)の一方の面に形成した。
[比較例6]
 層(Y)の厚みが異なる以外は比較例5と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[比較例7]
 実施例1と同様の方法で基材(X)の一方の面に層(Y)を形成した多層構造体を比較例7とし、実施例1と同様の方法でその評価を行った。
[比較例8]
 実施例2と同様の方法で基材(X)の一方の面に層(Y)を形成した多層構造体を比較例8とし、実施例1と同様の方法でその評価を行った。
[比較例9]
 層(Z)を以下に示す方法で作成した以外は実施例1と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
 基材(X)/層(Y)の層(Y)上に、ポリエチレン樹脂(密度;0.917g/cm3、メルトフローレート;8g/10分)を厚さが5μmになるように該接着層上に295℃で押出しコートラミネートした。
[比較例10]
 層(Z)を以下に示す方法で作成した以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
 基材(X)/層(Y)の層(Y)上に、ポリエチレン樹脂(密度;0.917g/cm3、メルトフローレート;8g/10分)を厚さが5μmになるように該接着層上に295℃で押出しコートラミネートした。
[比較例11]
 基材(X)として、2.5倍(MD)×2.5倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ12μm)を用いた以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[比較例12]
 基材(X)として、2倍(MD)×4倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ12μm)を用いた以外は実施例3と同様の方法で多層構造体を作成し、実施例1と同様の方法でその評価を行った。
[比較例13]
 基材(X)として、4倍(MD)×4倍(TD)に二軸延伸したエチレンービニルアルコール共重合体フィルム(厚さ12μm)の成膜を試みたが、延伸時破断し、延伸フィルムを得ることができなかった。
 上記実施例1~13および比較例1~13について、多層構造体の製造条件、および多層構造体の評価結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例14]
 実施例1で得られた多層構造体を用いて、以下の方法で「OPA/多層構造体/CPP」からなるラミネート体(a)を作製した。厚さ15μmの延伸ポリアミドフィルム(ユニチカ株式会社製、「エンブレム(登録商標)ON-BC」、(OPA))および厚さ60μmの無延伸ポリプロピレンフィルム(三井化学東セロ株式会社製「CP RXC-18」、(CPP))の片面のそれぞれに2液型の接着剤(三井化学株式会社製、「A-520」および「A-50」)を塗布し、OPA層/接着剤層/多層構造体/接着剤層/CPP層、という構成となるように、CPPフィルム、OPAフィルムおよび多層構造体をラミネートすることによって、ラミネート体(a)を得た。なお、多層構造体は層(Y)を有する側がOPAと隣接する接着剤層と隣接する様にしてラミネートした。
 得られたラミネート体を裁断し、サイズが20cm×25cmである被覆材を2枚得た。その2枚のラミネート体をCPP層同士が内面となるように重ね合わせ、3方を10mm幅でヒートシールして3方袋である真空包装袋を作製した。
 得られた真空包装袋の開口部から断熱性の芯材および吸着剤として酸化カルシウム入り小袋を充填し、真空断熱パネル製造装置(株式会社エヌ・ピー・シー製KT-500RD型)を用いて温度20℃で内部圧力0.5Paの状態で真空包装袋を密封することによって、真空断熱体を作製した。断熱性の芯材には、120℃の雰囲気下で4時間乾燥したガラスファイバーを用いた。得られた真空断熱体の評価を上記(6)および(7)の方法で行った。
[実施例15~26並びに比較例14~23]
 実施例2~13および比較例3~12で得られた多層構造体を用いて、実施例14と同様に真空断熱体を作成し、実施例14と同様に評価を行った。ただし、比較例20および21の真空断熱体は作成直後に剥離が認められたため評価を中止した。
[実施例27]
 実施例1で得られた多層構造体を用いて、以下の方法で「OPA/多層構造体/多層構造体/CPP」からなるラミネート体(b)を作製した。上記CPP、上記OPA、および多層構造体の片面のそれぞれに上記2液型の接着剤を塗布し、OPA層/接着剤層/多層構造体/接着剤層/多層構造体/接着剤層/CPP層、という構成となるように、CPPフィルム、OPAフィルムおよび多層構造体をラミネートすることによって、ラミネート体を得た。なお、多層構造体は双方の層(Y)を有する側が接着剤層を挟んで隣接する様にしてラミネートした。
 得られたラミネート体を用いて、実施例14と同様にして真空包装袋および真空断熱体を作製し、得られた真空断熱体の評価を上記(6)および(7)の方法で行った。
[実施例28]
 実施例3で得られた多層構造体を用いて、実施例27と同様に真空断熱体を作成し、評価を行った。
 上記実施例14~28および比較例14~23について、真空包装袋の構成および真空断熱体の評価結果を表3および表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例14~28で得られた真空断熱体は比較例14~23で得られた真空断熱体と比較して熱伝導率の経時変化が小さく、真空包装袋が元来有するバリア性が高いレベルで維持されていることがわかる。
 また、比較例16および17に示されるように、金属蒸着層を有する真空断熱体に関しては、真空断熱体作成直後の熱伝導率が相対的に高く、真空包装袋を経由した熱伝導が比較的大きいことがわかる。
[実施例29]
 実施例1で得られた多層構造体を用いて、以下の方法で「OPA/VM-PET/多層構造体/CPP」からなるラミネート体(c)を作製した。上記CPP、上記OPA、およびアルミニウム蒸着層が形成された二軸延伸ポリエステルフィルム(VM-PET)の片面のそれぞれに上記2液型の接着剤を塗布し、OPA層/接着剤層/VM-PET層/接着剤層/多層構造体/接着剤層/CPP層、という構成となるように、CPPフィルム、OPAフィルム、VM-PETフィルムおよび多層構造体をラミネートすることによって、ラミネート体を得た。なお、VM-PETはアルミニウム蒸着層を有する側を多層構造体側としてラミネートした。また、多層構造体は層(Y)を有する側をVM-PET側としてラミネートした。
 得られたラミネート体を用いて、実施例14と同様にして真空包装袋および真空断熱体を作製し、得られた真空断熱体の評価を上記(6)および(7)の方法で行った。
[実施例30並びに比較例24および25]
 実施例3並びに比較例5および6で得られた多層構造体を用いて、実施例29と同様に真空断熱体を作成、評価を行った。
 上記実施例29および30並びに比較例24および25について、真空包装袋の構成および真空断熱体の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 以上説明したように、本発明の多層構造体および該多層構造体を含む真空包装袋は、物理的ストレスを受けても、真空包装袋が元来有するバリア性が高いレベルで維持され、かつ真空包装袋自体が低熱伝導性を有することができる。従って該真空包装袋を用いて作成された真空断熱体は、長期間に渡り優れた断熱性能を保持することができる。

 

Claims (9)

  1.  二軸延伸ポリビニルアルコール系フィルムからなる基材(X)の少なくとも一方の面に、無機酸化物からなる蒸着層(Y)および有機高分子を含む層(Z)が、前記基材(X)/前記層(Y)/前記層(Z)の順に積層された構造を有し、さらに前記層(Y)と前記層(Z)が隣接し、前記層(Z)表面の水接触角が10~70°であり、前記基材(X)の延伸倍率が縦方向(MD方向)2.5倍以上4.5倍以下、横方向(TD方向)2.5倍以上4.5倍以下、且つ面延伸倍率として7倍以上15倍以下である多層構造体。
  2.  前記基材(X)がエチレン含有量10~65モル%、けん化度90モル%以上のエチレン-ビニルアルコール共重合体からなるフィルムである請求項1に記載の多層構造体。
  3.  前記層(Y)が酸化アルミニウムおよび酸化ケイ素からなる群より選択される少なくとも1種の無機酸化物を含む蒸着層である請求項1または2に記載の多層構造体。
  4.  前記層(Z)に含まれる有機高分子が水酸基、カルボン酸基およびリン原子を含む官能基からなる群より選択される少なくとも1種の官能基を有する請求項1~3のいずれか1項に記載の多層構造体。
  5.  前記層(Z)がハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物を含む請求項1~4のいずれか1項に記載の多層構造体。
  6.  40℃、0%RH(キャリアガス側)/65%RH(酸素供給側)の条件下における酸素透過度が1.0ml/(m・day・atm)以下である、請求項1~5のいずれか1項に記載の多層構造体。
  7.  23℃、50%RHの条件下で一方向に5%延伸した状態で5分間保持した後に、40℃、0%RH(キャリアガス側)/65%RH(酸素供給側)の条件下において測定した酸素透過度が、2.0ml/(m・day・atm)以下である、請求項1~6のいずれか1項に記載の多層構造体。
  8.  内部と外部とを隔てる隔壁としてフィルム材を備え、前記内部が減圧された真空包装袋であって、前記フィルム材が請求項1~7のいずれか1項に記載の多層構造体を含む真空包装袋。
  9.  請求項8に記載の真空包装袋と前記真空包装袋により囲まれた内部に配置された芯材とを備え、その内部が減圧された真空断熱体。
     

     
PCT/JP2016/060493 2015-03-31 2016-03-30 多層構造体、真空包装袋および真空断熱体 WO2016159140A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510139A JP6788576B2 (ja) 2015-03-31 2016-03-30 多層構造体、真空包装袋および真空断熱体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071983 2015-03-31
JP2015-071983 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159140A1 true WO2016159140A1 (ja) 2016-10-06

Family

ID=57005774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060493 WO2016159140A1 (ja) 2015-03-31 2016-03-30 多層構造体、真空包装袋および真空断熱体

Country Status (2)

Country Link
JP (1) JP6788576B2 (ja)
WO (1) WO2016159140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187871A1 (ja) * 2018-03-29 2019-10-03 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2020146914A (ja) * 2019-03-13 2020-09-17 住友化学株式会社 ガスバリア積層体
WO2024111621A1 (ja) * 2022-11-24 2024-05-30 株式会社クラレ 複合多層フィルム及びそれを用いた多層構造体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001240A (ja) * 2003-06-12 2005-01-06 Kuraray Co Ltd エチレン−ビニルアルコール共重合体二軸延伸フィルムおよび真空断熱体
US20050287370A1 (en) * 2004-06-16 2005-12-29 Wipak Walsrode Gmbh Co. & Kg Film laminate with at least one diffusion-barrier layer and its use in vacuum insulation panels in the construction sector
JP2013075428A (ja) * 2011-09-30 2013-04-25 Kuraray Co Ltd 複合構造体、それを用いた包装材料および成形品、ならびに複合構造体の製造方法
JP2013130289A (ja) * 2011-11-22 2013-07-04 Nippon Synthetic Chem Ind Co Ltd:The 真空断熱構造体及び積層体
JP2013540607A (ja) * 2010-08-17 2013-11-07 エルジー・ハウシス・リミテッド 真空断熱材用複合心材、その製造方法及びこれを用いた真空断熱材
WO2016006694A1 (ja) * 2014-07-11 2016-01-14 株式会社クラレ エチレン-ビニルアルコール共重合体、樹脂組成物、及びこれらを用いた成形体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021880A (ja) * 2005-07-15 2007-02-01 Dainippon Printing Co Ltd バリア性フィルムおよびそれを使用した積層材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001240A (ja) * 2003-06-12 2005-01-06 Kuraray Co Ltd エチレン−ビニルアルコール共重合体二軸延伸フィルムおよび真空断熱体
US20050287370A1 (en) * 2004-06-16 2005-12-29 Wipak Walsrode Gmbh Co. & Kg Film laminate with at least one diffusion-barrier layer and its use in vacuum insulation panels in the construction sector
JP2013540607A (ja) * 2010-08-17 2013-11-07 エルジー・ハウシス・リミテッド 真空断熱材用複合心材、その製造方法及びこれを用いた真空断熱材
JP2013075428A (ja) * 2011-09-30 2013-04-25 Kuraray Co Ltd 複合構造体、それを用いた包装材料および成形品、ならびに複合構造体の製造方法
JP2013130289A (ja) * 2011-11-22 2013-07-04 Nippon Synthetic Chem Ind Co Ltd:The 真空断熱構造体及び積層体
WO2016006694A1 (ja) * 2014-07-11 2016-01-14 株式会社クラレ エチレン-ビニルアルコール共重合体、樹脂組成物、及びこれらを用いた成形体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187871A1 (ja) * 2018-03-29 2019-10-03 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2019173938A (ja) * 2018-03-29 2019-10-10 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2020146914A (ja) * 2019-03-13 2020-09-17 住友化学株式会社 ガスバリア積層体
WO2024111621A1 (ja) * 2022-11-24 2024-05-30 株式会社クラレ 複合多層フィルム及びそれを用いた多層構造体

Also Published As

Publication number Publication date
JPWO2016159140A1 (ja) 2018-01-25
JP6788576B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
EP1892089B1 (en) Gas barrier laminate, method for producing same and package body using same
JP5735835B2 (ja) 真空断熱材
KR101211942B1 (ko) 종이 용기
JP4778346B2 (ja) 真空断熱体
JP4828282B2 (ja) スパウト付きパウチ
JP6788576B2 (ja) 多層構造体、真空包装袋および真空断熱体
JP4828281B2 (ja) 真空包装袋
JP5059335B2 (ja) 輸液バッグ
JP4974556B2 (ja) 窓付き紙容器
WO2019004324A1 (ja) 真空断熱材
JP5241583B2 (ja) 真空断熱体
JP5366751B2 (ja) 紙容器
JP2000052499A (ja) レトルト殺菌包装用フィルム積層体およびそれを備えた包装袋
JP2006335042A (ja) 成形体
JP4828280B2 (ja) 容器蓋材
JP2021119030A (ja) 多層構造体並びに前記多層構造体を備える包装材、真空包装袋及び真空断熱体
JP7357560B2 (ja) 多層構造体並びに前記多層構造体を備える包装材、真空包装袋及び真空断熱体
JP7357559B2 (ja) 多層構造体並びに前記多層構造体を備える包装材、真空包装袋及び真空断熱体
JP2006297925A (ja) レトルト処理用紙容器
JP6891050B2 (ja) 多層構造体、真空包装袋および真空断熱体
JP2021119032A (ja) 多層構造体並びに前記多層構造体を備える包装材、真空包装袋及び真空断熱体
JP2008200990A (ja) 包装材料及びその製造方法
KR20220110832A (ko) 다층 구조체 및 이의 제조방법, 이를 사용한 포장재, 진공 단열체 및 전자 디바이스의 보호 시트
JPH11314677A (ja) レトルト包装用フィルム積層体およびそれを備えた包装袋
JP5155142B2 (ja) 紙容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773021

Country of ref document: EP

Kind code of ref document: A1