JP2006297925A - レトルト処理用紙容器 - Google Patents

レトルト処理用紙容器 Download PDF

Info

Publication number
JP2006297925A
JP2006297925A JP2006082953A JP2006082953A JP2006297925A JP 2006297925 A JP2006297925 A JP 2006297925A JP 2006082953 A JP2006082953 A JP 2006082953A JP 2006082953 A JP2006082953 A JP 2006082953A JP 2006297925 A JP2006297925 A JP 2006297925A
Authority
JP
Japan
Prior art keywords
group
gas barrier
layer
compound
paper container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082953A
Other languages
English (en)
Other versions
JP4974557B2 (ja
Inventor
Tatsuya Oshita
竜也 尾下
Yoshitaka Uehara
剛毅 上原
Manabu Shibata
学 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006082953A priority Critical patent/JP4974557B2/ja
Publication of JP2006297925A publication Critical patent/JP2006297925A/ja
Application granted granted Critical
Publication of JP4974557B2 publication Critical patent/JP4974557B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Package Specialized In Special Use (AREA)
  • Cartons (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 レトルト殺菌処理を施すことができ、且つ内容物の変質を長期間に防止すると共に保存性、貯蔵性等に優れた紙容器を提供することである。
【解決手段】 少なくとも紙層、耐熱性ポリオレフィン層、およびガスバリア性積層体からなる層を有する紙容器において、前記ガスバリア性積層体は、基材と、基材の少なくとも一方の面に積層されたガスバリア層とを含むガスバリア性積層体であって、該ガスバリア層は、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物とを含む組成物からなり、前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていること、を特徴とする紙容器を提供することにより本発明の課題を解決することができる。
【選択図】 なし

Description

本発明は紙層を含む容器において、レトルト殺菌処理に耐える耐熱性を備え、且つガスバリア性に優れた紙容器に関するものである。さらに本発明の紙容器は電子レンジ加熱にも適している。
紙容器に使用する積層体としては、紙を基材とし、その容器の内側となる面または両側の面に、熱接着性、耐水性などを有する低密度ポリエチレンを積層した積層体が使用されている。レトルト殺菌処理が施される場合、低密度ポリエチレンの替わりに、耐熱性が高く、かつ熱接着性を有する線状低密度ポリエチレン系樹脂、高密度ポリエチレン系樹脂およびポリプロピレン系樹脂等の耐熱性ポリオレフィンが選択される。
さらに紙容器にガスバリア性が要求される場合、バリア層として、アルミニウム、酸化アルミニウム・コーティング、シリカ・コーティング、金属化延伸ポリエステル、金属化延伸ポリプロピレン、(普通はアルミニウムを用いる)金属化延伸ポリエステル、(普通はアルミニウムを用いる)金属化延伸ポリプロピレン、エチレン/ビニルアルコール、ポリビニルアルコールを包含する積層材が特許文献1に記載されている。
特表平11−508502号公報
しかしながら、ガスバリア層としてアルミニウム、酸化アルミニウム・コーティング、シリカ・コーティング、金属化延伸ポリエステル、金属化延伸ポリプロピレンが使用される場合、これらのガスバリア層が成形の際の折り曲げに対し十分な耐久性を有しないため成形性に劣り、紙容器を製函する工程で、ピンホールが発生し易く、そのバリア性を著しく損なうという問題点がある。また、アルミニウムが使用される場合は、焼却処理等により廃棄処理すると、アルミニウムが残り、廃棄処理適性に欠けるという問題点がある。さらに、アルミニウムなどの金属が使用された紙容器に食品が充填された製品においては内容物が電子レンジで加温できないという欠点も有している。
一方、ガスバリア層として、エチレン/ビニルアルコール、ポリビニルアルコールを包含エチレン/ビニルアルコール、ポリビニルアルコール等を使用する場合には、これらは折り曲げに対するある程度の耐久性は有するものの、湿潤状態ではガスバリア性が低下するため、レトルト処理のような高温、水湿潤状態の処理が施された場合十分なガスバリア性が発揮できない傾向がある。
上記したように、従来、レトルト処理が可能で成型加工性がよく、種々の形状で十分なガスバリア性を保有した紙容器が存在しないのが現状である。
本発明の目的は、レトルト処理が可能で、成型加工性に優れ、優れたガスバリア性を有する紙容器を提供することである。
本発明者等は、上記目的を達成すべく鋭意検討した結果、少なくとも紙層、耐熱性ポリオレフィン層、およびガスバリア層を有する紙容器において、該ガスバリア層として、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む組成物からなり、前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されているガスバリア層を採用することによりレトルト処理が可能で、成型加工性に優れ、優れたガスバリア性を有する紙容器を提供できることを見出し、本発明を完成するに至った。
即ち、本発明は、少なくとも紙層、耐熱性ポリオレフィン層、およびガスバリア層を有する紙容器において、該ガスバリア層が、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む組成物からなり、前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていることを特徴とする紙容器である。
以下、本発明の実施の形態について説明する。なお、以下の説明において特定の機能を発現する物質として具体的な化合物を例示する場合があるが、本発明はこれに限定されない。また、例示される材料は、特に記載がない限り、単独で用いてもよいし、組み合わせて用いてもよい。
本発明における紙容器は、少なくとも、紙層、耐熱性ポリオレフィン層、およびガスバリア層を含む。本発明では、ガスバリア層が特定のガスバリア層であることを特徴とする。
まず、本発明の紙容器について説明する。紙容器の種類は特に限定されるものではないが、例えばシングル・ボードタイプのゲーベル・トップ型、レンガ(ブリック)型、直方体型、円錐型の紙容器、カップタイプの紙容器、スパイラルタイプの紙容器、インサート成形タイプの紙容器などを挙げることができる。
本発明の積層体を構成する紙層は、容器にした際の保形性を維持する層である。剛性容器として必要な一般的な特性のほかに飲料容器として使用する場合には、耐水性、耐油性等の特殊な特性が必要となる。通常は、白板紙、マニラボール、ミルクカートン原紙、カップ原紙、アイボリー紙等が使用できる。
本発明の積層体を構成する耐熱性ポリオレフィン層に用いられる樹脂は、線状低密度ポリエチレン系樹脂、高密度ポリエチレン系樹脂およびポリプロピレン系樹脂が挙げられるが、耐熱性が高い点においてポリプロピレンが好適に用いられる。ポリプロピレン系樹脂は融点が100℃以上、好ましくは120℃以上、さらに好ましくは130℃以上である。前記ポリプロピレン樹脂としては、ポリプロピレンのホモポリマーであってもよいし、プロピレンと1種類以上の他のモノマーが共重合されたランダムコポリマー、ブロックコポリマーであっても、ポリプロピレンに1種類以上の他のモノマーがグラフト重合されたポリマーであっても良い。また、ポリプロピレンの立体規則性はアイソタクティック、アタクチック、シンジオタクチックなどいずれであってもよい。
プロピレンと共重合してもよい前記モノマーとしては、エチレン、1−ブテン、1−ペンタン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、2,2,4−トリメチルペンテン等を挙げることができる。
ポリプロピレンにグラフト重合されてもよい前記モノマーとしては、アクリル酸、メタアクリル酸、メタクリル酸グリシジル、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、マレイン酸ジエチル、マレイン酸モノエチル、マレイン酸ジ−n−ブチル、マレイン酸、マレイン酸無水物、フマル酸、イタコン酸、イタコン酸無水物、5−ノルボルネン−2,3−無水物、シトラコン酸、シトラコン酸無水物、クロトン酸、クロトン酸無水物、アクリロニトリル、メタクリロニトリル、アクリル酸ナトリウム、アクリル酸カルシウム、アクリル酸マグネシウムなどを挙げることができる。
紙容器に用いられる少なくとも紙層、耐熱性ポリオレフィン層およびガスバリア層を有する積層体としては、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/水酸基含有ポリマー層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリエステル層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリアミド層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/水酸基含有ポリマー層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリエステル層、耐熱性ポリオレフィン層/紙層/耐熱性ポリオレフィン層/2軸延伸耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリアミド層、紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層、紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/水酸基含有ポリマー層、紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリエステル層、紙層/耐熱性ポリオレフィン層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリアミド層、耐熱性ポリオレフィン層/紙層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層、耐熱性ポリオレフィン層/紙層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/水酸基含有ポリマー層、耐熱性ポリオレフィン層/紙層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリエステル層、紙層/ガスバリア層を含む積層体/耐熱性ポリオレフィン層/ポリアミド層、ガスバリア層を含む積層体/紙層/耐熱性ポリオレフィン層、ガスバリア層を含む積層体/紙層/耐熱性ポリオレフィン層/水酸基含有ポリマー、ガスバリア層を含む積層体/紙層/耐熱性ポリオレフィン層/ポリエステル層、ガスバリア層を含む積層体/紙層/耐熱性ポリオレフィン層/ポリアミド層、等を挙げることができる。層と層との間には適宜接着層を設けることができる。耐熱性ポリオレフィン層は、2軸延伸耐熱性ポリオレフィンフィルム又は無延伸耐熱性ポリオレフィンフィルムのいずれかで構成されるが、成型加工の容易さの観点から、上記積層体を構成するいずれの耐熱性ポリオレフィン層も無延伸ポリプロピレンフィルムから構成されるのが好ましく、特に上記積層体の最外層および最内層に配置されたポリプロピレン層は、無延伸ポリプロピレンフイルムで構成されていることが好ましい。また、上記ガスバリア層を含む積層体としては、ガスバリア層/基材層/ガスバリア層、ガスバリア層/基材層、基材層で構成される積層体であり、層と層の間には適宜接着層を設けることができる。基材層を構成する基材(フィルム)については後述した。
また、耐熱性ポリオレフィン層の形成の方法としては、予め用意された無延伸耐熱性ポリオレフィンフィルムまたは延伸耐熱性ポリオレフィンフィルムを、他の層を構成するフィルムと周知のドライラミネーション法、ウエットラミネーション法、ホットメルトラミネーション法等により貼り合わせる方法、あるいは周知のTダイ押出し法等により、他の層を構成するフィルム上に耐熱性ポリオレフィン層を形成させる方法等を採用することができる。また、必要に応じて耐熱性ポリオレフィン層と他の層との間に、接着層を配置することができる。接着層はアンカーコート剤、接着剤、接着性樹脂などを用いて形成する。耐熱性ポリオレフィン層の厚みとしては、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、10〜200μmの範囲にあるのが好ましく、20〜150μmの範囲にあるのがより好ましい。
以下、本発明のガスバリア層について詳細に説明する。
(ガスバリア層)
本発明のガスバリア層を構成する組成物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む組成物からなり、前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていること、換言すれば、上記少なくとも1つの官能基の少なくとも一部は、2価以上の金属イオンと塩を構成していることを特徴とする。
(カルボン酸含有重合体)
ガスバリア層を構成する組成物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む。該組成物における、重合体の中和物の含有率は、特に限定はなく、たとえば25重量%〜95重量%の範囲とすることができる。この重合体の中和物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含む重合体(以下、「カルボン酸含有重合体」という場合がある)に対して、上記少なくとも1つの官能基の少なくとも一部を2価以上の金属イオンで中和することによって得られる重合体である。
カルボン酸含有重合体は、重合体1分子中に、2個以上のカルボキシル基または1個以上のカルボン酸無水物基を有する。具体的には、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位などの、カルボキシル基を1個以上有する構造単位を重合体1分子中に2個以上含有する重合体を用いることができる。また、無水マレイン酸単位や無水フタル酸単位などのカルボン酸無水物の構造を有する構造単位を含有する重合体を用いることもできる。カルボキシル基を1個以上有する構造単位および/またはカルボン酸無水物の構造を有する構造単位(以下、両者をまとめてカルボン酸含有単位(C)と略記する場合がある)は、1種類でもよいし、2種類以上含まれていてもよい。
また、カルボン酸含有重合体の全構造単位に占めるカルボン酸含有単位(C)の含有率を10モル%以上とすることによって、高湿度下でのガスバリア性が良好なガスバリア性積層体が得られる。この含有率は、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。なお、カルボン酸含有重合体が、カルボキシル基を1個以上含有する構造単位と、カルボン酸無水物の構造を有する構造単位の両方を含む場合、両者の合計が上記の範囲であればよい。
カルボン酸含有重合体が含有していてもよい、カルボン酸含有単位(C)以外の他の構造単位は、特に限定されないが、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、メタクリル酸ブチル単位等の(メタ)アクリル酸エステル類から誘導される構造単位;ギ酸ビニル単位、酢酸ビニル単位などのビニルエステル類から誘導される構造単位;スチレン単位、p−スチレンスルホン酸単位;エチレン単位、プロピレン単位、イソブチレン単位などのオレフィン類から誘導される構造単位などから選ばれる1種類以上の構造単位を挙げることができる。カルボン酸含有重合体が、2種以上の構造単位を含有する場合、該カルボン酸含有重合体は、交互共重合体の形態、ランダム共重合体の形態、ブロック共重合体の形態、さらにはテーパー型の共重合体の形態のいずれであってもよい。
カルボン酸含有重合体の好ましい例としては、ポリアクリル酸、ポリメタクリル酸、ポリ(アクリル酸/メタクリル酸)を挙げることができる。カルボン酸含有重合体は、1種類であってもよいし、2種類以上の重合体の混合物であってもよい。たとえば、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体を用いてもよい。また、上記した他の構造単位を含有する場合の具体例としては、エチレン−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸交互共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体のケン化物などが挙げられる。
カルボン酸含有重合体の分子量は特に制限されないが、得られるガスバリア層のガスバリア性が優れる点、および落下衝撃強さなどの力学的物性が優れる点から、数平均分子量が5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることがさらに好ましい。カルボン酸含有重合体の分子量の上限は特に制限がないが、一般的には1,500,000以下である。
また、カルボン酸含有重合体の分子量分布も特に制限されるものではないが、ガスバリア層のヘイズなどの表面外観、および後述する溶液(S)の貯蔵安定性などが良好となる観点から、カルボン酸含有重合体の重量平均分子量/数平均分子量の比で表される分子量分布は1〜6の範囲であることが好ましく、1〜5の範囲であることがより好ましく、1〜4の範囲であることがさらに好ましい。
本発明のガスバリア層を構成する重合体は、カルボン酸含有重合体のカルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基(以下、官能基(F)という場合がある)の少なくとも一部を2価以上の金属イオンで中和して得られる。換言すれば、この重合体は、2価以上の金属イオンで中和されたカルボキシル基を含む。
ガスバリア層を構成する重合体は、官能基(F)に含まれる−COO−基のたとえば10モル%以上(たとえば15モル%以上)が、2価以上の金属イオンで中和されている。なお、カルボン酸無水物基は、−COO−基を2つ含んでいるとみなす。すなわち、aモルのカルボキシル基とbモルのカルボン酸無水物基とが存在する場合、それに含まれる−COO−基は、全体で(a+2b)モルである。官能基(F)に含まれる−COO−基のうち、2価以上の金属イオンで中和されている割合は、好ましくは20モル%以上であり、より好ましくは30モル%以上であり、さらに好ましくは40モル%以上であり、特に好ましくは50モル%以上(たとえば60モル%以上)である。官能基(F)に含まれる−COO−基のうち、2価以上の金属イオンで中和されている割合の上限は、特に制限はないが、たとえば、95モル%以下とすることができる。カルボン酸含有重合体中のカルボキシル基および/またはカルボン酸無水物基が2価以上の金属イオンで中和されることによって、本発明のガスバリア層は、乾燥条件下および高湿条件下の双方において、良好なガスバリア性を示す。
官能基(F)の中和度(イオン化度)は、ガスバリア層を含む積層体の赤外吸収スペクトルをATR(全反射測定)法で測定するか、または、積層体からガスバリア層をかきとり、その赤外吸収スペクトルをKBr法で測定することによって求めることができる。中和前(イオン化前)のカルボキシル基またはカルボン酸無水物基のC=O伸縮振動に帰属されるピークは1600cm-1〜1850cm-1の範囲に観察され、中和(イオン化)された後のカルボキシル基のC=O伸縮振動は1500cm-1〜1600cm-1の範囲に観察されるため、赤外吸収スペクトルにおいて両者を分離して評価することができる。具体的には、それぞれの範囲における最大の吸光度からその比を求め、予め作成した検量線を用いてガスバリア性積層体におけるガスバリア層を構成する重合体のイオン化度を算出することができる。なお、検量線は、中和度が異なる複数の標準サンプルについて赤外吸収スペクトルを測定することによって作成できる。
官能基(F)を中和する金属イオンは2価以上であることが重要である。ただし、2価以上の金属イオンに加えて少量の1価のイオン(陽イオン)で官能基(F)が中和されている場合には、ガスバリア性積層体のヘイズが低減して表面の外観が良好となる。このように、本発明は、カルボン酸含有重合体の官能基(F)が2価以上の金属イオンと1価のイオンとの双方で中和される場合を含む。2価以上の金属イオンとしては、たとえば、カルシウムイオン、マグネシウムイオン、2価の鉄イオン、3価の鉄イオン、亜鉛イオン、2価の銅イオン、鉛イオン、2価の水銀イオン、バリウムイオン、ニッケルイオン、ジルコニウムイオン、アルミニウムイオン、チタンイオンなどを挙げることができる。たとえば、2価以上の金属イオンとして、カルシウムイオン、マグネシウムイオンおよび亜鉛イオンから選ばれる少なくとも1つのイオンを用いてもよい。
本発明においては、カルボン酸含有重合体の官能基(F)(カルボキシル基および/またはカルボン酸無水物)に含まれる−COO−基の0.1〜10モル%が、1価のイオンで中和されていることが好ましい。ただし、1価のイオンによる中和度が高い場合には、ガスバリア層のガスバリア性が低下する傾向がある。1価イオンによる官能基(F)の中和度は、0.5〜5モル%の範囲であることがより好ましく、0.7〜3モル%の範囲であることがさらに好ましい。1価のイオンとしては、たとえば、アンモニウムイオン、ピリジニウムイオン、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられ、アンモニウムイオンが好ましい。
本発明のガスバリア層には、上記カルボン酸含有重合体およびその中和物に加え、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基(原子団)が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物を含むことが好ましい。化合物(L)の加水分解縮合物を含むことにより、極めて良好なバリア性が達成される。
(加水分解縮合物)
化合物(L)には、以下で説明する化合物(A)および/または化合物(B)の少なくとも1種を適用できる。以下、化合物(A)および化合物(B)について説明する。
化合物(A)は、次に示す化学式(I)で表される少なくとも1種の化合物である。
1(OR1n1 k1 m-n-k・・・(I)
化学式(I)中、M1は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaおよびNdから選択される原子を表す。M1は、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSiである。また、化学式(I)中、R1はメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などのアルキル基であり、好ましくは、メチル基またはエチル基である。また、化学式(I)中、X1はハロゲン原子を表す。X1が表すハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、塩素原子が好ましい。また、化学式(I)中、Z1は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。ここで、カルボキシル基との反応性を有する官能基としては、エポキシ基、アミノ基、水酸基、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、オキサゾリン基またはカルボジイミド基などが挙げられるが、エポキシ基、アミノ基、メルカプト基、イソシアネート基、ウレイド基、またはハロゲン原子が好ましい。このような官能基で置換されるアルキル基としては、前出のものを例示することができる。また、化学式(I)中、mは金属元素M1の原子価と等しい。化学式(I)中、nは0〜(m−1)の整数を表す。また、化学式(I)中、kは0〜(m−1)の整数を表し、1≦n+k≦(m−1)である。
化合物(A)の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−ブロモプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−イソシアネートプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン、等が挙げられ、これらの化合物のメトキシ基の部分を、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、t−ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。また、クロロメチルメチルジメトキシシラン、クロロメチルジメチルメトキシシラン、2−クロロエチルメチルジメトキシシラン、2−クロロエチルジメチルメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルジメチルメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルジメチルメトキシシラン、2−メルカプトエチルメチルジメトキシシラン、2−メルカプトエチルジメチルメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルジメチルメトキシシラン、イソシアネートメチルメチルジメトキシシラン、イソシアネートメチルジメチルメトキシシラン、2−イソシアネートエチルメチルジメトキシシラン、2−イソシアネートエチルジメチルメトキシシラン、3−イソシアネートプロピルメチルジメトキシシラン、3−イソシアネートプロピルジメチルメトキシシラン、ウレイドメチルメチルジメトキシシラン、ウレイドメチルジメチルメトキシシラン、2−ウレイドエチルメチルジメトキシシラン、2−ウレイドエチルジメチルメトキシシラン、3−ウレイドプロピルメチルジメトキシシラン、3−ウレイドプロピルジメチルメトキシシラン、ビス(クロロメチル)メチルクロロシランが挙げられ、これらの化合物のメトキシ基の部分を、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、t−ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。さらに、クロロメチルトリメトキシシシラン、2−クロロエチルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、2−クロロプロピルトリメトキシシラン、4−クロロブチルトリメトキシシラン、5−クロロペンチルトリメトキシシラン、6−クロロヘキシルトリメトキシシラン、(ジクロロメチル)ジメトキシシシラン、(ジクロロエチル)ジメトキシシラン、(ジクロロプロピル)ジメトキシシラン、(トリクロロメチル)メトキシシシラン、(トリクロロエチル)メトキシシラン、(トリクロロプロピル)メトキシシラン、メルカプトメチルトリメトキシシラン、2−メルカプトエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、2−メルカプトプロピルトリメトキシシラン、4−メルカプトブチルトリメトキシシラン、5−メルカプトペンチルトリメトキシシラン、6−メルカプトヘキシルトリメトキシシラン、(ジメルカプトメチル)ジメトキシシシラン、(ジメルカプトエチル)ジメトキシシラン、(ジメルカプトプロピル)ジメトキシシラン、(トリメルカプトメチル)メトキシシシラン、(トリメルカプトエチル)メトキシシラン、(トリメルカプトプロピル)メトキシシラン、フルオロメチルトリメトキシシシラン、2−フルオロエチルトリメトキシシラン、3−フルオロプロピルトリメトキシシラン、ブロモメチルトリメトキシシシラン、2−ブロモエチルトリメトキシシラン、3−ブロモプロピルトリメトキシシラン、ヨードメチルトリメトキシシシラン、2−ヨードエチルトリメトキシシラン、3−ヨードプロピルトリメトキシシラン、(クロロメチル)フェニルトリメトキシシシラン、(クロロメチル)フェニルエチルトリメトキシシラン、1−クロロエチルトリメトキシシラン、2−(クロロメチル)アリルトリメトキシシラン、(3−クロロシクロヘキシル)トリメトキシシラン、(4−クロロシクロヘキシル)トリメトキシシラン、(メルカプトメチル)フェニルトリメトキシシシラン、(メルカプトメチル)フェニルエチルトリメトキシシラン、1−メルカプトエチルトリメトキシシラン、2−(メルカプトメチル)アリルトリメトキシシラン、(3−メルカプトシクロヘキシル)トリメトキシシラン、(4−メルカプトシクロヘキシル)トリメトキシシラン、N−(3−トリエトキシシリルプロピル)グルコンアミド、N−(3−トリエトキシシリルプロピル)−4−ヒドロキシブチルアミド、イソシアネートメチルトリメトキシシラン、2−イソシアネートエチルトリメトキシシラン、3−イソシアネートプロピルトリメトキシシラン、2−イソシアネートプロピルトリメトキシシラン、4−イソシアネートブチルトリメトキシシラン、5−イソシアネートペンチルトリメトキシシラン、6−イソシアネートヘキシルトリメトキシシラン、(ジイソシアネートメチル)ジメトキシシシラン、(ジイソシアネートエチル)ジメトキシシラン、(ジイソシアネートプロピル)ジメトキシシラン、(トリイソシアネートメチル)メトキシシシラン、(トリイソシアネートエチル)メトキシシラン、(トリイソシアネートプロピル)メトキシシラン、ウレイドメチルトリメトキシシラン、2−ウレイドエチルトリメトキシシラン、3−ウレイドプロピルトリメトキシシラン、2−ウレイドプロピルトリメトキシシラン、4−ウレイドブチルトリメトキシシラン、5−ウレイドペンチルトリメトキシシラン、6−ウレイドヘキシルトリメトキシシラン、(ジウレイドメチル)ジメトキシシシラン、(ジウレイドエチル)ジメトキシシラン、(ジウレイドプロピル)ジメトキシシラン、(トリウレイドメチル)メトキシシシラン、(トリウレイドエチル)メトキシシラン、(トリウレイドプロピル)メトキシシラン、が挙げられ、これらの化合物のメトキシ基の部分を、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、t−ブトキシ基といったアルコキシ基や塩素基とした化合物を用いてもよい。
好ましい化合物(A)としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシランが挙げられる。
また、化合物(B)は次の化学式(II)で表される少なくとも1種の化合物である。
2(OR2q3 p-q-r2 r・・・(II)
化学式(II)中、M2は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaおよびNdから選択される原子を表すが、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSi、AlまたはTiである。また、化学式(II)中、R2は、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などのアルキル基を表すが、好ましくは、メチル基またはエチル基である。また、化学式(II)中、X2はハロゲン原子を表す。X2が表すハロゲン原子としては塩素原子、臭素原子、ヨウ素原子などが挙げられるが塩素原子が好ましい。また、化学式(II)中、R3は、アルキル基、アラルキル基、アリール基またはアルケニル基を表す。R3が表すアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−オクチル基などが挙げられる。また、R3が表すアラルキル基としては、ベンジル基、フェネチル基、トリチル基などが挙げられる。また、R3が表すアリール基としては、フェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられる。また、R3が表すアルケニル基としては、ビニル基、アリル基などが挙げられる。さらに、化学式(II)中、pは金属元素M2の原子価と等しい。化学式(II)中、qは0〜pの整数を表す。また、化学式(II)中、rは0〜pの整数を表し、1≦q+r≦pである。
化学式(I)および(II)において、M1とM2とは同じであってもよいし異なっていてもよい。また、R1とR2とは同じであってもよいし異なっていてもよい。
化合物(B)の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン等のシリコンアルコキシド;ビニルトリクロロシラン、テトラクロロシラン、テトラブロモシラン等のハロゲン化シラン;テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン等のアルコキシチタン化合物;テトラクロロチタン等のハロゲン化チタン;トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、トリブトキシアルミニウム、ジエトキシアルミニウムクロリド等のアルコキシアルミニウム化合物;テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム等のアルコキシジルコニウム化合物等が挙げられる。
本発明のガスバリア層を構成する組成物は、化合物(L)の加水分解縮合物を含むことが好ましい。化合物(L)が加水分解されることによって、化合物(L)のハロゲンおよびアルコキシ基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属元素が酸素を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物となる。
ガスバリア層に含まれる、化合物(L)の加水分解縮合物は、以下で定義される縮合度Pが65〜99%であることが好ましく、70〜99%であることがより好ましく、75〜99%であることがさらに好ましい。化合物(L)の加水分解縮合物における縮合度P(%)は、以下のようにして算出されるものである。
化合物(L)の1分子中のアルコキシ基とハロゲン原子の合計数をaとし、該化合物(L)の加水分解縮合物中、縮合したアルコキシ基とハロゲン原子の合計がi(個)である化合物(L)の割合が、全化合物(L)中のyi(%)である時、iが1〜aの整数(1とaを含む)のそれぞれの値について{(i/a)×yi}を算出し、それらを加算する。すなわち、縮合度P(%)は、以下の数式で定義される。
Figure 2006297925

上記したyiの値は、ガスバリア層中の化合物(L)の加水分解縮合物については固体のNMR(DD/MAS法)等によって測定することができる。
該加水分解縮合物は、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解、縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものなどを原料として、たとえば公知のゾルゲル法で用いられる手法で製造できる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、たとえば2〜10個程度の分子が加水分解、縮合して得られる縮合物を、原料として用いることができる。具体的には、たとえば、テトラメトキシシランを加水分解、縮合させて、2〜10量体の線状縮合物としたものなどを原料として用いることができる。
本発明のガスバリア層を構成する組成物における化合物(L)の加水分解縮合物において縮合される分子の数は、加水分解、縮合に際して使用する、水の量、触媒の種類や濃度、加水分解縮合を行う温度などによって制御できる。
化合物(L)の加水分解縮合物の製造方法に特に限定はないが、ゾルゲル法の代表的な一例では、上記した原料に水と酸とアルコールとを加えることによって、加水分解および縮合を行う。
以下では、化合物(L)を金属アルコキシド(アルコキシ基が結合した金属を含む化合物)として説明する場合があるが、金属アルコキシドに代えて、ハロゲンが結合した金属を含む化合物を用いてもよい。
化合物(L)は、上述したように、化合物(A)および/または化合物(B)の少なくとも1種とすることができる。化合物(L)が、化合物(A)のみを含むか、または化合物(A)と化合物(B)の両方を含む場合には、ガスバリア性積層体のガスバリア性が良好となるため、好ましい。そして、化合物(L)が、実質的に、化合物(A)と化合物(B)の両方からなり、さらに化合物(A)/化合物(B)のモル比が0.5/99.5〜40/60の範囲にあることがより好ましい。化合物(A)と化合物(B)とをこの比率で併用する場合には、ガスバリア性積層体のガスバリア性、引張り強伸度などの力学的物性、外観、取り扱い性などの性能が優れる。化合物(A)/化合物(B)のモル比は、3/97〜40/60の範囲であることがより好ましく、5/95〜30/70の範囲であることがさらに好ましい。
(無機成分など)
ガスバリア層を構成する組成物中の無機成分の含有率は、5〜50重量%の範囲であることが、ガスバリア性が良好となる観点から好ましい。この含有率は、より好ましくは10〜45重量%の範囲であり、さらに好ましくは15〜40重量%の範囲である。組成物中の無機成分の含有率は、該組成物を調製する際に使用する原料の重量から算出することができる。すなわち、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、化合物(L)が完全に加水分解し、その一部が縮合したもの、あるいはこれらを組み合わせたものなどが完全に加水分解・縮合して金属酸化物になったと仮定し、その金属酸化物の重量を算出する。そして算出された金属酸化物の重量を組成物中の無機成分の重量とみなして、無機成分の含有率を算出する。なお、後述するような金属塩、金属錯体、金属酸化物などの無機添加物を加える場合は、加えた無機添加物の重量を、そのまま無機成分の重量に合算する。金属酸化物の重量の算出をより具体的に説明すると、化学式(I)で示される化合物(A)が完全に加水分解、縮合したときには、組成式が、MO(n+k)/21 m-n-kで表される化合物となる。この化合物のうちMO(n+k)/2の部分が金属酸化物である。Z1については、無機成分に含めず有機成分であるとみなす。また、化学式(II)で示される化合物(B)が完全に加水分解、縮合したときには、組成式が、LO(q+r)/23 p-q-rで表される化合物になる。このうち、LO(q+r)/2の部分が金属酸化物である。
また、ガスバリア層を構成する組成物は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、ポリアルコール類またはそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含有していてもよい。また、ガスバリア層を構成する組成物は、上記金属アルコキシドを湿式で加水分解、縮合して製造した金属酸化物の微粉末;金属アルコキシドを乾式で加水分解、縮合又は燃焼して調製した金属酸化物の微粉末;水ガラスから調製したシリカ微粉末などを含有していてもよい。
本発明のガスバリア層をガスバリア性積層体として使用する場合、ガスバリア層を構成する組成物に、ポリアルコール類を含有させることによって、ガスバリア性積層体の表面外観が良好となる。より具体的には、ポリアルコール類を含有させることによって、ガスバリア性積層体の製造時に、ガスバリア層にクラックが発生しにくくなり、表面外観が良好なガスバリア性積層体が得られる。
本発明に用いるそのようなポリアルコール類とは、分子内に少なくとも2個以上の水酸基を有する化合物であって、低分子量の化合物から高分子量の化合物までを包含する。好ましくは、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、エチレン−ビニルアルコール共重合体、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、でんぷんなどの多糖類から誘導される多糖類誘導体などの高分子量化合物である。
上記したポリアルコール類の使用量は、カルボン酸含有重合体/ポリアルコール類の重量比が10/90〜99.5/0.5の範囲であることが好ましい。該重量比は、より好ましくは30/70〜99/1、さらに好ましくは50/50〜99/1、最も好ましくは70/30〜98/2の範囲である。
本発明の紙容器において、ガスバリア層を予めガスバリア性積層体(以下、本発明のガスバリア性積層体と記載する場合がある)として使用する場合、基材フィルムの少なくとも一方の面に、カルボキシル基含有重合体の中和物と好ましくは上記した化合物(L)の加水分解縮合物とを含む組成物からなるガスバリア層が形成される。このガスバリア層は、基材の一方の面のみに形成されていてもよいし、両方の面に形成されてもよい。基材の両方の面にガスバリア層を形成した積層体は、他のフィルムを貼り合わせるなどの後加工がしやすいという利点がある。
ガスバリア層の厚さは特に制限されないが、0.1μm〜100μmの範囲にあることが好ましい。0.1μmよりも薄い場合には、ガスバリア性が不十分となる場合がある。また、100μmよりも厚い場合には、ガスバリア性積層体の加工時、運搬時、使用時にガスバリア層にクラックが入り易くなる場合がある。ガスバリア層の厚さは、0.1μm〜50μmの範囲であることがより好ましく、0.1μm〜20μmの範囲であることがさらに好ましい。
本発明のガスバリア性積層体は、基材とガスバリア層との間に配置された接着層(T)をさらに含んでもよい。この構成によれば、基材とガスバリア層との接着性を高めることができる。接着性樹脂からなる接着層(T)は、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布することで形成できる。
また、本発明の積層体は、基材とガスバリア層との間に、無機物からなる層(以下、「無機層」という場合がある)を含んでもよい。無機層は、無機酸化物などの無機物で形成できる。無機層は、蒸着法などの気相成膜法で形成できる。
無機層を構成する無機物は、酸素や水蒸気などに対するガスバリア性を有するものであればよい。たとえば、酸化アルミニウム、酸化珪素、酸窒化珪素、酸化マグネシウム、酸化錫、またはそれらの混合物といった無機酸化物で無機層を形成できる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウムは、酸素や水蒸気などのガスに対するバリア性が優れる観点から好ましく用いることができる。
無機層の好ましい厚さは、無機層を構成する無機酸化物の種類によって異なるが、通常、2nm〜500nmの範囲である。この範囲で、ガスバリア性積層体のガスバリア性や機械的物性が良好となる厚さを選択すればよい。無機層の厚さが2nm未満である場合、酸素や水蒸気などのガスに対するバリア性の発現に再現性がなく、十分なガスバリア性を発現しない場合がある。無機層の厚さが500nmを超える場合は、ガスバリア性積層体を引っ張ったり屈曲させたりした場合にガスバリア性が低下し易くなる。無機層の厚さは、好ましくは5〜200nmの範囲であり、さらに好ましくは10〜100nmの範囲である。
無機層は、基材上に無機酸化物を堆積させることによって形成できる。形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、真空蒸着法は、生産性の観点から好ましく用いることができる。真空蒸着を行う際の加熱方法としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また、無機層と基材との密着性および無機層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて蒸着してもよい。また、無機層の透明性を上げるために、蒸着の際、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。
本発明のガスバリア層を形成させる基材としては、透明な熱可塑性樹脂フィルムや熱硬化性樹脂フィルムを用いることができる。中でも熱可塑性樹脂フィルムは、食品包装材料に用いられるガスバリア性積層体の基材として特に有用である。なお、基材は複数の材料からなる多層構成のものであってもよい。
熱可塑性樹脂フィルムとしては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートやこれらの共重合体などのポリエステル系樹脂;ポリアミド6、ポリアミド66、ポリアミド12などのポリアミド系樹脂;ポリスチレン、ポリ(メタ)アクリル酸エステル、ポリアクリロニトリル、ポリ酢酸ビニル、ポリカーボネート、ポリアリレート、再生セルロース、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、アイオノマー樹脂等を成形加工したフィルムを挙げることができる。食品包装材料に用いられる積層体の基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド6、またはポリアミド66からなるフィルムが好ましい。
本発明のガスバリア層を有する積層体としては、基材およびガスバリア層に加えて、他の層を含んでもよい。このような他の層を加えることによって、ヒートシール性を付与したり、力学的物性を向上させたりすることができる。
(ガスバリア性積層体の製造方法)
以下、本発明の紙容器において、ガスバリア層を予めガスバリア性積層体として使用する場合の、好ましいガスバリア性積層体を製造するための方法について説明する。このように、予めガスバリア性積層体を製造し、これを紙層や耐熱性ポリオレフィン層と積層する方法が工業的に有用である。この方法によれば、本発明のガスバリア性積層体を容易に製造できる。本発明の製造方法に用いられる材料、および積層体の構成は、上述したものと同様であるので、重複する部分については説明を省略する場合がある。
本発明の製造方法では、まず、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(カルボン酸含有重合体)とを含む組成物からなる層を基材上に形成する(第1の工程)。第1の工程は、たとえば、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および、化合物(L)が完全に加水分解し、その一部が縮合したものから選ばれる少なくとも1つの金属元素含有化合物とカルボン酸含有重合体とを含む溶液(S)を調製する工程と、溶液(S)を基材に塗工して乾燥させて上記した成分を含有する層を形成する工程とによって、実施することができる。溶液(S)の乾燥は、溶液(S)に含まれる溶媒を除去することによって実施することができる。
なお、溶液(S)に含まれるカルボン酸含有重合体においては、上述したように、官能基(F)に含まれる−COO−基の一部(たとえば0.1〜10モル%)が1価のイオンによって中和されていてもよい。
次に、基材上に形成した層を、2価以上の金属イオンを含む溶液に接触させる(第2の工程。以下、この工程をイオン化工程という場合がある)。第2の工程によって、層中のカルボン酸含有重合体に含まれる官能基(F)(カルボン酸および/またはカルボン酸無水物)の少なくとも一部が2価の金属イオンで中和される。このとき、2価の金属イオンで中和される割合(イオン化度)は、金属イオンを含む溶液の温度、金属イオン濃度、および金属イオンを含む溶液への浸漬時間といった条件を変更することによって調整できる。
第2の工程は、たとえば、形成した層に2価以上の金属イオンを含む溶液を吹きつけたり、基材と基材上の層とをともに2価以上の金属イオンを含む溶液に浸漬したりすることによって行うことができる。
なお、以下では、イオン化工程前の積層体を積層体(A)といい、イオン化工程後の積層体を積層体(B)という場合がある。
以下、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および、化合物(L)が完全に加水分解し、その一部が縮合したものから選ばれる少なくとも1つの金属元素含有化合物を、「化合物(L)系成分」という場合がある。溶液(S)は、化合物(L)系成分、カルボン酸含有重合体、および溶媒を用いて調製することができる。たとえば、(1)カルボン酸含有重合体を溶解させた溶媒に、化合物(L)系成分を添加して混合する方法を採用できる。また、(2)カルボン酸含有重合体を溶解させた溶媒に、化合物(L)系成分である化合物(A)を加え、その後、化合物(L)系成分を添加して混合する方法も採用できる。また、(3)溶媒存在下または無溶媒下で化合物(L)系成分からオリゴマー(加水分解縮合物の1種)を調製し、このオリゴマーに、カルボン酸含有重合体を溶解させた溶液を混合する方法も採用できる。なお、化合物(L)系成分やそのオリゴマーは、単独で溶媒に加えてもよいし、それらを溶解させた溶液の形態で溶媒に加えてもよい。
溶液(S)の調製方法として上記の調製方法(3)を用いることによって、ガスバリア性が特に高いガスバリア性積層体が得られる。以下、調製方法(3)について、より具体的に説明する。
調製方法(3)は、カルボン酸含有重合体を溶媒に溶解して溶液を調製する工程(St1)と、化合物(L)系成分を特定の条件下で加水分解、縮合させてオリゴマーを調製する工程(St2)と、工程(St1)で得られる溶液と工程(St2)で得られるオリゴマーとを混合する工程(St3)とを含む。
工程(St1)において、カルボン酸含有重合体を溶解させるために使用される溶媒は、カルボン酸含有重合体の種類に応じて選択すればよい。たとえば、ポリアクリル酸やポリメタクリル酸などの水溶性の重合体の場合には、水が好適である。イソブチレン−無水マレイン酸共重合体やスチレン−無水マレイン酸共重合体などの重合体の場合には、アンモニア、水酸化ナトリウムや水酸化カリウムなどのアルカリ性物質を含有する水が好適である。また、工程(St1)においては、カルボン酸含有重合体の溶解の妨げにならない限り、メタノール、エタノール等のアルコール類;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、プロピレングリコール等のグリコール類;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどを併用することも可能である。
工程(St2)においては、化合物(L)系成分、酸触媒、水および必要に応じて有機溶媒を含む反応系中において、化合物(L)系成分を加水分解、縮合させてオリゴマーを得ることが好ましい。具体的には、公知のゾルゲル法で用いられている手法を適用できる。化合物(L)系成分として、化合物(L)を用いると、ガスバリア性がより高いガスバリア積層体が得られる。
工程(St2)で用いられる酸触媒としては、公知の酸触媒を用いることができ、例えば、塩酸、硫酸、硝酸、p−トルエンスルホン酸、安息香酸、酢酸、乳酸、酪酸、炭酸、シュウ酸、マレイン酸等を用いることができる。その中でも塩酸、硫酸、硝酸、酢酸、乳酸、酪酸が特に好ましい。酸触媒の好ましい使用量は、使用する触媒の種類によって異なるが、化合物(L)系成分の金属原子1モルに対して、1×10-5〜10モルの範囲であることが好ましく、1×10-4〜5モルの範囲であることがより好ましく、5×10-4〜1モルの範囲であることがさらに好ましい。酸触媒の使用量がこの範囲にある場合、ガスバリア性が高いガスバリア性積層体が得られる。
また、工程(St2)における水の好ましい使用量は、化合物(L)系成分の種類によって異なるが、化合物(L)系成分のアルコキシ基またはハロゲン原子(両者が混在する場合はその合計)1モルに対して、0.05〜10モルの範囲であることが好ましく、0.1〜4モルの範囲であることがより好ましく、0.2〜3モルの範囲であることがさらに好ましい。水の使用量がこの範囲にある場合、得られるガスバリア性積層体のガスバリア性が特に優れる。なお、工程(St2)において、塩酸のように水を含有する成分を使用する場合には、その成分によって導入される水の量も考慮して水の使用量を決定することが好ましい。
さらに、工程(St2)の反応系においては、必要に応じて有機溶媒を使用してもよい。使用される有機溶媒は化合物(L)系成分が溶解する溶媒であれば特に限定されない。たとえば、有機溶媒として、メタノール、エタノール、イソプロパノール、ノルマルプロパノール等のアルコール類が好適に用いられ、化合物(L)系成分が含有するアルコキシ基と同種の分子構造(アルコキシ成分)を有するアルコールがより好適に用いられる。具体的には、テトラメトキシシランに対してはメタノールが好ましく、テトラエトキシシランに対してはエタノールが好ましい。有機溶媒の使用量は、特に限定されないが、化合物(L)系成分の濃度が1〜90重量%、より好ましくは10〜80重量%、さらに好ましくは10〜60重量%となる量であることが好ましい。
工程(St2)において、反応系中において化合物(L)系成分の加水分解、縮合を行う際に、反応系の温度は必ずしも限定されるものではないが、通常2〜100℃の範囲であり、好ましくは4〜60℃の範囲であり、さらに好ましくは6〜50℃の範囲である。反応時間は触媒の量、種類等の反応条件に応じて相違するが、通常0.01〜60時間の範囲であり、好ましくは0.1〜12時間の範囲であり、より好ましくは0.1〜6時間の範囲である。また、反応系の雰囲気は、必ずしも限定されるものではなく、空気雰囲気、二酸化炭素雰囲気、窒素気流下、アルゴン雰囲気といった雰囲気を採用することができる。
工程(St2)において、化合物(L)系成分は、全量を一度に反応系に添加してもよいし、少量ずつ何回かに分けて反応系に添加してもよい。いずれの場合でも、化合物(L)系成分の使用量の合計が、上記の好適な範囲を満たしていることが好ましい。工程(St2)によって調製されるオリゴマーは、前記した縮合度Pで表示すると25〜60%程度の縮合度を有していることが好ましい。
工程(St3)においては、化合物(L)系成分から誘導されるオリゴマーと、カルボン酸含有重合体を含む溶液とを混合することによって溶液(S)を調製する。溶液(S)の保存安定性、および得られるガスバリア性積層体のガスバリア性の観点から、溶液(S)のpHは1.0〜7.0の範囲であることが好ましく、1.0〜6.0の範囲であることがより好ましく、1.5〜4.0の範囲であることがさらに好ましい。
溶液(S)のpHは、公知の方法で調整でき、たとえば、塩酸、硝酸、硫酸、リン酸、酢酸、酪酸、硫酸アンモニウム等の酸性化合物や水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、酢酸ナトリウム等の塩基性化合物を添加することによって調整できる。このとき、溶液中に1価の陽イオンをもたらす塩基性化合物を用いると、カルボン酸含有重合体のカルボキシル基および/またはカルボン酸無水物基の一部を1価のイオンで中和することができるという効果が得られる。
また、溶液(S)は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、上述したポリアルコール類、及びそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含んでいてもよい。また、溶液(S)は、上記金属アルコキシドを湿式で加水分解、重縮合して製造した金属酸化物の微粉末;金属アルコキシドを乾式で加水分解、重縮合又は燃焼して調製した金属酸化物の微粉末;水ガラスから調製したシリカ微粉末などを含んでいてもよい。
工程(St3)で調製された溶液(S)は、基材の少なくとも一方の面に塗工される。溶液(S)を塗工する前に、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布してもよい。溶液(S)を基材に塗工する方法は、特に限定されず、公知の方法を用いることができる。好ましい方法としては、たとえば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。
溶液(S)を基材上に塗工した後、溶液(S)に含まれる溶媒を除去することによって、イオン化工程前の積層体(積層体(A))が得られる。溶媒の除去の方法は特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの方法を単独で、または組み合わせて適用できる。乾燥温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、80℃〜200℃の範囲が好ましく、100〜180℃の範囲がより好ましく、110〜180℃の範囲がさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。
上記の工程によって得られる積層体(A)を2価以上の金属イオンを含む溶液(以下、溶液(MI)という場合がある)に接触させること(イオン化工程)によって、本発明のガスバリア性積層体が得られる。なお、イオン化工程は、本発明の効果を損なわない限り、どのような段階で行ってもよい。たとえば、イオン化工程は、包装材料の形態に加工する前あるいは加工した後に行ってもよいし、さらに包装材料中に内容物を充填して密封した後に行ってもよい。
溶液(MI)は、溶解によって2価以上の金属イオンを放出する化合物(多価金属化合物)を、溶媒に溶解させることによって調製できる。溶液(MI)を調製する際に使用する溶媒としては、水を使用することが望ましいが、水と混和しうる有機溶媒と水との混合物であってもよい。そのような溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノールなどの低級アルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン類;エチレングリコール、プロピレングリコール等のグリコール類;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタン等の有機溶媒を挙げることができる。
多価金属化合物としては、本発明のガスバリア性積層体に関して例示した金属イオン(すなわち2価以上の金属イオン)を放出する化合物を用いることができる。たとえば、酢酸カルシウム、水酸化カルシウム、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸マグネシウム、水酸化マグネシウム、塩化マグネシウム、炭酸マグネシム、酢酸鉄(II)、塩化鉄(II)、酢酸鉄(III)、塩化鉄(III)、酢酸亜鉛、塩化亜鉛、酢酸銅(II)、酢酸銅(III)、酢酸鉛、酢酸水銀(II)、塩化バリウム、硫酸バリウム、硫酸ニッケル、硫酸鉛、塩化ジルコニウム、硝酸ジルコニウム、硫酸アルミニウム、カリウムミョウバン(KAl(SO)、硫酸チタン(IV)などを用いることができる。多価金属化合物は、1種類のみを用いても、2種類以上を組み合わせて用いてもよい。好ましい多価金属化合物としては、酢酸カルシウム、水酸化カルシウム、酢酸マグネシウム、酢酸亜鉛が挙げられる。なお、これらの化合物は水和物の形態で用いてもよい。
溶液(MI)における多価金属化合物の濃度は、特に制限されないが、好ましくは5×10-4重量%〜50重量%の範囲であり、より好ましくは1×10-2重量%〜30重量%の範囲であり、さらに好ましくは1重量%〜20重量%の範囲である。
溶液(MI)に積層体(A)を接触させる際において、溶液(MI)の温度は、特に制限されないが、温度が高いほどカルボキシル基含有重合体のイオン化速度が速い。好ましい温度は、たとえば30〜140℃の範囲であり、好ましくは40℃〜120℃の範囲であり、さらに好ましくは50℃〜100℃の範囲である。
溶液(MI)に積層体(A)を接触させた後、その積層体に残留した溶媒を除去することが望ましい。溶媒の除去の方法は、特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法といった乾燥法を単独で、または2種以上を組み合わせて適用できる。溶媒の除去を行う温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、好ましくは40〜200℃の範囲であり、より好ましくは40〜150℃の範囲であり、さらに好ましくは40〜100℃の範囲である。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。
また、ガスバリア性積層体の表面の外観を損なわないためには、溶媒の除去を行う前または後に、積層体の表面に付着した過剰の多価金属化合物を除去することが好ましい。多価金属化合物を除去する方法としては、多価金属化合物が溶解していく溶剤を用いた洗浄が好ましい。多価金属化合物が溶解していく溶剤としては、溶液(MI)に用いることができる溶媒を用いることができ、溶液(MI)の溶媒と同一のものを用いることが好ましい。
本発明の製造方法では、第1の工程ののちであって第2の工程の前および/または後に、第1の工程で形成された層を120〜240℃の温度で熱処理する工程をさらに含んでもよい。すなわち、積層体(A)または(B)に対して熱処理を施してもよい。熱処理は、塗工された溶液(S)の溶媒の除去がほぼ終了した後であれば、どの段階で行ってもよいが、イオン化工程を行う前の積層体(すなわち積層体(A))を熱処理することによって、表面の外観が良好なガスバリア性積層体が得られる。熱処理の温度は、好ましくは120℃〜240℃の範囲であり、より好ましくは130〜230℃の範囲であり、さらに好ましくは150℃〜210℃の範囲である。熱処理は、空気中、窒素雰囲気下、アルゴン雰囲気下などで実施することができる。
また、本発明の製造方法では、積層体(A)または(B)に、紫外線を照射してもよい。紫外線照射は、塗工された溶液(S)の溶媒の除去がほぼ終了した後であれば、いつ行ってもよい。その方法は、特に限定されず、公知の方法を適用できる。照射する紫外線の波長は、170〜250nmの範囲であることが好ましく、170〜190nmの範囲及び/又は230〜250nmの範囲であることがより好ましい。また、紫外線照射に代えて、電子線やγ線などの放射線の照射を行ってもよい。
熱処理と紫外線照射は、どちらか一方のみを行ってもよいし、両者を併用してもよい。熱処理及び/又は紫外線照射を行うことによって、積層体のガスバリア性能がより高度に発現する場合がある。
基材とガスバリア層との間に接着層(T)を配置するために、溶液(S)の塗工前に基材の表面に処理(アンカーコーティング剤による処理、または接着剤の塗布)を施す場合、第1の工程(溶液(S)の塗工)の後であって上記熱処理および第2の工程(イオン化工程)の前に、溶液(S)が塗工された基材を、比較的低温下に長時間放置する熟成処理を行うことが好ましい。熟成処理の温度は、30〜200℃が好ましく、より好ましくは30〜150℃、さらに好ましくは30〜120℃である。熟成処理の時間は0.5〜10日の範囲であることが好ましく、1〜7日の範囲であることがより好ましく、1〜5日の範囲であることがさらに好ましい。このような熟成処理を行うことにより、基材とガスバリア層との間の接着力がより強固となる。この熟成処理ののちに、さらに上記熱処理(120℃〜240℃の熱処理)を行うことが好ましい。
本発明の紙容器は、酸素、水蒸気、炭酸ガス、窒素等の気体に対して優れたバリア性を有し、その優れたバリア性を高湿度条件下でも屈曲条件に晒された後でも高度に保持し得る。さらに、レトルト処理を施したのちでも、優れたガスバリア性を示す。このように、本発明の紙容器は、湿度等の環境条件に左右されない良好なガスバリア性を有し、屈曲条件に晒された後でも高いガスバリア性を示すため、様々な用途に適用できる。たとえば、本発明のガスバリア性積層体は、食品用包装材料(特にレトルト食品用包装材料)として特に有用である。また、本発明のガスバリア積層体は、農薬や医薬などの薬品などを包装するための包装材料として用いることもできる。
以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって限定されない。なお、以下の実施例で多層体の層構成を表記する場合、「層」の表記を省略し物質名だけで表記する場合がある。
(1)酸素バリア性
所定の構造を有するブリック型の紙容器について、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN10/50」)を用いて酸素透過度を測定した。具体的には、ブリック型の紙容器の側面から直径6.5cmの円状の試料を切り出し、10cm四方のアルミ箔(厚み30μm)に開けた直径4.5cmの円の上に置き、試料とアルミ箔との間を2液硬化型エポキシ系接着剤で封止したものをセットし、温度20℃、酸素圧1気圧、キャリアガス圧力1気圧の条件下で、酸素透過度(単位:cm/m・day・atm)を測定した。このとき、湿度は85%RHの条件を採用し、酸素供給側とキャリアガス側とを同一の湿度とした。
(2)レトルト処理後の酸素バリア性
所定の構造を有するブリック型の紙容器(内容量500ml)に蒸留水500gを注入した後、水道水又はイオン交換水で満たされたオートクレーブ中に浸漬し、120℃、30分の条件でレトルト処理を施した。レトルト処理後、加熱を停止し、内部温度が60℃になった時点で、オートクレーブからブリック型の紙容器を取り出し、20℃、85%RHに調湿された部屋でブリック型の紙容器を1時間放置した。その後、ヒートシールされた部分をはさみで切り取り,積層体の表面に付着した水を紙タオルで軽く押し付けるように拭き取った。その後、20℃、85%RHに調湿された部屋にブリック型の紙容器を1週間放置し、得られたブリック型の紙容器から試料を切り出し、上記の(1)酸素バリア性と同様の測定を行うことによって、レトルト処理後の酸素バリア性を評価した。
なお、レトルト処理に用いた水道水中のカルシウム金属の濃度は15ppmであった。また、イオン交換水中には金属原子が含まれてないことを確認した。なお、以下の実施例および比較例では、特に断り書きがなければ、水道水を利用してレトルト処理を行った。
[金属イオンによるカルボキシル基の中和度(イオン化度)]
後述の実施例で作製するガスバリア層(1μm)/AC/OPET(12μm)/AC/ガスバリア層(1μm)からなる積層体について、フーリエ変換赤外分光光度計(株式会社島津製作所製、8200PC)を用いて、ATR(全反射測定)のモードで、ガスバリア層に含まれるC=O伸縮振動のピークを観察した。イオン化前のカルボン酸含有重合体のカルボキシル基のC=O伸縮振動に帰属されるピークは1600cm−1〜1850cm−1の範囲に観察され、イオン化された後のカルボキシル基のC=O伸縮振動は1500cm−1〜1600cm−1の範囲に観察された。そして、それぞれの範囲における最大の吸光度からその比を算出し、その比と予め下記の方法で作成した検量線とを用いてイオン化度を求めた。
[検量線の作成]
数平均分子量150,000のポリアクリル酸を蒸留水に溶解し、所定量の水酸化ナトリウムでカルボキシル基を中和した。得られたポリアクリル酸の中和物の水溶液を、基材上に、イオン化度の測定の対象となる積層体のガスバリア層と同じ厚さになるようにコートし、乾燥させた。基材には、2液型のアンカーコート剤(三井武田ケミカル株式会社製、タケラック3210(商品名)およびタケネートA3072(商品名)、以下ACと略記することがある)を表面にコートした延伸PETフィルム(東レ株式会社製、ルミラー(商品名)。厚さ12μm。以下、「OPET」と略記することがある)を用いた。このようにして、カルボキシル基の中和度が、0〜100モル%間で10モル%ずつ異なる11種類の標準サンプル[積層体(ポリアクリル酸の中和物からなる層/AC/OPET)]を作製した。これらのサンプルについて、フーリエ変換赤外分光光度計(島津製作所製、8200PC)を用いて、ATR(全反射測定)のモードで、赤外吸収スペクトルを測定した。そして、ポリアクリル酸の中和物からなる層に含まれるC=O伸縮振動に対応する2つのピーク、すなわち、1600cm−1〜1850cm−1の範囲に観察されるピークと1500cm−1〜1600cm−1の範囲に観察されるピークとについて、吸光度の最大値の比を算出した。そして、算出した比と、各標準サンプルのイオン化度とを用いて検量線を作成した。
数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、その後、アンモニア水を加えてポリアクリル酸のカルボキシル基の1.5モル%を中和し、水溶液中の固形分濃度が10重量%であるポリアクリル酸水溶液を得た。
次に、テトラメトキシシラン(TMOS)68.4重量部をメタノール82.0重量部に溶解し、続いてγ−グリシドキシプロピルトリメトキシシラン13.6重量部を溶解した後、蒸留水5.13重量部と0.1N(0.1規定)の塩酸12.7重量部とを加えてゾルを調製し、これを攪拌しながら10℃で1時間、加水分解および縮合反応を行った。得られたゾルを蒸留水185重量部で希釈した後、攪拌下の上記10重量%ポリアクリル酸水溶液634重量部に速やかに添加し、溶液(S1)を得た。
一方、2液型のアンカーコート剤(AC;三井武田ケミカル株式会社製タケラックA626(商品名)およびタケネートA50(商品名)を、延伸PETフィルム(OPET;東レ株式会社製、ルミラー(商品名))上にコートし、乾燥させることによってアンカーコート層を有する基材(AC/OPET)を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1μmになるようにバーコーターによって溶液(S1)をコートしたのち、80℃で5分間乾燥した。延伸PETフィルムの反対面に同様にアンカーコート剤、および溶液(S1)をコートした。その後さらに、乾燥空気中で200℃で5分間熱処理を施した。このようにして、無色透明で外観良好なガスバリア層を有する積層体(ガスバリア層(1μm)/AC/OPET(12μm)/AC/ガスバリア層(1μm))を得た(以下、この積層体を積層体(1)という場合がある)。
次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液(80℃;MI−1)に、上記で得られた積層体(1)を約300秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、本発明の積層体(B−1)を得た。該積層体(B−1)について、ガスバリア層中のポリアクリル酸のカルボキシル基の中和度を上記の方法によって測定した。その結果、カルボキシル基の95モル%がカルシウムイオンで中和されていることが分かった。
400g/mの板紙の両方の面に接着剤を塗布した後、ポリプロピレン樹脂(PP)を各20μmの厚さで押出ラミネートし、一方の面に、接着剤を塗布し、積層体(B−1)をラミネートした。積層体(B−1)の他方の面に、接着剤を塗布し厚さ50μmの無延伸ポリプロピレンフィルム(CPP)(東セロ(株)製トーセロCP RXC−18)を貼り合わせ、PP/板紙/PP/積層体(B−1)/CPPの構成の積層体を作製した。該積層体を作製するに際して、アンカーコート剤を必要に応じ用いた。この積層体を用いてブリック型の紙容器を作製し、内容物を充填包装した。上記で製造した密閉液体紙容器は、120℃、30分のレトルト処理を施しても、処理前と比較して外観に変化はなく、さらに酸素ガスに対するバリア性に優れ、その内容物の変質は認められず、市場における流通に耐え、かつ、貯蔵保存等に優れているものであった。ブリック型紙容器の酸素ガスバリア性を測定したところ、20℃、85%RHでの酸素透過度0.10cc/m2・day・atmと非常に良好な値を示した。また120℃、30分のレトルト処理後の酸素バリア性を測定したところ、20℃、85%RHでの酸素透過度0.30cc/m2・day・atmと非常に良好な値を示した。
400g/mの板紙の両方の面に接着剤を塗布した後、ポリプロピレン(PP)を各20μmの厚さで押出ラミネートし、一方の面に、接着剤を塗布し、ニ軸延伸ポリプロピレンフィルム(OPP)を貼り合わせた。さらに、OPPの他方の面に、接着剤を塗布し、実施例1で作製した積層体(B−1)を貼り合わせた。積層体(B−1)の他方の面に、接着剤を塗布し厚さ50μmの無延伸ポリプロピレンフィルム(CPP)(東セロ(株)製トーセロCP RXC−18)を貼り合わせ、PP/板紙/PP/OPP/積層体(B−1)/CPPの構成の積層体を作製した。該積層体を作製するに際して、アンカーコート剤を必要に応じ用いた。この積層体を用いてブリック型の紙容器を作製し、内容物を充填包装した。上記で製造した密閉液体紙容器は、120℃、30分のレトルト処理を施しても、処理前と比較して外観に変化はなく、さらに酸素ガスに対するバリア性に優れ、その内容物の変質は認められず、市場における流通に耐え、かつ、貯蔵保存等に優れているものであった。ブリック型紙容器の酸素ガスバリア性を測定したところ、20℃、85%RHでの酸素透過度0.10cc/m2・day・atmと非常に良好な値を示した。また120℃、30分のレトルト処理後の酸素バリア性を測定したところ、20℃、85%RHでの酸素透過度0.30cc/m2・day・atmと非常に良好な値を示した。
数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、その後、アンモニア水を加えてポリアクリル酸のカルボキシル基の1.5モル%を中和し、水溶液中の固形分濃度が10重量%であるポリアクリル酸水溶液を得た。
次に、テトラメトキシシラン(TMOS)68.4重量部をメタノール79.7重量部に溶解し、続いて3−メルカプトプロピルトリメトキシシラン(チッソ株式会社製)11.3重量部を溶解した後、蒸留水5.13重量部と0.1Nの塩酸12.7重量部とを加えてゾルを調製し、これを攪拌しながら10℃で1時間、加水分解および縮合反応を行った。得られたゾルを蒸留水189重量部で希釈した後、攪拌下の上記10重量%ポリアクリル酸水溶液658重量部に速やかに添加し、溶液(S2)を得た。
一方、2液型のアンカーコート剤(AC;三井武田ケミカル株式会社製タケラックA626(商品名)およびタケネートA50(商品名)を、延伸PETフィルム(OPET;東レ株式会社製、ルミラー(商品名))上にコートし、乾燥させることによってアンカーコート層を有する基材(AC/OPET)を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1μmになるようにバーコーターによって溶液(S2)をコートしたのち、80℃で5分間乾燥した。延伸PETフィルムの反対面に同様にアンカーコート剤、および溶液(S2)をコートした。その後さらに、乾燥空気中で200℃で5分間熱処理を施した。このようにして、無色透明で外観良好なガスバリア層を有する積層体(ガスバリア層(1μm)/AC/OPET(12μm)/AC/ガスバリア層(1μm))を得た(以下、この積層体を積層体(2)という場合がある)。
次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液(80℃;MI−2)に、上記で得られた積層体(1)を約300秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、本発明の積層体(B−2)を得た。該積層体(B−2)について、ガスバリア層中のポリアクリル酸のカルボキシル基の中和度を上記の方法によって測定した。その結果、カルボキシル基の99モル%がカルシウムイオンで中和されていることが分かった。
400g/mの板紙の両方の面に接着剤を塗布した後、ポリプロピレン(PP)を各20μmの厚さで押出ラミネートし、一方の面に、接着剤を塗布し、積層体(B−2)をラミネートした。積層体(B−2)の他方の面に、接着剤を塗布し厚さ50μmの無延伸ポリプロピレンフィルム(CPP)(東セロ(株)製トーセロCP RXC−18)を貼り合わせ、PP/板紙/PP/積層体(B−2)/CPPの構成の積層体を作製した。該積層体を作製するに際して、アンカーコート剤を必要に応じ用いた。この積層体を用いてブリック型の紙容器を作製し、内容物を充填包装した。
上記で製造した密閉液体紙容器は、120℃、30分のレトルト処理を施しても、処理前と比較して外観に変化はなく、さらに酸素ガスに対するバリア性に優れ、その内容物の変質は認められず、市場における流通に耐え、かつ、貯蔵保存等に優れているものであった。ブリック型紙容器の酸素ガスバリア性を測定したところ、20℃、85%RHでの酸素透過度0.20cc/m2・day・atmと非常に良好な値を示した。また120℃、30分のレトルト処理後の酸素バリア性を測定したところ、20℃、85%RHでの酸素透過度0.40cc/m2・day・atmと非常に良好な値を示した。
数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、水溶液中の固形分濃度が10重量%であるポリアクリル酸水溶液の溶液(S4)を得た。
以下、溶液(S1)の代わりに溶液(S4)を用いること以外は実施例1の通りの操作を行い、無色透明で外観良好なガスバリア層を有する積層体(4)を得た。
次に、濃度が10重量%となるように酢酸カルシウムを蒸留水に溶解し、この水溶液を80℃に保温した。そして、この水溶液(80℃;MI−1)に、上記で得られた積層体(4)を約300秒浸漬した。浸漬後、該積層体を取り出して、80℃に調整された蒸留水で該積層体の表面を洗浄し、その後、80℃で5分間乾燥して、本発明の積層体(B−4)を得た。該積層体(B−4)について、ガスバリア層中のポリアクリル酸のカルボキシル基の中和度を上記の方法によって測定した。その結果、カルボキシル基の95モル%がカルシウムイオンで中和されていることが分かった。
400g/mの板紙の両方の面に接着剤を塗布した後、ポリプロピレン樹脂(PP)を各20μmの厚さで押出ラミネートし、一方の面に、接着剤を塗布し、積層体(B−1)をラミネートした。積層体(B−1)の他方の面に、接着剤を塗布し厚さ50μmの無延伸ポリプロピレンフィルム(CPP)(東セロ(株)製トーセロCP RXC−18)を貼り合わせ、PP/板紙/PP/積層体(B−4)/CPPの構成の積層体を作製した。該積層体を作製するに際して、アンカーコート剤を必要に応じ用いた。この積層体を用いてブリック型の紙容器を作製し、内容物を充填包装した。上記で製造した密閉液体紙容器は、120℃、30分のレトルト処理を施しても、処理前と比較して外観に変化はなく、さらに酸素ガスに対するバリア性に優れ、その内容物の変質は認められず、市場における流通に耐え、かつ、貯蔵保存等に優れているものであった。この紙容器試料の酸素ガスバリア性を測定したところ、20℃、85%RHでの酸素透過度1.5cc/m2・day・atmと非常に良好な値を示した。また120℃、30分のレトルト処理後の酸素バリア性を測定したところ、20℃、85%RHでの酸素透過度3.2cc/m2・day・atmと良好な値を示した。
本発明は、レトルト殺菌処理が可能で、且つガスバリア性に優れる紙容器に関するものである。内容物の変質を長期間に防止すると共に保存性、貯蔵性等に優れた紙容器である。

Claims (13)

  1. 少なくとも紙層、耐熱性ポリオレフィン層、およびガスバリア層を有する紙容器において、該ガスバリア層が、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体を含む組成物からなり、前記少なくとも1つの官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されていることを特徴とする紙容器。
  2. 該ガスバリア層が、ハロゲン原子およびアルコキシ基から選ばれる少なくとも1つの特性基が結合した金属原子を含む少なくとも1種の化合物(L)の加水分解縮合物を含む請求項1に記載の紙容器。
  3. 前記化合物(L)が、以下の化学式(I)で示される少なくとも1種の化合物(A)を含む請求項1または2に記載の紙容器。
    (OR m−n−k・・・(I)
    [化学式(I)中、MはSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。Rはアルキル基を表す。Xはハロゲン原子を表す。Zは、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはMの原子価と等しい。nは0〜(m−1)の整数を表す。kは0〜(m−1)の整数を表す。1≦n+k≦(m−1)である。]
  4. 前記化学式(I)において、カルボキシル基との反応性を有する前記官能基が、エポキシ基、アミノ基、ハロゲン基、メルカプト基、イソシアネート基、ウレイド基および水酸基から選ばれる少なくとも1つの官能基である請求項1〜3のいずれか1項に記載の紙容器。
  5. 前記化合物(L)が、以下の化学式(II)で示される少なくとも1種の化合物(B)を含む請求項1〜4のいずれか1項に記載の紙容器。
    (OR p−q−r ・・・(II)
    [化学式(II)中、LはSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。Rはアルキル基を表す。Rはアルキル基、アラルキル基、アリール基またはアルケニル基を表す。Xはハロゲン原子を表す。pはLの原子価と等しい。qは0〜pの整数を表す。rは0〜pの整数を表す。1≦q+r≦pである。]
  6. 前記化合物(L)が、前記化合物(A)と、以下の化学式(II)で示される少なくとも1種の化合物(B)とからなり、前記化合物(A)/前記化合物(B)のモル比が0.5/99.5〜40/60の範囲である請求項1〜5のいずれか1項に記載の紙容器。
    (OR p−q−r ・・・(II)
    [化学式(II)中、LはSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、LaまたはNdを表す。Rはアルキル基を表す。Rはアルキル基、アラルキル基、アリール基またはアルケニル基を表す。Xはハロゲン原子を表す。pはLの原子価と等しい。qは0〜pの整数を表す。rは0〜pの整数を表す。1≦q+r≦pである。]
  7. 前記重合体が、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体である請求項1〜6のいずれか1項に記載の紙容器。
  8. 前記金属イオンが、カルシウムイオン、マグネシウムイオン、バリウムイオンおよび亜鉛イオンから選ばれる少なくとも1つのイオンである請求項1〜7のいずれか1項に記載の紙容器。
  9. 最内層が無延伸の耐熱性ポリオレフィン層である、請求項1〜8のいずれか1項に記載の紙容器。
  10. 前記ガスバリア層が、基材と、基材の少なくとも一方の面に積層されたガスバリア層とを含むガスバリア性積層体として含まれる請求項1〜9のいずれか1項に記載の紙容器。
  11. 請求項10に記載のガスバリア性積層体が、基材と基材の少なくとも一方の面に積層された層の間に、蒸着法で得た無機物からなる層を有する請求項10に記載の紙容器。
  12. 前記ガスバリア層の両方の面に耐熱性ポリオレフィン層が積層されてなる請求項10に記載の紙容器。
  13. 前記耐熱性ポリオレフィン層がポリプロピレン層である請求項1〜12のいずれか1項に記載の紙容器。


JP2006082953A 2005-03-25 2006-03-24 レトルト処理用紙容器 Active JP4974557B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082953A JP4974557B2 (ja) 2005-03-25 2006-03-24 レトルト処理用紙容器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005087371 2005-03-25
JP2005087371 2005-03-25
JP2006082953A JP4974557B2 (ja) 2005-03-25 2006-03-24 レトルト処理用紙容器

Publications (2)

Publication Number Publication Date
JP2006297925A true JP2006297925A (ja) 2006-11-02
JP4974557B2 JP4974557B2 (ja) 2012-07-11

Family

ID=37466565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082953A Active JP4974557B2 (ja) 2005-03-25 2006-03-24 レトルト処理用紙容器

Country Status (1)

Country Link
JP (1) JP4974557B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006707A (ja) * 2007-05-29 2009-01-15 Kureha Corp ガスバリア性前駆積層体、ガスバリア性積層体およびこれらの製造方法
JP2012143970A (ja) * 2011-01-12 2012-08-02 Toppan Printing Co Ltd レトルト包装用透明ガスバリア性フィルムおよびその製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294834U (ja) * 1985-12-06 1987-06-17
JPS62158677A (ja) * 1985-09-12 1987-07-14 凸版印刷株式会社 マイクロ波加熱調理済食品
JPH033532U (ja) * 1989-05-25 1991-01-14
JPH1046491A (ja) * 1996-04-25 1998-02-17 Kureha Chem Ind Co Ltd 樹脂積層紙及びこれを用いた包装容器
JPH10249987A (ja) * 1997-03-07 1998-09-22 Dainippon Printing Co Ltd 積層材およびそれを使用した包装用容器
JPH11256094A (ja) * 1998-03-10 1999-09-21 Nippon Shokubai Co Ltd 表面処理樹脂成形体
JP2000211674A (ja) * 1999-01-26 2000-08-02 Toppan Printing Co Ltd レトルト殺菌処理可能な紙容器
JP2000233478A (ja) * 1998-12-18 2000-08-29 Tokuyama Corp 積層フィルム
JP2002294153A (ja) * 2001-04-02 2002-10-09 Nippon Shokubai Co Ltd 表面被覆成形体
JP2002326303A (ja) * 2001-04-27 2002-11-12 Nippon Shokubai Co Ltd 気体バリア性積層フィルム
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
WO2003091317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and process for producing the same
JP2004001417A (ja) * 2002-03-26 2004-01-08 Tokuyama Corp ガスバリア性フィルムの製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158677A (ja) * 1985-09-12 1987-07-14 凸版印刷株式会社 マイクロ波加熱調理済食品
JPS6294834U (ja) * 1985-12-06 1987-06-17
JPH033532U (ja) * 1989-05-25 1991-01-14
JPH1046491A (ja) * 1996-04-25 1998-02-17 Kureha Chem Ind Co Ltd 樹脂積層紙及びこれを用いた包装容器
JPH10249987A (ja) * 1997-03-07 1998-09-22 Dainippon Printing Co Ltd 積層材およびそれを使用した包装用容器
JPH11256094A (ja) * 1998-03-10 1999-09-21 Nippon Shokubai Co Ltd 表面処理樹脂成形体
JP2000233478A (ja) * 1998-12-18 2000-08-29 Tokuyama Corp 積層フィルム
JP2000211674A (ja) * 1999-01-26 2000-08-02 Toppan Printing Co Ltd レトルト殺菌処理可能な紙容器
JP2002294153A (ja) * 2001-04-02 2002-10-09 Nippon Shokubai Co Ltd 表面被覆成形体
JP2002326303A (ja) * 2001-04-27 2002-11-12 Nippon Shokubai Co Ltd 気体バリア性積層フィルム
JP2004001417A (ja) * 2002-03-26 2004-01-08 Tokuyama Corp ガスバリア性フィルムの製造方法
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
WO2003091317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006707A (ja) * 2007-05-29 2009-01-15 Kureha Corp ガスバリア性前駆積層体、ガスバリア性積層体およびこれらの製造方法
JP2012143970A (ja) * 2011-01-12 2012-08-02 Toppan Printing Co Ltd レトルト包装用透明ガスバリア性フィルムおよびその製造方法

Also Published As

Publication number Publication date
JP4974557B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4865707B2 (ja) ガスバリア性積層体およびその製造方法ならびにそれを用いた包装体
JP4486705B2 (ja) ガスバリア性積層体およびその製造方法
JP4828282B2 (ja) スパウト付きパウチ
JP4463876B2 (ja) ガスバリア性積層体およびその製造方法
JP4778346B2 (ja) 真空断熱体
JP4828281B2 (ja) 真空包装袋
JP5059335B2 (ja) 輸液バッグ
JP5139964B2 (ja) 輸液バッグ
JP4754383B2 (ja) ラミネートチューブ容器
JP4974557B2 (ja) レトルト処理用紙容器
JP4974556B2 (ja) 窓付き紙容器
JP5280166B2 (ja) 真空包装袋
JP5366751B2 (ja) 紙容器
JP4828280B2 (ja) 容器蓋材
JP2006335042A (ja) 成形体
JP5292085B2 (ja) スパウト付きパウチ
JP2010143008A (ja) ラミネートチューブ容器
JP5155142B2 (ja) 紙容器
JP5155102B2 (ja) 縦製袋充填シール袋
JP2010162865A (ja) スパウト付きパウチ
JP2008200990A (ja) 包装材料及びその製造方法
JP2010162328A (ja) 輸液バッグ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3