WO2016157443A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016157443A1
WO2016157443A1 PCT/JP2015/060229 JP2015060229W WO2016157443A1 WO 2016157443 A1 WO2016157443 A1 WO 2016157443A1 JP 2015060229 W JP2015060229 W JP 2015060229W WO 2016157443 A1 WO2016157443 A1 WO 2016157443A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
open
refrigeration cycle
voltage
cycle apparatus
Prior art date
Application number
PCT/JP2015/060229
Other languages
English (en)
French (fr)
Inventor
岩田 明彦
和彦 河合
智昭 小畑
裕右 小山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/060229 priority Critical patent/WO2016157443A1/ja
Priority to JP2017508950A priority patent/JP6537596B2/ja
Priority to US15/549,398 priority patent/US10418915B2/en
Publication of WO2016157443A1 publication Critical patent/WO2016157443A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus that operates by receiving DC power supply.
  • a refrigeration cycle apparatus such as an air conditioner is operated by supplying a three-phase AC power from a commercial power source or a generator (see, for example, Patent Document 1).
  • electrical components for example, a compressor motor, a blower motor, or a solenoid valve
  • constituting the refrigeration cycle apparatus operate using a three-phase AC 200 V, a single-phase AC 200 V, a DC 12 V, or the like as a primary power source.
  • a voltage for each electric component is generated from a three-phase AC200V as a primary power supply and supplied to the refrigerant circuit system.
  • Patent Document 1 a large-capacity inverter device (for example, see Patent Document 2) is used to drive motors such as a compressor and a blower.
  • an inverter device such as Patent Document 2
  • a method of generating a DC bus voltage for driving an inverter by rectifying three-phase or two-phase AC is generally used.
  • FIG. 16 is a circuit diagram illustrating a schematic configuration of an electric system of the AC refrigeration cycle apparatus 1000.
  • the AC refrigeration cycle apparatus 1000 includes a compressor motor 1030, a DC / AC converter 1021, a smoothing capacitor 1022, a relay unit 1023, a resistance circuit 1024, a three-phase full-wave rectifier circuit 1007, and a zero cross sensor 1014.
  • the compressor motor 1030 drives a compressor (not shown).
  • the DC / AC converter 1021 drives the compressor motor 1030.
  • the smoothing capacitor 1022 smoothes the current supplied to the DC / AC converter 1021.
  • the relay unit 1023 and the resistance circuit 1024 are for suppressing an inrush current flowing into the smoothing capacitor 1022 from the AC system when power is supplied from the AC circuit breaker 1100.
  • the three-phase full-wave rectifier circuit 1007 rectifies alternating current into direct current.
  • the zero cross sensor 1014 detects the presence of an AC voltage.
  • the AC refrigeration cycle apparatus 1000 takes in the voltage supplied from the AC system 1300 through the system impedance 1011 and the AC circuit breaker 1100. System voltage taken into AC refrigeration cycle apparatus 1000 is converted from AC to DC by three-phase full-wave rectifier circuit 1007.
  • the voltage converted into direct current by the three-phase full-wave rectifier circuit 1007 is supplied to the smoothing capacitor 1022 through the relay unit 1023 and the resistor circuit 1024.
  • the DC bus voltage smoothed by the smoothing capacitor 1022 is input to the DC / AC converter 1021.
  • AC refrigeration cycle apparatus 1000 drives compressor motor 1030.
  • the AC refrigeration cycle apparatus 1000 opens the relay unit 1023 when the power is turned on from the AC circuit breaker 1100, and slowly charges the smoothing capacitor 1022 with a low current through the inrush prevention resistor from the system. Then, AC refrigeration cycle apparatus 1000 closes relay unit 1023 after charging of smoothing capacitor 1022 with a sufficient DC voltage, and starts driving of compressor motor 1030 by DC / AC converter 1021.
  • a circuit breaker open state determination function is provided to determine that the relay unit 1023 is open when it is determined to be in the open state.
  • the circuit breaker open state determination function As the circuit breaker open state determination function, the presence of the AC voltage input to the AC refrigeration cycle apparatus 1000 is grasped by the zero cross sensor 1014, and there is no AC when there is no point crossing zero in the AC voltage, that is, the AC is interrupted. There is one that determines that the machine 1100 is in an open state.
  • the AC circuit breaker 1100 is opened in response to the AC circuit breaker 1100 being opened once by using the circuit breaker open state determination function using the zero cross sensor 1014.
  • the relay unit 1023 can be opened. For this reason, inflow of an inrush current can be suppressed when AC circuit breaker 1100 becomes a closed state after that.
  • FIG. 17 is a circuit diagram showing a schematic configuration of the electric system of the DC refrigeration cycle apparatus 2000.
  • the DC refrigeration cycle apparatus 2000 includes a compressor motor 2030, a DC / AC converter 2021, a smoothing capacitor 2022, a relay unit 2023, and a resistance circuit 2024. These function similarly to the compressor motor 1030, the DC / AC converter 1021, the smoothing capacitor 1022, the relay unit 1023, and the resistance circuit 1024 provided in the AC refrigeration cycle apparatus 1000.
  • the DC voltage is supplied to the DC refrigeration cycle apparatus 2000 through an AC / DC converter 2210 that converts the voltage of the AC system 2300 into DC and a DC circuit breaker 2100 that opens and closes the DC.
  • a battery 2220 is installed on the output side of the AC / DC converter 2210. The battery 2220 is installed to stabilize high-voltage direct current.
  • the DC refrigeration cycle apparatus 2000 the voltage supplied from the AC system 2300 is converted into a high-voltage DC (about 380 VDC in the case of an AC 400V system) by the AC / DC converter 2210 and then taken in through the DC circuit breaker 2100. .
  • the DC voltage taken into the DC refrigeration cycle apparatus 2000 passes through the relay unit 2023 and the resistance circuit 2024 and is further supplied to the smoothing capacitor 2022. Then, the DC voltage smoothed by the smoothing capacitor 2022 is input to the DC / AC converter 2021.
  • the DC refrigeration cycle apparatus 2000 drives the compressor motor 2030.
  • Non-Patent Document 1 Even when applied to an air conditioning system for a data center, as shown in Non-Patent Document 1, one DC / AC converter on the uninterruptible power supply side And one AC / DC converter on the load side are not required, and power loss can be reduced.
  • the battery 2220 not only stabilizes the DC voltage, but also functions as a backup when the AC system 2300 is not supplied due to a power failure or the like.
  • the output voltage of the battery 2220 varies depending on the state of charge (remaining amount), and generally the minimum output voltage is reduced to about 70% with respect to the maximum output voltage.
  • the high-voltage DC voltage is set to about 380V, but the minimum output voltage of the battery 2220 at that time is about 270V.
  • the relay unit 2023 operates to suppress an inrush current flowing into the smoothing capacitor 2022 from the AC / DC converter 2210 or the battery 2220 when the DC circuit breaker 2100 is turned on. Specifically, when the voltage of the smoothing capacitor 2022 is equal to or lower than a predetermined value, the relay unit 2023 is in an open state, and initial charging of the smoothing capacitor 2022 is performed slowly through the resistance circuit 2024. When the voltage of the smoothing capacitor 2022 reaches a predetermined value, the relay unit 2023 is closed, and thereafter, the current that flows to operate the compressor bypasses the relay unit 2023. Since it flows, generation
  • the circuit breaker open state determination function in the DC refrigeration cycle apparatus 2000 includes determining that the DC circuit breaker 2100 is in an open state when the voltage of the smoothing capacitor 2022 is equal to or lower than the undervoltage determination threshold Th.
  • the undervoltage determination threshold Th is set to a value smaller than the lower limit value of the allowable DC voltage. For example, when the DC voltage range in the above description is from 380 V to 270 V, the undervoltage determination threshold Th is set to less than 270 V.
  • the circuit breaker open state determination function using the zero cross sensor 1014 is a device configuration assuming that the primary power supply is a three-phase AC power supply, and is a high voltage DC power supply represented by DC380V. Cannot be used as a primary power source.
  • the undervoltage determination threshold Th is closed and the DC circuit breaker 2100 is closed. Since the voltage is set to a value sufficiently smaller than the voltage of the smoothing capacitor 2022 in the state, there is a certain time lag until the determination that the DC circuit breaker 2100 is in the open state is made. . For this reason, when the DC circuit breaker 2100 is closed in the time lag, there is a problem that it is not possible to prevent an excessive current inrush.
  • the DC circuit breaker 2100 is opened for some reason at time tx when the DC refrigeration cycle apparatus 2000 is in the operating state. Then, the voltage drop of the smoothing capacitor 2022 starts.
  • the DC circuit breaker 2100 is closed again at time ty before the voltage of the smoothing capacitor 2022 drops below the undervoltage determination threshold Th, the difference ⁇ V between the voltage of the battery 2220 and the voltage of the smoothing capacitor 2022 is An inrush current IC much larger than the steady state current SC flows along the overcurrent route ICR and the like, and an excessive overcharge current flows into the smoothing capacitor 2022.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus that prevents an excessive current from flowing when a DC circuit breaker changes from an open state to a closed state. For the purpose.
  • a refrigeration cycle apparatus includes a compressor having a compressor motor, a use side heat exchanger, a decompression device, a refrigerant circuit in which a heat source side heat exchanger is sequentially connected by a refrigerant pipe, and a use side heat exchanger.
  • a fan provided with at least one of the heat source side heat exchangers, having a fan motor, a relay unit connected to the DC power supply device via a DC circuit breaker, and a resistance unit connected in parallel to the relay unit
  • a DC / AC converter for converting a DC voltage supplied from a DC power supply device via a relay unit or a resistor unit into an AC voltage and supplying the AC voltage to at least one of a compressor motor and a fan motor;
  • An open / close control unit that opens the relay unit when the machine is in an open state.
  • the present invention has a relay unit connected to a DC power supply device via a DC circuit breaker and a resistance unit connected in parallel to the relay unit, and the open / close control unit is open when the DC circuit breaker is open.
  • the relay unit is in an open state. Therefore, when the DC circuit breaker 100 changes from the open state to the closed state again, the current flowing from the DC power supply device flows into the smoothing capacitor through the resistance unit, so that the DC circuit breaker is changed from the open state to the closed state. It is possible to prevent an excessive current from flowing.
  • FIG. 1 is a circuit diagram showing a schematic configuration of an electric system of a refrigeration cycle apparatus 20A according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 20 ⁇ / b> A smoothes the refrigerant circuit system 30 that contains the motor M, the DC / AC converter 21 that drives the motor M, and the current supplied to the DC / AC converter 21.
  • the refrigeration cycle apparatus 20 ⁇ / b> A is a DC power supply type refrigeration cycle apparatus that is driven by a DC voltage supplied from the DC power supply apparatus 200.
  • the smoothing capacitor 22 is connected to the input end of the DC / AC converter 21 and smoothes the DC voltage input from the DC power supply device 200.
  • the opening / closing control unit 25A is configured to open the relay unit 23 when the DC breaker 100 is opened. More specifically, the open / close control unit 25A is configured to open the relay unit 23 when an open signal indicating the open state of the DC breaker 100 output from the DC breaker 100 is input.
  • the DC breaker 100 has a function of transmitting an open / close signal S1 indicating its own open / close state to the outside by a contact relay (not shown) or the like. More specifically, the DC breaker 100 is configured, for example, such that the open / close state of the DC breaker 100 and the opening / closing of the contact relay are linked.
  • the open / close signal S1 output from the DC breaker 100 is input to the open / close control unit 25A of the refrigeration cycle apparatus 20A.
  • the open / close control unit 25 ⁇ / b> A is configured to open the relay unit 23 when the open / close signal S ⁇ b> 1 output from the DC breaker 100 is an open signal indicating the open state of the DC breaker 100.
  • the DC power supply device 200 is provided on the output side of an AC / DC converter 210 that converts an AC voltage supplied from the AC system 300 into a DC voltage, and a battery that stabilizes high-voltage DC. 220.
  • the battery 220 stabilizes the DC voltage and functions as a backup power source when the AC system 300 is not supplied due to a power failure or the like.
  • FIG. 2 is a circuit diagram showing a schematic configuration of the refrigerant circuit system 30 according to Embodiment 1 of the present invention.
  • the refrigerant circuit system 30 includes an indoor unit 40 and an outdoor unit 60.
  • the indoor unit 40 and the outdoor unit 60 are connected by the refrigerant pipe 10 and the refrigerant pipe 11.
  • the expansion valve 4, the use-side heat exchanger 5, and the compressor 1 having the compressor motor M1 are connected in series and mounted.
  • the indoor unit 40 is mounted with the indoor electromagnetic valve 6 connected in parallel with the compressor 1, and the pressure switch 7 is mounted on the discharge side of the compressor 1. Furthermore, the blower 2 having the fan motor M2 is mounted on the indoor unit 40.
  • the indoor unit 40 has an indoor control device 50.
  • the expansion valve 4 functions as a decompression device that decompresses and expands the refrigerant, and may be constituted by an electronic expansion valve whose opening degree can be variably controlled.
  • the use side heat exchanger 5 functions as an evaporator during cooling operation and as a condenser during heating.
  • a blower 2 composed of a centrifugal fan or a multiblade fan for supplying air is attached.
  • the blower 2 is configured of a type in which the number of rotations is controlled by an inverter and the air volume is controlled, for example. That is, the use side heat exchanger 5 performs heat exchange between the air supplied from the blower 2 and the refrigerant, and evaporates or condenses the refrigerant.
  • Compressor 1 sucks refrigerant from refrigerant piping and compresses the drawn refrigerant to a high temperature / high pressure state.
  • the compressor 1 is configured such that the capacity is controlled by controlling the rotational speed of the compressor motor M1 by, for example, an inverter. Further, the compressor 1 is provided with a belt heater 1a for preventing the refrigerant from sleeping.
  • the indoor electromagnetic valve 6 allows passage of a part of the refrigerant discharged from the compressor 1 by being controlled to open and close.
  • the pressure switch 7 functions as a protection device and detects that the pressure of the refrigerant sealed in the refrigerant circuit 31 described later has reached a predetermined pressure.
  • the indoor control device 50 has an arithmetic device 51 having a general-purpose CPU, data bus, input / output port, nonvolatile memory, timer, and the like.
  • the indoor control device 50 determines the drive frequency of the compressor 1, the rotational speed of the blower 2, the opening degree of the expansion valve 4, the indoor electromagnetic valve 6, based on operation information (indoor air temperature, set temperature, refrigerant pipe temperature, refrigerant pressure, etc.). Predetermined control is performed with respect to the opening and closing of the.
  • the indoor control device 50 is connected to an outdoor control device 70 (described later) via a transmission line (not shown), and can transmit and receive various information to and from the outdoor control device 70.
  • the heat source side heat exchanger 8 is mounted on the outdoor unit 60.
  • FIG. 2 shows an example in which two heat source side heat exchangers 8 are connected and mounted in parallel.
  • an outdoor electromagnetic valve 9 connected in series with one heat source side heat exchanger 8 is mounted.
  • the outdoor unit 60 is equipped with a blower 3 having a fan motor M3. Further, the outdoor unit 60 has an outdoor control device 70.
  • the heat source side heat exchanger 8 functions as a condenser during cooling operation and as an evaporator during heating operation.
  • a blower 3 composed of a centrifugal fan or a multiblade fan for supplying air is attached.
  • the blower 3 is configured such that the air volume is controlled by controlling the rotational speed of the fan motor M3 by an inverter, for example. That is, the heat source side heat exchanger 8 performs heat exchange between the air supplied from the blower 3 and the refrigerant, and evaporates or condenses the refrigerant.
  • the outdoor electromagnetic valve 9 allows the passage of a part of the refrigerant to one heat source side heat exchanger 8 by being controlled to open and close.
  • the outdoor control device 70 has an arithmetic device 71 equipped with a general-purpose CPU, data bus, input / output port, nonvolatile memory, timer, and the like.
  • the outdoor control device 70 performs predetermined control on the rotational speed of the blower 3, opening / closing of the outdoor electromagnetic valve 9, and the like based on operation information (indoor air temperature, set temperature, refrigerant pipe temperature, refrigerant pressure, etc.) from the indoor unit 40. Do.
  • the outdoor control device 70 is connected to the indoor control device 50 via a transmission line (not shown), and can transmit and receive various types of information to and from the indoor control device 50.
  • the compressor 1, the heat source side heat exchanger 8, the expansion valve 4, and the use side heat exchanger 5 are sequentially connected by the refrigerant pipes 10 and 11 to constitute a refrigeration cycle. That is, the refrigerant circuit system 30 has a refrigerant circuit 31 configured by a refrigeration cycle including the compressor 1, the heat source side heat exchanger 8, the expansion valve 4, and the use side heat exchanger 5.
  • the refrigeration cycle apparatus 20A includes a refrigerant circuit in which the compressor 1 having the compressor motor M1, the use side heat exchanger 5, the expansion valve 4, and the heat source side heat exchanger 8 are sequentially connected by the refrigerant pipe. 31 and a blower 2 that is provided in the use side heat exchanger 5 and driven by rotation of the fan motor M2, and a blower 3 that is provided in the heat source side heat exchanger 8 and driven by rotation of the fan motor M3. ing.
  • the motor M shown in FIG. 1 indicates at least one of the compressor motor M1, the fan motor M2, and the fan motor M3. That is, the DC / AC converter 21 converts the DC voltage supplied from the DC power supply device 200 through at least one of the relay unit 23 and the resistor unit 24 into an AC voltage, and the compressor motor M1 and the fan It supplies to at least one of the motor M2 and the fan motor M3. Note that the refrigeration cycle apparatus 20A may not have any one of the fan motor M2 and the fan motor M3.
  • FIG. 3 is a time chart showing the open / closed state of the relay unit 23 in the refrigeration cycle apparatus 20A.
  • the relay unit 23 is released from the closed state at the same time as the DC breaker 100 outputs an open signal, and is in an open state.
  • the DC breaker 100 is open at time tx.
  • the DC breaker 100 transmits an open signal as the open / close signal S1 to the open / close control unit 25A at the time tx when the DC breaker 100 is in the open state.
  • the open / close control unit 25A receives an open signal from the DC circuit breaker 100, the open / close control unit 25A opens the relay unit 23.
  • the open / close control unit 25A opens the relay unit 23 when the voltage of the smoothing capacitor 22 becomes substantially equal to the voltage of the battery 220. That is, the open / close control unit 25A opens the relay unit 23 when the voltage of the smoothing capacitor 22 reaches the switching reference voltage Vs set based on the voltage of the battery 220.
  • the stable period ST from when the DC breaker 100 is turned on again until the relay unit 23 is closed again is a short period until the smoothing capacitor 22 is charged again.
  • the stable period ST since the input current io input from the DC power supply device 200 passes through the resistance unit 24, power is also consumed in the resistance unit 24.
  • the open / close control unit 25A adopts a configuration in which the relay unit 23 is opened. Therefore, according to the refrigeration cycle apparatus 20A, even if the DC breaker 100 once opened is closed again, the input current io input from the DC power supply apparatus 200 passes through the resistance unit 24. As shown in the inrush suppression current IS1 within the stable period ST in FIG. 3, the inrush current can be prevented from flowing into the inside.
  • the refrigerant circuit system 30 in FIG. 2 is merely an example of a system having a refrigeration cycle. That is, the refrigerant circuit system 30 of the refrigeration cycle apparatus 20A is not limited to the configuration in FIG. 2, and each component device mounted in each of the outdoor unit (heat source unit) and the indoor unit (load side unit). The number may be appropriately changed according to the use of the refrigeration cycle apparatus 20A. There are no restrictions on the number of outdoor units (heat source units) and indoor units (load side units), and the refrigerant circuit system 30 may include any number of outdoor units and indoor units as appropriate.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the electrical system of the refrigeration cycle apparatus 20B according to the second embodiment.
  • FIG. 5 is a time chart showing the open / close state of the relay unit 23 in the refrigeration cycle apparatus 20B.
  • the DC circuit breaker 100 has a function of transmitting an open / close signal S1 indicating its own open / close state to the outside, as in the first embodiment described above, but in the second embodiment, the open / close signal S1 is a direct current.
  • the configuration is such that transmission is performed to the AC / DC converter 210 of the power supply apparatus 200.
  • description is abbreviate
  • the open / close control unit 25B provided in the refrigeration cycle apparatus 20B is based on an open / close signal S1 indicating the open / closed state of the DC circuit breaker 100 output from the DC circuit breaker 100 and input via the DC power supply device 200. It is comprised so that the opening-and-closing state of 23 may be controlled. Note that the open / close signal from the DC breaker 100 and the open / close signal from the DC power supply device 200 are the same type of signal, and therefore, the same reference numeral “S1” is used for convenience.
  • the open / close signal S1 from the DC breaker 100 is temporarily input to the AC / DC converter 210 installed on the upstream side.
  • the AC / DC converter 210 uses the open / close signal S1 from the DC breaker 100 as a parameter for state monitoring.
  • the AC / DC converter 210 is configured to output an open / close signal S1 to the open / close control unit 25B of the refrigeration cycle apparatus 20B simultaneously with the input from the DC breaker 100. That is, the open signal as the open / close signal S ⁇ b> 1 is output from the DC breaker 100 via the DC power supply device 200.
  • the open / close control unit 25B if the open / close signal S1 from the DC breaker 100 is an open signal indicating the open state of the DC breaker 100, the open / close signal S1 from the DC power supply device 200 that is simultaneously output is also an open signal. stand up. That is, when the open / close control unit 25B receives an open signal indicating the open state of the DC breaker 100 as the open / close signal S1 output from the DC breaker 100 via the DC power supply device 200, the relay unit 23 is closed. Is set to the open state.
  • the voltage of the smoothing capacitor 22 decreases as in the example of FIG. After that, when the DC circuit breaker 100 is closed again at time ty, the input current io input from the DC power supply device 200 flows into the smoothing capacitor 22 via the resistance unit 24, and the smoothing capacitor 22 is charged. . At this time, the current for charging the smoothing capacitor 22 is added to the steady state current SC. However, as shown in the inrush suppression current IS2 within the stable period ST in FIG. 5, an excessive inrush current flows. Absent. When the voltage of the smoothing capacitor 22 gradually recovers and reaches the switching reference voltage Vs, the open / close control unit 25B closes the relay unit 23, and the refrigeration cycle apparatus 20B returns to the steady state.
  • the open / close control unit 25B opens the relay unit 23. . That is, according to the refrigeration cycle apparatus 20B, the input current io input from the DC power supply apparatus 200 passes through the resistance unit 24 even when the DC breaker 100 once opened is closed again. Inrush current can be prevented.
  • FIG. 6 is a circuit diagram showing a schematic configuration of the electrical system of the refrigeration cycle apparatus 20C according to the third embodiment.
  • FIG. 7 is a time chart showing the relationship between the voltage of the smoothing capacitor 22 and the output voltage of the battery 220 in the refrigeration cycle apparatus 20C.
  • the structural member equivalent to Embodiment 1 and 2 mentioned above description is abbreviate
  • the refrigeration cycle apparatus 20C When the voltage difference Ve between the output voltage Vb of the battery 220 (DC voltage input from the DC power supply apparatus 200) and the voltage Vh of the smoothing capacitor 22 exceeds a preset threshold voltage Ver, the refrigeration cycle apparatus 20C There is an open / close control unit 25C for opening the unit 23. Further, the refrigeration cycle apparatus 20C includes an open / close determination unit 81 that determines whether or not the DC breaker 100 is in an open state.
  • the open / close determination unit 81 compares the output voltage Vb of the battery 220 with the voltage Vh of the smoothing capacitor 22, and determines whether or not the DC circuit breaker 100 has been opened based on the comparison result. As shown in FIG. 6, the open / close determination unit 81 subtracts the voltage Vh of the smoothing capacitor 22 from the output voltage Vb of the battery 220 to calculate the voltage difference Ve, and the voltage difference calculated in the subtractor 81a. A determination comparator 81b that compares Ve and the threshold voltage Ver and outputs the comparison result to the open / close control unit 25C as an open / close signal SS indicating the open / close state of the DC circuit breaker 100.
  • the determination comparator 81b determines that the DC breaker 100 is in an open state when the voltage difference Ve calculated in the subtractor 81a exceeds the threshold voltage Ver, and the DC breaker 100 is in an open state as the open / close signal SS. It is configured to output an open signal H indicative of
  • the voltage difference Ve which is the difference between the output voltage Vb of the battery 220 and the voltage Vh of the smoothing capacitor 22. Begins to occur. And even if the direct current circuit breaker 100 becomes an open state, if the driving
  • the determination comparator 81b determines that the DC circuit breaker 100 has been opened, and the open / close signal SS
  • the open signal H is output to the open / close control unit 25C.
  • the open / close control unit 25C is configured to open the relay unit 23 in accordance with the open signal H output from the determination comparator 81b.
  • the open / close determination unit 81 and the open / close control unit 25C will be described with reference to FIG.
  • the determination comparator 81b outputs an open signal H as the open / close signal SS to the open / close control unit 25C at time txa when the voltage difference Ve calculated by the subtractor 81a reaches the threshold voltage Ver.
  • the open / close control unit 25C receives the open signal H output from the determination comparator 81b, the open / close control unit 25C opens the relay unit 23. Therefore, after that, even if the DC breaker 100 is closed again, the smoothing capacitor 22 is charged by the current flowing from the DC power supply device 200 through the resistance unit 24, and therefore is excessive in the refrigeration cycle device 20C. Inrush current does not flow.
  • the refrigeration cycle apparatus 20C detects that the DC breaker 100 has been opened from the transition of the voltage Vh of the smoothing capacitor 22 that decreases when the DC breaker 100 is opened.
  • the structure which makes the part 23 an open state is taken. That is, according to the refrigeration cycle apparatus 20C, even if the DC breaker 100 that has been opened once is closed again, the input current io input from the DC power supply apparatus 200 passes through the resistance unit 24. The inrush current can be prevented from flowing into the inside.
  • the transition of the voltage Vh of the smoothing capacitor 22 as seen from the output voltage Vb of the battery 220 is based on the output voltage Vb of the battery 220 that is unchanged even when the DC circuit breaker 100 is opened.
  • the open / close control unit 25C may be configured to open the relay unit 23 when the voltage Vh of the smoothing capacitor 22 falls below a preset reference voltage Vc (see FIG. 7).
  • FIG. 8 is a circuit diagram showing a schematic configuration of the electrical system of the refrigeration cycle apparatus 20D according to the fourth embodiment.
  • FIG. 9 is a time chart showing the transition of the detection result by the current sensor 90 provided in the refrigeration cycle apparatus 20D. Constituent members equivalent to those in the first to third embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the refrigeration cycle apparatus 20D has an open / close control section 25D that opens the relay section 23 when the input current io input from the DC power supply apparatus 200 falls below a preset reference current iero.
  • the refrigeration cycle apparatus 20D detects an input current io (input current of the smoothing capacitor 22) input from the DC power supply apparatus 200, and outputs a current signal i1 that is a result of the detection, and a current sensor 90 And an open / close determination unit 82 for determining whether or not the DC breaker 100 is in an open state based on the magnitude of the current signal i1 output from.
  • the open / close determination unit 82 compares the current signal i1 output from the current sensor 90 with the reference current iero, and outputs the comparison result to the open / close control unit 25D as an open / close signal SS indicating the open / close state of the DC breaker 100.
  • a determination comparator (determination comparator latch circuit) 82b is included.
  • the determination comparator 82b determines that the DC circuit breaker 100 is open.
  • a configuration is adopted in which determination is made and an open signal H as the open / close signal SS is output to the open / close control unit 25D.
  • the open / close control unit 25D is configured to open the relay unit 23 in response to the open signal H output from the determination comparator 82b.
  • the open / close determination unit 82 and the open / close control unit 25D will be described with reference to FIG.
  • the current signal i1 starts to decrease and approaches the reference current iero.
  • the determination comparator 82b determines that the DC circuit breaker 100 is in an open state at time txb when the current signal i1 output from the current sensor 90 reaches the reference current iero, and outputs an open signal H as the open / close signal SS. Output to 25D.
  • the open / close control unit 25D inputs the open signal H output from the determination comparator 82b, and opens the relay unit 23. Therefore, after that, even if the DC circuit breaker 100 is closed again, the smoothing capacitor 22 is charged by the current flowing from the DC power supply device 200 through the resistance unit 24 and excessively enters the refrigeration cycle device 20D. No current flows.
  • the open / close control unit 25D operates as a relay unit. 23 is closed, and the refrigeration cycle apparatus 20D returns to the steady state.
  • the current signal i1 from the current sensor 90 may be lower than the reference current iero.
  • the open / close control unit 25D opens the relay unit 23, so that a current is supplied to the load side through the resistor unit 24. There is a possibility to continue.
  • the power consumption of the resistance unit 24 (iero ⁇ iero ⁇ resistance value of the resistance unit 24) does not exceed the allowable power of the resistance unit 24 (“resistance”
  • the power consumption of the section 24 should be designed so that the power consumption of the section 24 ⁇ the allowable power of the resistance section 24).
  • the DC breaker 100 is in the open state based on the transition of the input current io input from the DC power supply device 200 after the DC breaker 100 is in the open state.
  • the relay unit 23 is opened when it is detected. That is, according to the refrigeration cycle apparatus 20D, even if the DC breaker 100 that has been once opened is closed again, the current flowing from the DC power supply apparatus 200 passes through the resistance unit 24. Inflow of inrush current can be prevented.
  • FIG. 10 is a circuit diagram showing a schematic configuration of the electrical system of the refrigeration cycle apparatus 20E according to the fifth embodiment.
  • FIG. 11 is a time chart showing transition of detection results by the first current sensor 91 and the second current sensor 92 provided in the refrigeration cycle apparatus 20E. Constituent members equivalent to those in Embodiments 1 to 4 described above are denoted by the same reference numerals and description thereof is omitted.
  • the refrigeration cycle apparatus 20E subtracts the input current io (inflow current of the smoothing capacitor 22) input from the DC power supply apparatus 200 from the current (outflow current of the smoothing capacitor 22) input to the DC / AC converter 21.
  • the relay unit 23 has an open / close control unit 25E that opens.
  • the refrigeration cycle apparatus 20E detects the input current io input from the DC power supply apparatus 200, and outputs the current signal i1 that is the detection result, and the DC / AC converter 21 inputs the current signal i1. Whether or not the DC breaker 100 is in an open state based on the magnitude relationship between the second current sensor 92 that detects the current detected and outputs the current signal i02 that is the detection result, and the current signal i1 and the current signal i02.
  • An open / close determination unit 83 for determining whether or not.
  • the open / close determination unit 83 smoothes the current signal i02 input from the second current sensor 92 and outputs the current signal i2, and the current signal i2 smoothed by the current smoothing circuit 83c is used as the first current.
  • the subtracter 83a that calculates the difference current ie by subtracting the current signal i1 output from the sensor 91 is compared with the difference current ie calculated by the subtractor 83a and the threshold current ier, and the result of the comparison is determined as a DC cutoff.
  • a determination comparator 83b that outputs an open / close signal SS indicating the open / close state of the machine 100 to the open / close control unit 25E.
  • the current flowing on the input side of the DC / AC converter 21 has a rectangular wave shape. That is, the current smoothing circuit 83c is provided to smooth the current signal i02 having, for example, a rectangular wave shape and generate the current signal i2.
  • the determination comparator 83b determines that the DC circuit breaker 100 has been opened when the differential current ie calculated by the subtractor 83a exceeds the threshold current ier, and the open / close signal SS Is configured to output an open signal H indicating that the DC breaker 100 has been opened to the open / close control unit 25E.
  • the determination comparator 83b determines that the DC breaker 100 is in an open state, and opens and closes the open signal H as the open / close signal SS.
  • a configuration of outputting to the control unit 25E is adopted.
  • the open / close control unit 25E is configured to open the relay unit 23 in accordance with the open signal H output from the determination comparator 83b. That is, the open / close control unit 25E uses the difference between the detection value by the first current sensor 91 and the detection value by the second current sensor 92 as the differential current ie.
  • the open / close control unit 25E operates as a relay unit. 23 is closed, and the refrigeration cycle apparatus 20E returns to the steady state.
  • the refrigeration cycle apparatus 20E in the present fifth embodiment is configured to grasp the transition of the input current io input from the DC power supply apparatus 200 by comparing the inflow current and outflow current of the smoothing capacitor 22. .
  • the refrigeration cycle apparatus 20E detects that the DC breaker 100 is in an open state based on the transition of the input current io input from the DC power supply apparatus 200, and opens the relay unit 23. The structure is adopted. Therefore, according to the refrigeration cycle apparatus 20E, even if the DC breaker 100 once opened is closed again, the input current io input from the DC power supply apparatus 200 passes through the resistance unit 24. The inrush current can be prevented from flowing into the inside.
  • the open / close determination unit 83 may adopt a configuration in which the current smoothing circuit 83c is provided downstream of the subtractor 83a. That is, the subtractor 83a subtracts the current signal i1 output from the first current sensor 91 from the current signal i02 output from the second current sensor 92 to calculate a differential current, and the current smoothing circuit 83c The difference current ie may be calculated by smoothing the difference current calculated in 83a.
  • the open / close control unit 25E receives the current signal i1 from the first current sensor 91, and also receives the current signal i2 from the second current sensor 92 via the current smoothing circuit 83c, and receives the current signal i1 from the current signal i2.
  • the difference current ie may be calculated by subtraction, and the calculated difference current ie may be compared with the threshold current ier to determine whether or not the DC breaker 100 has been opened.
  • FIG. 12 is a circuit diagram showing a schematic configuration of the electrical system of the refrigeration cycle apparatus 20F according to the sixth embodiment.
  • FIG. 13 is a time chart showing the transition of the detection result by the difference detection sensor 93 provided in the refrigeration cycle apparatus 20F. Constituent members equivalent to those in the first to fifth embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the difference current iem corresponding to the difference obtained by subtracting the input current io input from the DC power supply apparatus 200 from the current input to the DC / AC converter 21 is set to a preset threshold current ier. If it exceeds, it has the opening / closing control part 25F which makes the relay part 23 an open state.
  • the refrigeration cycle apparatus 20F outputs a difference current ie0, which is a difference between a current flowing through the input wiring 22m and a current flowing through the output wiring 22n, and outputs the difference current ie0 to the outside, and is output from the difference detection sensor 93.
  • the difference smoothing circuit 84c for smoothing the difference current ie0 and outputting the difference current iem is compared with the difference current iem output from the difference smoothing circuit 84c and the threshold current ier.
  • a determination comparator 84b that outputs the open / close signal SS indicating the open / closed state to the open / close control unit 25F.
  • the difference detection sensor 93 is composed of, for example, a through-type current sensor. Inside the difference detection sensor 93, an input wiring 22m and an output wiring 22n of the smoothing capacitor 22 are penetrated so as to cancel each other's generated magnetic flux. . Specifically, the input wiring 22m and the output wiring 22n are penetrated by a Hall sensor, a CT (Current Transformer), or the like inside the difference detection sensor 93. That is, the difference detection sensor 93 detects the difference current ie0 by sensing the magnitude of the magnetic flux generated by the input wiring 22m and the output wiring 22n penetrating the inside.
  • the differential current ie0 output from the difference detection sensor 93 also has a rectangular wave shape. That is, the difference smoothing circuit 84 c is provided to smooth the rectangular wave component that appears in the difference current ie0 from the difference detection sensor 93.
  • the determination comparator 84b determines that the DC breaker 100 is in the open state when the differential current iem output from the differential smoothing circuit 84c exceeds the threshold current ier, and the open / close signal As an SS, an open signal H indicating that the DC breaker 100 is in an open state is output to the open / close control unit 25F.
  • the differential current that is the output of the differential smoothing circuit 84c. iem is a finite value. Therefore, in the sixth embodiment, when the differential current iem exceeds the threshold current ier, the determination comparator 84b determines that the DC breaker 100 is in an open state, and opens and closes the open signal H as the open / close signal SS. The configuration of outputting to the control unit 25F is adopted. Further, the open / close control unit 25F is configured to open the relay unit 23 in accordance with the open signal H output from the determination comparator 84b.
  • the open / close control unit 25F is switched to the relay unit. 23 is closed, and the refrigeration cycle apparatus 20F returns to a steady state.
  • the refrigeration cycle apparatus 20F since the refrigeration cycle apparatus 20F according to the sixth embodiment includes the difference detection sensor 93 that is penetrated so that the respective currents of the smoothing capacitor input wiring 22m and the output wiring 22n flow in opposite directions, the DC can be obtained by one sensor. The difference between the current input to the / AC converter 21 and the input current io input from the DC power supply device 200 can be detected. And the refrigerating cycle apparatus 20F has taken the structure which detects that the DC circuit breaker 100 will be in an open state from the said difference, and makes the relay part 23 an open state. Therefore, according to the refrigeration cycle apparatus 20F, even if the DC breaker 100 once opened is closed again, the input current io input from the DC power supply apparatus 200 passes through the resistance unit 24. The inrush current can be prevented from flowing into the inside.
  • FIG. 14 is a circuit diagram showing a schematic configuration of the electrical system of the refrigeration cycle apparatus 20G according to the seventh embodiment.
  • FIG. 15 is a time chart showing the transition of the detection result by the current sensor 94 provided on the output side of the smoothing capacitor 22 in the refrigeration cycle apparatus 20G. Constituent members equivalent to those in the first to sixth embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the refrigeration cycle apparatus 20G includes an open / close control unit 25G that opens the relay unit 23 when the output current icdcm from the smoothing capacitor 22 exceeds a preset smoothing reference current icdr.
  • the DC breaker 100 is opened based on the current sensor 94 that detects and outputs the output current icd0 from the smoothing capacitor 22 and the magnitude of the output current icd0 from the current sensor 94.
  • An open / close determination unit 85 that determines whether or not
  • the open / close determination unit 85 smoothes the output current icd0 from the current sensor 94, extracts and outputs the output current icdcm that is a direct current component, the output current icdcm from the current smoothing circuit 85c, and the smoothed reference current a determination comparator 85b that compares icdr and outputs the comparison result to the open / close control unit 25G as an open / close signal SS indicating the open / close state of the DC breaker 100.
  • the determination comparator 85b determines that the DC breaker 100 is in an open state, and opens and closes.
  • the configuration is such that the open signal H as the signal SS is output to the open / close control unit 25G.
  • the open / close control unit 25G is configured to open the relay unit 23 in response to the open signal H output from the determination comparator 85b.
  • the open / close determination unit 85 and the open / close control unit 25G will be described with reference to FIG.
  • the determination comparator 85b determines that the DC circuit breaker 100 is in an open state at time txe when the output current icdcm from the current smoothing circuit 85c reaches the smoothing reference current icdr, and an open signal H as the open / close signal SS is determined as the open / close control unit.
  • Output to 25G When the open / close control unit 25G receives the open signal H output from the determination comparator 85b, the open / close control unit 25G opens the relay unit 23.
  • the open / close control unit 25G is switched to the relay unit. 23 is closed, and the refrigeration cycle apparatus 20G returns to the steady state.
  • the refrigeration cycle apparatus 20G detects that the DC breaker 100 has been opened based on the magnitude of the DC current flowing out from the smoothing capacitor 22, and opens the relay unit 23. It is configured to be in a state. That is, according to the refrigeration cycle apparatus 20G, even if the DC circuit breaker 100 once opened is closed again, the current flowing from the DC power supply apparatus 200 passes through the resistance unit 24, so Inflow of inrush current can be prevented.
  • the refrigeration cycle apparatuses 20A to 20G include the relay unit 23 connected to the DC power supply device 200 via the DC circuit breaker 100 and the resistance connected in parallel to the relay unit 23.
  • the open / close control units 25A to 25G have a configuration in which the relay unit is opened when the DC circuit breaker 100 is opened. Therefore, when the DC circuit breaker 100 is switched from the open state to the closed state again, the current flowing from the DC power supply device 200 flows into the smoothing capacitor 22 through the resistance unit 24, so that the DC circuit breaker is released from the open state. It is possible to prevent an excessive current from flowing when the closed state is reached. Therefore, according to the refrigeration cycle apparatuses 20A to 20G, it is possible to prevent damage to various components arranged in the path or the like from the battery 220 to the smoothing capacitor 22.
  • each embodiment mentioned above is a suitable specific example in a refrigerating-cycle apparatus, and the technical scope of this invention is not limited to these aspects.
  • the main circuit of the refrigeration cycle apparatuses 20A to 20G drives the motor M as at least one of the compressor motor M1, the fan motor M2, and the fan motor M3. It is illustrated (see FIG. 2).
  • the motor M instead of the motor M, another load that supplies a voltage from the DC bus through the smoothing capacitor 22 may be mounted and driven by the DC / AC converter 21. In such a configuration, The same effects as those in the above embodiments can be obtained. Further, FIGS.
  • the open / close determination units 81 to 85 are provided in the refrigeration cycle apparatuses 20C to 20G.
  • the present invention is not limited to this.
  • the open / close determination units 81 to 85 may be provided outside the refrigeration cycle apparatuses 20C to 20G, and the refrigeration cycle system may be configured by a combination of the refrigeration cycle apparatuses 20C to 20G and the open / close determination units 81 to 85.
  • the same configuration as the determination comparators 81b to 85b may be provided in the open / close control units 25C to 25G, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 圧縮機モータを有する圧縮機、利用側熱交換器、減圧装置、及び熱源側熱交換器が冷媒配管によって順次接続されてなる冷媒回路と、利用側熱交換器及び熱源側熱交換器のうちの少なくとも一つに併設され、ファンモータを有する送風機と、直流遮断機を介して直流給電装置に接続されたリレー部と、リレー部に並列接続された抵抗部と、直流給電装置からリレー部又は抵抗部を介して供給される直流電圧を交流電圧に変換して、圧縮機モータ及びファンモータのうちの少なくとも一つに供給するDC/AC変換器と、直流遮断機が開状態となったときに、リレー部を開の状態にする開閉制御部と、を有する冷凍サイクル装置によって、直流遮断機が開状態から閉状態になった際の突入電流を抑制する。

Description

冷凍サイクル装置
 本発明は、直流給電を受けて動作する冷凍サイクル装置に関する。
 従来、空気調和機などの冷凍サイクル装置は、商用電源又は発電機などから三相交流電源が供給されて動作するようになっている(例えば、特許文献1参照)。また、一般に、冷凍サイクル装置を構成する電気部品(例えば、圧縮機のモータ、送風機のモータ、あるいは電磁弁など)は、三相AC200V、単相AC200V、DC12Vなどを一次電源として動作する。このため、冷凍サイクル装置においては、一次電源としての三相AC200Vから各電気部品用の電圧を生成して冷媒回路系統に供給している。
 また、特許文献1に記載されている冷凍サイクル装置には、圧縮機及び送風機等のモータを駆動するために、大容量のインバータ装置(例えば、特許文献2参照)が用いられている。特許文献2のようなインバータ装置では、三相又は二相の交流を整流してインバータ駆動用の直流母線電圧を生成する方式が一般に用いられている。
 また一方で、大容量のICT(Information and Communication Technology)装置を備えるデータセンター等では、給電系を交流から高電圧の直流に置き換えることで大幅なシステムの効率化を図る動きがある(例えば、非特許文献1参照)。このような構成の場合、供給される高電圧の直流電圧を、冷凍サイクル装置に用いられるインバータ装置の駆動用として、そのまま利用することができる。これにより、冷凍サイクル装置の構成の簡略化および冷凍サイクル装置の高効率化を図り得る。
 ここで、AC入力式の冷凍サイクル装置(以下、交流冷凍サイクル装置1000と称する)の電気回路の代表的な構成について説明する。図16は、交流冷凍サイクル装置1000の電気系統の概略構成を示す回路図である。交流冷凍サイクル装置1000は、圧縮機モータ1030、DC/AC変換器1021、平滑コンデンサ1022、リレー部1023、抵抗回路1024、三相全波整流回路1007、及びゼロクロスセンサ1014を備えている。
 圧縮機モータ1030は、図示省略の圧縮機を駆動するものである。
 DC/AC変換器1021は、圧縮機モータ1030を駆動するものである。
 平滑コンデンサ1022は、DC/AC変換器1021に供給される電流を平滑化するものである。
 リレー部1023及び抵抗回路1024は、AC遮断機1100から電源が投入された際に、AC系統から平滑コンデンサ1022に流れ込む突入電流を抑制するためのものである。
 三相全波整流回路1007は、交流電流を直流電流に整流するものである。
 ゼロクロスセンサ1014は、交流電圧の存在を検知するものである。
 次いで、交流冷凍サイクル装置1000の動作について説明する。
 交流冷凍サイクル装置1000には、交流系統1300から供給される電圧が、系統インピーダンス1011及びAC遮断機1100を通して取り込まれる。交流冷凍サイクル装置1000に取り込まれた系統電圧は、三相全波整流回路1007にて交流から直流に変換される。
 三相全波整流回路1007で直流化された電圧は、リレー部1023および抵抗回路1024を通して平滑コンデンサ1022に供給される。そして、平滑コンデンサ1022で平滑化された直流母線電圧が、DC/AC変換器1021に入力される。こうして、交流冷凍サイクル装置1000は、圧縮機モータ1030を駆動する。
 交流冷凍サイクル装置1000は、AC遮断機1100から電源が投入されるときには、リレー部1023を開状態とし、系統から突入防止抵抗を通して低電流で平滑コンデンサ1022をゆっくりと充電する。そして、交流冷凍サイクル装置1000は、平滑コンデンサ1022に十分な直流電圧が充電された後、リレー部1023を閉とし、DC/AC変換器1021による圧縮機モータ1030の駆動が開始される。
 一般的な交流冷凍サイクル装置1000では、運転中何らかの原因でAC遮断機1100が開状態となった後、再投入時に過大な突入電流が流れるのを防止するため、AC遮断機1100の開状態を判定する遮断機開状態判定機能を設け、開状態であると判定した際にリレー部1023を開の状態とするように構成されている。
 遮断機開状態判定機能としては、交流冷凍サイクル装置1000に入力される交流電圧の存在をゼロクロスセンサ1014で把握し、交流電圧にゼロを横切るポイントがない場合には交流が存在しない、すなわちAC遮断機1100が開状態であると判定するというものがある。
 交流冷凍サイクル装置1000の場合は、ゼロクロスセンサ1014を用いた遮断機開状態判定機能を用いることにより、AC遮断機1100が一度開状態となったことに応じて、AC遮断機1100が開状態であると判定した際に、リレー部1023を開の状態としておくことができる。このため、その後AC遮断機1100が閉状態となった場合に、突入電流の流入を抑制することができる。
 また、交流冷凍サイクル装置1000では、交流系統1300にて瞬時電圧低下が起き、その後電圧が復帰した場合にも平滑コンデンサ1022への大きな充電電流が流れるが、系統インピーダンス1011により電流が幾分か抑制されるようになっている。このため、平滑コンデンサ1022などの設計を工夫することにより、大きな充電電流による交流冷凍サイクル装置1000への影響を回避することができる。
 次に、DC入力式の冷凍サイクル装置(以下、直流冷凍サイクル装置2000と称する)における電気回路の代表的な構成について説明する。図17は、直流冷凍サイクル装置2000の電気系統の概略構成を示す回路図である。直流冷凍サイクル装置2000は、圧縮機モータ2030、DC/AC変換器2021、平滑コンデンサ2022、リレー部2023、抵抗回路2024を備えている。これらは、交流冷凍サイクル装置1000に備えられた圧縮機モータ1030、DC/AC変換器1021、平滑コンデンサ1022、リレー部1023、抵抗回路1024と同様に機能する。
 直流冷凍サイクル装置2000には、交流系統2300の電圧を直流に変換するAC/DC変換器2210及び直流を開閉する直流遮断機2100を介して、直流電圧が供給される。なお、AC/DC変換器2210の出力側には、バッテリー2220が設置されている。バッテリー2220は、高圧の直流を安定化するために設置されている。
 次いで、直流冷凍サイクル装置2000の動作について説明する。
 直流冷凍サイクル装置2000には、交流系統2300から供給される電圧が、AC/DC変換器2210で高圧の直流(AC400V系統の場合は、約380VDC)に変換され、その後直流遮断機2100を通して取り込まれる。直流冷凍サイクル装置2000に取り込まれた直流電圧は、リレー部2023及び抵抗回路2024を通過し、さらに平滑コンデンサ2022に供給される。そして、平滑コンデンサ2022で平滑化された直流電圧が、DC/AC変換器2021に入力される。こうして、直流冷凍サイクル装置2000は、圧縮機モータ2030を駆動する。
 また、上記のような構成とすることで、データセンター向けの空調システムに適用した場合においても、非特許文献1に示されているように、無停電電源装置側のDC/AC変換器1台分と負荷側のAC/DC変換器1台分が不要となり、電力損失を低減することができる。
 なお、バッテリー2220は、直流電圧の安定化を図るだけでなく、交流系統2300が停電等で供給されなくなった場合のバックアップとして機能する。しかしながら、バッテリー2220の出力電圧は、充電状態(残量)によって変化し、一般に、最大出力電圧に対して最低出力電圧が約70%程度まで低下してしまう。具体的には、交流系統2300がAC400V系統の場合には、高圧直流電圧は380V程度に設定されるが、その際のバッテリー2220の最低出力電圧は270V程度となる。
 図17に示す直流冷凍サイクル装置2000において、リレー部2023は、直流遮断機2100の投入時に、AC/DC変換器2210もしくはバッテリー2220から平滑コンデンサ2022に流れ込む突入電流を抑えるように動作する。具体的には、平滑コンデンサ2022の電圧が所定の値以下の場合には、リレー部2023は開状態であり、平滑コンデンサ2022への初期充電は、抵抗回路2024を通してゆっくりと行われる。そして、平滑コンデンサ2022の電圧が所定の値となったときに、リレー部2023を閉の状態とすることで、以降は、圧縮機を運転するために流れる電流が、リレー部2023をバイパスして流れるため、損失の発生を抑制することができる。なお、図16に示す交流冷凍サイクル装置1000におけるAC遮断機1100の投入時の動作も同様である。
 直流冷凍サイクル装置2000の運転状態においても、何らかの原因で直流遮断機2100が開状態となった場合、再投入時に過大な突入電流が流れるのを防止するために、直流遮断機2100の開状態を判定する遮断機開状態判定機能が必要となる。
 直流冷凍サイクル装置2000における遮断機開状態判定機能としては、平滑コンデンサ2022の電圧が不足電圧判定閾値Th以下となった場合に、直流遮断機2100が開状態になったと判定するというものがある。不足電圧判定閾値Thは、許容直流電圧の下限値より小さい値に設定され、例えば、上記説明における直流電圧の範囲が380Vから270Vまでの場合に、不足電圧判定閾値Thは、270V未満に設定される。直流遮断機2100が開状態となれば、平滑コンデンサ2022から負荷への供給電力が継続することで、平滑コンデンサ2022の電圧が低下し、一定時間の経過後に、直流遮断機2100が開状態であると判定することになる。直流冷凍サイクル装置2000において、直流遮断機2100が開状態であるとの判定がなされれば、交流冷凍サイクル装置1000と同様に、リレー部2023が開の状態となる。
特開2011-89737号公報 特開2009-232591号公報
http://www.ntt-f.co.jp/news/heisei23/h23-1110.html
 しかしながら、図16に示すように、ゼロクロスセンサ1014を用いた遮断機開状態判定機能は、一次電源が三相交流電源であることを想定した機器構成であり、DC380Vで代表される高電圧直流電源を一次電源として使用する場合には、採用することができない。
 また、不足電圧判定閾値Thを用いた遮断機開状態判定機能を、図17に示す直流冷凍サイクル装置2000に適用した場合でも、従来は、不足電圧判定閾値Thが、直流遮断機2100が閉の状態における平滑コンデンサ2022の電圧よりも十分に小さい値に設定されているため、直流遮断機2100が開状態になってから開状態であるとの判定を行うまでに、一定程度のタイムラグが存在する。このため、上記タイムラグに直流遮断機2100が閉状態となった場合には、過大な電流の突入を防ぐことができないという課題がある。
 すなわち、図18の、直流冷凍サイクル装置2000における平滑コンデンサ2022の電圧推移を示すタイムチャートのように、直流冷凍サイクル装置2000が運転状態にある時刻txに、直流遮断機2100が何らかの原因で開状態となると、平滑コンデンサ2022の電圧の低下が始まる。そして、平滑コンデンサ2022の電圧が不足電圧判定閾値Th以下に低下する以前の時刻tyにおいて、再び直流遮断機2100が閉状態になると、バッテリー2220の電圧と平滑コンデンサ2022の電圧との差分ΔVにより、過電流ルートICR等に沿って、定常状態電流SCよりもはるかに大きな突入電流ICが流れ、平滑コンデンサ2022に過大な過充電電流が流れ込む。バッテリー2220が平滑コンデンサ2022を直接充電する状況にあるからである。そして、突入電流の通過によって、バッテリー2220から平滑コンデンサ2022までの経路等に配置された種々の部品(リレー部2023、平滑コンデンサ2022の他、図示はしていないが、ノイズフィルタ、各接続端子、配線、プリント基板など)を損傷するおそれがある。
 本発明は、上記のような課題を解決するためになされたものであり、直流遮断機が開状態から閉状態となった際に過大な電流が流入することを防止する冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機モータを有する圧縮機、利用側熱交換器、減圧装置、及び熱源側熱交換器が冷媒配管によって順次接続されてなる冷媒回路と、利用側熱交換器及び熱源側熱交換器のうちの少なくとも一つに併設され、ファンモータを有する送風機と、直流遮断機を介して直流給電装置に接続されたリレー部と、リレー部に並列接続された抵抗部と、直流給電装置からリレー部又は抵抗部を介して供給される直流電圧を交流電圧に変換して、圧縮機モータ及びファンモータのうちの少なくとも一つに供給するDC/AC変換器と、直流遮断機が開状態となったときに、リレー部を開の状態にする開閉制御部と、を有するものである。
 本発明は、直流遮断機を介して直流給電装置に接続されたリレー部と、リレー部に並列接続された抵抗部とを有し、開閉制御部が、直流遮断機が開状態となったときに、リレー部を開の状態にするという構成を採っている。よって、直流遮断機100が開状態から再度閉状態になった場合に、直流給電装置から流入する電流が抵抗部を通じて平滑コンデンサに流れ込むため、直流遮断機が開状態から閉状態となった際に過大な電流が流入することを防止することができる。
本発明の実施の形態1に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 本発明の実施の形態1に係る冷媒回路系統の概略構成を示す回路図である。 図1の冷凍サイクル装置におけるリレー部の開閉状態を示すタイムチャートである。 本発明の実施の形態2に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図4の冷凍サイクル装置におけるリレー部の開閉状態を示すタイムチャートである。 本発明の実施の形態3に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図6の冷凍サイクル装置における平滑コンデンサの電圧とバッテリーの出力電圧との関係を示すタイムチャートである。 本発明の実施の形態4に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図8の冷凍サイクル装置に設けられた電流センサによる検出結果の推移を示すタイムチャートである。 本発明の実施の形態5に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図10の冷凍サイクル装置に設けられた第1電流センサ及び第2電流センサによる検出結果の推移を示すタイムチャートである。 本発明の実施の形態6に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図12の冷凍サイクル装置に設けられた差分検出センサによる検出結果の推移を示すタイムチャートである。 本発明の実施の形態7に係る冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図14の冷凍サイクル装置における平滑コンデンサの出力側に設けられた電流センサによる検出結果の推移を示すタイムチャートである。 AC入力式の冷凍サイクル装置の電気系統の概略構成を示す回路図である。 DC入力式の冷凍サイクル装置の電気系統の概略構成を示す回路図である。 図17の冷凍サイクル装置における平滑コンデンサの電圧推移を示すタイムチャートである。
[実施の形態1]
 図1は、本発明の実施の形態1に係る冷凍サイクル装置20Aの電気系統の概略構成を示す回路図である。図1に示すように、冷凍サイクル装置20Aは、モータMを内包する冷媒回路系統30と、モータMを駆動するDC/AC変換器21と、DC/AC変換器21に供給される電流を平滑化する平滑コンデンサ22と、直流遮断機100を介して直流給電装置200に接続されたリレー部23と、リレー部23に並列接続された抵抗部(抵抗回路)24と、リレー部23の開閉動作を制御する開閉制御部25Aと、を有している。すなわち、冷凍サイクル装置20Aは、直流給電装置200から供給される直流電圧によって駆動する直流給電型の冷凍サイクル装置である。
 平滑コンデンサ22は、DC/AC変換器21の入力端に接続され、直流給電装置200から入力される直流電圧を平滑化するものである。開閉制御部25Aは、直流遮断機100が開状態となったときに、リレー部23を開の状態にするものである。より具体的に、開閉制御部25Aは、直流遮断機100から出力される直流遮断機100の開状態を示す開信号を入力すると、リレー部23を開の状態にするように構成されている。
 本実施の形態1において、直流遮断機100は、接点リレー(図示せず)などにより、自身の開閉状態を示す開閉信号S1を外部に発信する機能を有している。より具体的に、直流遮断機100は、例えば直流遮断機100の開閉状態と接点リレーの開閉とが連動するように構成されている。直流遮断機100から出力された開閉信号S1は、冷凍サイクル装置20Aの開閉制御部25Aに入力される。開閉制御部25Aは、直流遮断機100から出力された開閉信号S1が、直流遮断機100の開状態を示す開信号であった場合に、リレー部23を開の状態にするものである。
 直流給電装置200は、交流系統300から供給される交流電圧を直流電圧に変換するAC/DC変換器210と、AC/DC変換器210の出力側に設けられ、高圧の直流を安定化するバッテリー220と、を有している。また、バッテリー220は、直流電圧の安定化を図ると共に、交流系統300が停電等で供給されなくなった場合のバックアップ電源として機能する。
 ここで、図2を参照して、冷媒回路系統30の機器構成を説明する。図2は、本発明の実施の形態1に係る冷媒回路系統30の概略構成を示す回路図である。図2に示すように、冷媒回路系統30は、室内ユニット40と、室外ユニット60と、を含んでいる。室内ユニット40と室外ユニット60とは、冷媒配管10及び冷媒配管11によって接続されている。
 室内ユニット40には、膨張弁4と、利用側熱交換器5と、圧縮機モータM1を有する圧縮機1とが直列に接続されて搭載されている。また、室内ユニット40には、室内電磁弁6が圧縮機1と並列に接続されて搭載され、圧縮機1の吐出側には、圧力開閉器7が搭載されている。さらに、室内ユニット40には、ファンモータM2を有する送風機2が搭載されている。また、室内ユニット40は、室内制御装置50を有している。
 膨張弁4は、冷媒を減圧膨張させる減圧装置として機能するものであり、開度が可変に制御可能な電子膨張弁で構成するとよい。利用側熱交換器5は、冷房運転時には蒸発器、暖房時には凝縮器として機能するものである。利用側熱交換器5の近傍には、空気を供給するための遠心ファン又は多翼ファン等で構成される送風機2が付設されている。送風機2は、例えばインバータにより回転数が制御され風量制御されるタイプのもので構成されている。つまり、利用側熱交換器5は、送風機2から供給される空気と冷媒との間で熱交換を行ない、冷媒を蒸発ガス化又は凝縮液化するものである。
 圧縮機1は、冷媒配管から冷媒を吸入し、吸入した冷媒を圧縮して高温・高圧の状態にするものである。圧縮機1は、例えばインバータにより圧縮機モータM1の回転数が制御されて容量制御されるように構成されている。また、圧縮機1には、冷媒の寝込みを防止するためのベルトヒーター1aが取り付けられている。室内電磁弁6は、開閉が制御されることで、圧縮機1から吐出された冷媒の一部の導通を許容するものである。圧力開閉器7は、保護装置として機能し、後述する冷媒回路31内に封入される冷媒の圧力が所定の圧力に達したことを検出するものである。
 室内制御装置50は、汎用のCPU、データバス、入出力ポート、不揮発メモリ、タイマーなどを備えた演算装置51を有している。室内制御装置50は、運転情報(室内空気温度、設定温度、冷媒配管温度、冷媒圧力など)によって、圧縮機1の駆動周波数、送風機2の回転数、膨張弁4の開度、室内電磁弁6の開閉などに対し、所定の制御を行う。また、室内制御装置50は、後述の室外制御装置70と伝送線(図示せず)によって接続されており、室外制御装置70との間での各種情報の送受信を行うことができる。
 室外ユニット60には、熱源側熱交換器8が搭載されている。図2には、熱源側熱交換器8が並列に2台接続されて搭載された例を示している。室外ユニット60には、1台の熱源側熱交換器8と直列に接続された室外電磁弁9が搭載されている。また、室外ユニット60には、ファンモータM3を有する送風機3が搭載されている。さらに、室外ユニット60は、室外制御装置70を有している。
 熱源側熱交換器8は、冷房運転時には凝縮器、暖房運転時には蒸発器として機能するものである。熱源側熱交換器8の近傍には、空気を供給するための遠心ファン又は多翼ファン等で構成される送風機3が付設されている。送風機3は、例えばインバータによりファンモータM3の回転数が制御されて風量制御されるように構成されている。つまり、熱源側熱交換器8は、送風機3から供給される空気と冷媒との間で熱交換を行ない、冷媒を蒸発ガス化又は凝縮液化するものである。室外電磁弁9は、開閉が制御されることで、1台の熱源側熱交換器8に対して冷媒の一部の導通を許容するものである。
 室外制御装置70は、汎用のCPU、データバス、入出力ポート、不揮発メモリ、タイマーなどを備えた演算装置71を有している。室外制御装置70は、室内ユニット40からの運転情報(室内空気温度、設定温度、冷媒配管温度、冷媒圧力など)によって、送風機3の回転数、室外電磁弁9の開閉などに対し所定の制御を行う。また、室外制御装置70は、室内制御装置50と伝送線(図示せず)によって接続されており、室内制御装置50との間で各種情報を送受信することができる。
 そして、圧縮機1、熱源側熱交換器8、膨張弁4、利用側熱交換器5が、冷媒配管10及び11によって順次接続され、冷凍サイクルを構成している。すなわち、冷媒回路系統30は、圧縮機1、熱源側熱交換器8、膨張弁4、利用側熱交換器5による冷凍サイクルにより構成された冷媒回路31を有している。
 上記のように、冷凍サイクル装置20Aは、圧縮機モータM1を有する圧縮機1、利用側熱交換器5、膨張弁4、及び熱源側熱交換器8が冷媒配管によって順次接続されてなる冷媒回路31と、利用側熱交換器5に併設され、ファンモータM2の回転によって駆動する送風機2と、熱源側熱交換器8に併設され、ファンモータM3の回転によって駆動する送風機3と、を有している。
 すなわち、図1に示すモータMは、圧縮機モータM1、ファンモータM2、及びファンモータM3のうちの少なくとも一つを指す。つまり、DC/AC変換器21は、直流給電装置200からリレー部23及び抵抗部24のうちの少なくとも一つを介して供給される直流電圧を交流電圧に変換して、圧縮機モータM1、ファンモータM2、及びファンモータM3のうちの少なくとも一つに供給するものである。なお、冷凍サイクル装置20Aは、ファンモータM2及びファンモータM3の何れか一方を有さないようにしてもよい。
 次に、図3を参照して、開閉制御部25Aの動作を説明する。図3は、冷凍サイクル装置20Aにおけるリレー部23の開閉状態を示すタイムチャートである。図3において、リレー部23は、直流遮断機100が開信号を出力するのと同時に閉の状態が解除され、開の状態となっている。
 図3の例において、直流遮断機100は、時刻txに開状態となっている。直流遮断機100は、自身が開状態となった時刻txに、開閉制御部25Aに向けて、開閉信号S1としての開信号を送信する。開閉制御部25Aは、直流遮断機100から開信号を入力したときに、リレー部23を開の状態にする。
 直流遮断機100が開状態になると、直流給電装置200から冷凍サイクル装置20Aへの電流の供給がなくなるため、平滑コンデンサ22の電圧は、図3に示すように低下する。その後、時刻tyにおいて、直流遮断機100が再び閉状態になると、直流給電装置200から冷凍サイクル装置20Aに流入する電流が、抵抗部24を経由して平滑コンデンサ22に流れ込み、平滑コンデンサ22が充電される。このとき、平滑コンデンサ22を充電するための電流が、定常状態電流SCに加算されることになるが、平滑コンデンサ22には、抵抗部24を通して電流が供給されるため、過大な突入電流は流れない。そして、徐々に平滑コンデンサ22の電圧が回復し、所定の値になると、開閉制御部25Aが、リレー部23を再び閉の状態とし、冷凍サイクル装置20Aは、定常状態に復帰する。
 本実施の形態1において、開閉制御部25Aは、平滑コンデンサ22の電圧がバッテリー220の電圧とほぼ等しくなったときに、リレー部23を開の状態にする。すなわち、開閉制御部25Aは、平滑コンデンサ22の電圧が、バッテリー220の電圧に基づいて設定された切替基準電圧Vsに到達したときに、リレー部23を開の状態にする。
 なお、直流遮断機100が再投入されてからリレー部23が再び閉の状態となるまでの安定期間STは、平滑コンデンサ22が再び充電されるまでの短期間である。安定期間STにおいては、直流給電装置200より入力される入力電流ioが抵抗部24を通過するため、抵抗部24においても電力が消費される。
 本実施の形態1における冷凍サイクル装置20Aでは、直流遮断機100から開信号が出力されたときに、開閉制御部25Aがリレー部23を開の状態にするという構成を採っている。よって、冷凍サイクル装置20Aによれば、一旦開状態となった直流遮断機100が再び閉状態になったとしても、直流給電装置200より入力される入力電流ioが抵抗部24を通過するため、図3における安定期間ST内の突入抑制電流IS1に示すように、内部への突入電流の流入を防ぐことができる。
 なお、図2の冷媒回路系統30は、あくまで、冷凍サイクルを備えた系統の一例である。すなわち、冷凍サイクル装置20Aの冷媒回路系統30は、図2の構成に限定されるものではなく、室外ユニット(熱源ユニット)及び室内ユニット(負荷側ユニット)のそれぞれに搭載されている各構成機器の個数は、冷凍サイクル装置20Aの用途に応じて適宜変更してもよい。また、室外ユニット(熱源ユニット)及び室内ユニット(負荷側ユニット)の台数についても制限はなく、冷媒回路系統30は、任意の台数の室外ユニット及び室内ユニットを適宜含むようにしてもよい。
[実施の形態2]
 次に、本発明の実施の形態2に係る冷凍サイクル装置20Bを図4及び図5に基づいて説明する。図4は、本実施の形態2に係る冷凍サイクル装置20Bの電気系統の概略構成を示す回路図である。図5は、冷凍サイクル装置20Bにおけるリレー部23の開閉状態を示すタイムチャートである。直流遮断機100は、前述した実施の形態1と同様に、自身の開閉状態を示す開閉信号S1を外部に発信する機能を有しているが、本実施の形態2では、開閉信号S1を直流給電装置200のAC/DC変換器210に送信するという構成を採っている。実施の形態1と同等の構成部材については、同一の符号を用いて説明は省略する。
 冷凍サイクル装置20Bに設けられた開閉制御部25Bは、直流遮断機100から出力され、直流給電装置200を介して入力する直流遮断機100の開閉状態を示す開閉信号S1をもとに、リレー部23の開閉状態を制御するよう構成されている。なお、直流遮断機100からの開閉信号と、直流給電装置200からの開閉信号とは同種の信号であるため、便宜上、同一の符号「S1」を用いるものとする。
 すなわち、直流遮断機100からの開閉信号S1は、上流側に設置されたAC/DC変換器210に一旦入力される。AC/DC変換器210は、直流遮断機100からの開閉信号S1を状態監視のパラメータとして用いるものである。また、AC/DC変換器210は、直流遮断機100からの入力と同時に、開閉信号S1を、冷凍サイクル装置20Bの開閉制御部25Bに出力するように構成されている。つまり、開閉信号S1としての開信号は、直流遮断機100から直流給電装置200を介して出力される。
 次に、図5を参照して、開閉制御部25Bの動作を説明する。図5に示すように、直流遮断機100からの開閉信号S1が、直流遮断機100の開状態を示す開信号であれば、同時に出力される直流給電装置200からの開閉信号S1も開信号として立ち上がる。すなわち、開閉制御部25Bは、直流遮断機100から直流給電装置200を介して出力される開閉信号S1として、直流遮断機100の開状態を示す開信号を入力すると、リレー部23の閉の状態を解除して開の状態とする。
 直流遮断機100が開状態になると(時刻tx)、図5の例のように、平滑コンデンサ22の電圧が低下する。その後、時刻tyにおいて、直流遮断機100が再び閉状態になると、直流給電装置200より入力される入力電流ioが、抵抗部24を経由して平滑コンデンサ22に流れ込み、平滑コンデンサ22が充電される。このとき、平滑コンデンサ22を充電するための電流が、定常状態電流SCに加算されることになるが、図5における安定期間ST内の突入抑制電流IS2に示すように、過大な突入電流は流れない。そして、徐々に平滑コンデンサ22の電圧が回復して切替基準電圧Vsに到達すると、開閉制御部25Bがリレー部23を閉の状態とし、冷凍サイクル装置20Bは定常状態に復帰する。
 本実施の形態2における冷凍サイクル装置20Bでは、直流遮断機100から直流給電装置200を介して開信号を入力すると、開閉制御部25Bがリレー部23を開の状態にするという構成を採っている。すなわち、冷凍サイクル装置20Bによれば、一旦開状態となった直流遮断機100が再び閉状態になっても、直流給電装置200より入力される入力電流ioが抵抗部24を通過するため、内部への突入電流の流入を防ぐことができる。
[実施の形態3]
 次に、本発明の実施の形態3に係る冷凍サイクル装置20Cを図6及び図7に基づいて説明する。図6は、本実施の形態3に係る冷凍サイクル装置20Cの電気系統の概略構成を示す回路図である。図7は、冷凍サイクル装置20Cにおける平滑コンデンサ22の電圧とバッテリー220の出力電圧との関係を示すタイムチャートである。上述した実施の形態1及び2と同等の構成部材については、同一の符号を用いて説明は省略する。
 冷凍サイクル装置20Cは、バッテリー220の出力電圧Vb(直流給電装置200から入力される直流電圧)と平滑コンデンサ22の電圧Vhとの電圧差Veが、予め設定された閾値電圧Verを超えると、リレー部23を開の状態にする開閉制御部25Cを有している。また、冷凍サイクル装置20Cは、直流遮断機100が開状態となったか否かを判定する開閉判定部81を有している。
 開閉判定部81は、バッテリー220の出力電圧Vbと平滑コンデンサ22の電圧Vhとを比較し、比較の結果に基づいて直流遮断機100が開状態となったか否かを判定するものである。図6に示すように、開閉判定部81は、バッテリー220の出力電圧Vbから平滑コンデンサ22の電圧Vhを引き算して電圧差Veを算出する減算器81aと、減算器81aにおいて算出された電圧差Veと閾値電圧Verとを比較し、比較の結果を、直流遮断機100の開閉状態を示す開閉信号SSとして開閉制御部25Cに出力する判定コンパレータ81bと、を有している。
 判定コンパレータ81bは、減算器81aにおいて算出された電圧差Veが閾値電圧Verを超えたときに、直流遮断機100が開状態になったと判定し、開閉信号SSとして、直流遮断機100が開状態となったことを示す開信号Hを開閉制御部25Cに出力するように構成されている。
 冷凍サイクル装置20Cの運転状態において、直流遮断機100が開状態になると、平滑コンデンサ22の電圧が低下するため、バッテリー220の出力電圧Vbと平滑コンデンサ22の電圧Vhとの差である電圧差Veが生じ始める。そして、直流遮断機100が開状態になってからも、冷凍サイクル装置20Cの運転を継続していると、時間の経過に伴って電圧差Veが拡大していく。
 そこで、本実施の形態3では、減算器81aにおいて算出された電圧差Veが閾値電圧Verを上回った時点で、判定コンパレータ81bが、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Cに出力するという構成を採っている。また、判定コンパレータ81bから出力された開信号Hに応じて、開閉制御部25Cが、リレー部23を開の状態とするように構成されている。
 次に、図7を参照して、開閉判定部81及び開閉制御部25Cの動作を説明する。直流遮断機100が開状態になると(時刻tx)、平滑コンデンサ22の電圧Vhが低下し始め、電圧差Veが大きくなっていく。判定コンパレータ81bは、減算器81aにおいて算出された電圧差Veが閾値電圧Verに達する時刻txaに、開閉信号SSとしての開信号Hを開閉制御部25Cに向けて出力する。開閉制御部25Cは、判定コンパレータ81bから出力された開信号Hを入力すると、リレー部23を開の状態にする。よって、その後、直流遮断機100が再び閉状態となっても、平滑コンデンサ22は、直流給電装置200から抵抗部24を介して流入する電流によって充電されるため、冷凍サイクル装置20Cの内部に過大な突入電流は流れない。
 以降は、図7には示していないが、上述した実施の形態1及び2と同様、徐々に平滑コンデンサ22の電圧が回復して所定の値になったときに、開閉制御部25Cがリレー部23を閉の状態とし、冷凍サイクル装置20Cは定常状態に復帰する。
 本実施の形態3における冷凍サイクル装置20Cは、直流遮断機100が開状態になると低下する平滑コンデンサ22の電圧Vhの推移から、直流遮断機100が開状態となったことを検知して、リレー部23を開の状態にするという構成を採っている。すなわち、冷凍サイクル装置20Cによれば、一旦開状態となった直流遮断機100が再び閉状態になったとしても、直流給電装置200より入力される入力電流ioが抵抗部24を通過するため、内部への突入電流の流入を防ぐことができる。
 なお、本実施の形態3では、直流遮断機100が開状態になっても不変であるバッテリー220の出力電圧Vbを基準とし、バッテリー220の出力電圧Vbからみた平滑コンデンサ22の電圧Vhの推移をもとに、直流遮断機100の開状態を検知するという構成を採っている。しかし、開閉制御部25Cは、平滑コンデンサ22の電圧Vhが予め設定された基準電圧Vc(図7参照)を下回ると、リレー部23を開の状態にするように構成してもよい。
[実施の形態4]
 次に、本発明の実施の形態4に係る冷凍サイクル装置20Dを図8及び図9に基づいて説明する。図8は、本実施の形態4に係る冷凍サイクル装置20Dの電気系統の概略構成を示す回路図である。図9は、冷凍サイクル装置20Dに設けられた電流センサ90による検出結果の推移を示すタイムチャートである。上述した実施の形態1~3と同等の構成部材については、同一の符号を用いて説明は省略する。
 冷凍サイクル装置20Dは、直流給電装置200より入力される入力電流ioが予め設定された基準電流ieroを下回ると、リレー部23を開の状態にする開閉制御部25Dを有している。
 また、冷凍サイクル装置20Dは、直流給電装置200より入力される入力電流io(平滑コンデンサ22の入力電流)を検出し、検出の結果である電流信号i1を出力する電流センサ90と、電流センサ90から出力される電流信号i1の大きさをもとに、直流遮断機100が開状態となったか否かを判定する開閉判定部82と、を有している。開閉判定部82は、電流センサ90から出力される電流信号i1と基準電流ieroとを比較し、比較の結果を、直流遮断機100の開閉状態を示す開閉信号SSとして開閉制御部25Dに出力する判定コンパレータ(判定コンパレータラッチ回路)82bを有している。
 冷凍サイクル装置20Dの運転状態において、直流遮断機100が開状態になると、冷凍サイクル装置20Dの上流側、すなわち直流給電装置200からは電流が供給されない状態となる。そこで、本実施の形態4では、直流給電装置200より入力される入力電流ioを示す電流信号i1が基準電流ieroを下回った時点で、判定コンパレータ82bが、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Dに向けて出力するという構成を採っている。また、判定コンパレータ82bから出力された開信号Hに応じて、開閉制御部25Dが、リレー部23を開の状態とするように構成されている。
 次に、図9を参照して、開閉判定部82及び開閉制御部25Dの動作を説明する。直流遮断機100が開状態になると(時刻tx)、電流信号i1が低下し始め、基準電流ieroに近づいていく。判定コンパレータ82bは、電流センサ90から出力される電流信号i1が基準電流ieroに達する時刻txbに、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Dに向けて出力する。
 開閉制御部25Dは、判定コンパレータ82bから出力される開信号Hを入力すると、リレー部23を開の状態にする。よって、その後、直流遮断機100が再び閉状態となっても、平滑コンデンサ22は、直流給電装置200から抵抗部24を介して流入する電流によって充電され、冷凍サイクル装置20Dの内部に過大な突入電流は流れない。
 以降は、図9には示していないが、上述した実施の形態1~3と同様、徐々に平滑コンデンサ22の電圧が回復して所定の値となったときに、開閉制御部25Dがリレー部23を閉の状態とし、冷凍サイクル装置20Dは定常状態に復帰する。
 ところで、上記の方式では、非常に低い負荷電流でモータMを駆動する場合においても、電流センサ90からの電流信号i1が基準電流ieroを下回る可能性がある。本実施の形態4では、電流信号i1が基準電流iero未満となったときに、開閉制御部25Dがリレー部23を開の状態にするため、負荷側には、抵抗部24を通して電流が供給され続ける可能性がある。したがって、非常に低い負荷電流でモータMを駆動する場合には、抵抗部24の消費電力(iero×iero×抵抗部24の抵抗値)が抵抗部24の許容電力を超えないように(「抵抗部24の消費電力<抵抗部24の許容電力」となるように)設計して対応するとよい。
 本実施の形態4における冷凍サイクル装置20Dは、直流遮断機100が開状態になってからの直流給電装置200より入力される入力電流ioの推移をもとに、直流遮断機100が開状態となったことを検知して、リレー部23を開の状態にするという構成を採っている。すなわち、冷凍サイクル装置20Dによれば、一旦開状態となった直流遮断機100が再び閉状態になったとしても、直流給電装置200から流入する電流が抵抗部24を通過するため、内部への突入電流の流入を防ぐことができる。
[実施の形態5]
 次に、本発明の実施の形態5に係る冷凍サイクル装置20Eを図10及び図11に基づいて説明する。図10は、本実施の形態5に係る冷凍サイクル装置20Eの電気系統の概略構成を示す回路図である。図11は、冷凍サイクル装置20Eに設けられた第1電流センサ91及び第2電流センサ92による検出結果の推移を示すタイムチャートである。上述した実施の形態1~4と同等の構成部材については、同一の符号を用いて説明は省略する。
 冷凍サイクル装置20Eは、DC/AC変換器21に入力される電流(平滑コンデンサ22の流出電流)から、直流給電装置200より入力される入力電流io(平滑コンデンサ22の流入電流)を引いた差分電流ieが、予め設定された閾値電流ierを超えると、リレー部23を開の状態にする開閉制御部25Eを有している。
 また、冷凍サイクル装置20Eは、直流給電装置200より入力される入力電流ioを検出し、検出の結果である電流信号i1を出力する第1電流センサ91と、DC/AC変換器21に入力される電流を検出し、検出の結果である電流信号i02を出力する第2電流センサ92と、電流信号i1及び電流信号i02の大小関係をもとに、直流遮断機100が開状態となったか否かを判定する開閉判定部83と、を有している。
 開閉判定部83は、第2電流センサ92から入力する電流信号i02を平滑化して電流信号i2を出力する電流平滑回路83cと、電流平滑回路83cにおいて平滑化された電流信号i2から、第1電流センサ91より出力される電流信号i1を引き算して差分電流ieを算出する減算器83aと、減算器83aにおいて算出された差分電流ieと閾値電流ierとを比較し、比較の結果を、直流遮断機100の開閉状態を示す開閉信号SSとして開閉制御部25Eに出力する判定コンパレータ83bと、を有している。
 一般に、DC/AC変換器21の入力側に流れる電流は矩形波状となる。すなわち、電流平滑回路83cは、例えば矩形波状となる電流信号i02を平滑化して電流信号i2を生成するために設けられている。また、本実施の形態5において、判定コンパレータ83bは、減算器83aにおいて算出された差分電流ieが閾値電流ierを超えたときに、直流遮断機100が開状態になったと判定し、開閉信号SSとして、直流遮断機100が開状態となったことを示す開信号Hを開閉制御部25Eに出力するように構成されている。
 冷凍サイクル装置20Eの運転状態において、直流遮断機100が開状態になると、冷凍サイクル装置20Eの上流側からは電流が供給されなくなるが、冷凍サイクル装置20Eは運転を継続しているため、平滑コンデンサ22の流出電流は負荷側に流れ続ける。その結果、平滑コンデンサ22の入出力の電流に差が生じ、第1電流センサ91の出力である電流信号i1と、電流平滑回路83cの出力である電流信号i2との差である差分電流ieが有限の値を示すようになる。
 そこで、本実施の形態5では、差分電流ieが閾値電流ierを超えた時点で、判定コンパレータ83bが、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Eに出力するという構成を採っている。また、判定コンパレータ83bから出力された開信号Hに応じて、開閉制御部25Eが、リレー部23を開の状態とするように構成されている。すなわち、開閉制御部25Eは、第1電流センサ91による検出値と第2電流センサ92による検出値との差分を差分電流ieとして用いている。
 次に、図11を参照して、開閉判定部83及び開閉制御部25Eの動作を説明する。直流遮断機100が開状態になると(時刻tx)、直流遮断機100から電流が供給されなくなるため、差分電流ieが大きくなっていく。判定コンパレータ83bは、減算器83aにおいて算出された差分電流ieが閾値電流ierに達する時刻txcに、開閉信号SSとしての開信号Hを開閉制御部25Eに向けて出力する。開閉制御部25Eは、判定コンパレータ83bから出力される開信号Hを入力すると、リレー部23を開の状態にする。
 以降は、図11には示していないが、上述した実施の形態1~4と同様、徐々に平滑コンデンサ22の電圧が回復して所定の値になったときに、開閉制御部25Eがリレー部23を閉の状態とし、冷凍サイクル装置20Eは定常状態に復帰する。
 本実施の形態5における冷凍サイクル装置20Eは、平滑コンデンサ22の流入電流と流出電流とを比較することで、直流給電装置200より入力される入力電流ioの推移を把握するように構成されている。また、冷凍サイクル装置20Eは、直流給電装置200より入力される入力電流ioの推移をもとに、直流遮断機100が開状態となったことを検知し、リレー部23を開の状態にするという構成を採っている。よって、冷凍サイクル装置20Eによれば、一旦開状態となった直流遮断機100が再び閉状態になったとしても、直流給電装置200より入力される入力電流ioが抵抗部24を通過するため、内部への突入電流の流入を防ぐことができる。
 なお、開閉判定部83は、電流平滑回路83cを減算器83aの下流に設けるという構成を採ってもよい。すなわち、減算器83aが、第2電流センサ92より出力される電流信号i02から第1電流センサ91より出力される電流信号i1を引き算して差分電流を算出し、電流平滑回路83cが、減算器83aにおいて算出された差分電流を平滑化して差分電流ieを算出するようにしてもよい。また、開閉制御部25Eが、第1電流センサ91から電流信号i1を入力すると共に、第2電流センサ92から電流平滑回路83cを介して電流信号i2を入力し、電流信号i2から電流信号i1を減算して差分電流ieを算出し、算出した差分電流ieを閾値電流ierと比較することにより、直流遮断機100が開状態になったか否かを判定するようにしてもよい。
[実施の形態6]
 次に、本発明の実施の形態6に係る冷凍サイクル装置20Fを図12及び図13に基づいて説明する。図12は、本実施の形態6に係る冷凍サイクル装置20Fの電気系統の概略構成を示す回路図である。図13は、冷凍サイクル装置20Fに設けられた差分検出センサ93による検出結果の推移を示すタイムチャートである。上述した実施の形態1~5と同等の構成部材については、同一の符号を用いて説明は省略する。
 冷凍サイクル装置20Fは、DC/AC変換器21に入力される電流から、直流給電装置200より入力される入力電流ioを引いた差分に相当する差分電流iemが、予め設定された閾値電流ierを超えると、リレー部23を開の状態にする開閉制御部25Fを有している。
 また、冷凍サイクル装置20Fは、入力配線22mに流れる電流と出力配線22nに流れる電流との差分である差分電流ie0を検出して外部に出力する差分検出センサ93と、差分検出センサ93から出力される差分電流ie0を平滑化して差分電流iemを出力する差分平滑回路84cと、差分平滑回路84cから出力される差分電流iemと閾値電流ierとを比較し、比較の結果を、直流遮断機100の開閉状態を示す開閉信号SSとして開閉制御部25Fに出力する判定コンパレータ84bと、を有している。
 差分検出センサ93は、例えば貫通型の電流センサからなり、差分検出センサ93の内部には、平滑コンデンサ22の入力配線22mと出力配線22nとが、互いの発生磁束を打ち消すように貫通されている。具体的には、入力配線22mと出力配線22nとが、差分検出センサ93の内部において、ホールセンサ又はCT(Current Transformer)等に貫通されている。すなわち、差分検出センサ93は、内部を貫通する入力配線22m及び出力配線22nの発生磁束の大きさをセンシングして、差分電流ie0を検出するものである。
 また、一般に、DC/AC変換器21の入力側に流れる電流は矩形波状となるため、差分検出センサ93からの出力である差分電流ie0も矩形波状となる。すなわち、差分平滑回路84cは、差分検出センサ93からの差分電流ie0に現れる矩形波成分を平滑化するために設けられている。
 さらに、本実施の形態6において、判定コンパレータ84bは、差分平滑回路84cから出力された差分電流iemが閾値電流ierを超えたときに、直流遮断機100が開状態になったと判定し、開閉信号SSとして、直流遮断機100が開状態となったことを示す開信号Hを開閉制御部25Fに出力するように構成されている。
 前述の実施の形態5と同様、直流遮断機100が開状態となり、入力配線22mと出力配線22nとの間に流れる電流に差が発生した場合には、差分平滑回路84cの出力である差分電流iemは有限の値となる。そこで、本実施の形態6では、差分電流iemが閾値電流ierを超えた時点で、判定コンパレータ84bが、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Fに出力するという構成を採っている。また、判定コンパレータ84bから出力された開信号Hに応じて、開閉制御部25Fが、リレー部23を開の状態とするように構成されている。
 次に、図13を参照して、開閉判定部84及び開閉制御部25Fの動作を説明する。直流遮断機100が開状態になると(時刻tx)、直流遮断機100から電流が供給されなくなるため、差分電流iemが大きくなっていく。そして、判定コンパレータ84bは、差分平滑回路84cから入力する差分電流iemが閾値電流ierに達する時刻txdに、開閉信号SSとしての開信号Hを開閉制御部25Fに向けて出力する。開閉制御部25Fは、判定コンパレータ84bから出力される開信号Hを入力すると、リレー部23を開の状態にする。
 以降は、図13には示していないが、上述した実施の形態1~5と同様、徐々に平滑コンデンサ22の電圧が回復して所定の値になったときに、開閉制御部25Fがリレー部23を閉の状態とし、冷凍サイクル装置20Fは定常状態に復帰する。
 本実施の形態6における冷凍サイクル装置20Fは、平滑コンデンサの入力配線22m及び出力配線22nのそれぞれの電流が反対方向に流れるように貫通された差分検出センサ93を有するため、1つのセンサにより、DC/AC変換器21に入力される電流と直流給電装置200より入力される入力電流ioとの差分を検出することができる。そして、冷凍サイクル装置20Fは、上記差分から直流遮断機100が開状態となったことを検知し、リレー部23を開の状態にするという構成を採っている。よって、冷凍サイクル装置20Fによれば、一旦開状態となった直流遮断機100が再び閉状態になったとしても、直流給電装置200より入力される入力電流ioが抵抗部24を通過するため、内部への突入電流の流入を防ぐことができる。
[実施の形態7]
 次に、本発明の実施の形態7に係る冷凍サイクル装置20Gを図14及び図15に基づいて説明する。図14は、本実施の形態7に係る冷凍サイクル装置20Gの電気系統の概略構成を示す回路図である。図15は、冷凍サイクル装置20Gにおける平滑コンデンサ22の出力側に設けられた電流センサ94による検出結果の推移を示すタイムチャートである。上述した実施の形態1~6と同等の構成部材については、同一の符号を用いて説明は省略する。
 冷凍サイクル装置20Gは、平滑コンデンサ22からの出力電流icdcmが予め設定された平滑基準電流icdrを超えると、リレー部23を開の状態にする開閉制御部25Gを有している。また、冷凍サイクル装置20Gは、平滑コンデンサ22からの出力電流icd0を検出して出力する電流センサ94と、電流センサ94からの出力電流icd0の大きさをもとに、直流遮断機100が開状態となったか否かを判定する開閉判定部85と、を有している。
 開閉判定部85は、電流センサ94からの出力電流icd0を平滑化し、直流分である出力電流icdcmを抽出して出力する電流平滑回路85cと、電流平滑回路85cからの出力電流icdcmと平滑基準電流icdrとを比較し、比較の結果を、直流遮断機100の開閉状態を示す開閉信号SSとして開閉制御部25Gに出力する判定コンパレータ85bと、を有している。
 冷凍サイクル装置20Gの運転状態において、直流遮断機100が開状態になると、冷凍サイクル装置20Dの上流側からは電流が供給されない状態となる。しかし、平滑コンデンサ22は、モータMを駆動するために、DC/AC変換器21に電流を流し続ける。すなわち、平滑コンデンサ22からは直流の電流が流出する。
 そこで、本実施の形態7では、電流平滑回路85cから出力される出力電流icdcmが平滑基準電流icdrを上回った時点で、判定コンパレータ85bが、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Gに向けて出力するという構成を採っている。また、判定コンパレータ85bから出力された開信号Hに応じて、開閉制御部25Gが、リレー部23を開の状態とするように構成されている。
 次に、図15を参照して、開閉判定部85及び開閉制御部25Gの動作を説明する。直流遮断機100が開状態になると(時刻tx)、平滑コンデンサ22からの出力電流icdcmが大きくなっていく。判定コンパレータ85bは、電流平滑回路85cからの出力電流icdcmが平滑基準電流icdrに達する時刻txeに、直流遮断機100が開状態になったと判定し、開閉信号SSとしての開信号Hを開閉制御部25Gに向けて出力する。開閉制御部25Gは、判定コンパレータ85bから出力される開信号Hを入力すると、リレー部23を開の状態にする。
 以降は、図15には示していないが、上述した実施の形態1~6と同様、徐々に平滑コンデンサ22の電圧が回復して所定の値となったときに、開閉制御部25Gがリレー部23を閉の状態とし、冷凍サイクル装置20Gは定常状態に復帰する。
 本実施の形態7における冷凍サイクル装置20Gは、平滑コンデンサ22から流出する直流電流の大きさをもとに、直流遮断機100が開状態になったことを検知して、リレー部23を開の状態にするという構成を採っている。すなわち、冷凍サイクル装置20Gによれば、一旦開状態となった直流遮断機100が再び閉状態になったとしても、直流給電装置200から流入する電流が抵抗部24を通過するため、内部への突入電流の流入を防ぐことができる。
 以上のように、上記実施の形態1~7の冷凍サイクル装置20A~20Gは、直流遮断機100を介して直流給電装置200に接続されたリレー部23と、リレー部23に並列接続された抵抗部24とを有し、開閉制御部25A~25Gが、直流遮断機100が開状態となったときにリレー部を開の状態にする、という構成を採っている。よって、直流遮断機100が開状態から再度閉状態になった場合に、直流給電装置200から流入する電流が、抵抗部24を通過して平滑コンデンサ22に流れ込むため、直流遮断機が開状態から閉状態になった際に過大な電流が流入することを防止することができる。したがって、冷凍サイクル装置20A~20Gによれば、バッテリー220から平滑コンデンサ22まで経路等に配置された種々の部品の損傷を防止することができる。
 なお、上述した各実施の形態は、冷凍サイクル装置における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記実施の形態1~7では、冷凍サイクル装置20A~20Gの主回路が、モータMとして、圧縮機モータM1、ファンモータM2、及びファンモータM3のうちの少なくとも一つを駆動する構成を例示している(図2参照)。しかし、モータMの代わりに、DC母線から平滑コンデンサ22を通して電圧を供給するその他の負荷を搭載し、DC/AC変換器21によって駆動するように構成してもよく、かかる構成の場合にも、上記各実施の形態と同等の効果を奏することができる。また、図6、図8、図10、図12、図14では、開閉判定部81~85が、冷凍サイクル装置20C~20Gの内部に設けられた例を示しているが、これに限定されず、例えば、開閉判定部81~85を冷凍サイクル装置20C~20Gの外部に設け、冷凍サイクル装置20C~20Gと開閉判定部81~85との組み合わせによって冷凍サイクルシステムを構成してもよい。もっとも、判定コンパレータ81b~85bと同様の構成が、それぞれ、開閉制御部25C~25Gの内部に設けられていてもよい。
 1 圧縮機、1a ベルトヒーター、2、3 送風機、4 膨張弁、5 利用側熱交換器、6 室内電磁弁、7 圧力開閉器、8 熱源側熱交換器、9 室外電磁弁、10、11 冷媒配管、20A~20G 冷凍サイクル装置、21、1021、2021 DC/AC変換器、22、1022、2022 平滑コンデンサ、22m 入力配線、22n 出力配線、23、1023、2023 リレー部、24 抵抗部、25A~25G 開閉制御部、30 冷媒回路系統、31 冷媒回路、40 室内ユニット、50 室内制御装置、51、71 演算装置、60 室外ユニット、70 室外制御装置、81~85 開閉判定部、81a、83a 減算器、81b~85b 判定コンパレータ、83c、85c 電流平滑回路、84c 差分平滑回路、90 電流センサ、91 第1電流センサ、92 第2電流センサ、93 差分検出センサ、94 電流センサ、100、2100 直流遮断機、200 直流給電装置、210、2210 AC/DC変換器、220、2220 バッテリー、300 交流系統、1000 交流冷凍サイクル装置、1007 三相全波整流回路、1011 系統インピーダンス、1014 ゼロクロスセンサ、1024、2024 抵抗回路、1030、2030 圧縮機モータ、1100 AC遮断機、1300 交流系統、2000 直流冷凍サイクル装置、2300 交流系統、H 開信号、ICR 過電流ルート、IS1、IS2 突入抑制電流、M モータ、M1 圧縮機モータ、M2、M3 ファンモータ、S1 開閉信号、SC 定常状態電流、SS 開閉信号、ST 安定期間、Th 不足電圧判定閾値、Vb 出力電圧、Vc 基準電圧、Ve 電圧差、Ver 閾値電圧、Vh 電圧、Vs 切替基準電圧、io 入力電流、i1、i02、i2 電流信号、icd0、icdcm 出力電流、icdr 平滑基準電流、ie、ie0、iem 差分電流、ier 閾値電流、iero 基準電流、ΔV 差分。

Claims (10)

  1.  圧縮機モータを有する圧縮機、利用側熱交換機、減圧装置、及び熱源側熱交換機が冷媒配管によって順次接続されてなる冷媒回路と、
     前記利用側熱交換機及び前記熱源側熱交換機のうちの少なくとも一つに併設され、ファンモータを有する送風機と、
     直流遮断機を介して直流給電装置に接続されたリレー部と、
     前記リレー部に並列接続された抵抗部と、
     前記直流給電装置から前記リレー部又は前記抵抗部を介して供給される直流電圧を交流電圧に変換して、前記圧縮機モータ及び前記ファンモータのうちの少なくとも一つに供給するDC/AC変換器と、
     前記直流遮断機が開状態となったときに、前記リレー部を開の状態にする開閉制御部と、を有する冷凍サイクル装置。
  2.  前記開閉制御部は、
     前記直流遮断機から出力される当該直流遮断機の開状態を示す開信号を入力すると、前記リレー部を開の状態にする請求項1に記載の冷凍サイクル装置。
  3.  前記開信号は、
     前記直流遮断機から前記直流給電装置を介して出力される請求項2に記載の冷凍サイクル装置。
  4.  前記DC/AC変換器の入力端に接続され、前記直流給電装置から入力される直流電圧を平滑化する平滑コンデンサをさらに有し、
     前記開閉制御部は、
     前記平滑コンデンサの電圧が予め設定された基準電圧を下回ると、前記リレー部を開の状態にする請求項1に記載の冷凍サイクル装置。
  5.  前記DC/AC変換器の入力端に接続され、前記直流給電装置から入力される直流電圧を平滑化する平滑コンデンサをさらに有し、
     前記開閉制御部は、
     前記直流給電装置から入力される直流電圧と前記平滑コンデンサの電圧との電圧差が、予め設定された閾値電圧を超えると、前記リレー部を開の状態にする請求項1に記載の冷凍サイクル装置。
  6.  前記開閉制御部は、
     前記直流給電装置より入力される入力電流が予め設定された基準電流を下回ると、前記リレー部を開の状態にする請求項1に記載の冷凍サイクル装置。
  7.  前記開閉制御部は、
     前記DC/AC変換器に入力される電流から、前記直流給電装置より入力される入力電流を引いた差分電流が、予め設定された閾値電流を超えると、前記リレー部を開の状態にする請求項1に記載の冷凍サイクル装置。
  8.  前記直流給電装置より入力される入力電流を検出する第1電流センサと、
     前記DC/AC変換器に入力される電流を検出する第2電流センサと、をさらに有し、
     前記開閉制御部は、
     第1電流センサによる検出値と第2電流センサによる検出値との差分を前記差分電流として用いる請求項7に記載の冷凍サイクル装置。
  9.  前記直流給電装置から供給される電流と前記DC/AC変換器に入力される電流とが逆方向に流れるように配線され、前記差分電流を検出する差分検出センサをさらに有する請求項7に記載の冷凍サイクル装置。
  10.  前記DC/AC変換器の入力端に接続され、前記直流給電装置より入力される直流電圧を平滑化する平滑コンデンサをさらに有し、
     前記開閉制御部は、
     前記平滑コンデンサからの出力電流が予め設定された平滑基準電流を超えると、前記リレー部を開の状態にする請求項1に記載の冷凍サイクル装置。
PCT/JP2015/060229 2015-03-31 2015-03-31 冷凍サイクル装置 WO2016157443A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/060229 WO2016157443A1 (ja) 2015-03-31 2015-03-31 冷凍サイクル装置
JP2017508950A JP6537596B2 (ja) 2015-03-31 2015-03-31 冷凍サイクル装置
US15/549,398 US10418915B2 (en) 2015-03-31 2015-03-31 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060229 WO2016157443A1 (ja) 2015-03-31 2015-03-31 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016157443A1 true WO2016157443A1 (ja) 2016-10-06

Family

ID=57006839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060229 WO2016157443A1 (ja) 2015-03-31 2015-03-31 冷凍サイクル装置

Country Status (3)

Country Link
US (1) US10418915B2 (ja)
JP (1) JP6537596B2 (ja)
WO (1) WO2016157443A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10328771B2 (en) 2016-06-30 2019-06-25 Emerson Climated Technologies, Inc. System and method of controlling an oil return cycle for a refrigerated container of a vehicle
US10532632B2 (en) 2016-06-30 2020-01-14 Emerson Climate Technologies, Inc. Startup control systems and methods for high ambient conditions
US10414241B2 (en) 2016-06-30 2019-09-17 Emerson Climate Technologies, Inc. Systems and methods for capacity modulation through eutectic plates
US10315495B2 (en) * 2016-06-30 2019-06-11 Emerson Climate Technologies, Inc. System and method of controlling compressor, evaporator fan, and condenser fan speeds during a battery mode of a refrigeration system for a container of a vehicle
US10300766B2 (en) 2016-06-30 2019-05-28 Emerson Climate Technologies, Inc. System and method of controlling passage of refrigerant through eutectic plates and an evaporator of a refrigeration system for a container of a vehicle
US10828963B2 (en) 2016-06-30 2020-11-10 Emerson Climate Technologies, Inc. System and method of mode-based compressor speed control for refrigerated vehicle compartment
US10562377B2 (en) 2016-06-30 2020-02-18 Emerson Climate Technologies, Inc. Battery life prediction and monitoring
US10569620B2 (en) 2016-06-30 2020-02-25 Emerson Climate Technologies, Inc. Startup control systems and methods to reduce flooded startup conditions
DE102016218599A1 (de) * 2016-09-27 2018-03-29 Robert Bosch Gmbh Stromrichter, elektrisches Antriebssystem und Verfahren zum Aufladen eines elektrischen Energiespeichers
EP3618213A1 (en) * 2018-07-23 2020-03-04 Hoffman Enclosures, Inc. Three-phase electronic control unit for enclosure air conditioners
TWI686833B (zh) * 2018-12-12 2020-03-01 陳錫瑜 具有自力跳脫斷電的高壓斷路器
JP6624623B1 (ja) * 2019-06-26 2019-12-25 伸和コントロールズ株式会社 温度制御装置及び温調装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156225A (ja) * 1984-01-25 1985-08-16 松下電工株式会社 電源回路
JPH0622543A (ja) * 1992-07-01 1994-01-28 Matsushita Electric Ind Co Ltd スイッチング電源装置
JPH06205586A (ja) * 1992-12-28 1994-07-22 Mitsubishi Electric Corp コンバータ制御装置
JPH06351258A (ja) * 1993-06-08 1994-12-22 Meidensha Corp インバータの停電対策回路
JP2005124336A (ja) * 2003-10-17 2005-05-12 Yaskawa Electric Corp 交流電動機の制御方法及び制御装置
JP2006325302A (ja) * 2005-05-17 2006-11-30 Nec Corp 放電防止回路及び該放電防止回路が設けられている電子機器
JP2011087378A (ja) * 2009-10-14 2011-04-28 Mitsubishi Electric Corp 電力変換装置
JP2014017990A (ja) * 2012-07-10 2014-01-30 Mitsubishi Electric Corp 電力変換装置
JP2014181857A (ja) * 2013-03-19 2014-09-29 Mitsubishi Electric Corp 空気調和機制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA912109A (en) * 1970-04-14 1972-10-10 Canadian General Electric Company Limited Inverter starting circuit
GB2219449B (en) * 1988-05-31 1992-12-09 Toshiba Kk Air conditioning system having voltage drop countermeasure battery
JP2853468B2 (ja) * 1992-08-14 1999-02-03 日本電気株式会社 バッテリバックアップ直流電源装置
JP5047021B2 (ja) 2008-03-24 2012-10-10 三菱電機株式会社 電動機駆動装置および空気調和機
JP5111475B2 (ja) 2009-10-26 2013-01-09 三菱電機株式会社 冷凍サイクル装置及びそれを搭載した空気調和機
JP2012231627A (ja) * 2011-04-27 2012-11-22 Toyo Electric Mfg Co Ltd 電力変換装置用遮断器のアーク防止方法
US9513681B2 (en) * 2014-11-04 2016-12-06 Dell Products, L.P. Systems and methods for controlling inrush electrical currents using a virtual miller capacitor and a metal-oxide-semiconductor field-effect transistor (MOSFET)

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156225A (ja) * 1984-01-25 1985-08-16 松下電工株式会社 電源回路
JPH0622543A (ja) * 1992-07-01 1994-01-28 Matsushita Electric Ind Co Ltd スイッチング電源装置
JPH06205586A (ja) * 1992-12-28 1994-07-22 Mitsubishi Electric Corp コンバータ制御装置
JPH06351258A (ja) * 1993-06-08 1994-12-22 Meidensha Corp インバータの停電対策回路
JP2005124336A (ja) * 2003-10-17 2005-05-12 Yaskawa Electric Corp 交流電動機の制御方法及び制御装置
JP2006325302A (ja) * 2005-05-17 2006-11-30 Nec Corp 放電防止回路及び該放電防止回路が設けられている電子機器
JP2011087378A (ja) * 2009-10-14 2011-04-28 Mitsubishi Electric Corp 電力変換装置
JP2014017990A (ja) * 2012-07-10 2014-01-30 Mitsubishi Electric Corp 電力変換装置
JP2014181857A (ja) * 2013-03-19 2014-09-29 Mitsubishi Electric Corp 空気調和機制御装置

Also Published As

Publication number Publication date
JP6537596B2 (ja) 2019-07-03
US10418915B2 (en) 2019-09-17
JPWO2016157443A1 (ja) 2017-10-12
US20180041137A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2016157443A1 (ja) 冷凍サイクル装置
AU2012359824B2 (en) Air conditioner
US11506412B2 (en) Air conditioner
JP2013162719A (ja) 突入電流防止装置
JP6692696B2 (ja) 空気調和機
KR20180128750A (ko) 공기조화기
JP6320618B2 (ja) 冷凍サイクル装置
JP5804009B2 (ja) 空気調和装置
JP2005304129A (ja) 三相欠相検出回路及びそれを用いた空気調和機
CN107192022A (zh) 空调器、及空调器控制方法、装置及存储介质
US10784798B2 (en) Power converting apparatus and home appliance including the same
US10658944B2 (en) AC/DC combined power converting apparatus and home appliance including the same
EP3276283B1 (en) Refrigeration cycle apparatus
JP6538418B2 (ja) 電源回路及びそれを備える空気調和機
JP2006109670A (ja) 三相欠相検出回路
JP7353146B2 (ja) 空気調和機
JP2015055450A (ja) 空気調和装置
KR20190116764A (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
KR102260614B1 (ko) 공기조화기
KR101965180B1 (ko) 공기조화기
KR102260446B1 (ko) 전력변환장치 및 이를 구비하는 홈 어플라이언스
JPH04198648A (ja) 2電源駆動型の空気調和機
JP2002022237A (ja) 空気調和装置の圧縮機運転制御方法及び装置並びに空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15549398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887595

Country of ref document: EP

Kind code of ref document: A1