WO2016157765A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2016157765A1
WO2016157765A1 PCT/JP2016/001422 JP2016001422W WO2016157765A1 WO 2016157765 A1 WO2016157765 A1 WO 2016157765A1 JP 2016001422 W JP2016001422 W JP 2016001422W WO 2016157765 A1 WO2016157765 A1 WO 2016157765A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
phosphor
light source
light
laser
Prior art date
Application number
PCT/JP2016/001422
Other languages
English (en)
French (fr)
Inventor
誠 阿閉
公博 村上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017509239A priority Critical patent/JP6314326B2/ja
Priority to EP16771659.6A priority patent/EP3279551A4/en
Publication of WO2016157765A1 publication Critical patent/WO2016157765A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors

Definitions

  • the present invention relates to a lighting device.
  • laser light sources have attracted attention as light sources applied to automobile headlights because of their high efficiency and high directivity.
  • a laser light source When a laser light source is applied, it is known that light distribution with a high degree of freedom can be realized by utilizing the high directivity and using a movable mirror.
  • Patent Document 1 is cited as a prior document related to the present invention.
  • a mirror that reflects light from a semiconductor light source is reciprocally rotated, and on / off (ON / OFF) of the semiconductor light source is controlled for each of a plurality of light control sections obtained by dividing the movement cycle of the mirror.
  • a vehicular lamp that adjusts the illuminance distribution around the vehicle by combining ON / OFF control of a semiconductor light source with the periodic movement of the mirror is disclosed.
  • a white light source is obtained by exciting a phosphor with laser light emitted from the laser light source.
  • an adaptive driving beam (ADB: Adaptive Driving Beam) for the purpose of preventing dazzling with respect to an oncoming vehicle is performed.
  • ADB Adaptive Driving Beam
  • No specific laser irradiation method is disclosed. That is, a method for narrowing the boundary area between the area irradiated with the headlight light and the area not irradiated with light is not disclosed, and therefore a clear and fine light distribution variable cannot be realized. Therefore, there is a problem that a clear adaptive driving beam cannot be realized.
  • An object of the present invention is to provide an illumination device that realizes a clear adaptive driving beam.
  • An illumination device includes a light source that generates laser light, a mirror surface that reflects the laser light, a movable mirror that can drive the mirror surface, and laser light reflected by the movable mirror. And a phosphor that converts laser light into fluorescence.
  • the laser light applied to the phosphor adopts a configuration in which the rise of the intensity distribution in the scanning direction for scanning the phosphor is steeper than the rise of the intensity distribution in the vertical direction substantially perpendicular to the scan direction.
  • the rise of the intensity distribution in the scanning direction of the laser light irradiated onto the phosphor is steeper than the rise of the intensity distribution in the vertical direction substantially perpendicular to the scanning direction. If the left and right directions are defined, it is possible to realize a clear and fine light distribution variable in the left and right directions. Therefore, it is possible to clearly and finely set the light distribution for the purpose of preventing dazzling for oncoming vehicles and the like, and to finely control the dimming region on the left and right outer sides. From these results, a clear adaptive driving beam can be realized.
  • FIG. 1 Front view of a vehicle according to an embodiment of the present invention Configuration diagram when the headlight on the left side of the vehicle in FIG. 1 is viewed from the side Diagram for explaining the intensity of laser excitation light on a phosphor
  • the block diagram which shows the structure for controlling the headlight which concerns on embodiment of this invention
  • the flowchart which shows the control procedure in the
  • FIG. 1 is a front view of a vehicle according to an embodiment of the present invention.
  • headlights 2 are arranged on the left and right sides of the front portion of the main body of the vehicle 1.
  • the headlight 2 is arranged with the light irradiation direction facing the front of the vehicle.
  • Sensor 3 detects whether there is another vehicle, a person or an object in front of the vehicle, and if any of these exists, also detects the position.
  • the sensor 3 is any one of a camera, a radar, and a sonar, and is disposed on the back side of the room mirror, for example.
  • FIG. 2 is a configuration diagram when the headlight 2 on the left side of the vehicle in FIG. 1 is viewed from the side.
  • the headlight 2 includes a laser light source 11, a movable mirror 12, a phosphor 13, and a light projecting lens 14.
  • the laser light source 11 generates laser light and irradiates the movable mirror 12.
  • the laser beam is, for example, blue or violet.
  • the movable mirror 12 is a MEMS (Micro Electro Mechanical System) mirror, for example, and vibrates the mirror surface at high speed around one or two axes under the control of a control unit (not shown).
  • the movable mirror 12 reflects the laser beam generated from the laser light source 11 and scans the phosphor 13. In the following description, it is assumed that the mirror surface vibrates around one axis in the vertical direction.
  • the phosphor 13 is irradiated with the laser beam reflected by the movable mirror 12 to generate white light.
  • the phosphor 13 converts blue laser light into white light and becomes a white light source. That is, the phosphor 13 converts blue laser light into blue diffused light and yellow fluorescence, and generates white light.
  • the phosphor 13 converts blue laser light into blue diffused light and yellow fluorescence, and generates white light.
  • the laser light is blue-violet
  • the phosphor 13 generates white light by generating blue fluorescence and yellow fluorescence.
  • the phosphor 13 may convert the laser light into not only white light but also light yellow light, orange light, and the like.
  • the projection lens 14 collects the white light emitted by the phosphor 13 and irradiates the front of the vehicle.
  • FIG. 3 is a diagram for explaining the laser excitation light intensity on the phosphor 13.
  • FIG. 3A shows a state in which the phosphor 13 is irradiated with laser light. As shown in FIG. 3A, when the phosphor 13 is irradiated with laser light, it is longer in the vertical direction than the scanning direction (horizontal direction) for scanning the phosphor 13 (hereinafter referred to as “longitudinal”). An elliptical spot region is formed.
  • FIG. 3B shows the horizontal intensity distribution
  • FIG. 3C shows the vertical intensity distribution
  • the width when the beam intensity is 1 / e 2 times the peak value (about 13%) is called the beam width.
  • the horizontal beam width is 0.17 mm
  • the vertical beam width is 0.39 mm.
  • the laser beam irradiated onto the phosphor 13 has a horizontal beam width narrower than the vertical beam width. This indicates that the rise of the intensity distribution in the scanning direction for scanning the phosphor is steeper than the rise of the intensity distribution in the vertical direction substantially perpendicular to the scanning direction.
  • FIG. 4 is a diagram showing the intensity of laser irradiation on the phosphor 13 when the phosphor 13 is scanned using laser light.
  • FIG. 4 shows a case where a light-shielding region (region where laser beam irradiation is stopped) is provided near the center of the phosphor 13 so that the spot shape of the laser beam on the phosphor 13 is easy to understand.
  • 4A shows the laser irradiation intensity when the phosphor 13 is scanned in a vertically long spot region
  • FIG. 4B shows a horizontally long (longer in the horizontal direction than the vertical direction) spot region.
  • the laser irradiation intensity when the phosphor 13 is scanned is shown.
  • the vertical axis of the graph represents the light intensity at half the height of the phosphor 13
  • the horizontal axis of the graph represents the horizontal position of the phosphor 13. Show.
  • the clarity and fineness of the variable light distribution in the horizontal direction depend on the spot shape of the laser light irradiated on the phosphor, and the spot shape is narrow in the horizontal direction. If so, the irradiation area can be finely adjusted in the horizontal direction. That is, as shown in FIG. 4A, the irradiation region can be formed finely in the horizontal direction by scanning the phosphor 13 with a vertically long spot region that is thin in the horizontal direction. On the other hand, as can be seen from FIG. 4B, when the phosphor 13 is scanned with a horizontally long spot region in the horizontal direction, the irradiation region cannot be finely adjusted in the horizontal direction.
  • FIG. 5 is a schematic diagram showing how the laser light source 11 emits laser light.
  • a current flows through the semiconductor laser serving as the laser light source 11
  • laser light is irradiated from the active layer La sandwiched between the p-type cladding layer Lp and the n-type cladding layer Ln. Since the active layer La is very thin with respect to the current injection width, the laser light immediately after being emitted from the active layer La has a long axis in the length direction of the side forming the emission part of the active layer La as shown in FIG.
  • a near field pattern that forms an ellipse in which is located is formed.
  • the phosphor 13 is irradiated with a near field pattern. Therefore, the laser light source 11 is arranged so that the active layer plane is orthogonal to the scanning direction. In this way, an elliptical spot region can be formed without requiring a special optical member.
  • the direction of the ellipse differs by 90 ° due to diffraction, and the major axis is located in a direction orthogonal to the length direction of the side forming the emission part of the active layer La.
  • a far field pattern is formed. For this reason, when the phosphor 13 is irradiated with the far field pattern, the laser light source 11 may be arranged so that the active layer plane is parallel to the scanning direction.
  • FIG. 6 is a diagram showing a light distribution pattern that gradually decreases the luminous intensity in a region near the outside of the phosphor 13.
  • the laser light source 11 is gradually darkened as it approaches the outside by decreasing the luminous intensity (laser light intensity) in the region closer to the outside than the center of the scanning range of the phosphor 13.
  • the outline of the outside light appears to be blurry, and there is no sudden decrease in luminous intensity at the edge of the driver's field of view.
  • the headlight 2 since the fluorescent substance 13 is scanned by the vertically long elliptical spot region, the blur of the outline of the outside light can be finely controlled. That is, the headlight 2 can have both a clear adaptive driving beam and a blurred natural light distribution. As a result, the driver can easily drive.
  • FIG. 7 is a diagram showing a light distribution pattern that lowers the luminous intensity in a region near the outside of the phosphor 13 by utilizing the optical path difference between the center and the outside of the phosphor 13.
  • the laser is such that the optical path length when irradiating the laser beam to the center of the scanning range of the phosphor 13 is shorter than the optical path length when irradiating the laser beam to the region near the outside of the scanning range of the phosphor 13.
  • a light source 11 is arranged. Due to this optical path length difference, that is, the optical path difference, as shown in FIG. 7, in the center of the scanning range of the phosphor 13, the spot width of the laser beam becomes smaller, the intensity of the laser beam increases, and the phosphor 13.
  • the spot width of the laser light is widened and the intensity of the laser light is reduced. Thereby, there is no sudden light intensity drop at the end of the driver's field of view. That is, the headlight 2 can have both a clear adaptive driving beam and a blurred natural light distribution. As a result, the driver can easily drive. Further, it is not necessary to finely control the light distribution in a region near the outside of the phosphor 13.
  • FIG. 8 is a configuration diagram of the headlight 2 when two light sources are used.
  • the headlight 2 shown in FIG. 8 is obtained by adding a laser light source 15 for a fixed light source to the configuration of FIG.
  • the laser light source 15 generates laser light and irradiates the phosphor 13.
  • the laser beam is, for example, blue or violet.
  • the laser light source 15 irradiates with a far field pattern.
  • FIG. 9 is a diagram showing a light distribution pattern when two light sources are used.
  • the laser light source 15 is a fixed light source, and the phosphor 13 is scanned using a vertically long spot region formed by the laser light source 11.
  • the laser light source 15 irradiates near the center of the scanning range of the phosphor 13.
  • the laser light source 15 does not form a light shielding area for an oncoming vehicle or the like, and a light distribution pattern having a wider irradiation range in the left-right direction than in the vertical direction is formed by one light source.
  • the spot area to be irradiated is preferably an ellipse that is longer in the horizontal direction than in the vertical direction.
  • the laser light source 11 corresponds to an example of a first light source according to the present invention
  • the laser light source 15 corresponds to a second light source according to the present invention.
  • FIG. 10 is a diagram showing a light distribution pattern in which the spot area irradiated on the phosphor 13 is rectangular.
  • FIG. 10A shows a state in which the phosphor 13 is irradiated with laser light.
  • 10B shows the horizontal intensity distribution
  • FIG. 10C shows the vertical intensity distribution.
  • Formation of a spot region as shown in FIG. 10A can be realized by passing laser light through a collimator lens or a cylindrical lens.
  • the rising of the intensity distribution in the scanning direction for scanning on the phosphor can be steeper than the rising of the intensity distribution in the vertical direction substantially orthogonal to the scanning direction. This is effective in the case of an optical configuration in which the near field pattern of the laser light source 11 cannot be inherited on the phosphor as in the case of guiding the laser beam with a fiber.
  • the headlight 2 prepares various light distribution patterns, and by switching the light distribution pattern according to the position of other vehicles and people, preventing dazzling to other vehicles or people in front of the vehicle, And a driver
  • FIG. 11 is a block diagram showing a configuration for controlling the headlight 2 according to the embodiment of the present invention.
  • the operation unit 21 is a switch for switching on / off of the headlight 2.
  • the memory 22 stores a plurality of light distribution patterns of the laser light source 11 according to a position in front of the headlight, that is, a position where another vehicle or person such as an oncoming vehicle is present in the irradiation direction of white light.
  • Sensor 3 detects whether there is another vehicle or person in front of the vehicle, and if there is another vehicle or person, it also detects its position.
  • the laser light source 11 switches the output of the laser light according to the control of the control unit 23.
  • the movable mirror 12 switches the vibration speed of the mirror according to the control of the control unit 23.
  • the control unit 23 When the operation unit 21 switches the headlight 2 to ON, the control unit 23 receives an ON signal and acquires detection information from the sensor 3 as to whether there is another vehicle or a person in front of the headlight, If there is another vehicle or person, the position information is also acquired.
  • the control unit 23 reads the light distribution pattern of the laser light source 11 according to the position from the memory 22 and, according to the read light distribution pattern, the laser light source 11. Control the output. That is, the control unit 23 controls the intensity of the laser light according to the irradiation position in the scanning direction.
  • the control unit 23 controls the laser light source 11 so as to stop or suppress the irradiation of the laser light using the position as a light shielding region.
  • FIG. 12 is a flowchart showing a control procedure in the control unit 23 of FIG.
  • the control unit 23 determines whether or not an ON signal indicating that the headlight 2 is ON is input from the operation unit 21.
  • the ON signal is input (step S01: YES)
  • the process proceeds to step S02.
  • the ON signal is not input (step S01: NO)
  • the process of the control unit 23 is terminated.
  • step S02 the control unit 23 activates the laser light source 11 and the movable mirror 12, and indicates that another vehicle (preceding vehicle or oncoming vehicle), a person, an obstacle, or the like is detected in front of the headlight in step S03. Detection information is acquired from the sensor 3.
  • step S04 the control unit 23 determines whether the place should be shielded or dimmed based on the detection information acquired in step S03. That is, when the detection information is another vehicle or a person, the control unit 23 determines that the position is a place where light should be shielded or dimmed. If it is a place where light should be blocked or dimmed (step S04: YES), the process proceeds to step S05. If it is not a place where light should be blocked or dimmed (step S04: NO), the process proceeds to step S06.
  • step S05 the control unit 23 reads a light distribution pattern for suppressing the light distribution of the irradiation light from the memory 22, and controls the laser light source 11 according to the read light distribution pattern.
  • step S06 the control unit 23 reads a light distribution pattern that does not suppress the light distribution of the irradiation light from the memory 22, and controls the laser light source 11 according to the read light distribution pattern.
  • step S07 the control unit 23 determines whether an OFF signal for turning off the headlight 2 is input from the operation unit 21.
  • the process proceeds to step S08, and when the OFF signal is not input (step S07: NO), the process returns to step S03.
  • step S08 the control unit 23 stops the laser light source 11 and the movable mirror 12 and ends the process of the control procedure.
  • FIG. 13 is a diagram showing a road surface irradiation pattern formed by the headlight 2.
  • the front left side of the vehicle 1 forms a long irradiation region
  • the front right side of the vehicle 1 forms a short irradiation region.
  • the rise of the intensity distribution in the scanning direction of the spot region formed by the laser light irradiated to the phosphor is made steeper than the rise of the intensity distribution in the vertical direction substantially perpendicular to the scanning direction.
  • a clear adaptive driving beam can be realized by scanning the phosphor using this spot region.
  • the present invention is useful for realizing a clear adaptive driving beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

明瞭なアダプティブドライビングビームを実現する照明装置を提供する。 この照明装置は、レーザー光を発生する光源(11)と、前記レーザー光を反射するミラー面を有し、ミラー面を駆動可能な可動ミラー(12)と、可動ミラーによって反射された前記レーザー光が照射され、レーザー光を蛍光に変換する蛍光体(13)と、を具備する。蛍光体に照射されるレーザー光は、蛍光体上を走査する走査方向の強度分布の立ち上りが、走査方向に略直 交する垂直方向の強度分布の立ち上りより急峻である構成を採る。

Description

照明装置
 本発明は、照明装置に関する。
 近年、効率の良さ及び指向性の高さから、自動車用ヘッドライトに適用する光源としてレーザー光源が注目されている。レーザー光源を適用した場合、その指向性の高さを活かし、また、可動ミラーを用いることで自由度の高い配光を実現できることが知られている。
 本発明に関連する先行文献として特許文献1が挙げられる。特許文献1には、半導体光源からの光を反射するミラーを往復回動させ、ミラーの運動周期を分割した複数の調光区間ごとに半導体光源のオン/オフ(ON/OFF)を制御し、ミラーの周期運動に半導体光源のON/OFF制御を組合せ、車両周辺の照度分布を調整する車両用灯具が開示されている。
特開2010-6109号公報
 一般に、レーザー光源を自動車用ヘッドライトに適用する場合、レーザー光源から発したレーザー光によって蛍光体を励起させて、白色光源が得られる。
 しかしながら、上述した特許文献1には、レーザー光源と蛍光体を用いた自動車用ヘッドライトにおいて、例えば、対向車に対して幻惑防止を目的としたアダプティブドライビングビーム(ADB:Adaptive Driving Beam)を行うための具体的なレーザー照射方法が開示されていない。すなわち、ヘッドライト光を照射する領域と照射しない領域との境界域を狭くすることに関しての方法は開示されておらず、従って、明瞭で細かな配光可変を実現することができない。よって、明瞭なアダプティブドライビングビームを実現することができないという問題がある。
 本発明の目的は、明瞭なアダプティブドライビングビームを実現する照明装置を提供することである。
 本発明の一態様に係る照明装置は、レーザー光を発生する光源と、レーザー光を反射するミラー面を有し、ミラー面を駆動可能な可動ミラーと、可動ミラーによって反射されたレーザー光が照射され、レーザー光を蛍光に変換する蛍光体と、を具備する。そして、蛍光体に照射されるレーザー光は、蛍光体上を走査する走査方向の強度分布の立ち上りが、走査方向に略直交する垂直方向の強度分布の立ち上りより急峻である構成を採る。
 本発明によれば、蛍光体上に照射されるレーザー光は、走査方向の強度分布の立ち上りが、走査方向に略直交する垂直方向の強度分布の立ち上りより急峻としたので、走査方向を車両前方の左右方向とすれば、左右方向に明瞭で細かな配光可変を実現することができる。従って、対向車などに対して幻惑防止を目的とした配光を明瞭で細かく設定でき、かつ、左右外側での減光領域を細かく制御できる。これらの結果から、明瞭なアダプティブドライビングビームを実現することができる。
本発明の実施の形態に係る車両の正面図 図1の車両左側のヘッドライトを横からみたときの構成図 蛍光体上のレーザー励起光強度を説明するための図 レーザー光を用いて蛍光体を走査したときの蛍光体上のレーザー照射強度を示す図 レーザー光源がレーザー光を発する様子を示す模式図 蛍光体の外側に近い領域における光度を徐々に下げる配光パターンを示す図 蛍光体の中心と外側との光路差を利用して、蛍光体の外側に近い領域における光度を下げる配光パターンを示す図 2つの光源を用いた場合のヘッドライトの構成図 2つの光源を用いた場合の配光パターンを示す図 蛍光体に照射するスポット領域を方形状にした配光パターンを示す図 本発明の実施の形態に係るヘッドライトを制御するための構成を示すブロック図 図10の制御部における制御手順を示すフロー図 ヘッドライトが形成する路面照射パターンを示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態)
 図1は、本発明の実施の形態に係る車両の正面図である。図1において、車両1の本体ボディの前部の左右両側には、ヘッドライト2が配置されている。
 ヘッドライト2は、光の照射方向が車両の前方を向いて配置される。
 センサ3は、車両前方に他の車両、人または物体が存在するかどうかを検知し、これらのいずれかが存在する場合にはその位置も検知する。センサ3は、カメラ、レーダー、ソナーのいずれかであり、例えば、ルームミラーの裏側に配置される。
 図2は、図1の車両左側のヘッドライト2を横からみたときの構成図である。以下、図2を参照して、ヘッドライト2の構成について説明する。ただし、車両右側のヘッドライトの構成は、車両左側のヘッドライトの構成と同様であるため、ここではその詳細な説明は省略する。ヘッドライト2は、レーザー光源11、可動ミラー12、蛍光体13及び投光レンズ14を備える。
 レーザー光源11は、レーザー光を発生し、可動ミラー12に照射する。レーザー光は、例えば、青色または青紫色である。
 可動ミラー12は、例えば、MEMS(Micro Electro Mechanical System)ミラーであり、図示せぬ制御部の制御によって、ミラー面を1軸または2軸を中心として高速に振動させる。可動ミラー12は、レーザー光源11から発生したレーザー光を反射して、蛍光体13上を走査する。なお、以下においては、ミラー面が鉛直方向の1軸を中心に振動するものとして説明する。
 蛍光体13は、可動ミラー12によって反射されたレーザー光が照射され、白色光を生じる。ここでは、蛍光体13は、青色のレーザー光を白色光に変換し、白色光源となる。すなわち、蛍光体13は、青色のレーザー光を青色の拡散光と黄色の蛍光に変換し、白色光を発生する。また、レーザー光が青紫色の場合には、蛍光体13は、青色の蛍光と黄色の蛍光を発生することで白色光を発生する。なお、蛍光体13は、レーザー光を白色光に限らず、淡黄色光、オレンジ光などに変換してもよい。
 投光レンズ14は、蛍光体13によって発せられた白色光を集光して、車両前方を照射する。
 図3は、蛍光体13上のレーザー励起光強度を説明するための図である。図3の(a)は、蛍光体13にレーザー光を照射した様子を示す。図3の(a)が示すように、蛍光体13にレーザー光が照射されたとき、蛍光体13上を走査する走査方向(水平方向)よりも垂直方向に長い(以下、「縦長」という)楕円形状のスポット領域が形成される。
 図3の(b)は、水平強度分布を示し、図3の(c)は、垂直強度分布を示す。図3の(b)及び図3の(c)において、ビーム強度がピーク値の1/e倍(約13%)になるときの幅をビーム幅という。図3の(b)より、水平ビーム幅は0.17mmであり、図3の(c)より、垂直ビーム幅は0.39mmである。このように、蛍光体13に照射されるレーザー光は、水平ビーム幅が垂直ビーム幅より狭い。これは、蛍光体上を走査する走査方向の強度分布の立ち上りが、走査方向に略直交する垂直方向の強度分布の立ち上りより急峻であることを示している。
 図4は、レーザー光を用いて蛍光体13を走査したときの蛍光体13上のレーザー照射強度を示す図である。図4では、蛍光体13上でのレーザー光のスポット形状が分かりやすいように、蛍光体13の中心付近に遮光領域(レーザー光の照射を停止する領域)を設けた場合を示している。図4の(a)は、縦長のスポット領域で蛍光体13を走査したときのレーザー照射強度を示し、図4の(b)は、横長(垂直方向よりも水平方向に長い)のスポット領域で蛍光体13を走査したときのレーザー照射強度を示す。図4の(a)、図4の(b)において、グラフの縦軸は、蛍光体13の半分の高さにおける光強度を示し、グラフの横軸は、蛍光体13の水平方向の位置を示す。
 図4の(a)と図4の(b)より、水平方向の配光可変の明瞭さと細かさは、蛍光体上に照射するレーザー光のスポット形状に依存し、水平方向に細いスポット形状であれば、照射領域を水平方向に細かく調整することができる。すなわち、図4の(a)に示すように、水平方向に細い縦長のスポット領域で蛍光体13を走査することにより、水平方向に細かく照射領域を形成できる。一方、図4の(b)から分かるように、水平方向に太い横長のスポット領域で蛍光体13を走査した場合には、照射領域を水平方向に細かく調整することができない。
 図5は、レーザー光源11がレーザー光を発する様子を示す模式図である。レーザー光源11となる半導体レーザーに電流が流れると、p型クラッド層Lpとn型クラッド層Lnの間に挟まれた活性層Laからレーザー光が照射される。活性層Laは電流注入幅に対して非常に薄いため、活性層Laから出射直後のレーザー光は、図5に示すように、活性層Laの出射部を形成する辺の長さ方向に長軸が位置する楕円となるニアフィールドパターンを形成する。本実施の形態では、ニアフィールドパターンで蛍光体13を照射する。よって、活性層平面は走査方向と直交するようにレーザー光源11を配置する。こうすることで、特殊な光学部材を必要とせず、楕円形状のスポット領域を形成することができる。
 なお、レーザー光は、活性層Laから出射された後、回折によって楕円の向きが90°異なり、活性層Laの出射部を形成する辺の長さ方向と直交する方向に長軸が位置する楕円となるファーフィールドパターンを形成する。このため、ファーフィールドパターンで蛍光体13を照射する場合には、活性層平面が走査方向と平行になるようにレーザー光源11を配置すればよい。
 次に、ヘッドライト2の配光パターンを変化させる場合について、図を用いて説明する。
 図6は、蛍光体13の外側に近い領域における光度を徐々に下げる配光パターンを示す図である。レーザー光源11は、蛍光体13の走査範囲の中央より外側に近い領域ほど光度(レーザー光の強度)を下げることにより、外側に近づくほど徐々に暗くなる。その様子を全体的に俯瞰して見ると、外側の光の輪郭が見かけ上ぼやけて見え、運転者の視界の端で急激な光度低下がなくなる。また、ヘッドライト2では、縦長の楕円形状のスポット領域で蛍光体13を走査するので、外側の光の輪郭のぼやけを細かく制御することができる。すなわち、ヘッドライト2は、明瞭なアダプティブドライビングビームとぼやけた自然な配光とを兼ね備えることができる。この結果、運転者は運転しやすくなる。
 図7は、蛍光体13の中心と外側との光路差を利用して、蛍光体13の外側に近い領域における光度を下げる配光パターンを示す図である。ここでは、蛍光体13の走査範囲の中央にレーザー光を照射するときの光路長が、蛍光体13の走査範囲の外側に近い領域にレーザー光を照射するときの光路長より短くなるようにレーザー光源11が配置されている。この光路長の差、すなわち、光路差により、図7に示すように、蛍光体13の走査範囲の中央では、レーザー光のスポット幅が小さくなって、レーザー光の強度が増加し、蛍光体13の外側に近い領域では、蛍光体13中心に比べて光路が長くなるため、レーザー光のスポット幅が広がって、レーザー光の強度が低下する。これにより、運転者の視界の端で急激な光度低下がなくなる。すなわち、ヘッドライト2は、明瞭なアダプティブドライビングビームとぼやけた自然な配光とを兼ね備えることができる。この結果、運転者は運転しやすくなる。また、蛍光体13の外側に近い領域における配光を細かく制御する必要がない。
 図8は、2つの光源を用いた場合のヘッドライト2の構成図である。図8に示すヘッドライト2は、図2の構成に固定光源用のレーザー光源15を追加したものである。レーザー光源15は、レーザー光を発生し、蛍光体13に照射する。レーザー光は、例えば、青色または青紫色である。レーザー光源15は、ファーフィールドパターンで照射する。
 図9は、2つの光源を用いた場合の配光パターンを示す図である。上述したようにレーザー光源15を固定光源とし、レーザー光源11によって形成される縦長のスポット領域を用いて蛍光体13を走査する。レーザー光源15は、蛍光体13の走査範囲の中央付近に照射する。また、レーザー光源15は、対向車などに対して遮光領域を形成せず、1つの光源で垂直方向よりも左右方向に照射範囲の広い配光パターンを形成するため、レーザー光源15が蛍光体13に照射するスポット領域は、垂直方向より水平方向に長い楕円が好ましい。これにより、運転者の遠方視認性を高め、とりわけ高速走行時の安全性を向上させることができる。また、蛍光体13の外側に近い領域における配光を細かく制御することができる。なお、レーザー光源11は、本発明に係る第1光源の一例に相当し、レーザー光源15は、本発明に係る第2光源に相当する。
 図10は、蛍光体13に照射するスポット領域を方形状にした配光パターンを示す図である。図10の(a)は、蛍光体13にレーザー光を照射した様子を示す。また、図10の(b)は、水平強度分布を示し、図10の(c)は、垂直強度分布を示す。図10の(a)に示すようなスポット領域を形成するには、レーザー光をコリメータレンズまたはシリンドリカルレンズに通すことにより、実現することができる。この配光パターンにおいても、蛍光体上を走査する走査方向の強度分布の立ち上りが、走査方向に略直交する垂直方向の強度分布の立ち上りより急峻とすることができ、例えば、レーザー光源11から出射されたレーザー光をファイバーで導光する形態のように、レーザー光源11のニアフィールドパターンを蛍光体上に引き継げないような光学構成の場合に有効である。
 このように、ヘッドライト2が種々の配光パターンを用意し、配光パターンを他の車両及び人の位置に応じて切り替えることにより、車両前方の他の車両または人への眩惑を防止し、かつ、運転者の視界を良好に保つことができる。
 図11は、本発明の実施の形態に係るヘッドライト2を制御するための構成を示すブロック図である。操作部21は、ヘッドライト2のON/OFFを切り替えるスイッチである。
 メモリ22は、ヘッドライト前方、すなわち、白色光の照射方向に先行車、対向車などの他の車両または人が存在する位置に応じた、レーザー光源11の複数の配光パターンを記憶する。
 センサ3は、車両前方に他の車両または人が存在するかどうかを検知し、他の車両または人が存在する場合にはその位置も検知する。
 レーザー光源11は、制御部23の制御に従って、レーザー光の出力を切り替える。
 可動ミラー12は、制御部23の制御に従って、ミラーの振動スピードを切り替える。
 制御部23は、操作部21がヘッドライト2をONに切り替えたら、ON信号の入力を受けて、センサ3からヘッドライト前方に他の車両または人が存在するかどうかの検知情報を取得し、他の車両または人が存在する場合にはその位置情報も取得する。制御部23は、ヘッドライト前方に他の車両または人が存在する場合には、その位置に応じたレーザー光源11の配光パターンをメモリ22から読み出し、読み出した配光パターンに従って、レーザー光源11の出力を制御する。すなわち、制御部23は、走査方向の照射位置に応じて、レーザー光の強度を制御する。また、制御部23は、ヘッドライト前方に他の車両または人が存在する場合には、その位置を遮光領域として、レーザー光の照射を停止あるいは抑制するようにレーザー光源11を制御する。
 図12は、図11の制御部23における制御手順を示すフロー図である。ステップS01において、制御部23は、操作部21からヘッドライト2がONであることを示すON信号を入力したか否かを判定する。ON信号を入力した場合(ステップS01:YES)、ステップS02に移行し、ON信号を入力していない場合(ステップS01:NO)、制御部23の処理を終了する。
 ステップS02において、制御部23は、レーザー光源11及び可動ミラー12を起動し、ステップS03において、ヘッドライト前方に他の車両(先行車または対向車)、人または障害物等を検知したことを示す検知情報をセンサ3から取得する。
 ステップS04において、制御部23は、ステップS03において取得した検知情報に基づいて、遮光または減光するべき場所かどうかを判定する。すなわち、制御部23は、検知情報が他の車両または人である場合には、その位置は遮光または減光するべき場所と判定する。遮光または減光するべき場所である場合(ステップS04:YES)、ステップS05に移行し、遮光または減光するべき場所ではない場合(ステップS04:NO)、ステップS06に移行する。
 ステップS05において、制御部23は、照射光の配光を抑制する配光パターンをメモリ22から読み出し、読み出した配光パターンに従って、レーザー光源11を制御する。
 ステップS06において、制御部23は、照射光の配光を抑制しない配光パターンをメモリ22から読み出し、読み出した配光パターンに従って、レーザー光源11を制御する。
 ステップS07において、制御部23は、操作部21からヘッドライト2をOFFにするOFF信号を入力したか否かを判定する。OFF信号を入力した場合(ステップS07:YES)、ステップS08に移行し、OFF信号を入力していない場合(ステップS07:NO)、ステップS03に戻る。
 ステップS08において、制御部23は、レーザー光源11及び可動ミラー12を停止して、制御手順の処理を終了する。
 図13は、ヘッドライト2が形成する路面照射パターンを示す図である。図13に示すように、車両1の前方左側は長い照射領域を形成し、車両1の前方右側は短い照射領域を形成している。これにより、車両1の前方左側を通行する歩行者または障害物を離れた位置から照らすことができる一方、車両1の右側を対向する車両または図示せぬ近くの歩行者に対して眩惑を防止することができる。
 このように、本実施の形態によれば、蛍光体に照射したレーザー光が形成するスポット領域の走査方向の強度分布の立ち上がりを、走査方向に略直交する垂直方向の強度分布の立ち上がりより急峻にし、このスポット領域を用いて蛍光体上を走査することにより、明瞭なアダプティブドライビングビームを実現することができる。
 本発明は、明瞭なアダプティブドライビングビームを実現するのに有用である。
 1 車両
 2 ヘッドライト
 3 センサ
 11,15 レーザー光源
 12 可動ミラー
 13 蛍光体
 14 投光レンズ
 21 操作部
 22 メモリ
 23 制御部

Claims (9)

  1.  レーザー光を発生する光源と、
     前記レーザー光を反射するミラー面を有し、前記ミラー面を駆動可能な可動ミラーと、
     前記可動ミラーによって反射された前記レーザー光が照射され、前記レーザー光を蛍光に変換する蛍光体と、
     を具備し、
     前記蛍光体に照射される前記レーザー光は、前記蛍光体上を走査する走査方向の強度分布の立ち上りが、前記走査方向に略直交する垂直方向の強度分布の立ち上りより急峻である、
     照明装置。
  2.  前記蛍光体に照射される前記レーザー光のスポット領域は、前記走査方向より前記垂直方向に長い略楕円である、
     請求項1に記載の照明装置。
  3.  前記光源は、
     前記レーザー光を出射する活性層を有し、
     前記活性層の平面が前記走査方向に直交するように配置される、
     請求項1に記載の照明装置。
  4.  前記走査方向の照射位置に応じて前記レーザー光の強度を制御する制御部、
     をさらに有する、
     請求項1に記載の照明装置。
  5.  前記光源は、前記蛍光体の走査範囲の中央より外側に近い領域のほうが前記レーザー光の強度が低くなるように照射する、
     請求項1に記載の照明装置。
  6.  前記光源は、前記レーザー光の出力の制御によって前記レーザー光の強度を低くする、
     請求項5に記載の照明装置。
  7.  前記光源は、
     前記蛍光体の走査範囲の中央に前記レーザー光を照射するときの光路長が、前記蛍光体の走査範囲の外側に近い領域に前記レーザー光を照射するときの光路長より短くなるように配置され、
     前記光路長の差により、前記蛍光体の走査範囲の中央より外側に近い領域のほうが前記レーザー光の強度が低くなるように照射する、
     請求項5に記載の照明装置。
  8.  前記光源は、前記レーザー光として第1のレーザー光を発生する第1光源と、
     前記蛍光体の外側より中央に近い領域に固定的に第2のレーザー光を照射する第2光源と、
     を有する請求項1に記載の照明装置。
  9.  前記蛍光体に照射される前記第2のレーザー光のスポット領域は、前記走査方向が前記垂直方向より長い略楕円である、
     請求項8に記載の照明装置。
PCT/JP2016/001422 2015-03-31 2016-03-14 照明装置 WO2016157765A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017509239A JP6314326B2 (ja) 2015-03-31 2016-03-14 照明装置
EP16771659.6A EP3279551A4 (en) 2015-03-31 2016-03-14 Illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071822 2015-03-31
JP2015-071822 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157765A1 true WO2016157765A1 (ja) 2016-10-06

Family

ID=57005527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001422 WO2016157765A1 (ja) 2015-03-31 2016-03-14 照明装置

Country Status (3)

Country Link
EP (1) EP3279551A4 (ja)
JP (1) JP6314326B2 (ja)
WO (1) WO2016157765A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207483A (ja) * 2015-04-23 2016-12-08 スタンレー電気株式会社 車両用灯具
WO2018173802A1 (ja) * 2017-03-23 2018-09-27 パナソニックIpマネジメント株式会社 光源装置および投光装置
WO2019049589A1 (ja) * 2017-09-11 2019-03-14 パナソニックIpマネジメント株式会社 光源装置および投光装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129216A1 (de) * 2018-11-20 2020-05-20 Automotive Lighting Reutlingen Gmbh Verfahren zum Betreiben eines Kraftfahrzeugscheinwerfers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048786A (ja) * 2007-08-13 2009-03-05 Koito Mfg Co Ltd 車両用前照灯
JP2010036835A (ja) * 2008-08-08 2010-02-18 Koito Mfg Co Ltd 車両用灯具
WO2012144144A1 (ja) * 2011-04-22 2012-10-26 株式会社小糸製作所 障害物検出装置
JP2013171645A (ja) * 2012-02-20 2013-09-02 Stanley Electric Co Ltd 照明用光学系
WO2014024385A1 (ja) * 2012-08-08 2014-02-13 株式会社小糸製作所 車両用灯具
JP2014060452A (ja) * 2013-12-18 2014-04-03 Seiko Epson Corp 固体光源装置、プロジェクタ、モニタ装置
JP2015501062A (ja) * 2011-12-22 2015-01-08 シャープ株式会社 適応性ビーム機能を備えたヘッドライトシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5221174B2 (ja) * 2008-03-13 2013-06-26 株式会社小糸製作所 車両用前照灯
JP2010092747A (ja) * 2008-10-09 2010-04-22 Koito Mfg Co Ltd 車両用前照灯
JP2012169050A (ja) * 2011-02-10 2012-09-06 Stanley Electric Co Ltd 車両用灯具
FR2993831B1 (fr) * 2012-07-27 2015-07-03 Valeo Vision Systeme d'eclairage adaptatif pour vehicule automobile
AT514834B1 (de) * 2013-02-07 2017-11-15 Zkw Group Gmbh Scheinwerfer für ein Kraftfahrzeug und Verfahren zum Erzeugen einer Lichtverteilung
AT513916B1 (de) * 2013-02-07 2015-04-15 Zizala Lichtsysteme Gmbh Scheinwerfer für ein Kraftfahrzeug und Verfahren zum Erzeugen einer Lichtverteilung
FR3010486B1 (fr) * 2013-09-10 2018-01-05 Valeo Vision Module d'eclairage pour vehicule

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048786A (ja) * 2007-08-13 2009-03-05 Koito Mfg Co Ltd 車両用前照灯
JP2010036835A (ja) * 2008-08-08 2010-02-18 Koito Mfg Co Ltd 車両用灯具
WO2012144144A1 (ja) * 2011-04-22 2012-10-26 株式会社小糸製作所 障害物検出装置
JP2015501062A (ja) * 2011-12-22 2015-01-08 シャープ株式会社 適応性ビーム機能を備えたヘッドライトシステム
JP2013171645A (ja) * 2012-02-20 2013-09-02 Stanley Electric Co Ltd 照明用光学系
WO2014024385A1 (ja) * 2012-08-08 2014-02-13 株式会社小糸製作所 車両用灯具
JP2014060452A (ja) * 2013-12-18 2014-04-03 Seiko Epson Corp 固体光源装置、プロジェクタ、モニタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279551A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207483A (ja) * 2015-04-23 2016-12-08 スタンレー電気株式会社 車両用灯具
WO2018173802A1 (ja) * 2017-03-23 2018-09-27 パナソニックIpマネジメント株式会社 光源装置および投光装置
JPWO2018173802A1 (ja) * 2017-03-23 2020-01-23 パナソニックIpマネジメント株式会社 光源装置および投光装置
WO2019049589A1 (ja) * 2017-09-11 2019-03-14 パナソニックIpマネジメント株式会社 光源装置および投光装置

Also Published As

Publication number Publication date
JP6314326B2 (ja) 2018-04-25
EP3279551A1 (en) 2018-02-07
JPWO2016157765A1 (ja) 2017-10-05
EP3279551A4 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2017104167A1 (ja) 照明装置及び車両用前照灯
CN106904117B (zh) 控制机动车前照灯的方法
KR101740474B1 (ko) 조명 장치 및 출력 조명을 생성하는 방법
JP6530565B2 (ja) 自動車投光器を制御するための方法
CN111288408B (zh) 车辆用前照灯
US10731818B2 (en) Scanner with beam-delimiting device for vehicle lighting
JP6314326B2 (ja) 照明装置
WO2014024385A1 (ja) 車両用灯具
CN108369336B (zh) 用于车辆的前照灯
US11209145B2 (en) Optical unit
CN107664293B (zh) 机动车辆的可变孔径光束前照灯照明模块
JP6268369B2 (ja) 照明装置、車両及び照明装置の制御方法
JP6499313B2 (ja) 自動車用の照明装置
JP6190702B2 (ja) 照射装置
KR20160069083A (ko) 차량용 램프
WO2018225684A1 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
JP2020057511A (ja) 車両用灯具
JP2019220270A (ja) 光学ユニットおよび車両用前照灯
KR101795281B1 (ko) 차량용 광원모듈
CN113453954A (zh) 车辆用灯具
JP6125900B2 (ja) リアフォグランプ制御装置及びリアフォグランプシステム
JP2023120057A (ja) 車両用灯具、車両用灯具システム
CN115143421A (zh) 一种机动车前照灯
JP2016192260A (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016771659

Country of ref document: EP