WO2016155198A1 - 超薄玻璃贴合结构及其剥离方法和贴合工艺、显示装置的制作方法 - Google Patents

超薄玻璃贴合结构及其剥离方法和贴合工艺、显示装置的制作方法 Download PDF

Info

Publication number
WO2016155198A1
WO2016155198A1 PCT/CN2015/087207 CN2015087207W WO2016155198A1 WO 2016155198 A1 WO2016155198 A1 WO 2016155198A1 CN 2015087207 W CN2015087207 W CN 2015087207W WO 2016155198 A1 WO2016155198 A1 WO 2016155198A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
layer
thin glass
elastically stretchable
bonding
Prior art date
Application number
PCT/CN2015/087207
Other languages
English (en)
French (fr)
Inventor
周晓东
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/905,259 priority Critical patent/US10493742B2/en
Publication of WO2016155198A1 publication Critical patent/WO2016155198A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0076Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised in that the layers are not bonded on the totality of their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • B32B37/1292Application of adhesive selectively, e.g. in stripes, in patterns
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/1092All laminae planar and face to face

Definitions

  • the present invention relates to the field of manufacturing of displays, and in particular to an ultra-thin glass bonding structure, a peeling method and a bonding process thereof, and a manufacturing method of the display device.
  • Thinning is an important direction for the development of liquid crystal displays, which requires the glass layer used to make liquid crystal displays to be as thin as possible.
  • the glass layer used is ultra-thin glass. Since the ultra-thin glass is too thin and too soft, the ultra-thin glass must be attached to the carrier when manufacturing the liquid crystal display, and the ultra-thin glass and the carrier are attached. The bonding surface is flattened, and the bonding surfaces of the two are closely adhered to each other, and after the liquid crystal display is completed, the ultra-thin glass is peeled off from the carrier.
  • the present invention provides an ultra-thin glass bonding structure, a peeling method thereof, and a display device.
  • the specific technical solutions are as follows:
  • an ultra-thin glass bonding structure comprising: an ultra-thin glass layer, a bonding layer and a carrier substrate disposed in a sequential manner;
  • the bonding layer includes a plurality of first elastic stretching structures that are laid flat, and each of the two first elastic stretching structures are disposed apart from each other.
  • the bonding layer further includes a plurality of second elastic stretching structures disposed in a tiled manner, and the plurality of the first elastic stretching structures and the plurality of the second elastic stretching structures are respectively staggered with each other.
  • the plurality of first elastically stretchable structures and the plurality of second elastically stretchable structures are arranged in a checkered pattern.
  • the elastically stretchable structure comprises a layer of electrostrictive material and two layers of electrode layers respectively disposed on the upper and lower surfaces of the layer of electrostrictive material.
  • the layer of electrostrictive material is a polyurethane layer having a thickness of from 100 to 200 microns.
  • the ultra-thin glass layer has a thickness of 0.05 to 0.2 mm.
  • the ultra-thin glass bonding structure further includes an adhesive layer, and an adhesive layer is disposed between the ultra-thin glass layer and the bonding layer, and between the carrier substrate and the bonding layer.
  • the carrier substrate is a glass substrate having a thickness of 0.5 mm or more.
  • a peeling method for an ultra-thin glass bonding structure comprising the steps of:
  • the stripping method comprises the following steps:
  • the step of dispersing the first elastically stretchable structure in the driving and bonding layer and separating the ultra-thin glass layer of the second elastically stretchable structure from the bonding layer comprises:
  • An electric field is applied to the first elastically stretchable structure to expand and compress the first elastically stretchable structure to separate the ultra-thin glass layer of the second elastically stretchable structure portion from the conformal layer.
  • the step of driving the first elastically stretchable structure to contract and driving the second elastically stretchable structure to expand, so that the ultra-thin glass layer of the first elastically stretchable structure portion is separated from the adhesive layer comprises:
  • a method of fabricating a display device comprising a stripping method of an ultra-thin glass-bonding structure as described above.
  • a bonding process for manufacturing an ultra-thin glass bonding structure comprising: preparing a carrier substrate; forming an electrode layer on the carrier substrate; and forming an electrostriction on a surface of the electrode layer a material layer; further forming an electrode layer on the surface of the electrostrictive material layer; surface-treating the surface of the electrode layer prepared to facilitate bonding the ultra-thin glass layer; The surface of the layer is subjected to a surface treatment; and the ultra-thin glass layer is attached to the surface of the electrode layer to be fabricated.
  • the ultra-thin glass bonding structure and the stripping method and the display device provided by the embodiments of the present invention are provided by separating each of the two first elastic stretching structures of the bonding layer, that is, every two first elastic stretching structures exist
  • the gap has a gap between the ultra-thin glass layer and the bonding surface of the carrier substrate, which greatly reduces the bonding area between the ultra-thin glass layer and the carrier substrate, reduces the adsorption force of the two, and reduces the peeling of the ultra-thin glass from the carrier. Difficulty, avoid damage to ultra-thin glass and improve finished product yield.
  • FIG. 1 is a schematic view of an ultra-thin glass bonding structure according to an embodiment of the present invention
  • FIG. 2 is a schematic view of an ultra-thin glass bonding structure according to still another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a bonding layer according to still another embodiment of the present invention.
  • FIG. 4 is a schematic view of an ultra-thin glass bonding structure according to still another embodiment of the present invention.
  • FIG. 5 is a schematic view of an ultra-thin glass bonding structure according to still another embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a peeling method of an ultra-thin glass bonding structure according to still another embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a peeling method of an ultra-thin glass bonding structure according to still another embodiment of the present invention.
  • an embodiment of the present invention provides an ultra-thin glass bonding structure comprising: an ultra-thin glass layer 1 , a bonding layer 2 and a carrier substrate disposed in a sequential manner. 3;
  • the bonding layer 2 includes a plurality of first elastic stretching structures 21 that are laid flat, and each of the two first elastic stretching structures 21 are disposed apart from each other.
  • the bonding between the ultra-thin glass layer 1 and the carrier substrate 3 is achieved by the bonding layer 2.
  • each of the two first elastically-expandable structures 21 of the bonding layer 2 is separately disposed, that is, there is a gap between every two first elastically-expandable structures 21, that is, the bonding layer 2 actually includes only a plurality of separately disposed in the super a first elastically stretchable structure 21 between the thin glass layer 1 and the carrier substrate 3 (the first elastically stretchable structure 21 may be strip-shaped, or a shape such as a circle or a square), thereby achieving a complete bond compared to a layer
  • the surface area of the bonding layer 2 of the embodiment of the present invention is greatly reduced, so that not all of the bonding surfaces between the ultra-thin glass layer 1 and the bonding surface of the carrier substrate 3 are completely integrated, but there are many voids, which greatly reduces The bonding area between the ultra-thin glass layer 1 and the carrier substrate 3 reduces the ad
  • the expansion and contraction function of the first elastically stretchable structure 21 can change the gap between the ultra-thin glass layer 1 and the carrier substrate 3, and assist in weakening the bonding strength between the ultra-thin glass layer 1 and the carrier substrate 3, so that The ultra-thin glass layer 1 is easily peeled off from the carrier substrate 3.
  • the bonding layer 2 further includes a plurality of second elastic stretching structures 22 arranged in a tile, and the plurality of the first elastic stretching structures 21 and the plurality of the second elastics
  • the flexible structures 22 are staggered with each other.
  • the second elastic expansion structure 22 is inserted between each of the two first elastic expansion structures 21, such that the first elastic expansion structure 21 and the second elastic expansion structure 22 are staggered with each other, and the first The elastically stretchable structure 21 and the second elastically stretchable structure 22 are joined together to form a single joint layer 2, thereby achieving bonding between the ultra-thin glass layer 1 and the carrier substrate 3.
  • the first elastically stretchable structure 21 and the second elastically stretchable structure 22 can be implemented in various ways, such as a heat-expanded material, an energized expansion material, or a magnetostrictive material.
  • the first elastically stretchable structure 21 is first driven to expand, and the ultra-thin glass layer 1 at the first elastically stretchable structure 21 is lifted up, and the second elastically stretchable structure 22 is lifted. No deformation occurred. At this time, the first elastically stretchable structure 21 can lift the ultra-thin glass layer 1 above the second elastically stretchable structure 22, thereby realizing the separation of the ultra-thin glass layer 1 and the bonding layer there.
  • the first elastically stretchable structure 21 is driven to contract, and then the second elastically stretchable structure 22 is driven to expand.
  • the second elastically stretchable structure can lift the ultra-thin glass layer 1 above the first elastically stretchable structure 21 to promote the first The ultra-thin glass layer 1 at the region of the elastically stretchable structure 21 is separated from the bonding layer.
  • the ultra-thin glass layer 1 can be completely separated from the bonding layer, so that the ultra-thin glass layer 1 is uniformly stressed and separated. It is extremely convenient, and it is not easy to damage the ultra-thin glass layer 1, and the ultra-thin glass can be directly peeled off. This greatly reduces the difficulty in peeling off the ultra-thin glass layer 1 from the carrier substrate 3, prevents damage to the ultra-thin glass layer 1, and improves the yield of the finished product; moreover, the carrier substrate 3 can be reused many times, saving cost.
  • the plurality of first elastically stretchable structures 21 and the plurality of second elastically stretchable structures 22 are arranged in a checkerboard pattern.
  • the first elastically stretchable structure 21 and the second elastically stretchable structure 22 are arranged in various manners, and may be a checkerboard shape or a separate elongated shape or the like.
  • the first elastically stretchable structure 21 and the second elastically stretchable structure 22 may be in close contact with each other or may be disposed separately, as long as the two are staggered to facilitate the alternating application of the ultra-thin glass layer 1 to facilitate peeling.
  • the first elastically stretchable structure 21 and the second elastically stretchable structure 22 of the bonding layer 2 each comprise an electrostrictive material layer and two electrode layers 4, and the two electrode layers 4 are respectively disposed on The surface of the upper and lower sides of the electrostrictive material layer.
  • the upper surface of the electrostrictive material layer made of an electroconductive material A layer of electrode layer 4 is respectively disposed on the surface.
  • the electroconductive material layer can be energized directly by the electrode layer 4, thereby enabling the electrostrictive material layer to be energized. Expand or contract;
  • first elastic expansion structure 21 and the second elastic expansion structure 22 may also adopt other materials as a whole, such as a heat-expanded material, wherein the first elastic expansion structure 21 and the second elastic expansion and contraction are realized by the temperature change. Structure 22 expands or contracts;
  • an electric field is first applied to the first elastically stretchable structure 21, and the first elastically stretchable structure 21 is expanded and pressed to the ultra-thin glass layer 1 to make the second elastically stretchable structure 22
  • the ultra-thin glass layer 1 at the region is separated from the bonding layer;
  • Applying an electric field to the second elastically stretchable structure 22 causes the second elastically stretchable structure 22 to expand and press the ultra-thin glass layer 1 to separate the ultra-thin glass layer 1 at the region of the first elastically stretchable structure 21 from the conformal layer .
  • the first elastically stretchable structure 21 and the second elastically stretchable structure 22 of the bonding layer 2 are each a polyurethane layer having a thickness of 100 to 200 ⁇ m.
  • the bonding layer 2 is made of a polyurethane layer having a thickness of 100-200 micrometers, which is convenient to manufacture and is convenient to be applied between the ultra-thin glass layer 1 and the carrier substrate 3.
  • the ultra-thin glass layer 1 has a thickness of 0.05 to 0.2 mm.
  • the embodiment of the present invention adopts a structure in which the first elastic stretching structure 21 and the second elastic stretching structure 22 are staggered, and the ultra-thin glass layer 1 with a minimum thickness of 0.05 mm can be peeled off, and the peeling is convenient, and the ultra-thin glass layer is not damaged. Therefore, the actual use advantage is obvious.
  • the ultra-thin glass bonding structure further includes an adhesive layer 5, between the ultra-thin glass layer 1 and the bonding layer 2, between the carrier substrate 3 and the bonding layer 2.
  • Each of the adhesive layers 5 is provided.
  • the specific structure is that the ultra-thin glass layer 1, the first elastic stretching structure 21, the second elastic stretching structure 22, and the carrier substrate 3 are sequentially formed.
  • the adhesive layer 5 between the ultra-thin glass layer 1 and the adjacent electrode layer 4 and between the carrier substrate 3 and the adjacent electrode layer 4 are connected more. Closer, closer fit, easy to handle the various processes of the LCD display, and also prevent damage to the ultra-thin glass layer 1.
  • the bonding process of the ultra-thin glass bonding structure is specifically:
  • surface treatment such as flattening treatment or conventional treatment such as applying glue
  • the above process steps are preferably carried out in a vacuum environment.
  • the carrier substrate 3 is a glass substrate having a thickness of 0.5 mm or more.
  • the carrier substrate 3 There are various implementations of the carrier substrate 3.
  • a glass substrate having a thickness of 0.5 mm or more is used, and the actual manufacturing cost is low, and it is also easy to obtain, and the advantage as the carrier substrate 3 is obvious.
  • an embodiment of the present invention provides a method for peeling off an ultra-thin glass bonding structure, the peeling method comprising the steps of: driving the first elastically stretchable structure 21 in the bonding layer 2 to expand; peeling off the ultra-thin glass layer 1.
  • the bonding between the ultra-thin glass layer 1 and the carrier substrate 3 is achieved by the bonding layer 2.
  • Each of the two first elastically-expandable structures 21 of the bonding layer 2 is separately disposed, that is, there is a gap between each of the two first elastically-expandable structures 21, that is, the bonding layer 2 actually includes only a plurality of separately disposed in the ultra-thin The first elastically stretchable structure 21 between the glass layer 1 and the carrier substrate 3.
  • the surface area of the bonding layer 2 of the embodiment of the present invention is greatly reduced compared to a complete bonding layer 2, so that not all of the bonding surfaces of the ultra-thin glass layer 1 and the carrier substrate 3 are completely bonded, but There are many voids, which greatly reduces the bonding area of the ultra-thin glass layer 1 and the carrier substrate 3, and reduces the adsorption force of both.
  • the first elastically stretchable structure 21 is directly driven to expand, and the ultra-thin glass layer 1 is peeled off, thereby greatly reducing the difficulty in peeling off the ultra-thin glass from the carrier, that is, applying less force when peeling off the ultra-thin glass. It can be peeled off to avoid damage to the ultra-thin glass and improve the yield of the finished product.
  • the expansion and contraction function of the first elastically stretchable structure 21 can change the gap between the ultra-thin glass layer 1 and the carrier substrate 3, and assist in weakening the bonding strength between the ultra-thin glass layer 1 and the carrier substrate 3, so that The ultra-thin glass layer 1 is easily peeled off from the carrier substrate 3.
  • the step of expanding the first elastically stretchable structure 21 in the driving and bonding layer 2 specifically includes: expanding the first elastically stretchable structure 21 in the driving bonding layer 2 to make the second elastically stretchable structure 22 expand. A portion of the ultra-thin glass layer 1 is separated from the conforming layer.
  • the method further includes:
  • the first elastically stretchable structure 21 is driven to contract, and the second elastically stretchable structure 22 is driven to expand, so that the ultra-thin glass layer 1 of the first elastically stretchable structure 21 is separated from the adhesive layer.
  • the second elastic expansion structure 22 is inserted between each of the two first elastic expansion structures 21 in the bonding layer 2, such that the first elastic expansion structure 21 and the second elastic expansion structure 22 are alternately arranged with each other.
  • the first elastically stretchable structure 21 and the second elastically stretchable structure 22 are joined together to form a single joint layer 2,
  • the first elastically stretchable structure 21 is first driven to expand, and the ultra-thin glass layer 1 at the first elastically stretchable structure 21 is lifted up, and the second elastically stretchable structure 22 is lifted. No deformation occurs.
  • the first elastically stretchable structure 21 can lift the ultra-thin glass layer 1 above the second elastically stretchable structure 22, thereby realizing the separation of the ultra-thin glass layer 1 and the bonding layer there;
  • An elastically stretchable structure 21 is contracted to drive the second elastically stretchable structure 22 to expand.
  • the second elastically stretchable structure can lift the ultra-thin glass layer 1 above the first elastically stretchable structure 21 to promote the first elastically stretchable structure.
  • the ultra-thin glass layer 1 at the region of 21 is separated from the bonding layer.
  • the ultra-thin glass layer 1 can be completely separated from the bonding layer, so that the ultra-thin glass layer 1 is evenly stressed and the separation is extremely convenient. And it is not easy to damage the ultra-thin glass layer 1, that is, the ultra-thin glass can be directly peeled off. This greatly reduces the difficulty in peeling off the ultra-thin glass layer 1 from the carrier substrate 3, prevents damage to the ultra-thin glass layer 1, and improves the yield of the finished product; moreover, the carrier substrate 3 can be reused many times, saving cost.
  • the step of dispersing the first elastically stretchable structure 21 in the driving and bonding layer 2 and separating the ultra-thin glass layer 1 of the second elastically stretchable structure 22 from the bonding layer comprises:
  • the driving of the first elastically stretchable structure 21 is contracted, and the second elastically stretchable structure 22 is driven to expand, so that the ultra-thin glass layer 1 of the first elastically stretchable structure 21 is separated from the adhesive layer.
  • the bonding layer 2 is entirely made of an electrostrictive material layer and an electrode layer 4, and the first elastic stretching structure 21 and the second elastic stretching structure 22 can be alternately energized to achieve expansion or contraction.
  • other materials such as a thermally expanded material may be employed in which the first elastically stretchable structure 21 and the second elastically stretchable structure 22 are expanded or contracted by a change in temperature.
  • a method of fabricating a display device comprising the stripping method of the ultra-thin glass bonding structure as described above is provided.
  • the ultra-thin glass layer 1 used in the display device such as a liquid crystal display can be realized by the stripping method of the ultra-thin glass bonding structure described in the above embodiments, and the ultra-thin glass layer 1 and the carrier substrate 3 are By separating each of the two first elastically stretchable structures 21 of the bonding layer 2, the surface area of the bonding layer 2 of the embodiment of the present invention is greatly reduced compared to a complete bonding layer 2, thereby making the ultra-thin glass layer 1 and The bonding surfaces of the carrier substrate 3 are not completely completely bonded, but there are many voids, so that the bonding area of the ultra-thin glass layer 1 and the carrier substrate 3 is greatly reduced, and the adsorption force of the two is reduced;
  • the first elastically stretchable structure 21 When peeling off, the first elastically stretchable structure 21 is directly driven to expand, and the ultra-thin glass layer 1 is peeled off, thereby greatly reducing the difficulty in peeling off the ultra-thin glass from the carrier.
  • the ultra-thin glass When the ultra-thin glass is peeled off, it can be peeled off by applying a small force to avoid damage to the ultra-thin glass and improve the yield of the finished product; moreover, the expansion and contraction function of the first elastically stretchable structure 21 can change the ultra-thin glass layer 1 and
  • the gap between the carrier substrates 3 assists in weakening the bonding strength between the ultra-thin glass layer 1 and the carrier substrate 3, so that the ultra-thin glass layer 1 is more easily peeled off from the carrier substrate 3, and the ratio used for the display device is realized.
  • There is a thinner glass layer 1 which is thinner in technology, and damage is prevented, and finally the display device is made thinner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Micromachines (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种超薄玻璃贴合结构及其剥离方法、以及显示装置的制作方法,超薄玻璃贴合结构包括:顺次贴合设置的超薄玻璃层(1)、结合层(2)和载体基板(3);结合层(2)包括平铺设置的多个第一可伸缩结构(21),且每两个第一可伸缩结构(21)均分离设置;剥离方法包括:驱动结合层(2)中的第一可伸缩结构(21)膨胀;剥离超薄玻璃层(1);显示装置的制作方法包括上述剥离方法。大大减少超薄玻璃层(1)与载体基板(3)的结合面积,降低二者的吸附力,降低超薄玻璃从载体上剥离时的难度,避免损坏超薄玻璃,提高成品良率。

Description

超薄玻璃贴合结构及其剥离方法和贴合工艺、显示装置的制作方法 技术领域
本发明涉及显示器的制作领域,特别涉及一种超薄玻璃贴合结构及其剥离方法和贴合工艺、以及显示装置的制作方法。
背景技术
薄型化是液晶显示器发展的一个重要方向,这就需要将制作液晶显示器所用的玻璃层做得尽量薄。
目前,制作液晶显示器时,采用的玻璃层为超薄玻璃,由于超薄玻璃太薄太软,所以,制作液晶显示器时须将超薄玻璃贴附在载体上,并对超薄玻璃与载体的贴合面进行平整处理,将二者贴合面全部紧密贴合,制作液晶显示器完成后,再将超薄玻璃从载体上剥离。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
现有超薄玻璃和载体贴合面全部紧密贴附后,二者之间存在较强的吸附力,使得超薄玻璃从载体上剥离时难度较大,且极容易损坏超薄玻璃,导致成品良率低。
发明内容
为了解决现有技术超薄玻璃从载体上剥离时难度较大的问题,本发明提供了一种超薄玻璃贴合结构及其剥离方法、显示装置。具体技术方案如下:
在第一方面,提供了一种超薄玻璃贴合结构,所述超薄玻璃贴合结构包括:顺次贴合设置的超薄玻璃层、结合层和载体基板;
所述结合层包括平铺设置的多个第一弹性伸缩结构,且每两个第一弹性伸缩结构均相互分离设置。
进一步地,所述结合层还包括平铺设置的多个第二弹性伸缩结构,多个所述第一弹性伸缩结构与多个所述第二弹性伸缩结构分别相互交错排布。
作为优选实施例,多个第一弹性伸缩结构与多个第二弹性伸缩结构呈棋盘格状交错排布。
作为优选实施例,所述弹性伸缩结构均包括电致伸缩材料层和两层电极层,两层电极层分别设置在所述电致伸缩材料层的上下两侧的表面。
作为优选实施例,所述电致伸缩材料层为厚度为100-200微米的聚氨酯层。
作为优选实施例,所述超薄玻璃层的厚度为0.05-0.2mm。
进一步地,所述超薄玻璃贴合结构还包括粘胶层,所述超薄玻璃层与结合层之间、所述载体基板与结合层之间均贴合设置有粘胶层。
作为优选实施例,所述载体基板为玻璃基板,所述玻璃基板的厚度大于等于0.5mm。
在第二方面,提供一种超薄玻璃贴合结构的剥离方法,所述剥离方法包括以下步骤:
驱动结合层中的第一可伸缩结构膨胀;
剥离超薄玻璃层。
作为优选实施例,所述剥离方法包括以下步骤:
驱动结合层中的第一弹性伸缩结构膨胀,使第二弹性伸缩结构部分的超薄玻璃层与贴合层分离;
驱动第一弹性伸缩结构收缩,且驱动第二弹性伸缩结构膨胀,使第一弹性伸缩结构部分的超薄玻璃层与贴合层分离;以及
剥离超薄玻璃层。
作为优选实施例,所述驱动结合层中的第一弹性伸缩结构膨胀,使第二弹性伸缩结构部分的超薄玻璃层与贴合层分离的步骤具体包括:
向所述第一弹性伸缩结构施加电场,使第一弹性伸缩结构膨胀并挤压所述超薄玻璃层,使第二弹性伸缩结构部分的超薄玻璃层与贴合层分离。
作为优选实施例,所述驱动第一弹性伸缩结构收缩,且驱动第二弹性伸缩结构膨胀,使第一弹性伸缩结构部分的超薄玻璃层与贴合层分离的步骤具体包括:
去除第一弹性伸缩结构的电场,使第一弹性伸缩结构收缩;
向第二弹性伸缩结构施加电场,使第二弹性伸缩结构膨胀并挤压所述超薄玻璃层,使第一弹性伸缩结构部分的超薄玻璃层与贴合层分 离。
在第三方面,提供一种显示装置的制作方法,所述制作方法包括如上文所述的超薄玻璃贴合结构的剥离方法。
在第四方面,提供了一种制造超薄玻璃贴合结构的贴合工艺,包括:准备载体基板;在所述载体基板上形成一层电极层;在所述电极层的表面制作电致伸缩材料层;在所述电致伸缩材料层的表面再制作一层电极层;对后制作的所述电极层的表面进行表面处理,以便有利于贴合超薄玻璃层;对所述超薄玻璃层的表面进行表面处理;以及将所述超薄玻璃层贴在后制作的电极层的表面。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的超薄玻璃贴合结构及其剥离方法、显示装置,通过将结合层的每两个第一弹性伸缩结构均分离设置,即每两个第一弹性伸缩结构之间均存在间隙,使得超薄玻璃层与载体基板的贴合面之间存在较多空隙,大大减少超薄玻璃层与载体基板的结合面积,降低二者的吸附力,降低超薄玻璃从载体上剥离时的难度,避免损坏超薄玻璃,提高成品良率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。应当认识到,下文说明的实施例仅用于解释本发明的目的,并不构成对本发明的范围的限制。并且应当认识到,附图并不是按照比例绘制的,相反一些部件可能被夸大以突出显示本发明的创新之处。
图1是本发明实施例提供的超薄玻璃贴合结构的示意图;
图2是本发明的又一实施例提供的超薄玻璃贴合结构的示意图;
图3是本发明的又一实施例提供的结合层的结构示意图;
图4是本发明的又一实施例提供的超薄玻璃贴合结构的示意图;
图5是本发明的又一实施例提供的超薄玻璃贴合结构的示意图;
图6是本发明的又一实施例提供的超薄玻璃贴合结构的剥离方法的流程示意图;
图7是本发明的又一实施例提供的超薄玻璃贴合结构的剥离方法的流程示意图。
附图标记列表:1超薄玻璃层,
2结合层,21第一弹性伸缩结构,22第二弹性伸缩结构,
3载体基板,
4电极层,
5粘胶层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
如图1所示,本发明的实施例提供了一种超薄玻璃贴合结构,所述超薄玻璃贴合结构包括:顺次贴合设置的超薄玻璃层1、结合层2和载体基板3;
所述结合层2包括平铺设置的多个第一弹性伸缩结构21,且每两个第一弹性伸缩结构21均相互分离设置。
本发明实施例中,超薄玻璃层1与载体基板3之间通过结合层2实现贴合。其中,将结合层2的每两个第一弹性伸缩结构21均分离设置,即每两个第一弹性伸缩结构21之间均存在间隙,即结合层2实际上只包括多个分离设置在超薄玻璃层1与载体基板3之间的第一弹性伸缩结构21(该第一弹性伸缩结构21可以是条状的,或者是圆形或方块等形状),由此相比一层完整的结合层2,本发明实施例的结合层2的表面积大大减少,从而使得超薄玻璃层1与载体基板3的贴合面之间并不是全部完整贴合,而是存在较多空隙,如此大大减少超薄玻璃层1与载体基板3的结合面积,降低二者的吸附力,降低从载体上剥离超薄玻璃时的难度。因此,在剥离超薄玻璃时,施加较小的力即可将其剥离,避免损坏超薄玻璃,提高成品良率。
而且,第一弹性伸缩结构21的膨胀收缩功能能够改变超薄玻璃层1与载体基板3之间的空隙,辅助减弱超薄玻璃层1与载体基板3二者之间的贴合强度,使得更容易从载体基板3上剥离超薄玻璃层1。
如图2所示,进一步地,所述结合层2还包括平铺设置的多个第二弹性伸缩结构22,多个所述第一弹性伸缩结构21与多个所述第二弹 性伸缩结构22分别相互交错排布。
其中,本发明实施例中,在每两个第一弹性伸缩结构21之间插入第二弹性伸缩结构22,如此第一弹性伸缩结构21与第二弹性伸缩结构22相互交错排布,并且第一弹性伸缩结构21与第二弹性伸缩结构22拼合在一起,形成一整块结合层2,实现超薄玻璃层1与载体基板3二者之间的贴合。第一弹性伸缩结构21与第二弹性伸缩结构22的实现方式有多种,如采用受热膨胀材料、通电膨胀材料或磁致伸缩材料等。
当需要将超薄玻璃层1从载体基板3上剥离时,首先驱动第一弹性伸缩结构21膨胀,将第一弹性伸缩结构21处的超薄玻璃层1顶起,而第二弹性伸缩结构22未发生形变。此时,第一弹性伸缩结构21即可将第二弹性伸缩结构22上方的超薄玻璃层1顶起,实现该处的超薄玻璃层1与贴合层分离。
然后驱动第一弹性伸缩结构21收缩,再驱动第二弹性伸缩结构22膨胀,同样道理,第二弹性伸缩结构即可将第一弹性伸缩结构21上方的超薄玻璃层1顶起,促使第一弹性伸缩结构21的区域处的超薄玻璃层1与贴合层分离。
如此,通过交错排布的第一弹性伸缩结构21和第二弹性伸缩结构22交替膨胀,超薄玻璃层1即可与贴合层完全分离,使得超薄玻璃层1受力均匀,并且其分离极为方便,且不容易损坏超薄玻璃层1,可直接将超薄玻璃剥离即可。这大大降低超薄玻璃层1从载体基板3上剥离时的难度,防止损坏超薄玻璃层1,提高成品良率;而且,载体基板3可以多次重复利用,节省成本。
如图3所示,作为优选,多个第一弹性伸缩结构21与多个第二弹性伸缩结构22呈棋盘格状交错排布。当然,第一弹性伸缩结构21与第二弹性伸缩结构22的排布方式有多种,可以为棋盘格状或分离的长条形状等。且第一弹性伸缩结构21与第二弹性伸缩结构22可以相互紧贴,也可以分离设置,只要实现两者交错排布便于对超薄玻璃层1交替施力,使其便于剥离即可。
如图4所示,作为优选,所述结合层2的第一弹性伸缩结构21和第二弹性伸缩结构22均包括电致伸缩材料层和两层电极层4,两层电极层4分别设置在所述电致伸缩材料层的上下两侧的表面。
本发明实施例中,在由电致材料制成的电致伸缩材料层的上下表 面分别设置一层电极层4。在对结合层2中不同的第一弹性伸缩结构21和第二弹性伸缩结构22区域通电时,可直接通过电极层4进行通电操作,即可实现对电致伸缩材料层进行通电,从而使其膨胀或收缩;
另外,本领域技术人员可知,第一弹性伸缩结构21和第二弹性伸缩结构22整体也可采用其他材料,如受热膨胀材料,其中通过温度的改变实现第一弹性伸缩结构21和第二弹性伸缩结构22膨胀或收缩;
在本发明实施例中,具体操作时:首先向所述第一弹性伸缩结构21施加电场,使第一弹性伸缩结构21膨胀并挤压所述超薄玻璃层1,使第二弹性伸缩结构22的区域处的超薄玻璃层1与贴合层分离;
去除第一弹性伸缩结构21的电场,使第一弹性伸缩结构21收缩;
向第二弹性伸缩结构22施加电场,使第二弹性伸缩结构22膨胀并挤压所述超薄玻璃层1,使第一弹性伸缩结构21的区域处的超薄玻璃层1与贴合层分离。
作为优选,所述结合层2的第一弹性伸缩结构21和第二弹性伸缩结构22均为厚度为100-200微米的聚氨酯层。
其中,结合层2采用厚度为100-200微米的聚氨酯层,制作比较方便,且便于应用在超薄玻璃层1与载体基板3之间。
作为优选,所述超薄玻璃层1的厚度为0.05-0.2mm。
本发明实施例采用第一弹性伸缩结构21和第二弹性伸缩结构22交错的结构,可实现剥离最小厚度为0.05mm厚的超薄玻璃层1,剥离方便,且不会损坏超薄玻璃层1,因此实际使用优势明显。
如图5所示,更进一步地,所述超薄玻璃贴合结构还包括粘胶层5,所述超薄玻璃层1与结合层2之间、所述载体基板3与结合层2之间均贴合设置有粘胶层5。
本发明实施例中,具体结构为超薄玻璃层1、第一弹性伸缩结构21和第二弹性伸缩结构22、载体基板3顺次贴合形成。通过在超薄玻璃层1与相邻的电极层4之间、载体基板3与相邻的电极层4之间均设置粘胶层5,使得超薄玻璃层1、载体基板3连接得更为紧密,贴合更密切,便于制作液晶显示器时各种工艺的操作,也防止损坏超薄玻璃层1。
本发明实施例中,超薄玻璃贴合结构的贴合工艺具体为:
准备载体基板3,并在载体基板3上形成一层电极层4;在该层电 极层4表面制作电致伸缩材料层;在电致伸缩材料层表面再制作一层电极层4;对该层电极层4表面进行表面处理(如平整化处理,或涂抹粘胶等常规处理),以便有利于贴合超薄玻璃层1;对超薄玻璃层1表面进行表面处理;将超薄玻璃层1贴在电极层4的表面。
以上工艺步骤优选在真空环境中进行。
作为优选,所述载体基板3为玻璃基板,所述玻璃基板的厚度大于等于0.5mm。
载体基板3的实现方式有多种,本发明实施例中,采用厚度大于等于0.5mm的玻璃基板,实际制作成本较低,也容易获得,作为载体基板3优势明显。
如图6所示,本发明实施例提供一种超薄玻璃贴合结构的剥离方法,所述剥离方法包括以下步骤:驱动结合层2中的第一弹性伸缩结构21膨胀;剥离超薄玻璃层1。
本发明实施例中,超薄玻璃层1与载体基板3之间通过结合层2实现贴合。其中将结合层2的每两个第一弹性伸缩结构21均分离设置,即每两个第一弹性伸缩结构21之间均存在间隙,即结合层2实际上只包括多个分离设置在超薄玻璃层1与载体基板3之间的第一弹性伸缩结构21。因此相比一层完整的结合层2,本发明实施例的结合层2的表面积大大减少,从而使得超薄玻璃层1与载体基板3的贴合面之间并不是全部完整贴合,而是存在较多空隙,如此大大减少超薄玻璃层1与载体基板3的结合面积,降低二者的吸附力。剥离时,直接驱动第一弹性伸缩结构21膨胀,将超薄玻璃层1剥离即可,从而大大降低超薄玻璃从载体上剥离时的难度,即在剥离超薄玻璃时,施加较小的力即可将其剥离,避免损坏超薄玻璃,提高成品良率。
而且,第一弹性伸缩结构21的膨胀收缩功能能够改变超薄玻璃层1与载体基板3之间的空隙,辅助减弱超薄玻璃层1与载体基板3二者之间的贴合强度,使得更容易从载体基板3上剥离超薄玻璃层1。
如图7所示,作为优选,所述驱动结合层2中的第一弹性伸缩结构21膨胀的步骤具体包括:驱动结合层2中的第一弹性伸缩结构21膨胀,使第二弹性伸缩结构22部分的超薄玻璃层1与贴合层分离。
进一步地,所述驱动结合层2中的第一弹性伸缩结构21膨胀之后,还包括:
驱动第一弹性伸缩结构21收缩,且驱动第二弹性伸缩结构22膨胀,使第一弹性伸缩结构21部分的超薄玻璃层1与贴合层分离。
本发明实施例中,结合层2中的每两个第一弹性伸缩结构21之间插入第二弹性伸缩结构22,如此第一弹性伸缩结构21与第二弹性伸缩结构22相互交错排布,由此第一弹性伸缩结构21与第二弹性伸缩结构22拼合在一起,形成一整块结合层2,
当需要将超薄玻璃层1从载体基板3上剥离时,首先驱动第一弹性伸缩结构21膨胀,将第一弹性伸缩结构21处的超薄玻璃层1顶起,而第二弹性伸缩结构22未发生形变,此时,第一弹性伸缩结构21即可将第二弹性伸缩结构22上方的超薄玻璃层1顶起,实现该处的超薄玻璃层1与贴合层分离;然后驱动第一弹性伸缩结构21收缩,再驱动第二弹性伸缩结构22膨胀,同样道理,第二弹性伸缩结构即可将第一弹性伸缩结构21上方的超薄玻璃层1顶起,促使第一弹性伸缩结构21的区域处的超薄玻璃层1与贴合层分离。
如此,通过交错排布的第一弹性伸缩结构21和第二弹性伸缩结构22交替膨胀,超薄玻璃层1即可与贴合层完全分离,使得超薄玻璃层1受力均匀,分离极为方便,且不容易损坏超薄玻璃层1,即直接将超薄玻璃剥离即可。这大大降低超薄玻璃层1从载体基板3上剥离时的难度,防止损坏超薄玻璃层1,提高成品良率;而且,载体基板3可以多次重复利用,节省成本。
作为优选,所述驱动结合层2中的第一弹性伸缩结构21膨胀,使第二弹性伸缩结构22部分的超薄玻璃层1与贴合层分离的步骤具体包括:
向所述第一弹性伸缩结构21施加电场,使第一弹性伸缩结构21膨胀并挤压所述超薄玻璃层1,以使第二弹性伸缩结构22部分的超薄玻璃层1与贴合层分离。
作为优选,所述驱动第一弹性伸缩结构21收缩,且驱动第二弹性伸缩结构22膨胀,使第一弹性伸缩结构21部分的超薄玻璃层1与贴合层分离,具体包括:
去除第一弹性伸缩结构21的电场,使第一弹性伸缩结构21收缩;
向第二弹性伸缩结构22施加电场,使第二弹性伸缩结构22膨胀并挤压所述超薄玻璃层1,以使第一弹性伸缩结构21部分的超薄玻璃 层1与贴合层分离。
其中,本发明实施例中,结合层2整体采用电致伸缩材料层加电极层4制成,可对第一弹性伸缩结构21和第二弹性伸缩结构22进行交替通电即可实现其膨胀或收缩,操作方便,也可采用其他材料,如受热膨胀材料,其中通过温度的改变实现第一弹性伸缩结构21和第二弹性伸缩结构22膨胀或收缩。
本发明实施例中,提供一种显示装置的制作方法,所述显示装置包括如上文描述的超薄玻璃贴合结构的剥离方法。
本发明实施例中,液晶显示器等显示装置中采用的超薄玻璃层1,可通过以上实施例中所述的超薄玻璃贴合结构的剥离方法实现,超薄玻璃层1与载体基板3之间通过将结合层2的每两个第一弹性伸缩结构21均分离设置,相比一层完整的结合层2,本发明实施例的结合层2表面积大大减少,从而使得超薄玻璃层1与载体基板3的贴合面之间并不是全部完整贴合,而是存在较多空隙,如此大大减少超薄玻璃层1与载体基板3的结合面积,降低二者的吸附力;
剥离时,直接驱动第一弹性伸缩结构21膨胀,将超薄玻璃层1剥离即可,从而大大降低超薄玻璃从载体上剥离时的难度。在剥离超薄玻璃时,施加较小的力即可将其剥离,避免损坏超薄玻璃,提高成品良率;而且,第一弹性伸缩结构21的膨胀收缩功能,能够改变超薄玻璃层1与载体基板3之间的空隙,辅助减弱超薄玻璃层1与载体基板3二者之间的贴合强度,使得超薄玻璃层1更容易从载体基板3上剥离,实现显示装置所用的比现有技术更薄的超薄玻璃层1,且避免损坏,最终实现显示装置的薄型化。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。应当注意的是,措词‘包括’并不排除在权利要求未列出的元件或步骤的存在。元件前面的措词‘一’或‘一个’并不排除多个这样的元件的存在。在相互不同从属权利要求中记载某些措施的简单事实不表明这些措施的组合不能被用于改进。在权利要求中的任何参考符号不应当被解释为限制范围。

Claims (14)

  1. 一种超薄玻璃贴合结构,其特征在于,所述超薄玻璃贴合结构包括:顺次贴合设置的超薄玻璃层、结合层和载体基板;
    所述结合层包括平铺设置的多个第一弹性伸缩结构,且每两个第一弹性伸缩结构均相互分离设置。
  2. 根据权利要求1所述的超薄玻璃贴合结构,其特征在于,所述结合层还包括平铺设置的多个第二弹性伸缩结构,多个所述第一弹性伸缩结构与多个所述第二弹性伸缩结构分别相互交错排布。
  3. 根据权利要求2所述的超薄玻璃贴合结构,其特征在于,多个第一弹性伸缩结构与多个第二弹性伸缩结构呈棋盘格状交错排布。
  4. 根据权利要求1-3中的任一项所述的超薄玻璃贴合结构,其特征在于,所述弹性伸缩结构均包括电致伸缩材料层和两层电极层,两层电极层分别设置在所述电致伸缩材料层的上下两侧的表面。
  5. 根据权利要求4所述的超薄玻璃贴合结构,其特征在于,所述电致伸缩材料层为厚度为100-200微米的聚氨酯层。
  6. 根据权利要求1-3中任一项所述的超薄玻璃贴合结构,其特征在于,所述超薄玻璃层的厚度为0.05-0.2mm。
  7. 根据权利要求6所述的超薄玻璃贴合结构,其特征在于,所述超薄玻璃贴合结构还包括粘胶层,所述超薄玻璃层与结合层之间、所述载体基板与结合层之间均贴合设置有粘胶层。
  8. 根据权利要求7所述的超薄玻璃贴合结构,其特征在于,所述载体基板为玻璃基板,所述玻璃基板的厚度大于等于0.5mm。
  9. 一种用于权利要求1-8中任一项所述的超薄玻璃贴合结构的剥离方法,其特征在于,所述剥离方法包括以下步骤:
    驱动结合层中的第一弹性伸缩结构膨胀;
    剥离超薄玻璃层。
  10. 一种用于根据权利要求2-4中任一项所述的超薄玻璃贴合结构的剥离方法,其特征在于,所述剥离方法包括以下步骤:
    驱动结合层中的第一弹性伸缩结构膨胀,使在第二弹性伸缩结构的区域处的超薄玻璃层与贴合层分离;
    驱动第一弹性伸缩结构收缩,且驱动第二弹性伸缩结构膨胀,使 在第一弹性伸缩结构的区域处的超薄玻璃层与贴合层分离;以及
    剥离超薄玻璃层。
  11. 根据权利要求10所述的剥离方法,其特征在于,所述驱动结合层中的第一弹性伸缩结构膨胀,使在第二弹性伸缩结构的区域处的超薄玻璃层与贴合层分离的步骤具体包括:
    向所述第一弹性伸缩结构施加电场,使第一弹性伸缩结构膨胀并挤压所述超薄玻璃层,以使在第二弹性伸缩结构的区域处的超薄玻璃层与贴合层分离。
  12. 根据权利要求10所述的剥离方法,其特征在于,所述驱动第一弹性伸缩结构收缩,且驱动第二弹性伸缩结构膨胀,使在第一弹性伸缩结构的区域处的超薄玻璃层与贴合层分离的步骤具体包括:
    去除施加到第一弹性伸缩结构的电场,使第一弹性伸缩结构收缩;
    向第二弹性伸缩结构施加电场,使第二弹性伸缩结构膨胀并挤压所述超薄玻璃层,以使在第一弹性伸缩结构的区域处的超薄玻璃层与贴合层分离。
  13. 一种显示装置的制作方法,其特征在于,所述制作方法包括如权利要求9-12中的任一项所述的剥离方法。
  14. 一种制造超薄玻璃贴合结构的贴合工艺,包括:
    准备载体基板;
    在所述载体基板上形成一层电极层;
    在所述电极层的表面制作电致伸缩材料层;
    在所述电致伸缩材料层的表面再制作一层电极层;
    对后制作的所述电极层的表面进行表面处理,以便有利于贴合超薄玻璃层;
    对所述超薄玻璃层的表面进行表面处理;以及
    将所述超薄玻璃层贴在后制作的电极层的表面。
PCT/CN2015/087207 2015-03-30 2015-08-17 超薄玻璃贴合结构及其剥离方法和贴合工艺、显示装置的制作方法 WO2016155198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/905,259 US10493742B2 (en) 2015-03-30 2015-08-17 Ultra-thin glass attachment structure and a stripping method and attaching process thereof,and a manufacturing method of a display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510144150.4A CN104698631B (zh) 2015-03-30 2015-03-30 一种超薄玻璃贴合结构及其剥离方法、显示装置
CN201510144150.4 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016155198A1 true WO2016155198A1 (zh) 2016-10-06

Family

ID=53345934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087207 WO2016155198A1 (zh) 2015-03-30 2015-08-17 超薄玻璃贴合结构及其剥离方法和贴合工艺、显示装置的制作方法

Country Status (3)

Country Link
US (1) US10493742B2 (zh)
CN (1) CN104698631B (zh)
WO (1) WO2016155198A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698631B (zh) * 2015-03-30 2018-07-20 京东方科技集团股份有限公司 一种超薄玻璃贴合结构及其剥离方法、显示装置
CN107564856B (zh) * 2016-07-01 2020-02-21 上海和辉光电有限公司 一种柔性基板的剥离方法
CN106527796B (zh) * 2016-10-31 2019-06-07 京东方科技集团股份有限公司 一种面板制作方法、触控面板及显示设备
CN106711078B (zh) * 2016-12-29 2019-08-13 昆山工研院新型平板显示技术中心有限公司 一种柔性器件的制作方法
CN107068723B (zh) * 2017-04-21 2020-02-18 京东方科技集团股份有限公司 柔性显示母板、柔性显示基板及其制备方法
CN109484000A (zh) * 2017-09-13 2019-03-19 陈儒德 玻璃面板分离装置及其应用方法
CN109343248A (zh) * 2018-12-06 2019-02-15 深圳市华星光电半导体显示技术有限公司 真空贴合装置及其脱离显示面板的方法
CN110357446A (zh) * 2019-07-15 2019-10-22 浙江美迪凯现代光电有限公司 一种新型贴合镀膜工艺
CN111276637B (zh) * 2020-03-19 2023-08-25 合肥鑫晟光电科技有限公司 柔性显示基板及其制作方法、显示装置
CN112605787B (zh) * 2020-12-14 2022-02-15 凯盛科技股份有限公司蚌埠华益分公司 用于k9玻璃加工超薄玻璃的抛光盘及抛光设备
CN113372018B (zh) * 2021-06-18 2022-12-02 江西沃格光电股份有限公司 超薄玻璃及其表面处理方法和显示装置
CN114919167B (zh) * 2022-05-12 2024-02-13 四川旭虹光电科技有限公司 超薄玻璃贴合装置及超薄玻璃贴合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827907A (zh) * 2007-10-12 2010-09-08 琳得科株式会社 粘接片及其制造方法
CN102834943A (zh) * 2011-03-25 2012-12-19 日本碍子株式会社 层叠体及其制造方法
CN103144071A (zh) * 2013-04-09 2013-06-12 友达光电股份有限公司 一种超薄玻璃的剥离方法
KR20140006306A (ko) * 2012-07-03 2014-01-16 인텔렉추얼디스커버리 주식회사 플렉서블 디스플레이의 제조 방법
CN104465475A (zh) * 2013-09-22 2015-03-25 昆山工研院新型平板显示技术中心有限公司 柔性显示器件的制备方法及柔性显示器件
CN104698631A (zh) * 2015-03-30 2015-06-10 京东方科技集团股份有限公司 一种超薄玻璃贴合结构及其剥离方法、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651799B2 (ja) * 2000-10-18 2011-03-16 日東電工株式会社 エネルギー線硬化型熱剥離性粘着シート、及びこれを用いた切断片の製造方法
JP2004115766A (ja) * 2002-09-30 2004-04-15 Dainippon Printing Co Ltd 粘着シート
WO2010015093A1 (en) * 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
US8633916B2 (en) * 2009-12-10 2014-01-21 Apple, Inc. Touch pad with force sensors and actuator feedback
SG186204A1 (en) * 2010-06-11 2013-01-30 3M Innovative Properties Co Positional touch sensor with force measurement
US9158958B2 (en) * 2010-10-28 2015-10-13 Synaptics Incorporated Signal strength enhancement in a biometric sensor array
CA2868986C (en) * 2011-03-30 2021-07-27 Ambature Inc. Electrical, mechanical, computing, and/or other devices formed of extremely low resistance materials
US8724832B2 (en) * 2011-08-30 2014-05-13 Qualcomm Mems Technologies, Inc. Piezoelectric microphone fabricated on glass
US9357312B2 (en) * 2012-11-21 2016-05-31 Novasentis, Inc. System of audio speakers implemented using EMP actuators
JP5904174B2 (ja) * 2013-08-22 2016-04-13 Smk株式会社 タッチパネルの支持構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827907A (zh) * 2007-10-12 2010-09-08 琳得科株式会社 粘接片及其制造方法
CN102834943A (zh) * 2011-03-25 2012-12-19 日本碍子株式会社 层叠体及其制造方法
KR20140006306A (ko) * 2012-07-03 2014-01-16 인텔렉추얼디스커버리 주식회사 플렉서블 디스플레이의 제조 방법
CN103144071A (zh) * 2013-04-09 2013-06-12 友达光电股份有限公司 一种超薄玻璃的剥离方法
CN104465475A (zh) * 2013-09-22 2015-03-25 昆山工研院新型平板显示技术中心有限公司 柔性显示器件的制备方法及柔性显示器件
CN104698631A (zh) * 2015-03-30 2015-06-10 京东方科技集团股份有限公司 一种超薄玻璃贴合结构及其剥离方法、显示装置

Also Published As

Publication number Publication date
CN104698631B (zh) 2018-07-20
US20170106643A1 (en) 2017-04-20
US10493742B2 (en) 2019-12-03
CN104698631A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2016155198A1 (zh) 超薄玻璃贴合结构及其剥离方法和贴合工艺、显示装置的制作方法
TWI423739B (zh) 可撓式基板結構之製造方法
TWI643753B (zh) 曲面貼合裝置及其貼合方法
WO2018192389A1 (zh) 一种用于微元件转移的转置头
WO2021003848A1 (zh) 显示面板和显示面板的制备方法
JP2008293000A5 (zh)
JP2009516863A (ja) 複数の薄膜部品を含むスクリーン形の可撓性電子デバイスを製造する方法
WO2014012338A1 (zh) 柔性显示器件的制造方法
WO2017118118A1 (zh) 胶带及其制作方法、显示装置
WO2015000225A1 (zh) 一种柔性显示器的制备方法和柔性显示器
CN104409408A (zh) 一种刚性基板及柔性显示器的制作方法
JPWO2008093408A1 (ja) 粘着チャック装置
WO2020237857A1 (zh) 液晶显示母板结构及其切割方法
CN103681484A (zh) 柔性显示装置的制造方法及用于制造该装置的载体基板
JP4976915B2 (ja) 静電チャックおよび静電チャックの製造方法
KR100580339B1 (ko) 액정 디스플레이 패널의 제조 방법
CN107564856B (zh) 一种柔性基板的剥离方法
WO2008139684A1 (ja) Soi基板の製造方法及びsoi基板
JP7080063B2 (ja) 剥離接合同時実行装置及び方法
JP6055597B2 (ja) 貼付方法及び貼付装置
KR101955335B1 (ko) 스탬프 구조체 및 이를 이용한 전사 방법
KR101677014B1 (ko) 플렉서블 디스플레이 제조방법
WO2021184332A1 (zh) 模具、显示装置的制备方法
CN111223810A (zh) 一种晶圆键合加压装置、晶圆键合的方法及晶圆键合设备
WO2020124810A1 (zh) 柔性显示屏及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14905259

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887158

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15887158

Country of ref document: EP

Kind code of ref document: A1