WO2016152763A1 - 核酸の回収方法 - Google Patents

核酸の回収方法 Download PDF

Info

Publication number
WO2016152763A1
WO2016152763A1 PCT/JP2016/058658 JP2016058658W WO2016152763A1 WO 2016152763 A1 WO2016152763 A1 WO 2016152763A1 JP 2016058658 W JP2016058658 W JP 2016058658W WO 2016152763 A1 WO2016152763 A1 WO 2016152763A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
aluminum oxide
carrier
water
adsorbed
Prior art date
Application number
PCT/JP2016/058658
Other languages
English (en)
French (fr)
Inventor
翔太 関口
慎二郎 澤田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680015280.0A priority Critical patent/CN107406847A/zh
Priority to US15/556,954 priority patent/US11118173B2/en
Priority to CA2977347A priority patent/CA2977347A1/en
Priority to JP2016518466A priority patent/JP6711270B2/ja
Priority to KR1020177027667A priority patent/KR102488291B1/ko
Priority to BR112017017878-8A priority patent/BR112017017878A2/ja
Priority to EP16768666.6A priority patent/EP3272866B1/en
Publication of WO2016152763A1 publication Critical patent/WO2016152763A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a method for recovering nucleic acid, an aluminum oxide carrier on which a water-soluble neutral polymer is adsorbed, and a kit for recovering nucleic acid.
  • miRNA is a single-stranded RNA of 18 to 25 bases and biosynthesized from pre-miRNA of 60 to 90 bases. These have a function of regulating protein synthesis and gene expression, and thus are considered to be related to diseases, and are attracting attention as targets for gene analysis.
  • a next-generation sequencer such as a metagenomic diagnostic method, and is attracting attention as a novel gene analysis method.
  • the first step required for gene analysis is a step of recovering nucleic acid from a biological sample. If the nucleic acid can be recovered with high purity and high yield, highly sensitive gene detection can be performed in the subsequent detection reaction.
  • Typical methods for recovering nucleic acid include phenol / chloroform extraction, ethanol precipitation, and nucleic acid adsorption onto silica.
  • the most versatile method is the Boom method described in Patent Document 1 in which a nucleic acid is adsorbed and eluted by a metal oxide containing silica.
  • This method is characterized in that the nucleic acid can be concentrated simultaneously with the recovery of the nucleic acid from the silica adsorbed with the nucleic acid by centrifugation.
  • an organic solvent such as alcohol in the nucleic acid adsorption process, and there are problems such as complicated recovery operations and solvent disposal.
  • these organic solvents are mixed into the isolated nucleic acid and affect the subsequent detection reaction.
  • Patent Document 2 describes that the adsorptivity of a nucleic acid having a length of 300 base pairs or more and 1000 base pairs or less to silica is inferior to that of a nucleic acid having a length longer than that, It is expected that it will be difficult to recover short pre-miRNA and miRNA. Since gene analysis is also used in the medical field, a method capable of recovering nucleic acid without using complicated operations and organic solvents is preferable.
  • Patent Documents 3 and 4 describe nucleic acid recovery methods that do not use organic solvents.
  • Patent Document 3 describes a method for efficiently recovering nucleic acid by adsorbing to alpha aluminum oxide particles, zirconia particles, titania particles, and the like.
  • Patent Document 4 describes a method for adsorbing and recovering a nucleic acid using the principle of ion exchange chromatography, and it is shown that aluminum oxide can be used as an anion exchange material.
  • Patent Document 5 describes that depending on the solution in which the nucleic acid is dissolved, the nucleic acid can be firmly bound to alpha aluminum oxide and gamma aluminum oxide, or conversely, the binding can be prevented. Yes. Moreover, it is described that the bound nucleic acid is hardly eluted even after repeated washing.
  • Patent Document 3 or 4 shows that nucleic acid can be efficiently recovered using aluminum oxide
  • Patent Document 5 describes that bound nucleic acid is not eluted. Therefore, the inventors examined a method for recovering nucleic acid using aluminum oxide described in Patent Document 3.
  • the present inventors considered that if the elution rate of nucleic acid bound to aluminum oxide can be improved, the nucleic acid can be efficiently recovered by a simple method without using an organic solvent.
  • the present inventors have found that by adsorbing a water-soluble neutral polymer on the surface of aluminum oxide, the elution rate of nucleic acid can be improved without reducing the adsorption rate of nucleic acid.
  • a method for recovering nucleic acid from a biological sample comprising the following steps: Step a) A step of mixing an aluminum oxide carrier adsorbed on the surface with a water-soluble neutral polymer and a solution containing the nucleic acid, and adsorbing the nucleic acid on the carrier, Step b) separating the carrier adsorbed with the nucleic acid from the solution mixed in step a); Step c) a step of adding the eluate to the carrier adsorbed with the nucleic acid separated in step b) and recovering the nucleic acid;
  • a method for recovering nucleic acid comprising: (2) The nucleic acid recovery method according to (1), wherein the water-soluble neutral polymer is a polymer having a zeta potential of ⁇ 10 mV to +10 mV in a pH 7 solution.
  • the carrier according to (6), wherein the water-soluble neutral polymer is a polymer having a zeta potential of ⁇ 10 mV to +10 mV in a pH 7 solution.
  • the carrier according to (6) or (7), wherein the water-soluble neutral polymer is polyethylene glycol, polyvinyl pyrrolidone, poly (2-ethyl-2-oxazoline) or hydroxypropylmethylcellulose.
  • a nucleic acid recovery kit comprising the carrier according to any one of (6) to (9) and a buffer solution.
  • nucleic acid can be recovered in a high yield by a simple method without using an organic solvent, and pre-miRNA or Even very short nucleic acids such as miRNA can be recovered in high yield.
  • the biological sample used in the present invention can be any sample containing nucleic acid.
  • the nucleic acid include RNA, DNA, RNA / DNA (chimera), and artificial nucleic acid.
  • DNA include cDNA, genomic DNA, and synthetic DNA.
  • RNA include total RNA, mRNA, rRNA, miRNA, siRNA, snoRNA, snRNA or non-coding RNA, precursors thereof, or synthetic RNA.
  • Synthetic DNA and synthetic RNA can be artificially produced, for example, using an automatic nucleic acid synthesizer based on a predetermined base sequence (which may be either a natural sequence or a non-natural sequence).
  • biological samples include cultured cells, culture solutions of cultured cells, cell-derived samples such as tissue samples and specimens, microorganism-derived samples such as bacteria and viruses, animal-derived samples including humans such as body fluids and stool, nucleic acids
  • a solution containing a compound having a biological function such as protein, sugar or lipid can be used, but is not limited thereto.
  • the biological sample is preferably a cultured cell or body fluid, more preferably blood.
  • the blood includes whole blood, plasma, serum, blood cells and the like.
  • the present invention may be applied as it is after collection, or may be diluted by adding a solution after collection.
  • the biological sample is a solid sample such as a cell pellet or tissue piece, it may be diluted with water or a buffer after collection and used in the present invention.
  • the biological sample may be processed as follows, if necessary. This is because nucleic acids are encapsulated in biological samples in compounds such as cell membranes, cell walls, vesicles, liposomes, micelles, ribosomes, histones, nuclear membranes, mitochondria, viral capsids, envelopes, endosomes or exosomes. This is because there are many cases that are interacting with each other. In order to recover the nucleic acid with a higher yield, a treatment intended to be liberated from these may be performed.
  • the following treatment can be performed in order to increase the efficiency of recovering nucleic acid from a biological sample containing E. coli.
  • a mixture of 0.2M sodium hydroxide and 1% SDS can be added to a biological sample containing E. coli (alkali denaturation method), or a 10% sarkosyl solution can be added. (Non-denaturing method with sarkosyl).
  • lysozyme may be added to these solutions.
  • the proteinase K can be treated at 37 ° C. for 1 hour.
  • sonication can be performed.
  • the following treatment can be performed on the biological sample.
  • 10% SDS can be added after treatment with zymolyce commercially available from Seikagaku Corporation.
  • the following treatment can be performed on the biological sample.
  • 1% SDS can be added.
  • 4M or more of guanidinium chloride, guanidine thiocyanate, urea and the like can be added.
  • sarkosyl may be added to 0.5% or more.
  • Mercaptoethanol may be added to a concentration of 50 mM or more.
  • an inhibitor of a nucleic acid degrading enzyme may be added in order to suppress degradation of the nucleic acid contained in the biological sample.
  • EDTA can be added at a concentration of 1 mM or less.
  • commercially available RNasin Plus Ribonuclease Inhibitor Promega Corporation
  • Ribonuclease Inhibitor Takara Bio Inc.
  • RNase Inhibitor Toyobo Co., Ltd.
  • DNA and RNA When DNA and RNA are mixed in biological samples, they can be separated by phenol / chloroform extraction. For example, when phenol / chloroform extraction is performed under acidic conditions, RNA is separated into an aqueous layer and DNA is separated into a chloroform layer, and when neutral conditions are performed, RNA and DNA are distributed into an aqueous phase. Using this property, conditions can be selected according to the type of nucleic acid to be obtained.
  • the above chloroform can be substituted with p-bromoanisole.
  • Phenol / chloroform extraction is performed using commercially available reagents such as ISOGEN (registered trademark: Nippon Gene Co., Ltd.), TRIzol (registered trademark: Life Technologies Japan Co., Ltd.), RNAiso (Takara Bio Inc.), 3D-Gene (registered trademark) RNA extraction reagent You can also use from liquid (sample kit (Toray Industries, Inc.). The above processing may be performed only in one step, or may be combined with steps in other operations. Further, the concentration of the solution used therefor can be changed as necessary.
  • the nucleic acid-containing solution includes a nucleic acid, an artificial nucleic acid, a solution in which a nucleic acid modified with a dye or a phosphate group is dissolved, or a liquid sample such as a body fluid when using a biological sample, Diluents, dilutions of solid samples such as cell pellets and tissue pieces can be used.
  • a solution obtained after performing any of the above treatments on a liquid sample or a biological sample including a solid sample may be used as it is, or may be diluted as necessary.
  • the solution to dilute is not specifically limited, It is preferable to use the solution generally used for the solution containing nucleic acids, such as water and a Tris-hydrochloric acid buffer.
  • the solution containing the nucleic acid is preferably a biological sample to which, for example, 4M or more of guanidinium chloride, guanidine thiocyanate or urea is added.
  • the length of the nucleic acid to be recovered is not particularly limited, but is preferably 1000 base pairs or less.
  • the present invention can recover nucleic acids of 300 base pairs or less, which were difficult with the prior art, in high yield, and can also recover pre-miRNA or miRNA of 100 base pairs or less in high yield.
  • a high yield of nucleic acid can be recovered by using an aluminum oxide carrier having a water-soluble neutral polymer adsorbed on the surface thereof.
  • the carrier of the present invention is an aluminum oxide carrier having a water-soluble neutral polymer adsorbed on the surface thereof. Hereinafter, it is described as the carrier of the present invention.
  • the adsorption rate of the nucleic acid adsorbed on the carrier of the present invention can be determined as follows. First, the amount of nucleic acid in a solution containing nucleic acid is calculated. Next, the carrier of the present invention and a solution containing nucleic acid are mixed, the amount of nucleic acid in the mixture after the nucleic acid is adsorbed on the carrier of the present invention is calculated, and the difference from the amount of nucleic acid in the solution containing nucleic acid is calculated. Ask.
  • the obtained value is used as the amount of nucleic acid adsorbed on the carrier of the present invention, and the nucleic acid adsorption rate can be calculated by dividing the amount of nucleic acid adsorbed on the carrier of the present invention by the amount of nucleic acid in the solution containing the nucleic acid.
  • the elution rate of the nucleic acid of the present invention can be determined as follows. The eluate is added to the carrier of the present invention to which the nucleic acid has been adsorbed, the amount of nucleic acid in the solution after elution is calculated, and the amount of nucleic acid eluted is calculated. The elution rate can be calculated by dividing the nucleic acid elution amount by the nucleic acid amount adsorbed on the carrier of the present invention calculated above.
  • the nucleic acid recovery rate in the present invention is calculated by the product of the adsorption rate and elution rate calculated by the above method.
  • Quantification of the amount of nucleic acid includes absorbance measurement, fluorescence measurement, luminescence measurement, electrophoresis, PCR, RT-PCR, analysis using a microarray, analysis using a sequencer, and the like.
  • the amount of nucleic acid can be quantified by measuring the absorbance at 260 nm.
  • the fluorescent dye is a modified nucleic acid
  • the amount of nucleic acid can be quantified by comparing the fluorescence intensity derived from the fluorescent dye with the fluorescence intensity in a solution having a known concentration.
  • it can carry out by electrophoresis.
  • the method of calculating the collection rate by electrophoresis can be determined by running a sample that has been collected simultaneously with a sample of known concentration, staining the gel, and comparing the band concentration by image analysis.
  • a polymer is a general term for a monomer that is a basic unit or a compound in which a large number of repeating units called monomers are connected.
  • the polymer used for the carrier of the present invention includes both a homopolymer composed of one kind of monomer and a copolymer composed of two or more kinds of monomers, and also includes a polymer having an arbitrary degree of polymerization.
  • both natural polymers and synthetic polymers are included.
  • the water-soluble neutral polymer used in the carrier of the present invention has a property of being soluble in water, and the solubility in water is at least 0.0001 wt% or more, preferably 0.001 wt% or more, more preferably The polymer is 0.01 wt% or more, more preferably 0.1 wt% or more.
  • the water-soluble neutral polymer used for the carrier of the present invention is preferably a polymer having a zeta potential of ⁇ 10 mV to +10 mV in a pH 7 solution.
  • the polymer is more preferably -8 mV or more and +8 mV or less, further preferably -6 mV or more and +6 mV or less, and particularly preferably -4.0 mV or more and +1.1 mV or less.
  • Zeta potential is one of the values representing the electrical properties of the colloidal interface in the solution.
  • an electric double layer is formed on the surface of the colloid by counter ions for the surface charge of the colloid.
  • the potential of the colloid surface at this time is called a surface potential. Since the electric double layer is formed by electrostatic interaction of the surface charge of the colloid, ions are more strongly fixed toward the colloid side.
  • a layer in which counter ions are strongly fixed to the colloid surface by electrostatic interaction is called a fixed layer, and a potential of the fixed layer is called a fixed potential.
  • a slip surface or a slip surface there is a boundary surface that moves together with the colloid due to the viscosity of the solution outside the fixed layer as viewed from the colloid.
  • this slip surface potential is defined as the zeta potential.
  • the zeta potential changes depending on the surface charge of the colloid, and the surface charge changes due to the attachment / detachment of protons depending on the pH, the value in a solution of pH 7 is used as a reference in the present invention.
  • the distance to the slip surface is generally smaller than the size of the colloid, the surface of the colloid can be expressed approximately as a slip surface.
  • the surface potential of the colloid dispersed in the solution can be regarded as the zeta potential.
  • the zeta potential can be determined by using electrokinetic phenomena such as electrophoresis, electroosmosis, backflow potential, precipitation potential, etc., microscopic electrophoresis, electrophoresis using a rotating diffraction grating method, laser Doppler electrophoresis It can be measured by a method such as an ultrasonic vibration potential method or an electroacoustic method. These measurements can be performed by using a zeta potential measuring device. Zeta potential measuring devices are commercially available from Otsuka Electronics Co., Ltd., Malvern Instruments Ltd., Ranku Brother Ltd., PenKem Inc.
  • the zeta potential can be measured using any of the above-mentioned apparatuses, but laser Doppler electrophoresis is common.
  • Laser Doppler electrophoresis is a measurement method that utilizes the Doppler effect in which light or sound waves strike an object moving by electrophoresis and its frequency changes when scattered or reflected.
  • a polymer solution When measuring the zeta potential of a polymer, a polymer solution can be prepared as a colloidal dispersion solution and the zeta potential can be measured.
  • a polymer solution is prepared by dissolving a polymer in an electrolyte such as phosphate buffer, sodium chloride solution, or citrate buffer, and measurement is performed by detecting scattered light or reflected light of the polymer dispersed in the solution. Do. As the size of the colloid increases, scattered light and reflected light can be detected at a lower concentration.
  • Specific conditions for measuring the zeta potential of the polymer by the laser Doppler method are not particularly limited.
  • the polymer can be dissolved in a phosphate buffer (10 mM, pH 7) so that the concentration of the polymer is 1 wt% or more and 10 wt% or less.
  • the solution can be placed in a measurement cell and placed in a zeta potential measurement device based on the principle of laser Doppler electrophoresis and measured at room temperature.
  • the zeta potential measuring device for example, ELS-Z of Otsuka Electronics Co., Ltd. can be used.
  • water-soluble neutral polymer used in the carrier of the present invention include the following.
  • polyvinyl polymer such as polyvinyl alcohol or polyvinyl pyrrolidone
  • polyacrylamide polymer such as polyacrylamide, poly (N-isopropylacrylamide) or poly (N- (hydroxymethyl) acrylamide
  • polyethylene glycol polypropylene glycol or polytetramethylene ether
  • Polyalkylene glycol polymers such as glycol, poly (2-ethyl-2-oxazoline), (hydroxypropyl) methylcellulose, methylcellulose, ethylcellulose, 2-hydroxyethylcellulose, hydroxypropylcellulose, and other celluloses can be used.
  • a copolymer containing the above-mentioned polymer can also be used.
  • polysaccharides such as ficoll, agarose, chitin and dextran or polysaccharide analogues, and proteins and peptides such as albumin are also included in the water-soluble neutral polymer used in the carrier of the present invention.
  • a part of the functional group of the water-soluble neutral polymer may be ionized, substituted with a positive or negative functional group, or a functional group that exhibits water solubility such as an acetyl group may be introduced into the side chain.
  • the molecular weight of the water-soluble neutral polymer for example, a polymer of 0.4 kD or more can be preferably used, and more preferably 6 kD or more.
  • the aluminum oxide used for the carrier of the present invention is an amphoteric oxide represented by a composition formula of Al 2 O 3 and is also called alumina.
  • the aluminum oxide a naturally produced one or an industrially produced one may be used.
  • methods for producing aluminum oxide include the Bayer method using gibbsite as a starting material, the alkoxide method (also called sol-gel method) via a boehmite-type hydroxide, the neutralization method, the oil droplet method, and the aluminum salt Examples include a thermal decomposition method and an anodic oxidation method.
  • Industrially produced aluminum oxide can be obtained from reagent manufacturers, catalytic chemistry manufacturers, and the Reference Catalyst Subcommittee of the General Catalysis Society.
  • Aluminum oxides are classified according to their crystal structure into alpha aluminum oxide, low aluminum oxide, aluminum oxide, kappa aluminum oxide, eta aluminum oxide, gamma aluminum oxide, delta aluminum oxide, theta aluminum oxide, and the like.
  • gamma aluminum oxide having a high specific surface area is preferred.
  • the acid point (Al + , Al—OH 2 + ) and the base point (Al—O ⁇ ) change depending on the firing temperature at the time of production.
  • aluminum oxide is classified as acidic alumina when there are many acid points, basic alumina when there are many base points, and neutral alumina where acid points and base points are comparable.
  • This difference in characteristics can be confirmed by adding a BTB solution that is a pH indicator.
  • the BTB solution is added, it can be confirmed that when the aluminum oxide is colored yellow, it is acidic alumina, when it is colored green, it is neutral alumina, and when it is colored blue, it is basic alumina.
  • any aluminum oxide can be used in the present invention.
  • Aluminum oxide should be granular. Even when the particle diameters are uniform, different particle diameters may be mixed and used. For example, aluminum oxide having a particle size of less than 212 ⁇ m can be preferably used, and aluminum oxide having a particle size of less than 100 ⁇ m can be used more preferably.
  • the particle diameter is defined by the size of the sieve opening based on JIS Z-8801-1: 2006 standardized by Japanese Industrial Standards. For example, particles that pass through a 40 ⁇ m sieve with an opening according to the JIS standard but cannot pass through a 32 ⁇ m sieve have a particle size of 32 ⁇ m or more and less than 40 ⁇ m.
  • the eluate used in the present invention is not particularly limited as long as the nucleic acid adsorbed on the carrier of the present invention can be eluted, but a buffer solution is preferable, and the buffer solution may contain a chelating agent.
  • EDTA was added to a citrate buffer containing citric acid and sodium citrate, a phosphate buffer containing phosphoric acid and sodium phosphate, or a Tris-hydrochloric acid buffer containing trishydroxyaminomethane and hydrochloric acid. Tris-EDTA buffer etc. are mentioned.
  • the pH of the buffer is preferably from pH 4 to pH 9, more preferably from pH 5 to pH 8.
  • the buffer used in the present invention can be prepared as follows.
  • preparation of 0.5 M phosphate buffer (pH 7) is as follows. Prepare 0.5M aqueous solution of disodium hydrogenphosphate and 0.5M sodium dihydrogenphosphate. To a 0.5 M aqueous solution of disodium hydrogen phosphate, add the sodium dihydrogen phosphate solution while measuring the pH, and when pH 7 is reached, stop the addition.
  • Other pH buffers can be prepared in a similar manner.
  • the chelating agent contained in the buffer solution has a ligand having a plurality of coordination sites, and a substance that binds to a metal ion and forms a complex can be used.
  • the chelating agent examples include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), glycol etherdiaminetetraacetic acid (EGTA), polyphosphoric acid, metaphosphoric acid and / or a salt thereof.
  • the final concentration of the chelating agent is not particularly limited, but may be 50 mM or more, preferably 100 mM or more, and more preferably 500 mM or more.
  • examples of the compound that becomes a chelating agent other than the above include anionic polymers. Since a polymer having a carboxylic acid in the side chain coordinates a metal ion, these may be contained in a buffer solution. Examples of the polymer having such a function include polyvinyl sulfonic acid and / or a salt thereof. The final concentration is not particularly limited, but may be 1 wt% or more, preferably 10 wt% or more.
  • the present invention is a method for recovering nucleic acid from a biological sample, comprising: a) mixing a solution containing aluminum oxide with a water-soluble neutral polymer adsorbed on the surface and a solution containing the nucleic acid; A step of separating the carrier adsorbed with the nucleic acid from the solution mixed in step a), a step c) a step of collecting the nucleic acid by adding an eluate to the carrier adsorbed with the nucleic acid in step c) including.
  • a step separating the carrier adsorbed with the nucleic acid from the solution mixed in step a a step c) a step of collecting the nucleic acid by adding an eluate to the carrier adsorbed with the nucleic acid in step c) including.
  • the carrier of the present invention is produced by adsorbing a water-soluble neutral polymer on the surface of aluminum oxide.
  • the surface coverage by the polymer is preferably 7% or more, more preferably 10% or more, still more preferably 20% or more, particularly preferably 30% or more, and most preferably 40% or more. Further, the water-soluble neutral polymer may not be adsorbed with a uniform thickness.
  • the coverage of alumina with a polymer is calculated by analyzing a potential distribution obtained by a surface potential microscope (also known as Kelvin probe force microscope; KFM).
  • a surface potential microscope also known as Kelvin probe force microscope; KFM.
  • KFM Kelvin probe force microscope
  • a NanoScope Iva AFM Dimension 3100 stage AFM system manufactured by Digital Instruments of Bruker AXS can be used.
  • the visual field scale of measurement is in the range of 0.5 ⁇ m ⁇ 1 ⁇ m.
  • the surface coverage is calculated by first obtaining a surface potential image of aluminum oxide and obtaining an average potential in the field of view. Next, a surface potential image of the water-soluble neutral polymer is acquired, and an average potential in the visual field is obtained. Then, the surface potential image of the aluminum oxide adsorbed with the water-soluble neutral polymer is obtained, and the average potential in the field of view is obtained.
  • the coverage of only aluminum oxide is 0%, the coverage of only water-soluble neutral polymer is 100%, and the average potential of aluminum oxide adsorbed by water-soluble neutral polymer and the average potential of water-soluble neutral polymer are By taking the ratio, the surface coverage of the aluminum oxide adsorbed with the water-soluble neutral polymer is calculated.
  • the average potential in the visual field to be used is selected by randomly selecting three single particles of the present invention and using the average value of each measured value.
  • Adobe Photoshop can be used as image analysis software for calculating the surface coverage.
  • the average value of the surface potential of aluminum oxide is the lower end of the scale
  • the average value of the surface potential of the water-soluble neutral polymer is the upper end of the scale
  • the color of the lower end is black (8bit, RGB value 0)
  • the upper end Is set to red (R value 255), green (G value 255), or blue (B value 255).
  • the aluminum oxide may be washed with a solution such as water or ethanol in advance to remove impurities adsorbed on the surface, and this cleaning operation is omitted. May be.
  • Examples of the method of adsorbing the water-soluble neutral polymer on the surface of aluminum oxide include a method of dissolving a water-soluble neutral polymer to prepare a water-soluble neutral polymer solution and bringing it into contact with aluminum oxide. Specifically, aluminum oxide is immersed in a water-soluble neutral polymer solution, a water-soluble neutral polymer solution is dropped onto aluminum oxide, a water-soluble neutral polymer solution is applied to aluminum oxide, A water-soluble neutral polymer solution can be atomized and sprayed onto aluminum oxide.
  • the method of immersing aluminum oxide in a water-soluble neutral polymer solution is not particularly limited.
  • the concentration of the water-soluble neutral polymer is not particularly limited, but is preferably 0.01 wt% or more, and more preferably 0.1 wt% or more.
  • the mixing time for stirring is not particularly limited as long as the water-soluble neutral polymer and aluminum oxide are uniformly mixed, but in the case of vortexing, it is preferably 1 minute or more, preferably 5 minutes or more. .
  • the mixing time when immersed in the solution may be 5 minutes or more and preferably 30 minutes or more if the polymer concentration is 0.1 wt% or more.
  • a dropper When dropping a water-soluble neutral polymer solution, a dropper, a dropping funnel, or the like can be used.
  • the aluminum oxide When dropping the polymer solution, the aluminum oxide may be vibrated or rotated, or a spin coater or the like may be used.
  • a brush, a roller, or a wire bar When applying a water-soluble neutral polymer solution, a brush, a roller, or a wire bar can be used.
  • an air spray or an air brush can be used.
  • the centrifugation may be performed to remove the polymer solution as a supernatant, or without performing the centrifugation operation. It may be used as it is for collecting nucleic acids.
  • the polymer solution is dissolved in a solvent
  • the water-soluble neutral polymer is adsorbed on aluminum oxide, and after removing the solvent, it may be dried or used for nucleic acid recovery without drying. Also good.
  • the obtained carrier of the present invention may be prepared and stored, or may be prepared and used at the time of use.
  • the water-soluble neutral polymer solution can be prepared by dissolving in water or an organic solvent if the obtained water-soluble neutral polymer is solid, and can be prepared by diluting if it is a solution.
  • heat treatment or ultrasonic treatment may be performed.
  • the organic solvent it is preferable to use an organic solvent that is miscible with water, such as ethanol, acetonitrile, methanol, propanol, tert-butanol, DMF, DMSO, acetone, ethylene glycol, and glycerol.
  • an organic solvent that is miscible with water such as ethanol, acetonitrile, methanol, propanol, tert-butanol, DMF, DMSO, acetone, ethylene glycol, and glycerol.
  • dissolve in water you may add said organic solvent.
  • a carrier prepared by covalently bonding aluminum oxide and a water-soluble neutral polymer with a linker molecule or the like does not correspond to the carrier of the present invention.
  • Specific linker molecules include silane coupling agents.
  • Step a) is a step of mixing the carrier of the present invention produced by the above production method and a solution containing the nucleic acid to adsorb the nucleic acid to the carrier of the present invention.
  • the method for mixing the solution containing the carrier of the present invention and the nucleic acid is not particularly limited.
  • pipetting or inversion mixing may be used, or an apparatus such as a mixer or vortex may be used.
  • the mixing time is not particularly limited, but may be about 5 minutes, or may be mixed for a longer time.
  • the carrier of the present invention may be packed in a column and passed through a solution containing nucleic acid.
  • Step b) is a step of separating the carrier adsorbed with the nucleic acid from the mixture mixed in step a).
  • the separation method include a method of centrifuging the mixture obtained in step a), precipitating the carrier on which the nucleic acid has been adsorbed, and removing the supernatant. Since the specific gravity of the carrier on which the nucleic acid is adsorbed is heavier than that of water, it can be easily precipitated by centrifugation. Centrifugation may be performed at 6000 G for 1 minute, and more preferably at 10000 G for 1 minute. Examples of other separation methods include a method using an ultrafiltration membrane.
  • the mixture obtained in step a) is passed through an ultrafiltration membrane having a pore size smaller than the particle size of the carrier on which the nucleic acid has been adsorbed, and the carrier on which the nucleic acid has been adsorbed is separated.
  • an ultrafiltration membrane is made into a kit, and centrifugal filtration kits represented by Ultra Free (registered trademark) of Merck Co., Ltd. and Nanosep (registered trademark) of Pall® Corporation can be obtained and used.
  • step b the following processing may be performed as necessary.
  • a biological sample-derived material other than the target nucleic acid may be adsorbed on the surface of the carrier of the present invention.
  • washing and decomposition treatment can be performed.
  • washing with water to remove non-specifically adsorbed compounds washing with surfactants to remove non-specifically adsorbed proteins, to remove ions and low-molecular compounds
  • washing with a solution containing a surfactant washing with an organic solvent to remove nonspecifically adsorbed hydrophobic compounds, adding a proteolytic enzyme to degrade nonspecifically adsorbed proteins
  • Various treatments can be performed, such as adding an RNase to isolate only DNA and adding an RNase to isolate only RNA.
  • Step c) is a step of collecting the nucleic acid by adding an eluate to the carrier of the present invention on which the nucleic acid separated in step b) has been adsorbed.
  • the carrier of the present invention When collecting the nucleic acid by adding the eluate, if it is desired to separate the carrier of the present invention from the solution from which the nucleic acid has been eluted, it was obtained by adding the eluate to the carrier adsorbed with the nucleic acid in step c).
  • Examples include a method of centrifuging the mixture, precipitating the carrier of the present invention, and obtaining a supernatant from which nucleic acid is eluted. Since the specific gravity of the carrier of the present invention is heavier than that of water, it can be easily precipitated by centrifugation. The centrifugation may be performed at 6000 G for 1 minute, and preferably at 10000 G for 1 minute.
  • Other separation methods include a method using an ultrafiltration membrane.
  • the mixture obtained in step c) is passed through an ultrafiltration membrane having a pore size smaller than the particle size of the carrier of the present invention to separate the carrier of the present invention.
  • an ultrafiltration membrane is made into a kit, and centrifugal filtration kits represented by Ultra Free (registered trademark) of Merck Co., Ltd. and Nanosep (registered trademark) of Pall® Corporation can be obtained and used.
  • the collected nucleic acid can be chemically modified as necessary.
  • Chemical modifications include fluorescent dye modification, quencher modification, biotin modification, amination, carboxylation, maleimidation, succinimidation, phosphorylation and dephosphorylation, etc. on the end of nucleic acid, and others by intercalator Dyeing. These modifications may be introduced by chemical reaction or by enzymatic reaction. Rather than introducing these modifying groups before quantification and quantifying the recovered nucleic acid itself, it is possible to indirectly quantitate nucleic acids by quantifying the modified groups introduced through chemical modification. . Nucleic acids are recovered according to the present invention, and in particular, short-chain nucleic acids are recovered with a high yield, so that the above quantification can be performed with high sensitivity.
  • the nucleic acid recovery kit of the present invention can be used to efficiently recover nucleic acids from biological samples.
  • the kit for nucleic acid recovery of the present invention includes the carrier of the present invention and a buffer as its constituent components. In addition to these, the kit may include instructions.
  • the carrier of the present invention contained in the kit for recovering nucleic acid of the present invention may be in a dried state or in a state immersed in a water-soluble neutral polymer solution.
  • a buffer solution that can be used for the eluate in the above step c) can be used.
  • RNA22 a synthetic nucleic acid having an RNA sequence
  • DNA22 a synthetic nucleic acid having a DNA sequence
  • the mixer is CUTE MIXER CM-1000 from Tokyo Rika Instrument Co., Ltd.
  • the fluorometer is Nanodrop3300 from Thermo Fisher Scientific Co., Ltd. and FLUOROMAX-3 from Horiba Ltd.
  • ELS-Z from Otsuka Electronics Co., Ltd. is used to measure zeta potential.
  • Electrophoresis used Mupid-eXU of Advance Co., Ltd.
  • MVS-1 manufactured by ASONE Co., Ltd. was used.
  • the stained agarose gel was analyzed using Typhoon9410 from GE Healthcare Japan. ImageQuant (trademark registration) of Molecular® Dynamics was used for image analysis of the agarose gel.
  • a NanoScope Iva AFM Dimension 3100 stage AFM system manufactured by Digital Instruments of Bruker AXS was used.
  • the average value of the surface potential of aluminum oxide is the lower end of the scale
  • the average value of the surface potential of water-soluble neutral polymer is the upper end of the scale
  • the lower end color is black (8bit, RGB value 0)
  • the upper end color is Set red (R value 255), green (G value 255), or blue (B value 255).
  • the visual field scale of measurement is in the range of 0.5 ⁇ m ⁇ 1 ⁇ m.
  • the surface coverage was calculated by first obtaining a surface potential image of aluminum oxide and determining the average potential in the field of view. Next, a surface potential image of the water-soluble neutral polymer was obtained, and the average potential in the visual field was determined. Then, the surface potential image of the aluminum oxide adsorbed with the water-soluble neutral polymer is obtained, and the average potential in the field of view is obtained.
  • the coverage of only aluminum oxide is 0%
  • the coverage of only water-soluble neutral polymer is 100%
  • the average potential of aluminum oxide adsorbed by water-soluble neutral polymer and the average potential of water-soluble neutral polymer are By taking the ratio, the surface coverage of the aluminum oxide adsorbed with the water-soluble neutral polymer was calculated.
  • the average potential in the visual field to be used was selected by randomly selecting three single particles of the present invention and using the average value of each measured value.
  • the adsorption rate was calculated as follows by fluorescence measurement of Cy3. First, measure the fluorescence intensity of 100 ⁇ l of 6M guanidine thiocyanate aqueous solution in which 100 pmol of DNA22 was dissolved before adding alpha aluminum oxide and gamma aluminum oxide, and then add and mix alpha aluminum oxide and gamma aluminum oxide. The strength was measured. The fluorescence intensity after adding aluminum oxide was divided by the fluorescence intensity before addition, and the product of the amount of nucleic acid before addition (100 pmol) was taken to calculate the amount of nucleic acid in the solution. The difference between these values was calculated from the amount of nucleic acid before addition (100 pmol), and the amount of adsorbed nucleic acid was calculated. The amount of adsorbed nucleic acid was divided by the amount of nucleic acid before adding aluminum oxide (100 pmol), and the adsorption rate was calculated.
  • the elution rate was calculated as follows by fluorescence measurement of Cy3. 50 ⁇ l of phosphate buffer or Tris-EDTA buffer was added to aluminum oxide adsorbed with nucleic acid, and fluorescence measurement was performed on the eluate after elution. Next, 50 ⁇ l of phosphate buffer solution in which 100 pmol of DNA22 was dissolved and Tris-EDTA buffer solution were prepared, and fluorescence measurement was performed on this solution. The fluorescence intensity of the eluate was divided by the fluorescence intensity of this solution, and the amount of nucleic acid eluted was calculated. The eluted nucleic acid amount was divided by the adsorbed nucleic acid amount to calculate the elution rate. The recovery rate was calculated by taking the product of the calculated adsorption rate and elution rate. The results are shown in Table 1.
  • nucleic acid recovery method using gamma aluminum oxide or alpha aluminum oxide with no polymer adsorbed on the surface had a low elution rate and a low nucleic acid recovery rate.
  • ⁇ Comparative Example 2 Preparation of aluminum oxide carrier in which water-soluble polymer other than water-soluble neutral polymer was adsorbed on the surface.
  • 0.5 mg of gamma aluminum oxide was weighed into a 1.5 ml tube.
  • polyacrylic acid PAcA, 5.1kD, 10wt%), dextran sulfate (DS, 4kD, 10wt%), polyvinyl sulfonic acid (PVSA, 10wt%), polyallylamine (PAA, 17kD, 10wt%)
  • 50 ⁇ l each of poly-L-lysine (PLL, 150 kD, 1 wt%) was added and stirred with a mixer for 10 minutes.
  • the supernatant was removed by centrifugation (10000 G, 1 min) with a centrifuge to obtain gamma aluminum oxide in which each polymer was adsorbed on the surface.
  • the eluate was Tris-EDTA buffer (0.5 M Tris, 0.5 M EDTA, pH 8), and other conditions and operations were performed in the same manner as in Comparative Example 1, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 2.
  • Example 1 Preparation of aluminum oxide carrier having water-soluble neutral polymer adsorbed on the surface 0.5 mg of gamma aluminum oxide was weighed into a 1.5 ml tube. To this, water-soluble neutral polymer polyvinyl alcohol (11% acetylated, PVA, 18 kD, 10 wt%), poly (2-ethyl-2-oxazoline) (PEOz, 5 kD, 10 wt%), Polyethylene glycol (PEG, 10 kD, 10 wt%), hydroxypropylmethylcellulose (HPMC, 10 kD, 10 wt%), and polyvinylpyrrolidone (PVP, 10 kD, 10 wt%) were added in an amount of 50 ⁇ l to each. Other conditions and operations were performed in the same manner as in Comparative Example 2 to obtain a carrier of gamma aluminum oxide in which each polymer was adsorbed on the surface.
  • PVA polyvinylated polyvinylated, PVA, 18 kD, 10
  • Example 2 Nucleic acid recovery using gamma aluminum oxide adsorbed on the surface of a water-soluble neutral polymer as a carrier
  • a water-soluble neutral polymer prepared in Example 1 in a 1.5 ml tube polyvinyl alcohol (11 % Acetylated, PVA, 18kD, 10wt%), poly (2-ethyl-2-oxazoline) (PEOz, 5kD, 10wt%), polyethylene glycol (PEG, 10kD, 10wt%), hydroxypropylmethylcellulose (HPMC, 10kD) , 10 wt%) and 0.5 mg each of gamma aluminum oxide adsorbed on the surface by polyvinylpyrrolidone (PVP, 10 kD, 10 wt%) were used as a carrier.
  • Other conditions and operations were the same as in Comparative Example 3, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 2.
  • Table 3 shows the correlation between the zeta potential obtained by this measurement and the recovery rate of DNA22 using the gamma aluminum oxide adsorbed on the surface of each polymer as a carrier (result of Comparative Example 3). Are arranged in ascending order.
  • Example 3 Measurement of zeta potential of water-soluble neutral polymer
  • Polyvinyl alcohol (11% acetylated, water-soluble neutral polymer used in Example 2) so that the final concentration is 1 wt% or more and 10 wt% or less.
  • PVA, 18kD poly (2-ethyl-2-oxazoline) (PEOz, 5kD)
  • PEG polyethylene glycol
  • HPMC hydroxypropylmethylcellulose
  • PVP polyvinylpyrrolidone
  • Table 3 shows the correlation between the zeta potential obtained by this measurement and the recovery rate of DNA22 using the gamma aluminum oxide adsorbed on the surface of each polymer as a carrier (result of Example 2). Are arranged in ascending order.
  • the zeta potential of the water-soluble neutral polymer whose nucleic acid recovery rate was improved in Example 2 was ⁇ 4 mV or more and +1.1 mV or less, and ⁇ 17 mV or less and +11 mV or more in the pH 7 solution. It was found that the recovery rate was improved as compared with a water-soluble polymer having a zeta potential.
  • Example 4 Elution of Nucleic Acid Adsorbed on Gamma Aluminum Oxide Carrier with Water-Soluble Neutral Polymer Adsorbed on the Surface
  • gamma aluminum oxide with polyethylene glycol adsorbed on the surface was prepared, and 0.5 g in 0.5 ml tube was prepared.
  • Eluent 0.5M citrate buffer (pH 5, 6), 0.5M phosphate buffer (pH 6, 7, 8), 0.5M Tris-EDTA buffer (pH 8), PVSA so that the final concentration is 10 wt% 0.5M Tris buffer solution (pH 8) to which was added was used.
  • Other conditions and operations were performed in the same manner as in Comparative Example 1, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 4.
  • Example 5 Relationship between Nucleic Acid Recovery and Nucleic Acid Length Using Gamma Aluminum Oxide with Water-Soluble Neutral Polymer Adsorbed on the Surface
  • gamma aluminum oxide with polyethylene glycol adsorbed on the surface Prepared and weighed 0.5 mg into a 1.5 ml tube.
  • 100 ⁇ l of 6M guanidine thiocyanate aqueous solution in which 200 ⁇ g, 300 bp and 1000 bp of 7.5 ⁇ g of 100 bp DNA ladder were dissolved respectively was used.
  • the other conditions and operations were the same as in Comparative Example 3, and the nucleic acid recovery rate was calculated. The results are shown in Table 5.
  • nucleic acids having any length can be efficiently recovered by using gamma aluminum oxide having polyethylene glycol, which is a water-soluble neutral polymer, adsorbed on the surface.
  • Example 6 Nucleic acid recovery from fetal bovine serum Gamma aluminum oxide having polyethylene glycol adsorbed on its surface was prepared according to Example 1, and 1.5 mg was weighed into a 1.5 ml tube.
  • a solution containing nucleic acid a mixed solution of 100 ⁇ l of 6M guanidine thiocyanate aqueous solution in which 100 pmol of DNA22 was dissolved and 100 ⁇ l of fetal bovine serum having a protein concentration of 30 mg / ml was used.
  • the other conditions and operations were the same as in Comparative Example 3, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. Similar experiments were performed on RNA22. The results are shown in Table 6.
  • the protein concentration in the recovered solution was below the detection limit of the Bradford test (0.25 mg / ml or less).
  • Example 7 Effect of particle size of aluminum oxide on nucleic acid recovery Using a sieve based on JIS Z-8801-1: 2006 standardized by Japanese Industrial Standard, gamma aluminum oxide was fractionated by particle size (100 ⁇ m to 212 ⁇ m). Less than 40 ⁇ m to less than 100 ⁇ m, 32 ⁇ m to less than 40 ⁇ m, 20 ⁇ m to less than 32 ⁇ m).
  • As the carrier in the same manner as in Example 1, gamma aluminum oxide having polyethylene glycol of each particle size adsorbed on the surface was prepared and used. The other conditions and operations were the same as in Comparative Example 3, and the nucleic acid recovery rate was calculated. The results are shown in Table 7.
  • the nucleic acid can be recovered in any fraction having a particle size of less than 212 ⁇ m.
  • Example 8 Difference in characteristics of gamma aluminum oxide in nucleic acid recovery Acidic gamma aluminum oxide, neutral gamma aluminum oxide, and basic gamma aluminum oxide were used. As the carrier, each aluminum oxide having polyethylene glycol adsorbed on its surface was prepared and used in the same manner as in Example 1. The other conditions and operations were the same as in Comparative Example 3, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 8.
  • nucleic acid can be recovered in a high yield regardless of whether acidic alumina, neutral alumina, or basic alumina is used.
  • Example 9 Effect of molecular weight of polymer adsorbed on aluminum oxide on surface 10 wt.% Of polyethylene glycol having molecular weight of 6 kD, 10 kD, 500 kD and polyvinyl alcohol having molecular weight of 18 kD, 40 kD, 150 kD (all 11% acetylated) % was prepared and used as a polymer solution.
  • As the carrier in the same manner as in Example 1, gamma aluminum oxide having polyethylene glycol of each molecular weight adsorbed on the surface was prepared and used. Other conditions and operations were the same as in Comparative Example 3, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 9.
  • nucleic acid can be recovered with any polymer having any molecular weight.
  • Example 10 Relationship between concentration of water-soluble neutral polymer and stirring time in the production method of the carrier of the present invention 0.5 mg of aluminum oxide was weighed into a 1.5 ml tube. To this, 50 ⁇ l each of polyethylene glycol (PEG, 10 kD), which is a water-soluble neutral polymer, was added at a concentration of 0.1 wt%, 1 wt%, and 10 wt% as a polymer aqueous solution. Each concentration was stirred with a mixer for 1 minute, 5 minutes, and 30 minutes. The supernatant was removed by centrifugation (10000 G, 1 min) with a centrifuge to obtain a carrier having polyethylene glycol adsorbed on the surface of aluminum oxide. Moreover, it carried out similarly to the comparative example 3, and calculated
  • Example 11 Relationship between concentration of water-soluble neutral polymer and dipping time in preparation method of carrier of the present invention
  • Aluminum oxide was weighed in an amount of 0.5 mg in a 1.5 ml tube.
  • 50 ⁇ l of polyethylene glycol (PEG, 10 kD) which is a water-soluble neutral polymer, was added at a concentration of 0.1 wt%, 1 wt%, and 10 wt%, respectively, and allowed to stand for 5 minutes and 30 minutes, respectively. .
  • the supernatant was removed by centrifugation (10000 G, 1 min) with a centrifuge to obtain a carrier having polyethylene glycol adsorbed on the surface of aluminum oxide.
  • the results are shown in Table 11.
  • Example 12 Relationship Between Presence of Centrifugation Operation and Nucleic Acid Recovery in Production of Carrier of the Invention 0.5 mg of aluminum oxide was weighed into a 1.5 ml tube. To this was added 50 ⁇ l of polyethylene glycol (PEG, 10 kD), which is a water-soluble neutral polymer, at a concentration of 10 wt% as a polymer aqueous solution, and the mixture was stirred with a mixer for 10 minutes. As the subsequent operation, in Example 2, the centrifugation operation using a centrifuge and the operation for removing the supernatant were performed, but in Example 12, these operations were not performed. Except for using the carrier thus prepared, the same procedure as in Comparative Example 3 was performed, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 12.
  • PEG polyethylene glycol
  • Example 13 Relationship between removal by water washing of water-soluble neutral polymer and recovery rate in the method for producing a carrier of the present invention
  • Aluminum oxide having polyethylene glycol adsorbed on its surface was produced according to Example 1.
  • 200 ⁇ l of water was added to this carrier, stirred for 1 minute with a mixer, and centrifuged (10000 G, 1 min) with a centrifuge to remove the supernatant. What performed this water washing operation once and 3 times was prepared, respectively. Except for using the carrier produced as described above, the same procedure as in Comparative Example 3 was performed, and the nucleic acid adsorption rate, elution rate, and recovery rate were calculated. The results are shown in Table 13.
  • Example 14 Relationship between the surface coverage of aluminum oxide by the polymer and the recovery rate in the carrier of the present invention
  • the carrier produced in Example 13 and the aluminum oxide adsorbed on the surface by the polyethylene glycol produced in Example 2 (without water washing) Then, aluminum oxide and polyethylene glycol to which no polymer was adsorbed were analyzed with a surface potential microscope, and a potential distribution diagram was obtained to calculate an average potential.
  • a carrier sample was dispersed on a carbon tape, and a CoCr-coated silicon cantilever was used as a probe, and measurement was performed in a non-contact mode in a field of view of 0.5 ⁇ m ⁇ 1 ⁇ m at room temperature and in the atmosphere.
  • the measurement value an average value of values assumed by randomly selecting three carrier particles having polyethylene glycol adsorbed on the surface thereof was used.
  • the surface ratio is determined by taking the ratio of the average potential of aluminum oxide adsorbed to polyethylene glycol and the average potential of polyethylene glycol, assuming that the coverage of only aluminum oxide to which no polymer is adsorbed is 0% and the coverage of only polyethylene glycol is 100%. The coverage was calculated.
  • Table 14 shows the relationship between the surface coverage and the nucleic acid recovery rate when each carrier is used.
  • nucleic acid can be efficiently recovered when a carrier having a surface coverage of 7% or more is used.
  • the present invention it is possible to efficiently recover from a very short nucleic acid such as pre-miRNA or miRNA to a long nucleic acid of 1000 bases or more from a biological sample by a simple method without using an organic solvent. It becomes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体用いた核酸の回収方法、当該方法に用いる水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの核酸回収用担体及び、核酸回収用キットを提供する。

Description

核酸の回収方法
 本発明は、核酸を回収する方法、水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体、及び核酸回収用のキットに関する。
 核酸を用いた実験技術の発展により新規遺伝子探索やその解析が可能となった。がんなどの疾患を特定するためにヒトのゲノムが解析され、病原体の感染を特定するためにそれらのゲノムが解析されるなど、医療現場においても遺伝子解析を利用したスクリーニング検査や臨床検査などが行われている。
 また、遺伝子解析の標的としては、ゲノムのような長鎖核酸ばかりではなく、短鎖核酸も注目されている。近年発見されたmiRNAは18塩基以上25塩基以下の1本鎖RNAであり、60塩基以上90塩基以下のpre-miRNAから生合成される。これらは、タンパク質の合成や遺伝子の発現を調節する機能を持っていることから疾患と関連があるとされ、遺伝子解析の標的として注目されている。また、メタゲノミック診断法のように、臨床検体中の病原体由来の数百塩基対の核酸断片を次世代シーケンサーで網羅的に解析する方法もあり、新規な遺伝子解析法として注目されている。現在の遺伝子解析の標的は、遺伝子探索が進むにつれて多様化していると言える。従って、遺伝子解析の標的の多様化に合わせて、核酸の回収方法も、miRNAのような数十塩基の核酸からゲノムのような長鎖の核酸まで回収できる方法が求められている。
 遺伝子解析をする上でまず必要となるのは、生物学的試料から核酸を回収する工程である。核酸を高純度、高収率に回収できれば、その後の検出反応において高感度な遺伝子検出が可能となる。核酸の回収方法としては、フェノール・クロロホルム抽出、エタノール沈殿及びシリカへの核酸吸着などが代表的なものとして挙げられる。
 中でも最も汎用的な方法は、特許文献1に記載されている、シリカを含む金属酸化物へ核酸を吸着、溶出させて回収するBoom法である。この方法は、遠心操作により核酸の吸着したシリカから核酸を回収すると同時に核酸の濃縮ができる特徴がある。しかしながら、Boom法は核酸の吸着過程においてアルコールなどの有機溶媒の使用が不可欠であり、回収操作の煩雑化や溶媒廃棄のなどの問題がある。加えて、単離した核酸にこれら有機溶媒が混入し、その後の検出反応へ影響する問題もある。
 また、特許文献2には、300塩基対以上1000塩基対以下の長さを持つ核酸のシリカに対する吸着性は、それより長い長さを有する核酸の吸着性に劣ることが記載されており、さらに短いpre-miRNAやmiRNAを回収することは困難であることが予想される。遺伝子解析は医療現場においても利用されていることから、煩雑な操作や有機溶媒を使用せずに、核酸を回収できる方法が好ましい。
 Boom法以外の核酸の回収方法としては、特許文献3及び4に、有機溶媒を利用しない核酸の回収方法が記載されている。特許文献3には、アルファ酸化アルミニウム粒子、ジルコニア粒子、チタニア粒子などに、核酸を吸着させ、効率的に回収する方法が記載されている。また、特許文献4には、イオン交換クロマトグラフィーの原理を用いて、核酸を吸着させ、回収する方法が記載されており、陰イオン交換材料として酸化アルミニウムが利用できると示されている。
 一方、特許文献5には、核酸を溶解させる溶液に依存して、アルファ酸化アルミニウム、及びガンマ酸化アルミニウムに核酸を強固に結合させたり、逆に結合を阻止させたりすることができると記載されている。また、結合した核酸は、繰り返し洗浄しても、ほとんど溶出されないと記載されている。
米国特許第5234809号明細書 特表2011-522529号公報 国際公開第92/18514号 特表2013-505719号公報 特表2005-505269号公報
 上記のように、特許文献3または4には、酸化アルミニウムを用いて核酸を効率的に回収できることが示されているが、特許文献5には、結合した核酸が溶出されないと記載されている。そこで、発明者らは、特許文献3に記載されている酸化アルミニウムを用いた核酸の回収方法を検討した。
 後述する比較例1では、特許文献3の実施例4の組成にできるだけ近い酸化アルミニウムを用意し、特許文献3の条件を参考に核酸を吸着させ、その後、吸着させた核酸を溶出させて回収できるかを検討した。しかし、核酸は酸化アルミニウムに吸着するが、核酸の溶出率が低く、核酸を高収率に回収することができなかった。
 本発明者らは、これらの結果から、酸化アルミニウムに結合した核酸の溶出率を向上させることができれば、有機溶媒を使用しない簡便な方法で核酸を効率的に回収できると考えた。
 本発明者らは、酸化アルミニウムの表面に水溶性の中性ポリマーを吸着させることで、核酸の吸着率を低下させることなく、核酸の溶出率を改善させることができることを見出した。
 さらに、本発明を用いることで、miRNAのような非常に短い核酸も効率よく回収できることを見出し、本発明を完成するに至った。
 本発明は以下の通りである。
(1)生物学的試料から核酸を回収する方法であって、以下の工程:
工程a)水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体と核酸を含む溶液を混合し、担体に核酸を吸着させる工程、
工程b)工程a)において混合した溶液から、前記核酸が吸着した担体を分離する工程、
工程c)工程b)において分離した前記核酸が吸着した担体に溶出液を加えて核酸を回収する工程、
を含むことを特徴とする核酸の回収方法。
(2)前記水溶性の中性ポリマーが、pH7の溶液中で-10mV以上+10mV以下のゼータ電位を有するポリマーであることを特徴とする(1)に記載の核酸の回収方法。
(3)前記ポリマーが、ポリエチレングリコール、ポリビニルピロリドン、ポリ(2-エチル-2-オキサゾリン)又はヒドロキシプロピルメチルセルロースであることを特徴とする(1)又は(2)に記載の核酸の回収方法。
(4)前記溶出液が緩衝液であることを特徴とする(1)から(3)のいずれかに記載の核酸の回収方法。
(5)前記生物学的試料が、血液、尿、唾液、粘膜、汗、培養細胞、培養細胞の培養液、組織試料又は標本であることを特徴とする(1)から(4)のいずれかに記載の核酸の回収方法。
(6)酸化アルミニウムの担体の表面に水溶性の中性ポリマーが吸着した核酸回収用の担体。
(7)前記水溶性の中性ポリマーが、pH7の溶液中で-10mV以上+10mV以下のゼータ電位を有するポリマーであることを特徴とする(6)に記載の担体。
(8)前記水溶性の中性ポリマーがポリエチレングリコール、ポリビニルピロリドン、ポリ(2-エチル-2-オキサゾリン)又はヒドロキシプロピルメチルセルロースであることを特徴とする(6)または(7)に記載の担体。
(9)前記水溶性の中性ポリマーが、酸化アルミニウムの担体の表面のうち7%以上を被覆するよう吸着していることを特徴とする(6)から(8)のいずれかに記載の担体。
(10)(6)から(9)のいずれかに記載の担体と緩衝液を備えることを特徴とする核酸回収用のキット。
 本発明により、酸化アルミニウムを担体として用いても、有機溶媒を使用せず、簡便な方法で核酸を高収率に回収すること、さらにこれまで効率的に回収することが難しかったpre-miRNAやmiRNAなどの非常に短い核酸も高収率で回収することが可能になる。
 本発明で用いる生物学的試料は、核酸を含む任意の試料を使用できる。核酸には、例えば、RNA、DNA、RNA/DNA(キメラ)及び人工核酸などが挙げられる。DNAには、cDNA、ゲノムDNA、及び合成DNAなどが挙げられる。また、RNAには、total RNA、mRNA、rRNA、miRNA、siRNA、snoRNA、snRNAもしくはnon-coding RNA、それらの前駆体又は合成RNAなどが挙げられる。合成DNA及び合成RNAは、所定の塩基配列(天然型配列又は非天然型配列のいずれでもよい)に基づいて、例えば自動核酸合成機を用いて、人工的に作製できる。
 生物学的試料としては、例えば、培養細胞、培養細胞の培養液、組織試料や標本などの細胞由来試料、細菌やウイルスなどの微生物由来試料、体液や便などのヒトを含む動物由来試料、核酸の他に、タンパク質、糖や脂質などの生物学的機能を有する化合物を含む溶液などを利用することができ、これらに限定されない。上記生物学的試料は、好ましくは、培養細胞や体液であり、更に好ましくは血液である。血液には全血、血漿、血清、血球などが含まれる。
 これらの生物学的試料が体液等の液体試料である場合には、採取後そのまま本発明を適用してもよいし、採取後に溶液を加えて希釈してもよい。生物学的試料が細胞ペレットや組織片等の固体試料である場合には、採取後に水や緩衝液で希釈してから本発明に用いてもよい。
 生物学的試料は、必要に応じて、以下のような処理をしてもよい。これは、核酸が生物学的試料において細胞膜、細胞壁、小胞、リポソーム、ミセル、リボソーム、ヒストン、核膜、ミトコンドリア、ウイルスのキャプシド、エンベロープ、エンドソームまたはエキソソームのような化合物に内包されていたり、これらが相互作用していたりすることが多いためである。より収率よく核酸を回収するために、これらから遊離させることを目的とした処理を行ってもよい。
 具体的には、大腸菌が含まれている生物学的試料から核酸の回収効率を高めるために、以下のような処理を行うことができる。例えば、大腸菌が含まれる生物学的試料に対して0.2Mの水酸化ナトリウムと1%のSDSの混合液を加えることができ(アルカリ変性法)、また、10%のサルコシル溶液を加えることもできる(サルコシルによる非変性法)。また、これらの溶液にリゾチームを添加しておいてもよい。また、プロテイナーゼKにより37℃で1時間処理を行うこともできる。他の方法として超音波処理を行うこともできる。
 生物学的試料に対して、酵母が含まれている生物学的試料から核酸の回収効率を高めるために、以下のような処理を行うことができる。例えば、生化学工業株式会社から市販されているザイモリエースで処理した後に10%のSDSを加えることもできる。
 生物学的試料に対して、細胞が含まれている生物学的試料から核酸の回収効率を高めるために、以下のような処理を行うことができる。例えば、1%のSDSを加えることができる。他の方法として、4M以上の塩化グアニジニウム、グアニジンチオシアン酸塩、及び尿素などを加えることができる。この溶液に対して、サルコシルを0.5%以上になるよう加えてもよい。また、メルカプトエタノールを50mM以上の濃度になるよう加えてもよい。
 上記の操作において、生物学的試料に含まれる核酸の分解を抑制するために、核酸の分解酵素の阻害剤を添加してもよい。DNA分解酵素の阻害剤として、EDTAを1mM以下の濃度で添加することができる。また、RNA分解酵素の阻害剤として市販されているRNasin Plus Ribonuclease Inhibitor(プロメガ株式会社)、Ribonuclease Inhibitor(タカラバイオ株式会社)、RNase inhibitor(東洋紡株式会社)などを使用することができる。
 生物学的試料にDNAとRNAが混在している場合には、フェノール・クロロホルム抽出によって分離することもできる。例えば、フェノール・クロロホルム抽出を酸性条件で行えばRNAは水層、DNAはクロロホルム層に分離され、中性条件で行えばRNAとDNAは水相に分配される。この性質を利用して、取得したい核酸の種類に応じて条件を選択できる。上記のクロロホルムはp-ブロモアニソールに置換することもできる。
 フェノール・クロロホルム抽出は、市販試薬であるISOGEN(登録商標:株式会社ニッポンジーン)、TRIzol(登録商標:ライフテクノロジーズジャパン株式会社)、RNAiso(タカラバイオ株式会社)、3D-Gene(登録商標) RNA extraction reagent from liquid sample kit(東レ株式会社)を利用することもできる。以上の処理は、その一工程のみを行ってもよく、他の操作における工程と組み合わせることもできる。また、それに用いる溶液の濃度は、必要に応じて変えることもできる。
 本発明において核酸を含む溶液としては、核酸、人工核酸、色素やリン酸基等の修飾が施された核酸を溶解させた溶液や、生体試料を用いる場合には、体液等の液体試料やその希釈液、細胞ペレットや組織片等の固体試料の希釈液を用いることができる。また、液体試料や固体試料を含む生物学的試料に対し、上記のいずれかの処理を行った後に得られる溶液をそのまま用いてもよいし、必要に応じて希釈してもよい。希釈する溶液は特に限定されないが、水やTris-塩酸緩衝液などの核酸を含む溶液に汎用される溶液を使用することが好ましい。核酸を含む溶液は、例えば、4M以上の塩化グアニジニウム、グアニジンチオシアン酸塩や尿素を加えた生物学的試料が好ましい。
 本発明において、回収する核酸の長さは特に限定されないが、1000塩基対以下であることが好ましい。また、本発明は、従来技術では難しかった300塩基対以下の核酸も高収率で回収することができ、100塩基対以下のpre-miRNAやmiRNAも高収率で回収することができる。
 本発明は、水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体を用いることで、高収率な核酸の回収が達成される。本発明の担体は、水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体である。以降、本発明の担体と記載する。
 本発明の担体に吸着した核酸の吸着率は、以下のとおり求めることができる。はじめに核酸を含む溶液中の核酸量を算出する。次に本発明の担体と核酸を含む溶液とを混合し、本発明の担体に核酸が吸着した後の混合液中の核酸量を算出して、核酸を含む溶液中の核酸量からの差を求める。得られた値を本発明の担体に吸着した核酸量とし、本発明の担体に吸着した核酸量を、核酸を含む溶液中の核酸量で割ることで核酸の吸着率が算出できる。
 本発明の核酸の溶出率は、以下のとおり求めることができる。核酸が吸着した本発明の担体に対して溶出液を加え、溶出した後の溶液中の核酸量を算出し、核酸の溶出量を算出する。この核酸の溶出量を上記で算出した本発明の担体に吸着した核酸量で割り、溶出率を算出できる。
 本発明における核酸の回収率は、上記の方法により算出された吸着率と溶出率の積で算出する。
 核酸量の定量の方法としては、吸光度測定、蛍光測定、発光測定、電気泳動、PCR、RT-PCR、マイクロアレイを使用した解析、シーケンサーを使った解析などが挙げられる。非修飾の核酸であれば、260nmにおける吸光度を測定することで核酸量を定量することができる。また、蛍光色素が修飾された核酸であれば、その蛍光色素に由来する蛍光強度を、濃度既知の溶液における蛍光強度と比較することで核酸量を定量できる。その他、電気泳動により行うことができる。電気泳動による回収率の算出方法は、濃度既知のサンプルと同時に回収操作を行ったサンプルを泳動し、ゲルを染色してバンドの濃度を画像解析により比較することで決定することができる。
 本発明においてポリマーは、基本単位である単量体やモノマーと呼ばれる繰り返し単位が多数繋がった化合物の総称である。本発明の担体に用いるポリマーは、1種類の単量体からなるホモポリマーと2種類以上の単量体からなるコポリマーのいずれもが含まれ、任意の重合度のポリマーも含まれる。また、天然ポリマーと合成ポリマーのいずれもが含まれる。
 本発明の担体に用いる水溶性の中性ポリマーは、水に対して溶解可能な性質を有し、水に対する溶解度が、少なくとも0.0001wt%以上であり、好ましくは、0.001wt%以上、より好ましくは0.01wt%以上、さらに好ましくは0.1wt%以上のポリマーである。
 本発明の担体に用いる水溶性の中性ポリマーは、好ましくは、pH7の溶液中でゼータ電位が-10mV以上+10mV以下のポリマーである。より好ましくは-8mV以上+8mV以下であり、さらに好ましくは-6mV以上+6mV以下、特に好ましくは-4.0mV以上+1.1mV以下のポリマーである。
 ゼータ電位とは、溶液中におけるコロイドの界面の電気的性質を表す値の1つである。荷電したコロイドが溶液に分散していると、コロイドの表面ではコロイドの表面荷電に対する対イオンにより電気二重層が形成されている。このときのコロイド表面の電位を表面電位と呼ぶ。電気二重層は、コロイドの表面電荷の静電相互作用により形成されているため、コロイド側ほどイオンが強く固定されている。電気二重層の中でも静電相互作用により対イオンがコロイド表面に強く固定されている層を固定層、固定層の電位を固定電位と呼ぶ。溶液に対してコロイドを移動させると固定層はコロイドと共に移動する。このとき、コロイドから見て固定層よりも外側に、溶液が持つ粘性のためにコロイドと共に移動する境界面がある。これを、すべり面、または、ずり面と呼ぶ。コロイドから充分に離れた地点の電位をゼロ点としたときの、このすべり面の電位はゼータ電位と定義されている。このように、ゼータ電位はコロイドの表面電荷に依存して変化し、表面電荷はpHに依存するプロトンの着脱によって変化するため、本発明ではpH7の溶液中での値を基準とする。また、一般にコロイドのサイズと比べてすべり面までの距離は小さいので、コロイドの表面をすべり面と近似的に表現することもできる。本発明で用いる水溶性の中性ポリマーの場合も同様に、溶液中に分散したコロイドの表面電位をゼータ電位とみなすことができる。
 ゼータ電位は、電気泳動、電気浸透、逆流電位、沈殿電位などの界面動電現象を利用して求めることができ、顕微鏡電気泳動法、回転回折格子法による電気泳動法、レーザー・ドップラー電気泳動法、超音波振動電位法、動電音響法などの方法により測定できる。これらの測定は、ゼータ電位測定装置を使用することで行うことができる。ゼータ電位測定装置は、大塚電子株式会社、Malvern Instruments Ltd.、Ranku Brother Ltd.、PenKem Inc.などから市販されている。
 上記のいずれの装置を用いても、ゼータ電位を測定することができるが、レーザー・ドップラー電気泳動法が一般的である。レーザー・ドップラー電気泳動法は、光や音波が電気泳動により運動している物体に当たり、散乱あるいは反射するとその周波数が変化するドップラー効果を利用した測定方法である。
 ポリマーのゼータ電位を測定する場合には、コロイド分散溶液としてポリマー溶液を調製し、ゼータ電位を測定することができる。ポリマーを例えば、リン酸緩衝液や、塩化ナトリウム溶液、クエン酸緩衝液などの電解質に溶解させてポリマー溶液を調製し、溶液中に分散したポリマーの散乱光や、反射光を検出して測定を行う。コロイドのサイズが大きいほど、低い濃度で散乱光や反射光を検出することが可能となる。
 ポリマーのゼータ電位をレーザー・ドップラー法で測定する具体的な条件は特に限定されないが、例えば、ポリマーの濃度を1wt%以上10wt%以下となるようにリン酸緩衝液(10mM, pH7)に溶解し、この溶液を測定用セルに入れて、レーザー・ドップラー電気泳動法を原理とするゼータ電位測定装置に設置して室温で測定することができる。ゼータ電位測定装置は例えば、大塚電子株式会社のELS-Z等が利用できる。
 本発明の担体に用いる水溶性の中性ポリマーとしては、具体的には、以下のものが挙げられる。例えば、ポリビニルアルコール又はポリビニルピロリドンなどのポリビニル系ポリマー、ポリアクリルアミド、ポリ(N-イソプロピルアクリルアミド)又はポリ(N-(ヒドロキシメチル)アクリルアミドなどのポリアクリルアミド系ポリマー、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラメチレンエーテルグリコールなどのポリアルキレングリコール系のポリマー、ポリ(2-エチル-2-オキサゾリン)、(ヒドロキシプロピル)メチルセルロース、メチルセルロース、エチルセルロース、2-ヒドロキシエチルセルロース又はヒドロキシプロピルセルロースなどのセルロース等を用いることができる。また、上記のポリマーが含まれる共重合体も用いることができる。
 また、フィコール、アガロース、キチン及びデキストランなどのポリサッカライド又はポリサッカライド類縁体並びにアルブミンなどのタンパク質やペプチドも本発明の担体に用いる水溶性の中性ポリマーに含まれる。
 水溶性の中性ポリマーの官能基の一部をイオン化させたり、陽性や陰性を示す官能基に置換したり、側鎖にアセチル基など水溶性を発現する官能基を導入してもよい。
 水溶性の中性ポリマーの分子量としては、例えば、0.4kD以上のポリマーを好ましく用いることができ、より好ましくは6kD以上である。
 本発明の担体に用いる酸化アルミニウムは、Al2O3の組成式で表される両性酸化物であり、アルミナとも呼ばれる。
 酸化アルミニウムは、天然に産出するものを用いてもよいし、工業的に作製したものを用いてもよい。酸化アルミニウムを作製する方法としては、例えば、ギブサイトを出発原料とするバイヤー法や、ベーマイト形態の水酸化物を経由するアルコキシド法(ゾルーゲル法とも呼ばれる)・中和法・オイルドロップレット法、アルミニウム塩熱分解法や陽極酸化法などが挙げられる。
 工業的に作製した酸化アルミニウムは、試薬メーカーや、触媒化学メーカー、一般社団法人触媒学会の参照触媒部会などから入手することができる。
 酸化アルミニウムは、それらが持つ結晶構造によって、アルファ酸化アルミニウム、ロー酸化アルミニウム、カイ酸化アルミニウム、カッパ酸化アルミニウム、イータ酸化アルミニウム、ガンマ酸化アルミニウム、デルタ酸化アルミニウム、シータ酸化アルミニウムなどに分類される。本発明では、高比表面積を持つガンマ酸化アルミニウムが好ましい。
 酸化アルミニウムは、作製時の焼成温度に応じて、酸点(Al、Al-OH )と塩基点(Al-O)が変化する。酸化アルミニウムはこの酸点と塩基点の数に応じて、酸点が多ければ酸性アルミナ、塩基点が多ければ塩基性アルミナ、酸点と塩基点が同程度の中性アルミナと分類される。この特性の違いは、pH指示薬であるBTB溶液を添加することで確認できる。BTB溶液を加えて、酸化アルミニウムが黄色に呈色すれば酸性アルミナ、緑色に呈色すれば中性アルミナ、青色に呈色すれば塩基性アルミナであることが確認できる。このような特性上の違いがあるが、本発明においては、いずれの酸化アルミニウムも使用することができる。
 酸化アルミニウムは粒状のものがよい。粒径はそろっていても、異なる粒径を混合して利用してもよい。粒径は、例えば、212μm未満の酸化アルミニウムを好ましく用いることができ、より好ましくは100μm未満の酸化アルミニウムを用いることができる。
 粒径は、本発明では日本工業規格に規格するJIS Z-8801-1:2006に基づいたふるい目開きの寸法で定義する。例えば、上記JIS標準による目開きにして40μmのふるいを通過し、32μmのふるいを通過できない粒子は、32μm以上40μm未満の粒径となる。
 本発明で用いる溶出液は、本発明の担体に吸着した核酸を溶出させることができれば、特に限定されないが、緩衝液が好ましく、緩衝液にはキレート剤が含まれていてもよい。具体的には、クエン酸とクエン酸ナトリウムを含むクエン酸緩衝液、リン酸とリン酸ナトリウムを含むリン酸緩衝液や、トリスヒドロキシアミノメタンと塩酸を含むTris-塩酸緩衝液にEDTAを添加したTris-EDTA緩衝液などが挙げられる。
 緩衝液のpHはpH4以上pH9以下が好ましく、より好ましくはpH5以上pH8以下である。
 本発明で用いる緩衝液は、以下のように調製できる。例えば、0.5Mのリン酸緩衝液(pH7)の調製は以下のとおりである。0.5Mのリン酸水素二ナトリウム水溶液と0.5Mのリン酸二水素ナトリウムを調製する。0.5Mのリン酸水素二ナトリウム水溶液に対し、pHを測定しながらリン酸二水素ナトリウム溶液を添加し、pH7となったところで添加を止める。同様の方法で、他のpHの緩衝液も調製することができる。
 緩衝液に含まれるキレート剤は、複数の配位座を持つ配位子を持っており、金属イオンへ結合し、錯体を形成する物質を用いることができる。
 具体的なキレート剤としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、グリコールエーテルジアミン四酢酸(EGTA)、ポリリン酸、メタリン酸及び/又は及びそれらの塩などが挙げられる。キレート剤の終濃度は特に限定されないが、50mM以上であればよく、好ましくは100mM以上、さらに好ましくは500mM以上である。
 また、上記以外のキレート剤となる化合物として、陰イオン性のポリマーを挙げることができる。カルボン酸を側鎖に持つポリマーは金属イオンを配位するため、これらが緩衝液に含まれていてもよい。このような機能を有するポリマーとして、ポリビニルスルホン酸及び/又はそれらの塩が挙げられる。その終濃度は特に限定されないが、1wt%以上であればよく、好ましくは10wt%以上である。
 本発明は、生物学的試料から核酸を回収する方法であって、工程a)水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体と核酸を含む溶液を混合し、担体に核酸を吸着させる工程、工程b)工程a)において混合した溶液から、前記核酸が吸着した担体を分離する工程、工程c)工程b)において前記核酸が吸着した担体に溶出液を加えて核酸を回収する工程を含む。以下、それぞれの工程について詳細に説明する。
 本発明の担体は、酸化アルミニウムの表面に水溶性の中性ポリマーを吸着させることにより作製する。ポリマーによる表面の被覆率は、7%以上が好ましく、より好ましくは10%以上、さらに好ましくは20%以上、特に好ましくは30%以上、最も好ましくは40%以上である。また、水溶性の中性ポリマーは均一の厚さで吸着していなくてもよい。
 本発明において、ポリマーによるアルミナの被覆率は、表面電位顕微鏡(別名ケルビンプローブフォース顕微鏡;KFM)によって取得した電位分布図を解析することで算出する。表面電位顕微鏡は例えば、Bruker AXS社のDigital Instruments製のNanoScope Iva AFM Dimension 3100 ステージAFMシステム等が利用できる。
 表面電位顕微鏡から表面被覆率を算出するにあたり、測定の視野スケールは、0.5μm×1μmの範囲で行う。表面被覆率の算出方法は、まず酸化アルミニウムの表面電位画像を取得し視野内の平均電位を求める。次に水溶性の中性ポリマーの表面電位画像を取得し視野内の平均電位を求める。そして、水溶性の中性ポリマーが吸着した酸化アルミニウムの表面電位画像を取得し視野内の平均電位を求める。酸化アルミニウムのみの被覆率を0%、水溶性の中性ポリマーのみの被覆率を100%とし、水溶性の中性ポリマーが吸着した酸化アルミニウムの平均電位と水溶性の中性ポリマーの平均電位の比をとることで、水溶性の中性ポリマーが吸着した酸化アルミニウムの表面被覆率を算出する。表面被覆率を求めるにあたり、使用する視野内の平均電位は、本発明の単体の粒子をランダムに3つ選んで、それぞれの測定値の平均値を使用する。
 また、本発明では、表面被覆率を算出する際の画像解析ソフトとして、Adobe社のPhotoshopを使用できる。この場合、画像解析にあたって、酸化アルミニウムの表面電位の平均値をスケール下端、水溶性の中性ポリマーの表面電位の平均値をスケール上端とし、下端の色を黒(8bit、RGB値0)、上端の色を赤(R値255)、または緑(G値255)、または青(B値255)などに設定する。設定したスケールで水溶性の中性ポリマーが吸着した酸化アルミニウムの表面電位画像を表示し、R値、またはG値、またはB値のいずれかの値を255で割り、その比を表面被覆率とする。
 水溶性の中性ポリマーを表面に吸着させる前段階として、予め酸化アルミニウムを水やエタノールなどの溶液で洗浄し、表面に吸着している不純物を除いておいてもよく、本洗浄操作を省略してもよい。
 水溶性の中性ポリマーを酸化アルミニウムの表面に吸着させる方法は、例えば、水溶性の中性ポリマーを溶解させて水溶性の中性ポリマー溶液を調製し、酸化アルミニウムに接触させる方法が挙げられる。具体的には、水溶性の中性ポリマー溶液に酸化アルミニウムを浸漬させたり、水溶性の中性ポリマー溶液を酸化アルミニウムに滴下したり、水溶性の中性ポリマー溶液を酸化アルミニウムに塗布したり、水溶性の中性ポリマー溶液を霧状にして酸化アルミニウムに吹き付けたりすることができる。
 水溶性の中性ポリマー溶液に、酸化アルミニウムを浸漬させる方法は特に限定されない。例えば、ピペッティング、転倒混合、スターラー、ミキサー、ボルテックス、ミル等の分散機や超音波処理装置などで撹拌してもよい。
 水溶性の中性ポリマー濃度は特に限定されないが、0.01wt%以上が好ましく、より好ましくは、0.1wt%以上である。
 攪拌する際の混合時間は、水溶性の中性ポリマーと酸化アルミニウムが均一に混合されれば、特に混合時間は限定されないが、ボルテックスの場合1分以上、好ましくは5分以上撹拌することが好ましい。
 また、ふるいや、ざる等を用いて水溶性の中性ポリマーを酸化アルミニウムにディップコートすることもできる。溶液に浸す際の混合時間は、0.1wt%以上のポリマー濃度であれば5分以上であればよく、30分以上であることが好ましい。
 水溶性の中性ポリマー溶液を滴下する場合には、スポイト、滴下漏斗、などを用いることができる。ポリマー溶液を滴下する際には、酸化アルミニウムを振動させたり、回転させたりしてもよく、スピンコーターなどを用いてもよい。
 水溶性の中性ポリマー溶液を塗布する場合には、刷毛、ローラー、ワイヤーバーを用いることができる。
 水溶性の中性ポリマー溶液を霧状にして吹き付ける場合には、エアースプレーやエアブラシなどを用いることができる。
 上記に例示した方法で、酸化アルミニウムに水溶性の中性ポリマーを吸着させた後は、遠心分離操作を行って、上清となるポリマー溶液を取り除いてもよいし、遠心分離操作を行わずにそのまま核酸の回収に用いてもよい。また、ポリマー溶液を溶媒に溶解させている場合、酸化アルミニウムに水溶性の中性ポリマーを吸着させ、溶媒を取り除いた後、乾燥させてもよいし、乾燥させずに、核酸の回収に用いてもよい。
 得られた本発明の担体は、作製して保存しておいたものを使用してもよく、用時調製して使用してもよい。
 水溶性の中性ポリマー溶液は、入手した水溶性の中性ポリマーが固体であれば水や有機溶媒に溶解することで調製でき、溶液であれば希釈することで調製できる。ポリマーが溶解しにくい場合や、溶液の粘度が高く混合しにくい場合、加熱処理や超音波処理を行ってもよい。有機溶媒は、例えば、エタノール、アセトニトリル、メタノール、プロパノール、tert-ブタノール、DMF、DMSO、アセトン、エチレングリコール、グリセロールなど、水と双溶性のあるものを使用することが好ましい。また、水に溶解しにくい場合には、上記の有機溶媒を添加してもよい。
 酸化アルミニウムと水溶性の中性ポリマーを、リンカー分子などによって共有結合させて作製した担体は、本発明の担体に該当しない。具体的なリンカー分子には、シランカップリング剤などが挙げられる。
 工程a)は、上記の作製方法によって作製した本発明の担体と、核酸を含む溶液を混合し、本発明の担体に核酸を吸着させる工程である。本発明の担体と核酸を含む溶液の混合方法は特に限定されないが、例えばピペッティングや転倒混合により行ってもよく、ミキサー、ボルテックスなどの装置を使用してもよい。混合時間は、特に限定されないが5分程度であればよく、それ以上の時間混合してもよい。また、本発明の担体をカラムに充填し、核酸を含む溶液を通過させてもよい。
 工程b)は、工程a)において混合した混合物から、前記核酸が吸着した担体を分離する工程である。分離の方法としては、工程a)で得られる混合物を遠心分離し、核酸が吸着した担体を沈殿させ、上清を除く方法が挙げられる。核酸が吸着した担体の比重は水より重いため、遠心操作により容易に沈殿させることができる。遠心分離の条件は、6000Gで1分間処理すればよく、10000Gで1分間処理することがより好ましい。他の分離方法としては、限外ろ過膜を用いる方法が挙げられる。核酸が吸着した担体の粒径より小さな孔径を持つ限外ろ過膜に対し、工程a)で得られた混合物を通過させ、核酸が吸着した担体を分離する。このような限外ろ過膜はキット化されており、メルク株式会社のウルトラフリー(商標登録)やPall Corporationのナノセップ(商標登録)に代表される遠心ろ過キットを入手して利用することができる。
 また、工程b)の操作の後に、必要に応じて以下のような処理をしてもよい。これは、工程a)の後に、本発明の担体の表面に目的となる核酸以外の生物学的試料由来物が吸着している可能性があるためである。例えば、より高純度に核酸を単離するため、洗浄や分解の処理を行うことができる。具体的には、非特異的に吸着した化合物を除去するために水で洗浄する、非特異的に吸着したタンパク質を除去するために界面活性剤で洗浄する、イオンや低分子化合物を除去するために界面活性剤を含む溶液で洗浄する、非特異的に吸着した疎水性化合物を除去するために有機溶媒で洗浄する、非特異的に吸着したタンパク質を分解するためにタンパク質分解酵素を添加する、DNAのみを単離するためにRNA分解酵素を添加する及びRNAのみを単離するためにDNA分解酵素を添加する、などの様々な処理をすることができる。
 工程c)は、工程b)において分離した前記核酸が吸着した本発明の担体に溶出液を加えて核酸を回収する工程である。
 上記溶出液を加えて核酸を回収するにあたって、本発明の担体と、核酸を溶出させた溶液を分離したい場合には、工程c)において、核酸が吸着した担体に溶出液を加えて得られた混合物を遠心分離し、本発明の担体を沈殿させ、核酸が溶出している上清を取得する方法が挙げられる。本発明の担体の比重は水より重いため、遠心操作により容易に沈殿させることができる。遠心分離の条件は、6000Gで1分間処理すればよく、10000Gで1分間処理することが好ましい。
 他の分離方法としては、限外ろ過膜を用いる方法が挙げられる。本発明の担体の粒径より小さな孔径を持つ限外ろ過膜に対し、工程c)において得られた混合物を通過させ、本発明の担体を分離する。このような限外ろ過膜はキット化されており、メルク株式会社のウルトラフリー(商標登録)やPall Corporationのナノセップ(商標登録)に代表される遠心ろ過キットを入手して利用することができる。
 回収された核酸は、必要に応じて、化学修飾を行うことができる。化学修飾には、核酸の末端に対する蛍光色素修飾、消光剤修飾、ビオチン修飾、アミノ化、カルボキシル化、マレインイミド化、スクシンイミド化、リン酸化及び脱リン酸化などが挙げられ、他にはインターカレーターによる染色が挙げられる。これらの修飾は化学反応により導入されてもよく、酵素反応により導入されてもよい。上記定量の前にこれらの修飾基を導入し、回収された核酸自身を定量するのではなく、化学修飾を経て導入された修飾基を定量することで、間接的に核酸を定量することができる。本発明により核酸が回収され、特に短鎖核酸においては高収率に回収されるため、上記定量において高感度に定量することが可能となる。
 本発明の核酸回収用のキットは、生物学的試料から、核酸を効率的に回収するために利用することができる。本発明の核酸回収用のキットは、その構成成分として、本発明の担体、及び緩衝液が含まれる。キットには、これらの他に説明書などが含まれていてもよい。
 本発明の核酸回収用のキットに含まれる、本発明の担体は、乾燥させた状態であってもよいし、水溶性の中性ポリマーの溶液中に浸漬された状態であってもよい。
 本発明の核酸回収用のキットに含まれる緩衝液には、上記工程c)の溶出液に用いることができる緩衝液が利用できる。
 本発明を以下の実施例によってさらに具体的に説明する。
 <材料と方法>
 ポリエチレングリコールはメルク株式会社より、ポリ(2-エチル-2-オキサゾリン)はAlfa Aesar, A Johnson Matthey Companyより、塩基性のガンマ酸化アルミニウム(N613N)は日揮触媒化成株式会社より、アルファ酸化アルミニウム(CAS.No1344-28-1, Cat.013-23115)、酸性のガンマ酸化アルミニウム(CAS.No1344-28-1, Cat.590-13685)、中性のガンマ酸化アルミニウム(CAS.No1344-28-1, Cat.013-590-13715)は和光純薬株式会社より購入した。実施例中で用いたポリマー水溶液は、それぞれの濃度に水で溶解した。また、実施例中で特に断らない限り、ガンマ酸化アルミニウムは塩基性のものを用いた。また、特に断らない限り、酸化アルミニウムは、ふるい分けなどせずに購入したまま実験に用いた。
 また、100bp DNA ladder(Fragment; 200bp, 300bp, 1000bp)はタカラバイオ株式会社より、臭化エチジウムはナカライテスク株式会社より購入した。また、let7aの配列として知られる22塩基の核酸をDNA配列に変換して合成したものとRNA配列として合成したものをユーロフィンジェノミクス株式会社より購入した。以降RNA配列の合成核酸についてはRNA22、DNA配列の合成核酸についてはDNA22と記載する。これらの核酸は、特に精製することなくそのまま用いた。
 その他の試薬については、和光純薬株式会社、東京化成株式会社、シグマーアルドリッチジャパン合同会社から購入し、特に精製することなくそのまま用いた。
 ミキサーは東京理化器械株式会社のCUTE MIXER CM-1000を、蛍光計はThermo Fisher Scientific株式会社のNanodrop3300と株式会社堀場製作所のFLUOROMAX-3を、ゼータ電位の測定には大塚電子株式会社のELS-Zを、電気泳動は株式会社アドバンスのMupid-eXUを用いた。ふるいはアズワン株式会社のMVS-1を用いた。染色したアガロースゲルはGEヘルスケア・ジャパン株式会社のTyphoon9410を用いて解析した。アガロースゲルの画像解析は、Molecular Dynamics社のImageQuant(商標登録)を用いた。表面電位顕微鏡は、Bruker AXS社のDigital Instruments製のNanoScope Iva AFM Dimension 3100 ステージAFMシステムを用いた。
 また、表面被覆率を算出する際の画像解析ソフトとして、Adobe社のPhotoshopを使用した。画像解析にあたって、酸化アルミニウムの表面電位の平均値をスケール下端、水溶性の中性ポリマーの表面電位の平均値をスケール上端とし、下端の色を黒(8bit、RGB値0)、上端の色を赤(R値255)、または緑(G値255)、または青(B値255)に設定した。設定したスケールで水溶性の中性ポリマーが吸着した酸化アルミニウムの表面電位画像を表示し、R値、またはG値、またはB値のいずれかの値を255で割り、その比を表面被覆率とした。
 表面電位顕微鏡から表面被覆率を算出するにあたり、測定の視野スケールは、0.5μm×1μmの範囲で行う。表面被覆率の算出方法は、まず酸化アルミニウムの表面電位画像を取得し視野内の平均電位を求めた。次に水溶性の中性ポリマーの表面電位画像を取得し視野内の平均電位を求めた。そして、水溶性の中性ポリマーが吸着した酸化アルミニウムの表面電位画像を取得し視野内の平均電位を求める。酸化アルミニウムのみの被覆率を0%、水溶性の中性ポリマーのみの被覆率を100%とし、水溶性の中性ポリマーが吸着した酸化アルミニウムの平均電位と水溶性の中性ポリマーの平均電位の比をとることで、水溶性の中性ポリマーが吸着した酸化アルミニウムの表面被覆率を算出した。表面被覆率を求めるにあたり、使用する視野内の平均電位は、本発明の単体の粒子をランダムに3つ選んで、それぞれの測定値の平均値を使用した。
 <比較例1>水溶性の中性ポリマーが表面に吸着していない担体を用いた核酸回収
 特許文献3(実施例4,Table2)に記載の酸化アルミニウムAと組成の近い塩基性のガンマ酸化アルミニウム(N613N, 日揮触媒化成株式会社)、酸化アルミニウムDと組成の近い、アルファ酸化アルミニウム(和光純薬株式会社)を用いて、核酸を効率的に回収することができるかを検討した。酸化アルミニウムに吸着させた核酸を溶出させる溶出液として、特許文献3、4に、リン酸緩衝液、又はTris-EDTA緩衝液を溶出液として利用できることが記載されおり、特許文献5には、リン酸溶液が核酸と酸化アルミニウムとの結合を阻害する旨が記載されていたことから、リン酸緩衝液(0.5M, pH8)又はTris-EDTA緩衝液(0.5M Tris, 0.5M EDTA, pH8)を溶出液として、以下の実験を行った。
 最初に1.5mlチューブに、0.5mgのアルファ酸化アルミニウム、又はガンマ酸化アルミニウムを量り取った。それぞれに200μlのエタノールを加え、ボルテックスした後、遠心機で1分間遠心して上清を除いた。この操作を更に2回行って洗浄した。
 続いて、これらに対し、100pmolのDNA22が溶解した6Mグアニジンチオシアン酸塩水溶液100μlを加え、5分間ミキサーで攪拌した。遠心(10000G, 1min)して上清を捨て、0.05% Tween水を100μl加え、ボルテックスした。この操作を更に2回行った。その後、50μlのリン酸緩衝液(0.5M, pH8)又はTris-EDTA緩衝液(0.5M Tris, 0.5M EDTA, pH8)を加えて5分間ミキサーで攪拌した。遠心機で遠心(10000G, 1min)して、核酸溶液を回収した。
 吸着率はCy3の蛍光測定により以下のように算出した。はじめに、アルファ酸化アルミニウムとガンマ酸化アルミニウムを加える前の100pmolのDNA22が溶解した6Mグアニジンチオシアン酸塩水溶液100μlの蛍光強度を測定し、次にアルファ酸化アルミニウムとガンマ酸化アルミニウムを加えて混合した後の蛍光強度を測定した。酸化アルミニウムを加えた後の蛍光強度を加える前の蛍光強度で割り、加える前の核酸量(100pmol)の積をとって溶液中の核酸量を算出した。加える前の核酸量(100pmol)から、この値の差をとり、吸着した核酸量を算出した。吸着した核酸量を、酸化アルミニウムを加える前の核酸量(100pmol)で割り、吸着率を算出した。
 溶出率はCy3の蛍光測定により以下のように算出した。核酸が吸着した酸化アルミニウムに対して50μlのリン酸緩衝液又はTris-EDTA緩衝液をそれぞれ加え、溶出した後の溶出液に対して蛍光測定を行った。次に、100pmolのDNA22が溶解した50μlのリン酸緩衝液、及びTris-EDTA緩衝液を調製し、この溶液に対してそれぞれ蛍光測定を行った。溶出液の蛍光強度をこの溶液の蛍光強度で割り、溶出した核酸量を算出した。溶出した核酸量を、吸着した核酸量で割り、溶出率を算出した。回収率は、算出された吸着率と溶出率の積をとって算出した。結果を表1に示した。
 これらの結果から、ポリマーが表面に吸着していないガンマ酸化アルミニウム、又はアルファ酸化アルミニウムを担体として用いた核酸の回収方法は、溶出率が低く、核酸の回収率が低いことが分かった。
Figure JPOXMLDOC01-appb-T000001
 <比較例2>水溶性の中性ポリマー以外の水溶性のポリマーが表面に吸着した酸化アルミニウムの担体の作製
 1.5mlチューブに、0.5mgずつガンマ酸化アルミニウムを量り取った。これにポリマー溶液として、ポリアクリル酸(PAcA, 5.1kD, 10wt%)、デキストラン硫酸(DS, 4kD, 10wt%)、ポリビニルスルホン酸(PVSA, 10wt%)、ポリアリルアミン(PAA, 17kD, 10wt%)、ポリ-L-リシン(PLL, 150kD, 1wt%)をそれぞれ50μlずつ加えて10分間ミキサーで攪拌した。遠心機で遠心(10000G, 1min)して上清を除き、それぞれのポリマーが表面に吸着したガンマ酸化アルミニウム得た。
 <比較例3>水溶性の中性ポリマー以外の水溶性の各ポリマーが表面に吸着した酸化アルミニウムを担体として用いた核酸回収
 1.5mlのチューブに比較例2で作製した水溶性の中性ポリマー以外の水溶性のポリマーとして、ポリアクリル酸(PAcA, 5.1kD, 10wt%)、デキストラン硫酸(DS, 4kD, 10wt%)、ポリビニルスルホン酸(PVSA, 10wt%)、ポリアリルアミン(PAA, 17kD, 10wt%)、ポリ-L-リシン(PLL, 150kD, 1wt%)が表面に吸着したガンマ酸化アルミニウムを0.5mgずつ量り取り担体として用いた。溶出液はTris-EDTA緩衝液(0.5M Tris, 0.5M EDTA, pH8)とし、その他の条件、操作は比較例1と同様に行い核酸の吸着率、溶出率、回収率を算出した。結果を表2に示した。
 これらの結果から、ポリアクリル酸、ポリビニルスルホン酸、及びデキストラン硫酸が表面に吸着したガンマ酸化アルミニウムを担体に用いた場合には、核酸の吸着率も溶出率も低く、核酸の回収率も低いことがわかった。また、ポリアリルアミン、及びポリ-L-リシンが表面に吸着したガンマ酸化アルミニウムを担体として用いた場合には、核酸の吸着率は高く保たれたが、溶出率が低下し、回収率も低い結果となった。
 <実施例1>水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体の作製
 1.5mlチューブに、0.5mgずつガンマ酸化アルミニウムを量り取った。これに、ポリマー水溶液として、水溶性の中性ポリマーであるポリビニルアルコール(11%アセチル化, PVA, 18kD, 10wt%)、ポリ(2-エチル-2-オキサゾリン)(PEOz, 5kD, 10wt%)、ポリエチレングリコール(PEG, 10kD, 10wt%)、ヒドロキシプロピルメチルセルロース)(HPMC, 10kD, 10wt%)、ポリビニルピロリドン(PVP, 10kD, 10wt%)をそれぞれに50μlずつ加えた。その他の条件、操作は比較例2と同様に行い、それぞれのポリマーが表面に吸着したガンマ酸化アルミニウムの担体を得た。
 <実施例2>水溶性の中性ポリマーが表面に吸着したガンマ酸化アルミニウムを担体として用いた核酸回収
 1.5mlのチューブに実施例1で作製した各水溶性の中性ポリマーとして、ポリビニルアルコール(11%アセチル化, PVA, 18kD, 10wt%)、ポリ(2-エチル-2-オキサゾリン)(PEOz, 5kD, 10wt%)、ポリエチレングリコール(PEG, 10kD, 10wt%)、ヒドロキシプロピルメチルセルロース)(HPMC, 10kD, 10wt%)、ポリビニルピロリドン(PVP, 10kD, 10wt%)が表面に吸着したガンマ酸化アルミニウムを0.5mgずつ量り取り担体として用いた。その他の条件、操作は比較例3と同様に行い、核酸の吸着率、溶出率、回収率を算出した。結果を表2に示した。
 これらの結果から、比較例3に比べ、水溶性の中性ポリマーが表面に吸着したガンマ酸化アルミニウムを担体として用いた場合、核酸の吸着率は高く保たれたまま、溶出率及び回収率が向上することがわかった。
Figure JPOXMLDOC01-appb-T000002
 <比較例4>水溶性の中性ポリマー以外の水溶性のポリマーのゼータ電位の測定
 比較例3で用いた水溶性の中性ポリマー以外の水溶性のポリマーであるポリアクリル酸(PAcA, 5.1kD)、デキストラン硫酸(DS, 4kD)、ポリビニルスルホン酸(PVSA)、ポリアリルアミン(PAA, 17kD)、ポリーL-リシン(PLL, 150kD))を終濃度が1wt%以上10wt%以下となるようにリン酸緩衝液(10mM, pH7)に溶解し、大塚電子株式会社のELS-Zを用いてゼータ電位を測定した。結果を表3に示す。表3は、本測定によって得られたゼータ電位と、それぞれのポリマーが表面に吸着したガンマ酸化アルミニウムを担体として使ったDNA22の回収率(比較例3の結果)の相関を取り、ゼータ電位の値の低い順に並べたものである。
 これらの結果から、比較例3で用いた水溶性の中性ポリマー以外の水溶性ポリマーのゼータ電位は-17mV以下、又は+11mV以上であることがわかった。
 <実施例3>水溶性の中性ポリマーのゼータ電位測定
 終濃度が1wt%以上10wt%以下となるよう、実施例2で用いた水溶性の中性ポリマーであるポリビニルアルコール(11%アセチル化, PVA, 18kD)、ポリ(2-エチル-2-オキサゾリン)(PEOz, 5kD)、ポリエチレングリコール(PEG, 10kD)、ヒドロキシプロピルメチルセルロース(HPMC, 10kD)、ポリビニルピロリドン(PVP, 10kD)をリン酸緩衝液(10mM, pH7)に溶解し、比較例4と同様の方法でゼータ電位を測定した。
 表3は、本測定によって得られたゼータ電位と、それぞれのポリマーが表面に吸着したガンマ酸化アルミニウムを担体として使ったDNA22の回収率(実施例2の結果)の相関を取り、ゼータ電位の値の低い順に並べたものである。
 これらの結果から、実施例2で核酸の回収率が向上した水溶性の中性ポリマーのゼータ電位は、pH7の溶液中で-4mV以上+1.1mV以下であり、-17mV以下及び+11mV以上のゼータ電位を持つ水溶性のポリマーと比べて、回収率が向上することがわかった。
Figure JPOXMLDOC01-appb-T000003
 <実施例4>水溶性の中性ポリマーが表面に吸着したガンマ酸化アルミニウムの担体に吸着した核酸の溶出
 実施例1に従ってポリエチレングリコールが表面に吸着したガンマ酸化アルミニウムを作製し、1.5mlチューブに0.5mgずつ量り取った。溶出液として0.5Mクエン酸緩衝液(pH 5, 6)、0.5M リン酸緩衝液(pH6, 7, 8)、0.5M Tris-EDTA緩衝液(pH8)、10wt%の終濃度となるようPVSAを添加した0.5M Tris緩衝液(pH8) をそれぞれ用いた。その他の条件、操作は比較例1と同様に行い、核酸の吸着率、溶出率、回収率を算出した。結果を表4に示した。
 これらの結果から、いずれの緩衝液を溶出液として用いても、核酸を高収率に回収できることが分かった。
Figure JPOXMLDOC01-appb-T000004
 <実施例5>水溶性の中性ポリマーが表面に吸着したガンマ酸化アルミニウムを担体として用いた核酸の回収率と核酸の長さの関係
 実施例1に従ってポリエチレングリコールが表面に吸着したガンマ酸化アルミニウムを作製し、1.5mlチューブに0.5mgずつ量り取った。核酸を含む溶液として、7.5μgの100bp DNA ladderの200bp、300bp、1000bpがそれぞれ溶解した6Mグアニジンチオシアン酸塩水溶液を100μl用いた。その他の条件、操作は比較例3と同様に行い核酸の回収率を算出した。結果を表5に示した。
 これらの結果から、水溶性の中性ポリマーであるポリエチレングリコールが表面に吸着したガンマ酸化アルミニウムを使うことで、いずれの長さを有する核酸も効率的に回収できることが分かった。
Figure JPOXMLDOC01-appb-T000005
 <実施例6>ウシ胎児血清からの核酸回収
 実施例1に従ってポリエチレングリコールが表面に吸着したガンマ酸化アルミニウムを作製し、1.5mlチューブに1.5mgずつ量り取った。核酸を含む溶液として100pmolのDNA22が溶解した6Mグアニジンチオシアン酸塩水溶液100μlと30mg/mlのタンパク質濃度を有するウシ胎児血清100μlの混合溶液を用いた。その他の条件、操作は比較例3と同様に行い核酸の吸着率、溶出率、回収率を算出した。同様の実験をRNA22に対しても行った。結果を表6に示した。なお、回収液中のタンパク質濃度は、Bradford試験の検出限界以下(0.25mg/ml以下)であった。
 これらの結果から、ポリエチレングリコールが表面に吸着した酸化アルミニウムを担体として使うことで、血清からもDNA22、RNA22のいずれも効率よく回収できることが分かった。
Figure JPOXMLDOC01-appb-T000006
 <実施例7>核酸回収における酸化アルミニウムの粒径の効果
 日本工業規格に規格するJIS Z-8801-1:2006に基づくふるいを使って、ガンマ酸化アルミニウムを粒径ごとに分画(100μm以上212μm未満、40μm以上100μm未満、32μm以上40μm未満、20μm以上32μm未満)した。担体は、実施例1と同様にして、各粒径ごとのポリエチレングリコールが表面に吸着したガンマ酸化アルミニウムを調製してこれを用いた。その他の条件、操作は比較例3と同様に行い核酸の回収率を算出した。結果を表7に示した。
 これらの結果から、粒径が212μm未満のいずれの分画においても、核酸を回収できることがわかった。
Figure JPOXMLDOC01-appb-T000007
 <実施例8>核酸回収におけるガンマ酸化アルミニウムの特性の違い
 酸性のガンマ酸化アルミニウム、中性のガンマ酸化アルミニウム、塩基性のガンマ酸化アルミニウムを用いた。担体は、実施例1と同様にして、ポリエチレングリコールが表面に吸着したそれぞれの酸化アルミニウムを調製してこれを用いた。その他の条件、操作は比較例3と同様に行い核酸の吸着率、溶出率、回収率を算出した。結果を表8に示した。
 これらの結果から、酸性アルミナ、中性アルミナ、塩基性アルミナのいずれを用いた場合でも核酸を高収率に回収できることがわかった。
Figure JPOXMLDOC01-appb-T000008
 <実施例9>酸化アルミニウムに表面に吸着させるポリマーの分子量の効果
 分子量が 6kD、 10kD、500kDのポリエチレングリコールと、分子量が18kD、40kD、 150kD(いずれも11%アセチル化)のポリビニルアルコールをそれぞれ10wt%になるよう調製しポリマー溶液として用いた。担体は、実施例1と同様にして、各分子量のポリエチレングリコールが表面に吸着したガンマ酸化アルミニウムを調製してこれを用いた。その他の条件、操作は比較例3と同様に行い、核酸の吸着率、溶出率、回収率を算出した。結果を表9に示した。
 これらの結果から、いずれの分子量を持つポリマーであっても、核酸を回収できることが分かった。
Figure JPOXMLDOC01-appb-T000009
 <実施例10>本発明の担体の作製方法における水溶性の中性ポリマーの濃度と撹拌時間の関係
 1.5mlチューブに、0.5mgずつ酸化アルミニウムを量り取った。これに、ポリマー水溶液として、水溶性の中性ポリマーであるポリエチレングリコール(PEG, 10kD)を0.1wt%、1wt%、10wt%の濃度でそれぞれに50μlずつ加えた。各濃度に対してミキサーでそれぞれ1分間、5分間、30分間攪拌した。遠心機で遠心(10000G, 1min)して上清を除き、酸化アルミニウムの表面にポリエチレングリコールが吸着した担体を得た。また、比較例3と同様に行い、核酸の回収率を算出した。結果を表10に示した。
 これらの結果から、いずれの条件で作製された担体も、効率的に核酸を回収できることがわかった。
Figure JPOXMLDOC01-appb-T000010
 <実施例11>本発明の担体の作製方法における水溶性の中性ポリマーの濃度と浸漬時間の関係
 1.5mlチューブに、0.5mgずつ酸化アルミニウムを量り取った。これに、ポリマー水溶液として、水溶性の中性ポリマーであるポリエチレングリコール(PEG, 10kD)を0.1wt%、1wt%、10wt%の濃度でそれぞれに50μlずつ加えてそれぞれ5分間、30分間静置した。遠心機で遠心(10000G, 1min)して上清を除き、酸化アルミニウムの表面にポリエチレングリコールが吸着した担体を得た。また、比較例3と同様に行い、核酸の回収率を算出した。結果を表11に示した。
 これらの結果から、いずれの条件で作製された担体も、効率的に核酸を回収できることがわかった。
Figure JPOXMLDOC01-appb-T000011
 <実施例12>本発明の担体の作製における遠心分離操作の有無と核酸の回収率の関係
 1.5mlチューブに、0.5mgずつ酸化アルミニウムを量り取った。これに、ポリマー水溶液として、水溶性の中性ポリマーであるポリエチレングリコール(PEG, 10kD)を10wt%の濃度で50μl加えてミキサーで10分間攪拌した。この後の操作として、実施例2では、遠心機による遠心分離操作及び上清を除く操作を行ったが、実施例12ではこれらの操作を行わなかった。このようにして作製した担体を用いた以外は、比較例3と同様に行い、核酸の吸着率、溶出率、回収率を算出し、結果を表12に示した。
 これらの結果から、実施例1で作製した担体を用いて核酸の回収を行った実施例2の結果のうち、水溶性の中性ポリマーとして、ポリエチレングリコールを用いた場合の核酸の回収率の結果と比較すると、どちらの方法で本発明の担体を作製しても、効率的に核酸を回収できることがわかった。
Figure JPOXMLDOC01-appb-T000012
 <実施例13>本発明の担体の作製方法における水溶性の中性ポリマーの水洗による除去と回収率の関係
 実施例1にしたがってポリエチレングリコールが表面に吸着した酸化アルミニウムを作製した。この後の操作として、この担体に水200μl加えてミキサーで1分間攪拌し、遠心機で遠心(10000G, 1min)して上清を除いた。この水洗操作を1回、3回行ったものをそれぞれ調製した。上記のようにして作製した担体を用いた以外は、比較例3と同様に行い、核酸の吸着率、溶出率、回収率を算出し、結果を表13に示した。
 これらの結果から、実施例1で作製した担体を用いて核酸の回収を行った実施例2の結果のうち、水溶性の中性ポリマーとして、ポリエチレングリコールを用いた場合の核酸の回収率の結果と比較すると、どちらの方法で本発明の担体を作製しても、効率的に核酸を回収できることがわかった。
Figure JPOXMLDOC01-appb-T000013
 <実施例14>本発明の担体におけるポリマーによる酸化アルミニウムの表面被覆率と回収率の関係
 実施例13で作製した担体、実施例2で作製したポリエチレングリコールが表面に吸着した酸化アルミニウム(水洗なし)、ポリマーが吸着していない酸化アルミニウム、ポリエチレングリコールを表面電位顕微鏡により分析し、電位分布図を取得して平均電位を算出した。測定にあたり、担体試料をカーボンテープに散布し、CoCrコートシリコンカンチレバーを探針に用い、ノンコンタクトモードで、0.5μm×1μmの視野範囲で、室温、大気中で測定した。測定値には、ポリエチレングリコールが表面に吸着した担体の粒子をランダムに3粒選んで想定した値の平均値を用いた。ポリマーが吸着していない酸化アルミニウムのみの被覆率を0%、ポリエチレングリコールのみの被覆率を100%とし、ポリエチレングリコールが吸着した酸化アルミニウムの平均電位とポリエチレングリコールの平均電位の比をとることで表面被覆率を算出した。表面被覆率と各担体を用いたときの核酸の回収率との関係を表14に示した。
 これらの結果から、表面被覆率が7%以上の担体を用いると、効率的に核酸を回収できることがわかった。
Figure JPOXMLDOC01-appb-T000014
 本発明により、生物学的試料から、有機溶媒を使用することなく、簡便な方法でpre-miRNAやmiRNAのような非常に短い核酸から、1000塩基以上の長い核酸まで効率よく回収することが可能となる。
 

Claims (10)

  1.  生物学的試料から核酸を回収する方法であって、以下の工程:
    工程a)水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体と核酸を含む溶液を混合し、担体に核酸を吸着させる工程、
    工程b)工程a)において混合した溶液から、前記核酸が吸着した担体を分離する工程、
    工程c)工程b)において分離した前記核酸が吸着した担体に溶出液を加えて核酸を回収する工程、
    を含むことを特徴とする核酸の回収方法。
  2.  前記水溶性の中性ポリマーが、pH7の溶液中で-10mV以上+10mV以下のゼータ電位を有するポリマーであることを特徴とする請求項1に記載の核酸の回収方法。
  3.  前記ポリマーが、ポリエチレングリコール、ポリビニルピロリドン、ポリ(2-エチル-2-オキサゾリン)又はヒドロキシプロピルメチルセルロースであることを特徴とする請求項1又は2に記載の核酸の回収方法。
  4.  前記溶出液が緩衝液であることを特徴とする請求項1から3のいずれかに記載の核酸の回収方法。
  5.  前記生物学的試料が、血液、尿、唾液、粘膜、汗、培養細胞、培養細胞の培養液、組織試料又は標本であることを特徴とする請求項1から4のいずれかに記載の核酸の回収方法。
  6.  酸化アルミニウムの表面に水溶性の中性ポリマーが吸着した核酸回収用の担体。
  7.  前記水溶性の中性ポリマーが、pH7の溶液中で-10mV以上+10mV以下のゼータ電位を有するポリマーであることを特徴とする請求項6に記載の担体。
  8.  前記水溶性の中性ポリマーがポリエチレングリコール、ポリビニルピロリドン、ポリ(2-エチル-2-オキサゾリン)又はヒドロキシプロピルメチルセルロースであることを特徴とする請求項6または7に記載の担体。
  9.  前記水溶性の中性ポリマーが、酸化アルミニウムの担体の表面のうち7%以上を被覆するよう吸着していることを特徴とする請求項6から8のいずれかに記載の担体。
  10.  請求項6から9のいずれかに記載の担体と緩衝液を備えることを特徴とする核酸回収用のキット。
     
PCT/JP2016/058658 2015-03-20 2016-03-18 核酸の回収方法 WO2016152763A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680015280.0A CN107406847A (zh) 2015-03-20 2016-03-18 核酸的回收方法
US15/556,954 US11118173B2 (en) 2015-03-20 2016-03-18 Method of collecting a nucleic acid(s)
CA2977347A CA2977347A1 (en) 2015-03-20 2016-03-18 Method for collecting a nucleic acid(s)
JP2016518466A JP6711270B2 (ja) 2015-03-20 2016-03-18 核酸の回収方法
KR1020177027667A KR102488291B1 (ko) 2015-03-20 2016-03-18 핵산의 회수 방법
BR112017017878-8A BR112017017878A2 (ja) 2015-03-20 2016-03-18 A recovery method of nucleic acid
EP16768666.6A EP3272866B1 (en) 2015-03-20 2016-03-18 Method for collecting nucleic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-057760 2015-03-20
JP2015057760 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152763A1 true WO2016152763A1 (ja) 2016-09-29

Family

ID=56979094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058658 WO2016152763A1 (ja) 2015-03-20 2016-03-18 核酸の回収方法

Country Status (8)

Country Link
US (1) US11118173B2 (ja)
EP (1) EP3272866B1 (ja)
JP (1) JP6711270B2 (ja)
KR (1) KR102488291B1 (ja)
CN (1) CN107406847A (ja)
BR (1) BR112017017878A2 (ja)
CA (1) CA2977347A1 (ja)
WO (1) WO2016152763A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131760A1 (ja) 2017-12-27 2019-07-04 東レ株式会社 核酸の回収方法
WO2020085341A1 (ja) * 2018-10-23 2020-04-30 東レ株式会社 核酸の回収方法及び核酸回収用のキット
EP3514233A4 (en) * 2016-09-14 2020-05-06 Toray Industries, Inc. METHOD FOR RECOVERY OF CELL-FREE DNA
WO2020090900A1 (ja) 2018-10-31 2020-05-07 東レ株式会社 核酸回収用カラム
JP2021506324A (ja) * 2017-12-19 2021-02-22 ウニヴェルシタ デリ ストゥディ ディ トレント 生体材料から細胞外小胞を単離する方法および固定相

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155567A (ja) * 1997-08-22 1999-06-15 Becton Dickinson & Co 核酸精製用酸化ジルコニウム及び類縁化合物
JP2003235555A (ja) * 2002-02-08 2003-08-26 Jsr Corp 一本鎖核酸および/または二本鎖核酸の単離方法
US20070015165A1 (en) * 2005-07-13 2007-01-18 Sigma-Aldrich Co. Method for the isolation of RNA from biological sources
JP2007529229A (ja) * 2004-03-18 2007-10-25 アンビオン インコーポレーティッド 核酸精製のための固相支持体として修飾された表面

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234809A (en) 1989-03-23 1993-08-10 Akzo N.V. Process for isolating nucleic acid
WO1992018514A1 (en) 1991-04-12 1992-10-29 Minnesota Mining And Manufacturing Company Purification of nucleic acids using metal oxide supports
DE4321904B4 (de) * 1993-07-01 2013-05-16 Qiagen Gmbh Verfahren zur chromatographischen Reinigung und Trennung von Nucleinsäuregemischen
US6872527B2 (en) 1997-04-16 2005-03-29 Xtrana, Inc. Nucleic acid archiving
US6746608B2 (en) * 2001-06-12 2004-06-08 Prometic Biosciences, Inc. Use of adsorbent polymer particles in DNA separation
KR100745750B1 (ko) * 2005-01-25 2007-08-02 삼성전자주식회사 인터컬레이터를 이용한 핵산의 분리 방법
JP2008527973A (ja) * 2005-01-31 2008-07-31 富士フイルム株式会社 試料溶液調製方法および試料溶液調製装置
US9409166B2 (en) * 2007-12-10 2016-08-09 The Trustees Of The University Of Pennsylvania Integrated PCR reactor for cell lysis, nucleic acid isolation and purification, and nucleic acid amplication related applications
EP2128169A1 (de) 2008-05-30 2009-12-02 Qiagen GmbH Verfahren zur Isolierung von kurzkettigen Nukleinsäuren
DE102008063001A1 (de) * 2008-12-23 2010-06-24 Qiagen Gmbh Nukleinsäureaufreinigungsverfahren
JP5914338B2 (ja) 2009-09-24 2016-05-11 キアジェン ゲイサーズバーグ インコーポレイテッド 陰イオン交換材料を使用した核酸の単離および分析のための組成物、方法およびキット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155567A (ja) * 1997-08-22 1999-06-15 Becton Dickinson & Co 核酸精製用酸化ジルコニウム及び類縁化合物
JP2003235555A (ja) * 2002-02-08 2003-08-26 Jsr Corp 一本鎖核酸および/または二本鎖核酸の単離方法
JP2007529229A (ja) * 2004-03-18 2007-10-25 アンビオン インコーポレーティッド 核酸精製のための固相支持体として修飾された表面
US20070015165A1 (en) * 2005-07-13 2007-01-18 Sigma-Aldrich Co. Method for the isolation of RNA from biological sources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272866A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514233A4 (en) * 2016-09-14 2020-05-06 Toray Industries, Inc. METHOD FOR RECOVERY OF CELL-FREE DNA
JP2021506324A (ja) * 2017-12-19 2021-02-22 ウニヴェルシタ デリ ストゥディ ディ トレント 生体材料から細胞外小胞を単離する方法および固定相
JP7238766B2 (ja) 2017-12-27 2023-03-14 東レ株式会社 核酸の回収方法
WO2019131760A1 (ja) 2017-12-27 2019-07-04 東レ株式会社 核酸の回収方法
CN111542605A (zh) * 2017-12-27 2020-08-14 东丽株式会社 核酸的回收方法
KR20200103666A (ko) 2017-12-27 2020-09-02 도레이 카부시키가이샤 핵산의 회수 방법
JPWO2019131760A1 (ja) * 2017-12-27 2020-11-19 東レ株式会社 核酸の回収方法
US11685915B2 (en) 2017-12-27 2023-06-27 Toray Industries, Inc. Method of collecting nucleic acid
WO2020085341A1 (ja) * 2018-10-23 2020-04-30 東レ株式会社 核酸の回収方法及び核酸回収用のキット
WO2020090900A1 (ja) 2018-10-31 2020-05-07 東レ株式会社 核酸回収用カラム
EP3875571A4 (en) * 2018-10-31 2022-08-24 Toray Industries, Inc. COLUMN FOR NUCLEIC ACID COLLECTION
JPWO2020090900A1 (ja) * 2018-10-31 2021-09-24 東レ株式会社 核酸回収用カラム
US11795449B2 (en) 2018-10-31 2023-10-24 Toray Industries, Inc. Nucleic acid collection column
JP7424055B2 (ja) 2018-10-31 2024-01-30 東レ株式会社 核酸回収用カラム

Also Published As

Publication number Publication date
KR102488291B1 (ko) 2023-01-13
JP6711270B2 (ja) 2020-06-17
JPWO2016152763A1 (ja) 2017-12-28
EP3272866B1 (en) 2021-11-03
US11118173B2 (en) 2021-09-14
CA2977347A1 (en) 2016-09-29
US20180051274A1 (en) 2018-02-22
EP3272866A1 (en) 2018-01-24
KR20170128392A (ko) 2017-11-22
BR112017017878A2 (ja) 2018-04-10
EP3272866A4 (en) 2018-10-24
CN107406847A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6958353B2 (ja) 核酸の回収方法
JP6711270B2 (ja) 核酸の回収方法
JP2008529516A (ja) エチレングリコール多量体の使用を含む核酸の単離方法
JP2011503244A (ja) 核酸の単離方法またはリン酸化タンパク質の単離方法における粒子およびその使用
Rahman et al. Nucleic acid sample preparation for in vitro molecular diagnosis: from conventional techniques to biotechnology
WO2019131760A1 (ja) 核酸の回収方法
KR20190117358A (ko) 산화아연 나노스타를 이용한 병원체 용균 및 핵산 추출 방법
JP2018519807A (ja) 磁性キトサン微粒子を使用するポリメラーゼ連鎖反応に対するシングルステップdna調製
KR102406951B1 (ko) 무세포 dna의 회수 방법
AU2015257405A1 (en) Improved enrichment methods
WO2020085341A1 (ja) 核酸の回収方法及び核酸回収用のキット
Tezcan et al. New polymer brush-coated monodisperse magnetic nanoparticles prepared via interface-mediated RAFT polymerization for high-throughput DNA extraction from pathogen bacteria
JP6774047B2 (ja) 複合体、試料中の対象核酸の検出方法及びキット
CN108913685B (zh) 去引物二聚体的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518466

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2977347

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016768666

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017878

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15556954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027667

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017017878

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170821