WO2016152716A1 - リチウムイオン二次電池用負極および二次電池 - Google Patents

リチウムイオン二次電池用負極および二次電池 Download PDF

Info

Publication number
WO2016152716A1
WO2016152716A1 PCT/JP2016/058493 JP2016058493W WO2016152716A1 WO 2016152716 A1 WO2016152716 A1 WO 2016152716A1 JP 2016058493 W JP2016058493 W JP 2016058493W WO 2016152716 A1 WO2016152716 A1 WO 2016152716A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
metal
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2016/058493
Other languages
English (en)
French (fr)
Inventor
入山 次郎
伊紀子 島貫
丈史 莇
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017508288A priority Critical patent/JP6812966B2/ja
Priority to CN201680017641.5A priority patent/CN107431184A/zh
Priority to US15/560,360 priority patent/US20180076449A1/en
Publication of WO2016152716A1 publication Critical patent/WO2016152716A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to a negative electrode capable of forming a lithium ion secondary battery having excellent characteristics, a method for manufacturing the same, a vehicle using the lithium ion secondary battery, and a power storage device.
  • Lithium ion secondary batteries are characterized by their small size and large capacity, and they have been widely used as power sources for electronic devices such as mobile phones and laptop computers, and have contributed to improving the convenience of portable IT devices.
  • the use in a larger application such as a power source for driving a motorcycle or an automobile or a storage battery for a smart grid has attracted attention.
  • As demand for lithium-ion secondary batteries increases and it is used in various fields, it is possible to use batteries with higher energy density, life characteristics that can withstand long-term use, and a wide range of temperature conditions. Such characteristics are required.
  • Carbon materials such as graphite are generally used for the negative electrode of lithium ion secondary batteries.
  • metal particles such as silicon, silicon oxide, etc. are used together with carbon material particles.
  • a negative electrode containing oxide particles has been proposed (see, for example, Patent Document 1: Japanese Patent Laid-Open No. 2003-123740).
  • graphite having high crystallinity has high decomposition activity of the electrolyte solution, and therefore, for example, a particle whose surface is coated with amorphous carbon is often used (for example, Patent Document 2: JP 2010-97696 A). See the official gazette).
  • Patent Document 1 in a negative electrode including graphite and a silicon-based material, particularly a silicon-based material has a large volume change due to charging / discharging, and the negative electrode deteriorates during repeated charging / discharging, thereby affecting the cycle characteristics of the battery. There is. Further, when graphite having a coated surface as in Patent Document 2 is used alone, cycle characteristics are improved, but when used in a negative electrode together with a silicon-based material, improvement as expected is not seen. There is a case. Patent Document 3 describes a technique for using silicon oxide having a high degree of circularity as a negative electrode material, but there is no description about using it together with a surface-coated carbon material.
  • Embodiments of the present invention provide a negative electrode for a lithium ion secondary battery excellent in cycle characteristics using a metal and / or metal oxide typified by a silicon-based material and a surface-coated carbon material as active materials. For the purpose.
  • a material selected from a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions (hereinafter referred to as metal and / or metal oxide)
  • a negative electrode containing a surface-coated carbon material capable of occluding and releasing lithium ions as an active material (hereinafter referred to as metal and / or metal oxide),
  • Circularity 4 ⁇ S / L 2 (1) (However, S is the area of the particle projection image, and L is the circumference of the particle projection image.) It is related with the negative electrode for lithium ion secondary batteries characterized by the average value of the circularity defined by (1) being 0.78 or more.
  • the surface coating of the carbon particles will not be damaged, or even if damaged, the cycle is smaller than the conventional one. It is estimated that the characteristics have improved.
  • the negative electrode has a structure in which a negative electrode active material is laminated on a current collector as a negative electrode active material layer integrated with a negative electrode binder.
  • the negative electrode active material is a material capable of reversibly occluding and releasing lithium ions with charge / discharge.
  • the negative electrode of the present embodiment has, as an active material, (a) at least one material selected from metal oxides capable of alloying with lithium and metal ions capable of occluding and releasing lithium ions, and (b) occluding lithium ions, Includes releasable surface-coated carbon material.
  • a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions may be one or more materials selected from either one or both. One or more kinds of materials may be selected and combined for use.
  • at least one material selected from a metal that can be alloyed with lithium and a metal oxide capable of occluding and releasing lithium ions may be referred to as “metal and / or metal oxide”.
  • metal and metal oxide both may be collectively referred to as “metal and metal oxide”.
  • Metal and metal oxide are in the form of particles and have no sharp corners. As described later, when the metal is dispersed inside the metal oxide, the metal oxide that forms the outer shape of the particles only needs to have a predetermined shape.
  • the average (number average value) circularity is 0.78 or more, preferably 0.8 or more, more preferably 0.8. 85 or more.
  • the circularity is defined by the following equation.
  • Circularity 4 ⁇ S / L 2
  • S is the area of the particle projection image
  • L is the circumference of the particle projection image
  • the method for measuring the circularity of the particles is not particularly limited. However, before the negative electrode is manufactured, it can be obtained by, for example, performing image processing on a projected image of 500 arbitrary particles using a powder image analyzer. .
  • a powder image analyzer for example, Microtrack FPA (trade name) manufactured by Nikkiso Co., Ltd., PITA-3 manufactured by Seishin Co., Ltd., or the like can be used.
  • image processing can be performed about arbitrary 100 pieces from a negative electrode cross-section photograph using SEM (scanning electron microscope).
  • metals that can be alloyed with lithium include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof.
  • silicon (Si) is preferably included as a metal that can be alloyed with lithium.
  • the metal content in the negative electrode active material is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 50% by mass. More preferably.
  • metal oxides that can occlude and release lithium ions include aluminum oxide, silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • silicon oxide is preferably included as a metal oxide capable of inserting and extracting lithium ions.
  • one or more elements selected from nitrogen, boron, phosphorus and sulfur can be added to the metal oxide. By carrying out like this, the electrical conductivity of a metal oxide can be improved.
  • the content of the metal oxide in the negative electrode active material may be 0% by mass or 100% by mass, but is preferably 5% by mass or more and 100% by mass or less, and 40% by mass or more and 95% by mass or less. Is more preferable, and it is further more preferable to set it as 50 to 90 mass%.
  • At least Si and / or silicon oxide is contained as the negative electrode active material.
  • the composition of silicon oxide is represented by SiOx (where 0 ⁇ x ⁇ 2).
  • a particularly preferred silicon oxide is SiO.
  • the metal oxide has an amorphous structure. Since the metal oxide has an amorphous structure, it suppresses volume changes of other negative electrode active materials such as metals that can be alloyed with lithium and carbon materials that can occlude and release lithium ions, and suppresses decomposition of the electrolyte. Can be. Although this mechanism is not clear, it is presumed that the formation of a film on the interface between the carbon material and the electrolytic solution has some influence due to the amorphous structure of the metal oxide. The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide has an amorphous structure. Specifically, when the metal oxide does not have an amorphous structure, a peak specific to the metal oxide is observed. However, the metal oxide may have a case where all or part of the metal oxide has an amorphous structure. Inherent peaks are broad and observed.
  • the negative electrode active material contains a metal that can be alloyed with lithium and a metal oxide that can occlude and release lithium ions
  • all or a part of the alloyable metal is dispersed in the metal oxide.
  • the volume change as the whole negative electrode can be suppressed, and decomposition
  • all or part of the metal is dispersed in the metal oxide because transmission electron microscope observation (general TEM observation) and energy dispersive X-ray spectroscopy measurement (general EDX measurement). It can confirm by using together. Specifically, the cross section of the sample containing metal particles is observed, the oxygen concentration of the metal particles dispersed in the metal oxide is measured, and the metal constituting the metal particles is not an oxide. Can be confirmed.
  • the metal oxide is preferably an oxide of a metal constituting the metal.
  • the negative electrode active material contains both metal and metal oxide
  • the metal is preferably 5% by mass or more and 90% by mass or less, and more preferably 30% by mass or more and 60% by mass or less with respect to the total of the metal and the metal oxide.
  • the metal oxide is preferably 10% by mass or more and 95% by mass or less, and more preferably 40% by mass or more and 70% by mass or less with respect to the total of the metal and the metal oxide.
  • the surface of the metal and metal oxide particles may be coated with a carbon material (usually an amorphous carbon material).
  • a carbon material usually an amorphous carbon material.
  • the coating method include a method of chemical vapor deposition (CVD) of particles in an organic gas and / or vapor. Further, the surfaces of the metal and metal oxide particles may be coated with a metal oxide film.
  • the metal oxide film is preferably an oxide of one or more elements selected from magnesium, aluminum, titanium, and silicon, and in addition to the above elements, zirconium, hafnium, vanadium, niobium, tantalum, Chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, cerium, indium, germanium, tin, bismuth, antimony, cadmium, copper, silver. May be included.
  • the surface of the metal oxide film may be further coated with a carbon material (usually an amorphous carbon material).
  • a metal and metal oxide particles coated with a carbon material can provide a secondary battery having superior cycle characteristics.
  • a surface-coated carbon material capable of occluding and releasing lithium ions is a carbon material capable of occluding and releasing lithium ions used as an active material of a negative electrode, which is coated with a coating material. It is.
  • a carbon material include graphite, amorphous carbon, diamond-like carbon, carbon nanotube, and a composite thereof. Among these, graphite has high crystallinity, high electrical conductivity, and excellent adhesion to a current collector made of a metal such as copper and voltage flatness.
  • graphite either natural graphite or artificial graphite may be used.
  • the shape of graphite is not particularly limited and may be any.
  • natural graphite include scale-like graphite, scale-like graphite, and earth-like graphite.
  • artificial graphite include massive artificial graphite, flake-like artificial graphite, and spherical artificial graphite such as MCMB (mesophase micro beads).
  • Examples of the coating material that covers the surface of the carbon material as the active material include carbon materials (usually amorphous carbon materials), metals, and metal oxides.
  • coated graphite is particularly preferable, and amorphous carbon is typically used as the coating material.
  • Examples of the method of coating the graphite particle surface with amorphous carbon include chemical vapor deposition (CVD) in an organic gas and / or vapor.
  • the coating amount of amorphous carbon is about 0.5 to 20% by mass, preferably 3 to 15% by mass, based on the weight of the coated particles.
  • the coverage of the surface-coated carbon material is preferably 50 to 100%, more preferably 70 to 100%, and most preferably 90 to 100%.
  • the coverage is the ratio of the coating material existing on the surface of the carbon material of the base material.
  • the coverage ratio is the ratio of the area where the carbon material surface is analyzed and the index specific to the coating material is observed.
  • D peaks observed in the range of 1300 cm -1 in 1400 cm -1 in the Raman spectroscopic analysis is derived from amorphous carbon, observed from 1550 cm -1 in the range of 1650 cm -1
  • the G peak is derived from crystalline carbon
  • a minute spot (spot diameter of 1 ⁇ m or less) on the surface of the coated carbon material is analyzed by Raman spectroscopy, and the D / G ratio peculiar to amorphous carbon (D is the D peak)
  • the coverage can be calculated from the number of spots indicating the peak intensity of G, the peak intensity of G peak) and the number of spots indicating the D / G ratio peculiar to the graphite of the base material.
  • the coverage is about 100% when the coating amount is about 3% by mass.
  • the particle diameters of “metal and metal oxide” and “carbon material” are not particularly limited, but the median diameter (D50 particle diameter) of the metal and metal oxide particles is preferably about 1 to 30 ⁇ m. The median diameter (D50 particle diameter) is preferably about 5 to 50 ⁇ m.
  • the median diameter of the metal and metal oxide particles is smaller than the median diameter of the carbon material. In this way, metals and metal oxides with large volume changes during charging and discharging have relatively small particle sizes, and carbon materials with small volume changes have relatively large particle sizes. Micronization is more effectively suppressed.
  • the content of the metal and metal oxide in the negative electrode is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, based on the total amount of the metal, metal oxide and carbon material. is there.
  • binder for the negative electrode examples include polyvinylidene fluoride, modified polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber (SBR), poly Examples thereof include tetrafluoroethylene, polypropylene, polyethylene, polyacrylic acid, polyacrylic acid metal salts, polyimide, and polyamideimide.
  • a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • a binder selected from polyimide, polyamideimide, polyacrylic acid, and a metal salt of polyacrylic acid is included as the binder for the negative electrode.
  • the content of the binder for the negative electrode used is 0.5 to 20% by mass with respect to the total mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode active material can be used together with a conductive auxiliary material as necessary.
  • a conductive auxiliary material include the same materials as specifically exemplified in the following positive electrode, and the amount used can also be the same.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • a negative electrode manufacturing method for example, a negative electrode active material, and if necessary, a conductivity imparting agent and a binder are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a negative electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode layer can be prepared by applying the negative electrode slurry onto a negative electrode current collector such as a copper foil and drying the solvent. Examples of the coating method include a doctor blade method and a die coater method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • the negative electrode before lithium pre-doping may be manufactured by growing a negative electrode active material or the like on the negative electrode current collector by a vapor phase method such as vapor deposition or sputtering.
  • the coating material for the coated carbon agent is used. It is considered that the battery characteristics, particularly the cycle characteristics are improved.
  • the positive electrode includes a positive electrode active material capable of reversibly occluding and releasing lithium ions during charge and discharge, and the positive electrode active material is laminated on the current collector as a positive electrode active material layer integrated with a positive electrode binder. It has a structure.
  • the positive electrode active material in the present embodiment is not particularly limited as long as it is a material capable of occluding and releasing lithium, but it is preferable to include a high capacity compound from the viewpoint of increasing the energy density.
  • the high-capacity compound include lithium nickel oxide (LiNiO 2 ) or a lithium nickel composite oxide obtained by substituting a part of Ni of lithium nickelate with another metal element.
  • the layered structure is represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • polyvinylidene fluoride or polytetrafluoroethylene is preferable, and polyvinylidene fluoride is more preferable.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • a conductive auxiliary material may be added to the coating layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include flaky carbonaceous fine particles such as graphite, carbon black, acetylene black, vapor grown carbon fiber (for example, VGCF manufactured by Showa Denko).
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • the positive electrode is preferably a current collector using aluminum, an aluminum alloy, or iron / nickel / chromium / molybdenum stainless steel.
  • the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector.
  • Electrode Although it does not specifically limit as electrolyte solution of the lithium ion secondary battery which concerns on this embodiment, The nonaqueous electrolyte solution containing the nonaqueous solvent and supporting salt which are stable in the operating potential of a battery is preferable.
  • non-aqueous solvents examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and other cyclic carbonates; dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Chain carbonates such as dipropyl carbonate (DPC); propylene carbonate derivatives, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ethers such as diethyl ether and ethyl propyl ether; trimethyl phosphate; Aprotic organic solvents such as phosphate esters such as triethyl phosphate, tripropyl phosphate, trioctyl phosphate and triphenyl phosphate, and fluorine compounds in which at least some of the hydrogen atoms of these compounds are substituted with fluorine atoms.
  • aprotic organic solvents and the like.
  • cyclic such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate (DPC), etc.
  • chain carbonates are included.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) A lithium salt such as 2 .
  • the supporting salt can be used singly or in combination of two or more. LiPF 6 is preferable from the viewpoint of cost reduction.
  • the electrolytic solution can further contain an additive.
  • an additive A halogenated cyclic carbonate, an unsaturated cyclic carbonate, cyclic
  • battery characteristics such as cycle characteristics can be improved. This is presumed to be because these additives decompose during charging / discharging of the lithium ion secondary battery to form a film on the surface of the electrode active material and suppress decomposition of the electrolytic solution and the supporting salt.
  • the cycle characteristics may be further improved by the additive.
  • the additives listed above are specifically described below.
  • halogenated cyclic carbonate examples include compounds represented by the following formula (B).
  • A, B, C and D are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, and at least one of A, B, C and D One is a halogen atom or a halogenated alkyl group.
  • the number of carbon atoms of the alkyl group and the halogenated alkyl group is more preferably 1 to 4, and further preferably 1 to 3.
  • the halogenated cyclic carbonate is preferably a fluorinated cyclic carbonate.
  • the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms are substituted with fluorine atoms, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • FEC fluoro-1,3-dioxolan-2-one
  • the content of the fluorinated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 1% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, the gas generation by decomposition
  • the unsaturated cyclic carbonate is a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule.
  • vinylene carbonate methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5- Vinylene carbonate compounds such as diethyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyle Vinyl ethylene carbonate compounds such as ethylene carbonate.
  • vinylene carbonate or 4-vinylethylene carbonate is preferable, and vinylene carbonate is particularly preferable.
  • the content of the unsaturated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, gas generation by decomposition
  • R 1 and R 2 are each independently a substituent selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, and an amino group.
  • R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, or an alkylene group or a fluoroalkylene unit having 2 to 6 carbon atoms bonded via an ether group.
  • a divalent group is shown.
  • R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a halogen group, and R 3 is an alkylene group having 1 or 2 carbon atoms. Or it is more preferable that it is a fluoroalkylene group.
  • Examples of preferable compounds of the cyclic disulfonic acid ester represented by the formula (C) include compounds represented by the following formulas (1) to (20).
  • R 4 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 5 carbon atoms, a carbon atom A polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 3 (X 3 is an alkyl group having 1 to 5 carbon atoms), —SY 1 (Y 1 is an alkyl group having 1 to 5 carbon atoms), —COZ (Z Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and an atom or group selected from a halogen atom.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, a fluoroalkyl group having 1 to 5 carbon atoms, or a polyalkyl having 1 to 5 carbon atoms.
  • R 4 and R 7 are preferably each independently a hydrogen atom, an alkyl group having 1 or 2 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, or a halogen atom.
  • 5 and R 6 are each independently an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a polyfluoroalkyl group having 1 to 3 carbon atoms, A hydroxyl group or a halogen atom is more preferred.
  • Examples of preferable compounds of the chain disulfonic acid ester compound represented by the formula (D) include the following compounds.
  • the content of the cyclic or chain disulfonic acid ester is preferably 0.005 mol / L or more and 10 mol / L or less, more preferably 0.01 mol / L or more and 5 mol / L or less in the electrolytic solution. It is particularly preferably from 05 mol / L to 0.15 mol / L. By containing 0.005 mol / L or more, a sufficient film effect can be obtained. Further, when the content is 10 mol / L or less, an increase in the viscosity of the electrolyte and an accompanying increase in resistance can be suppressed.
  • An additive can be used alone or in combination of two or more.
  • it is preferable that the sum total of content of an additive is 10 mass% or less in an electrolyte solution, and it is more preferable that it is 5 mass% or less.
  • the separator may be any one as long as it suppresses conduction between the positive electrode and the negative electrode, does not inhibit the permeation of the charged body, and has durability against the electrolytic solution.
  • Specific materials include polyolefins such as polypropylene and polyethylene, cellulose, polyethylene terephthalate, polyimide, polyvinylidene fluoride, polymetaphenylene isophthalamide, polyparaphenylene terephthalamide, and copolyparaphenylene 3,4'-oxydiphenylene terephthalamide. And aromatic polyamides. These can be used as porous films, woven fabrics, non-woven fabrics and the like.
  • an electrode body in which at least a pair of positive and negative electrodes are arranged to face each other, and an electrolytic solution are included in the exterior body.
  • the shape of the secondary battery may be any of a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminated type, and a laminated laminate type, and a laminated laminate type is preferable.
  • a laminated laminate type secondary battery will be described.
  • FIG. 1 shows a schematic cross-sectional view of an example of a laminated electrode body 1 included in a laminated laminate type secondary battery.
  • a plurality of positive electrodes 2 and a plurality of negative electrodes 3 are alternately stacked with the separator 4 interposed therebetween.
  • an active material uncoated portion where the positive electrode current collector 5 and the negative electrode current collector 6 are not covered with the active material is provided.
  • the positive electrode 2 and the negative electrode 3 are stacked with the active material uncoated portions facing in opposite directions.
  • the positive electrode current collector 5 is electrically connected to each other at an active material uncoated portion, and a positive electrode lead terminal 7 is further connected to the connection portion.
  • the negative electrode current collector 6 is electrically connected to each other at an active material uncoated portion, and a negative electrode lead terminal 8 is further connected to the connection portion.
  • a laminated laminate type secondary battery is manufactured by wrapping a laminated electrode body 1 with an exterior body such as an aluminum laminated film, injecting an electrolyte into the inside, and then sealing under reduced pressure.
  • the secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41.
  • the secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 3). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 2 and 3 show examples in which a cup portion is formed on one film 10-1 and a cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • the lithium ion secondary battery according to the present embodiment can be produced according to a normal method. Taking a laminated laminate type lithium ion secondary battery as an example, an example of a method for producing a lithium ion secondary battery will be described. First, in the dry air or inert atmosphere, the above-mentioned electrode element is formed by arranging the positive electrode and the negative electrode opposite to each other with a separator interposed therebetween. Next, this electrode element is accommodated in an exterior body (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Then, the opening part of an exterior body is sealed and a lithium ion secondary battery is completed.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle.
  • Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ).
  • vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used for a power storage device.
  • a power storage device for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with a large time fluctuation due to renewable energy.
  • Example 1 (Adjustment and measurement of SiO circularity) SiO (Catalog No. SIO02PB, 75 ⁇ m mesh product) manufactured by Kojundo Chemical Co., Ltd. was pulverized using a planetary ball mill (Classic Line P-5 manufactured by Fritsch) to adjust the particle size distribution and circularity. The median diameter (d50) of the adjusted SiO particles and the circularity of 500 arbitrary SiO particles were measured with a powder measuring instrument (Seishin company: PITA-3). Table 1 shows the average values of d50 and circularity.
  • the scaly natural graphite was processed into a spherical shape using Faculty F-430S (manufactured by Hosokawa Micron Corporation), and then the surface thereof was coated with amorphous carbon using CVD.
  • the amorphous carbon coating amount was adjusted to 3% of the total.
  • Lithium nickelate, carbon black (trade name: “# 3030B”, manufactured by Mitsubishi Chemical Corporation), and polyvinylidene fluoride (trade name: “W # 7200”, manufactured by Kureha Corporation) are each 95: Weighed at a mass ratio of 2: 3.
  • These and NMP were mixed to form a slurry.
  • the mass ratio of NMP to solid content was 54:46.
  • This slurry was applied to an aluminum foil having a thickness of 15 ⁇ m using a doctor blade. The aluminum foil coated with this slurry was heated at 120 ° C. for 5 minutes to dry the NMP, thereby producing a positive electrode.
  • An aluminum terminal and a nickel terminal were welded to each of the produced positive electrode and negative electrode. These were overlapped via a separator to produce an electrode element.
  • the electrode element was covered with a laminate film, and an electrolyte solution was injected into the laminate film. Thereafter, the laminate film was heat-sealed and sealed while reducing the pressure inside the laminate film. As a result, a plurality of flat-type secondary batteries before the first charge were produced.
  • a polypropylene film was used as the separator.
  • As the laminate film a polypropylene film on which aluminum was deposited was used.
  • the electrolytic solution contains 1.0 mol / l LiPF 6 as an electrolyte and a mixed solvent of propylene carbonate, ethylene carbonate and diethyl carbonate (0.5: 6.5: 3 (volume ratio)) as a nonaqueous electrolytic solvent.
  • the solution was used.
  • Example 2 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a charge / discharge cycle test was performed.
  • Example 3 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a charge / discharge cycle test was performed.
  • Example 4 A secondary battery was fabricated in the same manner as in Example 1 except that Si (catalog No. SIE07PB, manufactured by Kojundo Chemical Co., Ltd., 300 ⁇ m or less) was used instead of SiO in Example 1, and a charge / discharge cycle test was performed. It was.
  • Si catalog No. SIE07PB, manufactured by Kojundo Chemical Co., Ltd., 300 ⁇ m or less
  • Example 5 A secondary battery was produced in the same manner as in Example 1 except that SnO (catalog No SNO01PB, manufactured by Kojundo Chemical Co., Ltd.) was used instead of SiO in Example 1, and a charge / discharge cycle test was performed.
  • SnO catalog No SNO01PB, manufactured by Kojundo Chemical Co., Ltd.
  • Example 1 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of the ground SiO in Example 1 were adjusted as shown in Table 1, and a charge / discharge cycle test was performed.
  • Example 2 A secondary battery was prepared in the same manner as in Example 1 except that the particle size and circularity of Si after pulverization in Example 4 were adjusted as shown in Table 1, and a charge / discharge cycle test was performed.
  • Example 3 A secondary battery was produced in the same manner as in Example 1 except that the particle size and circularity of SnO after pulverization in Example 5 were adjusted as shown in Table 1, and a charge / discharge cycle test was performed.
  • Example 4 A secondary battery was fabricated in the same manner as in Example 1 except that spherical processed natural graphite not subjected to surface coating by CVD was used instead of the surface-coated carbon material of Example 1, and a charge / discharge cycle test was performed.
  • the secondary battery provided in the present invention can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy. Specifically, it can be used for a power source of a mobile device, a power source of a moving / transport medium, a backup power source, a solar power generation, a wind power generation, and a power storage facility for storing power generated by the power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 (a)リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料(以下、金属および/または金属酸化物という。)、および(b)リチウムイオンを吸蔵、放出可能な表面被覆炭素材料を活物質として含む負極3であって、前記金属および/または金属酸化物粒子の下式(1): 円形度=4πS/L (1) (但し、S:粒子投影像の面積、L:粒子投影像の周長である。) で定義される円形度の平均値が、0.78以上であることを特徴とするリチウムイオン二次電池用負極が開示される。この電極を有するリチウムイオン二次電池は、より改善されたサイクル特性を有する。

Description

リチウムイオン二次電池用負極および二次電池
 本発明は、リチウムイオン二次電池に関し、より詳細には特性の優れたリチウムイオン二次電池を構成することができる負極およびその製造方法、リチウムイオン二次電池を用いた車両ならびに蓄電装置に関する。
 リチウムイオン二次電池は小型で大容量であるという特徴を有しており、携帯電話、ノート型パソコン等の電子機器の電源として広く用いられ、携帯用IT機器の利便性向上に貢献してきた。近年では、二輪や自動車などの駆動用電源や、スマートグリッドのための蓄電池といった、大型化した用途での利用も注目を集めている。リチウムイオン二次電池の需要が高まり、様々な分野で使用されるにつれて、電池の更なる高エネルギー密度化や、長期使用に耐え得る寿命特性、広範囲な温度条件での使用が可能であること、などの特性が求められている。
 リチウムイオン二次電池の負極には黒鉛などの炭素系材料が一般に使用されているが、電池の高エネルギー密度化のために、炭素材料粒子と共に、シリコン等の金属粒子や、シリコン酸化物等の酸化物粒子を含む負極が提案されている(例えば特許文献1:特開2003-123740号公報参照)。
 ここで、結晶性の高い黒鉛は電解液の分解活性が高いため、粒子の表面を例えば非晶質炭素で被覆したものがしばしば使用されている(例えば、特許文献2:特開2010-97696号公報参照)。
特開2003-123740号公報 特開2010-97696号公報 特開2014-225347号公報
 特許文献1のように、黒鉛とシリコン系材料を含む負極において、特にシリコン系材料は充放電による体積変化が大きく、充放電を繰り返すうちに負極が劣化し、電池のサイクル特性に影響を与える問題がある。また、特許文献2のように表面を被覆した黒鉛を単独で用いると、サイクル特性の改善が見られるが、シリコン系材料と共に負極に使用した場合には、期待される程の改善が見られない場合がある。また、特許文献3には、円形度の高いシリコン酸化物を負極材料に使用する技術が記載されているが、表面被覆炭素材料と併用することについてはなんら記載がない。
 本発明の実施形態は、シリコン系材料に代表されるような金属および/または金属酸化物と表面被覆炭素材料を活物質として用いて、サイクル特性に優れたリチウムイオン二次電池用負極を提供することを目的とする。
 本発明の一態様は、(a)リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料(以下、金属および/または金属酸化物という。)、および
 (b)リチウムイオンを吸蔵、放出可能な表面被覆炭素材料
を活物質として含む負極であって、
 前記金属および/または金属酸化物粒子の下式(1):

 円形度=4πS/L    (1)
 (但し、S:粒子投影像の面積、L:粒子投影像の周長である。)
で定義される円形度の平均値が、0.78以上であることを特徴とするリチウムイオン二次電池用負極に関する。
 本発明の実施形態によれば、より改善されたサイクル特性を有するリチウムイオン二次電池を提供することができる。
積層電極素子の一例を模式的に示す断面図である。 フィルム外装電池の基本的構造を示す分解斜視図である。 図2の電池の断面を模式的に示す断面図である。
 従来使用されてきた金属や金属酸化物は、一般に塊を粉砕して得られたものであるため、粒子は鋭利な角を有し、かつ、黒鉛等の炭素材料より硬い。そのため、電極の製造時に、金属や金属酸化物を表面被覆炭素粒子と混合すると、金属や金属酸化物粒子の鋭利な角により、炭素粒子の表面被覆が傷つけられ、剥離が生じるために、表面被覆の効果が低減されると考えられる。また、充放電サイクルにおいても、金属や金属酸化物粒子は体積変化が大きいため、炭素粒子の表面被覆が傷つけられると考えられる。
 本実施形態においては、金属や金属酸化物粒子が鋭利な角を有していないために、炭素粒子の表面被覆を損傷することがないか、損傷したとしても従来より小さい程度であるため、サイクル特性が向上したと推定される。
 以下、本発明の実施形態を、リチウム二次電池の各部材ごとに説明する。
 [負極]
 負極は、負極活物質が、負極結着剤により一体化された負極活物質層として集電体上に積層された構造を有する。負極活物質は、充放電に伴いリチウムイオンを可逆的に吸蔵、放出可能な材料である。
 本実施形態の負極は、活物質として、(a)リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料、および(b)リチウムイオンを吸蔵、放出可能な表面被覆炭素材料を含む。
 本実施形態において、「(a)リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物」は、どちらか一方から選ばれる1種以上の材料を用いても良いし、また両方から1種以上の材料を選んで組み合わせて用いていてもよい。以下、「リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料」を、「金属および/または金属酸化物」と記載する場合があり、また、「リチウムと合金可能な金属」および「リチウムイオンを吸蔵、放出可能な金属酸化物」について説明する場合に、両者をまとめて「金属および金属酸化物」と記載する場合がある。
 「金属および金属酸化物」は、粒子状であって鋭利な角のない形状を有している。後述するように金属が金属酸化物の内部に分散されている場合は、粒子外形を形作る金属酸化物が所定の形状を有していればよい。
 金属および金属酸化物の粒子の投影像の形状を、円形度を指標として表すと、平均(数平均値)の円形度が、0.78以上、好ましくは0.8以上、より好ましくは0.85以上である。ここで円形度は次の式により定義される。
 円形度=4πS/L
 ここで、S:粒子投影像の面積、L:粒子投影像の周長である。
 粒子の円形度の測定方法は特に限定されないが、負極を製造する前であれば、例えば粉体画像解析装置を用いて、任意の粒子500個の投影像を画像処理することにより求めることができる。粉体画像解析装置としては、例えば日機装株式会社製マイクロトラックFPA(商品名)や、株式会社セイシン企業製PITA-3等を使用することができる。また、負極製造後であれば、SEM(走査型電子顕微鏡)を用いて、負極断面写真から、任意の100個について画像処理を行って求めることができる。
 リチウムと合金可能な金属としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、およびこれらの二種以上の合金が挙げられる。特に、リチウムと合金可能な金属としてシリコン(Si)を含むことが好ましい。負極活物質中の金属の含有率は、5質量%以上95質量%以下とすることが好ましく、10質量%以上90質量%以下とすることがより好ましく、20質量%以上50質量%以下とすることがさらに好ましい。
 リチウムイオンを吸蔵、放出可能な金属酸化物としては、酸化アルミニウム、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、または、これらの複合物が挙げられる。特に、リチウムイオンを吸蔵、放出可能な金属酸化物として酸化シリコンを含むことが好ましい。また、金属酸化物に窒素、ホウ素、リンおよびイオウの中から選ばれる一種または二種以上の元素を添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。負極活物質中の金属酸化物の含有率は、0質量%でも100質量%でも構わないが、5質量%以上100質量%以下とすることが好ましく、40質量%以上95質量%以下とすることがより好ましく、50質量%以上90質量%以下とすることがさらに好ましい。
 本実施形態において、負極活物質として、少なくともSiおよび/またはシリコン酸化物が含有されることが好ましい。シリコン酸化物は、組成がSiOx(ただし、0<x≦2)で表される。特に好ましいシリコン酸化物は、SiOである。
 また、金属酸化物は、その全部または一部がアモルファス構造を有することが好ましい。金属酸化物がアモルファス構造を有することで、リチウムと合金可能な金属やリチウムイオンを吸蔵、放出可能な炭素材料などの他の負極活物質の体積変化を抑制したり、電解液の分解を抑制したりすることができる。このメカニズムは明確ではないが、金属酸化物がアモルファス構造であることにより、炭素材料と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物がアモルファス構造を有しない場合には、金属酸化物に固有のピークが観測されるが、金属酸化物の全部または一部がアモルファス構造を有する場合が、金属酸化物に固有ピークがブロードとなって観測される。
 また、負極活物質が、リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物を含む場合、合金可能な金属はその全部または一部が金属酸化物中に分散していることが好ましい。こうすることで、負極全体としての体積変化を抑制することができ、電解液の分解も抑制することができる。なお、金属の全部または一部が金属酸化物中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属粒子を含むサンプルの断面を観察し、金属酸化物中に分散している金属粒子の酸素濃度を測定し、金属粒子を構成している金属が酸化物となっていないことを確認することができる。
 負極活物質が金属および金属酸化物の両方を含む場合、金属酸化物は、金属を構成する金属の酸化物であることが好ましい。
 負極活物質が金属および金属酸化物の両方を含む場合、金属および金属酸化物の割合に特に制限はない。金属は、金属および金属酸化物の合計に対し、5質量%以上90質量%以下とすることが好ましく、30質量%以上60質量%以下とすることがより好ましい。金属酸化物は、金属および金属酸化物の合計に対し、10質量%以上95質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。
 金属および金属酸化物粒子は、表面が炭素材料(通常、非晶質炭素材料)で被覆されていてもよい。被覆する方法としては、粒子を有機物ガスおよび/または蒸気中で化学蒸着(CVD)する方法が挙げられる。また、金属および金属酸化物粒子の表面が、金属酸化物被膜で被覆されていてもよい。金属酸化物被膜としては、マグネシウム、アルミニウム、チタン、シリコンから選択される1種又は2種以上の元素の酸化物が好ましく、さらに、上記元素に加えて、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、セリウム、インジウム、ゲルマニウム、スズ、ビスマス、アンチモン、カドミウム、銅、銀からなる群のうち少なくとも1種を構成元素として含んでいてもよい。この場合において、金属酸化物被膜の表面がさらに炭素材料(通常、非晶質炭素材料)で被覆されてもよい。
 一般的に炭素材料で被覆された金属および金属酸化物粒子の方が優れたサイクル特性を有する二次電池とすることができる。
 次に、「(b)リチウムイオンを吸蔵、放出可能な表面被覆炭素材料」は、負極の活物質として使用されるリチウムイオンを吸蔵、放出可能な炭素材料の表面が被覆材料により被覆されたものである。このような炭素材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、およびこれらの複合物が挙げられる。これらのうち黒鉛は、結晶性が高く、また電気伝導性が高く、銅などの金属からなる集電体との接着性および電圧の平坦性に優れている。
 黒鉛としては、天然黒鉛および人造黒鉛のいずれであってもよい。黒鉛の形状としては特に限定されることはなくいずれでもよい。天然黒鉛としては鱗状黒鉛、鱗片状黒鉛、土状黒鉛等が挙げられ、人造黒鉛としては塊状人造黒鉛、りん片状人造黒鉛、MCMB(メゾフェーズ マイクロ ビーズ)等球状の人造黒鉛が挙げられる。
 活物質としての炭素材料の表面を被覆する被覆材料としては、炭素材料(通常、非晶質炭素材料)、金属、金属酸化物などが挙げられる。本実施形態においては、被覆黒鉛が特に好ましく、被覆材料としては代表的には非晶質炭素が用いられる。黒鉛粒子表面を非晶質炭素で被覆する方法としては、有機物ガスおよび/または蒸気中で化学蒸着(CVD)する方法が挙げられる。非晶質炭素の被覆量は、被覆粒子の重量を基準として、0.5~20質量%程度、好ましくは3質量%~15質量%である。
 また、表面被覆炭素材料における被覆率は、好ましくは50~100%、より好ましくは70~100%、最も好ましくは90~100%である。ここで、被覆率は、基材の炭素材料の表面における被覆材料の存在割合であり、具体的には、炭素材料表面を分析し、被覆材料固有の指標が観察される面積の割合を被覆率として求めることができる。例えば、非晶質炭素被覆黒鉛の場合、ラマン分光分析において1300cm-1から1400cm-1の範囲に観測されるDピークは非晶質炭素に由来し、1550cm-1から1650cm-1の範囲に観測されるGピークは結晶性炭素に由来するので、被覆炭素材料表面の微小スポット(スポット径1μm以下)をラマン分光分析により分析し、非晶質炭素に特有のD/G比(DはDピークのピーク強度、GはGピークのピーク強度)を示すスポット数と基材の黒鉛に特有のD/G比を示すスポット数から被覆率を計算することができる。非晶質炭素をCVDで形成した場合、被覆量が3質量%程度でほぼ100%の被覆率となる。
 本実施形態において、「金属および金属酸化物」および「炭素材料」の粒子径は特に限定されないが、金属および金属酸化物粒子のメジアン径(D50粒子径)は1~30μm程度が好ましく、炭素材料のメジアン径(D50粒子径)は5~50μm程度が好ましい。
 また、金属および金属酸化物粒子のメジアン径が、炭素材料のメジアン径より小さいことが好ましい。このようにすると、充放電時に伴う体積変化の大きい金属および金属酸化物が相対的に小粒径となり、体積変化の小さい炭素材料が相対的に大粒径となるため、デンドライト生成および負極材料の微粉化がより効果的に抑制される。
 本実施形態において、負極中の金属および金属酸化物の含有量は、金属、金属酸化物および炭素材料の合計量を基準に、好ましくは1~20質量%、より好ましくは1~10質量%である。
 負極用結着剤としては、ポリフッ化ビニリデン、変性ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリアクリル酸、ポリアクリル酸の金属塩、ポリイミド、ポリアミドイミド等が挙げられる。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。
 本実施形態では、負極用結着剤としてポリイミド、ポリアミドイミド、ポリアクリル酸およびポリアクリル酸の金属塩から選ばれる結着剤を含むことが好ましい。使用する負極用結着剤の含有率は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質の全質量に対し、0.5~20質量%が好ましい。
 負極活物質は、必要により導電補助材と共に用いることができる。導電補助材としては、具体的には、下記の正極において具体的に例示したものと同様のものを挙げることができ、その使用量も同様とすることができる。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極の製造方法としては、例えば、負極活物質、必要により導電性付与剤、および結着剤を、N-メチル-2-ピロリドン(NMP)等の溶剤中に分散、混練して負極スラリーを調整する。負極スラリーを銅箔等の負極集電体上に塗布し、溶剤を乾燥することで負極層を作製することができる。塗布方法としては、ドクターブレード法、ダイコーター法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。また、ポリイミド前駆体やポリアミドイミド前駆体等の、溶剤の乾燥温度以上での熱処理が必要な場合は、必要に応じて所望の熱処理を行うことができる。ポリアミド前駆体やポリイミド前駆体として、ポリアミック酸を含有していることが好ましい。また、負極集電体上に負極活物質等を蒸着やスパッタ等の気相法により成長することで、リチウムプレドープ前の負極を製作してもよい。
 本実施形態においては、金属および金属酸化物粒子の円形度が大きいため、被覆炭素材料と共に混練して負極スラリーを調製し、これを用いて負極層を形成しても、被覆炭素剤の被覆材料の損傷が生じにくく、これにより電池特性、特にサイクル特性が向上していると考えられる。
 [正極]
 正極は、充放電に伴いリチウムイオンを可逆的に吸蔵、放出可能な正極活物質を含み、正極活物質が正極結着剤により一体化された正極活物質層として集電体上に積層された構造を有する。
 本実施形態における正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されないが、高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、ニッケル酸リチウム(LiNiO)またはニッケル酸リチウムのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンまたはポリテトラフルオロエチレンが好ましく、ポリフッ化ビニリデンがより好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、鱗片状、煤状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維(例えば、昭和電工製VGCF)等が挙げられる。
 正極集電体としては、負極集電体と同様のものを用いることができる。特に正極としては、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスを用いた集電体が好ましい。
 正極は、負極と同様に、正極集電体上に、正極活物質と正極用結着剤を含む正極活物質層を形成することで作製することができる。
 [電解液]
 本実施形態に係るリチウムイオン二次電池の電解液としては特に限定されないが、電池の動作電位において安定な非水溶媒と支持塩を含む非水電解液が好ましい。
 非水溶媒の例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;ジエチルエーテル、エチルプロピルエーテル等のエーテル類、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等のリン酸エステル類等の非プロトン性有機溶媒、及び、これらの化合物の水素原子の少なくとも一部をフッ素原子で置換したフッ素化非プロトン性有機溶媒等が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類を含むことが好ましい。
 非水溶媒は、1種を単独で、または2種以上を組み合わせて使用することができる。
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、1種を単独で、または2種以上を組み合わせて使用することができる。低コスト化の観点からはLiPFが好ましい。
 電解液は、さらに添加剤を含むことができる。添加剤としては特に限定されるものではないが、ハロゲン化環状カーボネート、不飽和環状カーボネート、及び、環状または鎖状ジスルホン酸エステル等が挙げられる。これらの化合物を添加することにより、サイクル特性等の電池特性を改善することができる。これは、これらの添加剤がリチウムイオン二次電池の充放電時に分解して電極活物質の表面に皮膜を形成し、電解液や支持塩の分解を抑制するためと推定される。本発明では、添加剤によりさらにサイクル特性が改善できる場合がある。上記に列記した添加剤を具体的に以下で説明する。
 ハロゲン化環状カーボネートとしては、例えば、下記式(B)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 式(B)において、A、B、CおよびDは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはハロゲン化アルキル基であり、A、B、CおよびDの少なくともひとつは、ハロゲン原子またはハロゲン化アルキル基である。アルキル基およびハロゲン化アルキル基の炭素数は1~4であることがより好ましく、1~3であることがさらに好ましい。
 一実施形態において、ハロゲン化環状カーボネートはフッ素化環状カーボンネートであることが好ましい。フッ素化環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができ、中でも、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート:FEC)が好ましい。
 フッ素化環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上1質量%以下であることが好ましい。0.01質量%以上含有することにより十分な皮膜形成効果が得られる。また、含有量が1質量%以下であるとフッ素化環状カーボネート自体の分解によるガス発生を抑制することができる。本実施形態では、特に、0.8質量%以下がさらに好ましい。フッ素化環状カーボネートの含有量を0.8質量%以下とすることにより、負極活物質の活性低下を抑制し、良好なサイクル特性を維持できる。
 不飽和環状カーボネートは、分子内に炭素-炭素不飽和結合を少なくとも1つ有する環状カーボネートであり、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。中でも、ビニレンカーボネート又は4-ビニルエチレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。
 不飽和環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上10質量%以下であることが好ましい。0.01質量%以上含有することにより十分な皮膜形成効果が得られる。また、含有量が10質量%以下であると不飽和環状カーボネート自体の分解によるガス発生を抑制することができる。本実施形態では、特に、負極活物質の活性低下を抑制する観点から、5質量%以下がより好ましい。
 環状または鎖状ジスルホン酸エステルとしては、例えば、下記式(C)で表される環状ジスルホン酸エステル、または下記式(D)で表される鎖状ジスルホン酸エステルを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 式(C)において、R、Rは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、ハロゲン基、アミノ基からなる群の中から選ばれる置換基である。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、または、エーテル基を介してアルキレン単位もしくはフルオロアルキレン単位が結合した炭素数2~6の2価の基を示す。
 式(C)において、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基またはハロゲン基であることが好ましく、Rは、炭素数1または2のアルキレン基またはフルオロアルキレン基であることがより好ましい。
 式(C)で表される環状ジスルホン酸エステルの好ましい化合物としては、例えば以下の式(1)~(20)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 式(D)において、RおよびRは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、-SO(Xは炭素数1~5のアルキル基)、-SY(Yは炭素数1~5のアルキル基)、-COZ(Zは水素原子、または炭素数1~5のアルキル基)、およびハロゲン原子から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、フェノキシ基、炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(XおよびXは、それぞれ独立して、水素原子、または炭素数1~5のアルキル基)、および-NYCONY(Y~Yは、それぞれ独立して、水素原子、または炭素数1~5のアルキル基)から選ばれる原子または基を示す。
 式(D)において、RおよびRは、それぞれ独立して、水素原子、炭素数1もしくは2のアルキル基、炭素数1もしくは2のフルオロアルキル基、またはハロゲン原子であることが好ましく、RおよびRは、それぞれ独立して、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフルオロアルキル基、炭素数1~3のポリフルオロアルキル基、水酸基またはハロゲン原子であることがより好ましい。
 式(D)で表される鎖状ジスルホン酸エステル化合物の好ましい化合物としては、例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
 環状または鎖状ジスルホン酸エステルの含有量は、電解液中0.005mol/L以上10mol/L以下であることが好ましく、0.01mol/L以上5mol/L以下であることがより好ましく、0.05mol/L以上0.15mol/L以下が特に好ましい。0.005mol/L以上含有することにより、十分な皮膜効果を得ることができる。また、含有量が10mol/L以下であると電解液の粘性の上昇、およびそれに伴う抵抗の増加を抑制することができる。
 添加剤は1種を単独で、または2種以上を混合して用いることができる。2種以上の添加剤を組合せて使用する場合、添加剤の含有量の合計が、電解液中10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 [セパレータ]
 セパレータは、正極および負極の導通を抑制し、荷電体の透過を阻害せず、電解液に対して耐久性を有するものであれば、いずれであってもよい。具体的な材質としては、ポリプロピレンおよびポリエチレン等のポリオレフィン、セルロース、ポリエチレンテレフタレート、ポリイミド、ポリフッ化ビニリデンならびにポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミドおよびコポリパラフェニレン3,4’-オキシジフェニレンテレフタルアミド等の芳香族ポリアミド等が挙げられる。これらは、多孔質フィルム、織物、不織布等として用いることができる。
 [二次電池]
 本実施形態に係るリチウムイオン二次電池は、少なくとも一対の正極および負極が対向に配置された電極体と、電解液が外装体に内包される。二次電池の形状は、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、および積層ラミネート型のいずれでもよいが、積層ラミネート型が好ましい。以下、積層ラミネート型の二次電池について説明する。
 図1に、積層ラミネート型の二次電池が有する積層電極体1の一例の模式的な断面図を示す。複数の正極2および複数の負極3がセパレータ4を挟みつつ交互に積み重ねられている。各正極2および各負極3の一端において、それぞれ正極集電体5、負極集電体6が活物質に覆われていない活物質未塗布部分が設けられている。正極2および負極3は、該活物質未塗布部分を互いに反対向きにして重ねられている。
 正極集電体5は、活物質未塗布部分で互いに電気的に接続され、その接続箇所にさらに正極リード端子7が接続されている。負極集電体6は、活物質未塗布部分で互いに電気的に接続され、その接続箇所にさらに負極リード端子8が接続されている。
 積層ラミネート型の二次電池は、積層電極体1をアルミニウムラミネートフィルムなどの外装体で包み、内部に電解液を注液した後、減圧状態で封止することで作製される。
 さらに別の態様としては、図2および図3のような構造の二次電池としてもよい。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、図3に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。
 図1の二次電池は電極タブが外装体の両側に引き出されたものであったが、本発明を適用しうる二次電池は図2のように電極タブが外装体の片側に引き出された構成であってもよい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図3参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図3では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図2、図3では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。
 [リチウムイオン二次電池の製造方法]
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型のリチウムイオン二次電池を例に、リチウムイオン二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極をセパレータを介して対向配置して、前述の電極素子を形成する。次に、この電極素子を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止してリチウムイオン二次電池を完成する。
 [組電池]
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列又はその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
 [車両]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。
 [蓄電装置]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、蓄電装置に用いることができる。本実施形態に係る蓄電装置としては、例えば、一般家庭に供給される商用電源と家電製品等の負荷との間に接続され、停電時等のバックアップ電源や補助電力として使用されるものや、太陽光発電等の、再生可能エネルギーによる時間変動の大きい電力出力を安定化するための、大規模電力貯蔵用としても使用されるものが挙げられる。
 次に、本実施形態を実施例により具体的に説明する。下記の実施例は本実施形態の好ましい形態を例示するものであり、本発明が下記の実施例に限られるわけではない。
[実施例1]
 (SiOの円形度の調整、測定)
 SiO((株)高純度化学製 カタログNo SIO02PB、75μmメッシュ通過品)を遊星型ボールミル(フリッチュ社製クラシックラインP-5)を用いて粉砕し、粒度分布と円形度を調整した。調整後のSiO粒子のメジアン径(d50)と任意のSiO粒子500個の円形度を粉体測定機器(セイシン企業:PITA-3)で測定した。d50と円形度の平均値を表1に示す。
 (表面被覆炭素材料の作製)
 鱗片状天然黒鉛をファカルティF-430S(ホソカワミクロン社製)を用いて球状に加工した後、CVDを用いて非晶質炭素で、その表面を被覆した。非晶質炭素被覆量は全体の3%になるように調整した。
 (負極の作製)
 上記のSiOと表面被覆炭素材料と、ポリアミック酸とN-メチル-2-ピロリドン(NMP)の混合溶液(商品名:U-ワニス宇部興産(株)製)をそれぞれ8.5:76.5:15の質量比(但し、ポリアミック酸溶液は固形分質量)で混合し、さらにn-メチルピロリドン(NMP)を追加し粘度を調整しスラリーを得た。このスラリーを厚さ10μmの銅箔上にドクターブレードで塗布した後、130℃で7分間加熱乾燥した。その後、得られた負極を真空中で180℃15分間加熱し、ポリアミック酸をイミド化して負極を完成させた。
 (正極の作製)
 ニッケル酸リチウムと、カーボンブラック(商品名:「#3030B」、三菱化学(株)製)と、ポリフッ化ビニリデン(商品名:「W#7200」、(株)クレハ製)とを、それぞれ95:2:3の質量比で計量した。これらと、NMPとを混合し、スラリーとした。NMPと固形分との質量比は54:46とした。このスラリーを厚さ15μmのアルミニウム箔にドクターブレードを用いて塗布した。このスラリーの塗布されたアルミニウム箔を120℃で5分間加熱してNMPを乾燥させ、正極を作製した。
 (二次電池の組み立て)
 作製した正極および負極のそれぞれに、アルミニウム端子、ニッケル端子を溶接した。これらを、セパレータを介して重ね合わせて電極素子を作製した。電極素子をラミネートフィルムで外装し、ラミネートフィルム内部に電解液を注入した。その後、ラミネートフィルム内部を減圧しながらラミネートフィルムを熱融着して封止した。これにより平板型の初回充電前の二次電池を複数個、作製した。なお、セパレータにはポリプロピレンフィルムを用いた。ラミネートフィルムにはアルミニウムを蒸着したポリプロピレンフィルムを用いた。電解液には、電解質として1.0mol/lのLiPFと、非水電解溶媒としてプロピレンカーボネートとエチレンカーボネートとジエチルカーボネートの混合溶媒(0.5:6.5:3(体積比))を含む溶液を用いた。
 (二次電池の充放電サイクル試験)
 作製した二次電池に対し、45℃に保った恒温槽内で充放電サイクル試験を行った。電池電圧は3.0~4.2Vの範囲とし、充電は、CCCV方式で行い、4.2Vに達した後は電圧を一定に一時間保った。放電は、CC方式(一定電流1.0C)で行った。ここで、1.0C電流とは、任意の満充電状態の電池を定電流放電させた場合、完全に放電させるまで1時間かかる電流のことを意味する。放電容量が初回に対して70%以下となった充放電サイクル数を表1に示す。
 [実施例2]
 実施例1の粉砕後のSiOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [実施例3]
 実施例1の粉砕後のSiOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [実施例4]
 実施例1のSiOの代わりに、Si((株)高純度化学製 カタログNo SIE07PB、300μm以下)を用いた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [実施例5]
 実施例1のSiOの代わりに、SnO((株)高純度化学製 カタログNo SNO01PB)を用いた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [比較例1]
 実施例1の粉砕後のSiOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [比較例2]
 実施例4の粉砕後のSiの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [比較例3]
 実施例5の粉砕後のSnOの粒度と円形度を表1に示すように調整した以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
 [比較例4]
 実施例1の表面被覆炭素材料の代わりにCVDによる表面被覆を行わない球状加工した天然黒鉛を用いた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を行った。
Figure JPOXMLDOC01-appb-T000006
 本発明で提供される二次電池は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、モバイル機器の電源、移動・輸送用媒体の電源、バックアップ電源、太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに、利用することができる。
1  積層電極体
2  正極
3  負極
4  セパレータ
5  正極集電体
6  負極集電体
7  正極リード端子
8  負極リード端子
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極

Claims (10)

  1.  (a)リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料(以下、金属および/または金属酸化物という。)、および
     (b)リチウムイオンを吸蔵、放出可能な表面被覆炭素材料
    を活物質として含む負極であって、
     前記金属および/または金属酸化物粒子の下式(1):

     円形度=4πS/L    (1)
     (但し、S:粒子投影像の面積、L:粒子投影像の周長である。)
    で定義される円形度の平均値が、0.78以上であることを特徴とするリチウムイオン二次電池用負極。
  2.  前記金属および/または金属酸化物として、少なくともSiおよび/またはシリコン酸化物が含有されることを特徴とする請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記表面被覆炭素材料が、非晶質炭素被覆黒鉛であることを特徴とする請求項1または2に記載のリチウムイオン二次電池用負極。
  4.  (a)金属および/または金属酸化物粒子のメジアン径が1~30μmであり、(b)表面被覆炭素材料粒子のメジアン径が5~50μmであり、前記金属および/または金属酸化物粒子のメジアン径が、前記表面被覆炭素材料のメジアン径より小さいことを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池用負極。
  5.  前記(a)金属および/または金属酸化物と(b)表面被覆炭素材料との割合が、質量比1:99~20:80の範囲であることを特徴とする請求項1~4のいずれか1項に記載のリチウムイオン二次電池用負極。
  6.  少なくとも、請求項1~5のいずれか1項に記載のリチウムイオン二次電池用負極、正極および電解液を備えるリチウムイオン二次電池。
  7.  請求項6に記載のリチウムイオン二次電池を搭載したことを特徴とする車両。
  8.  請求項6に記載のリチウムイオン二次電池を用いたことを特徴とする蓄電装置。
  9.  (i)
      (a)リチウムと合金可能な金属およびリチウムイオンを吸蔵、放出可能な金属酸化物から選ばれる少なくとも1種の材料(以下、金属および/または金属酸化物という。)、
      (b)リチウムイオンを吸蔵、放出可能な表面被覆炭素材料、および
      (c)結着剤
    を溶剤中で混練して、負極スラリーを調製する工程(i)、および
     (ii)
     調製された負極スラリーを負極集電体上に塗布し、前記溶剤を乾燥して負極層を形成する工程を有することを特徴とするリチウムイオン二次電池用負極の製造方法。
  10.  電極素子と電解液と外装体とを有するリチウムイオン二次電池の製造方法であって、
     正極と、請求項9に記載の負極とを、セパレータを介して対向配置して電極素子を作製する工程と、
     前記電極素子と、電解液と、を外装体の中に封入する工程と
    を有することを特徴とするリチウムイオン二次電池の製造方法。
     
PCT/JP2016/058493 2015-03-24 2016-03-17 リチウムイオン二次電池用負極および二次電池 WO2016152716A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017508288A JP6812966B2 (ja) 2015-03-24 2016-03-17 リチウムイオン二次電池用負極および二次電池
CN201680017641.5A CN107431184A (zh) 2015-03-24 2016-03-17 锂离子二次电池用负极和二次电池
US15/560,360 US20180076449A1 (en) 2015-03-24 2016-03-17 Negative electrode for lithium ion secondary battery and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061349 2015-03-24
JP2015-061349 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152716A1 true WO2016152716A1 (ja) 2016-09-29

Family

ID=56979127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058493 WO2016152716A1 (ja) 2015-03-24 2016-03-17 リチウムイオン二次電池用負極および二次電池

Country Status (4)

Country Link
US (1) US20180076449A1 (ja)
JP (1) JP6812966B2 (ja)
CN (1) CN107431184A (ja)
WO (1) WO2016152716A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169348A (ja) * 2018-03-23 2019-10-03 株式会社東芝 電極、二次電池、電池パック、及び車両
JP2020136113A (ja) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 非水電解質二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270561B (zh) * 2021-03-31 2024-08-27 宁德新能源科技有限公司 电化学装置和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024639A1 (ja) * 2011-08-17 2013-02-21 日本電気株式会社 リチウムイオン二次電池用の負極活物質および負極、並びにリチウムイオン二次電池
WO2013094668A1 (ja) * 2011-12-22 2013-06-27 三洋電機株式会社 非水電解質二次電池
JP2014067639A (ja) * 2012-09-26 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
WO2014185005A1 (ja) * 2013-05-15 2014-11-20 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP2015005377A (ja) * 2013-06-20 2015-01-08 信越化学工業株式会社 非水電解質二次電池用活物質、負極成型体及び非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067081A1 (en) * 2004-01-05 2005-07-21 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
JP2007128766A (ja) * 2005-11-04 2007-05-24 Sony Corp 負極活物質および電池
JP4952746B2 (ja) * 2008-11-14 2012-06-13 ソニー株式会社 リチウムイオン二次電池およびリチウムイオン二次電池用負極
TWI423785B (zh) * 2011-07-26 2014-01-21 Univ Nat Chiao Tung 生理訊號蒐集單元及其探頭
CN103299471A (zh) * 2011-07-29 2013-09-11 松下电器产业株式会社 二次电池用非水电解质以及非水电解质二次电池
KR102366343B1 (ko) * 2013-03-27 2022-02-23 미쯔비시 케미컬 주식회사 비수계 전해액 및 그것을 사용한 비수계 전해액 전지
KR102324577B1 (ko) * 2014-03-25 2021-11-09 도소 가부시키가이샤 리튬 이온 2 차 전지용 부극 활물질 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024639A1 (ja) * 2011-08-17 2013-02-21 日本電気株式会社 リチウムイオン二次電池用の負極活物質および負極、並びにリチウムイオン二次電池
WO2013094668A1 (ja) * 2011-12-22 2013-06-27 三洋電機株式会社 非水電解質二次電池
JP2014067639A (ja) * 2012-09-26 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
WO2014185005A1 (ja) * 2013-05-15 2014-11-20 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP2015005377A (ja) * 2013-06-20 2015-01-08 信越化学工業株式会社 非水電解質二次電池用活物質、負極成型体及び非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169348A (ja) * 2018-03-23 2019-10-03 株式会社東芝 電極、二次電池、電池パック、及び車両
JP2020136113A (ja) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2016152716A1 (ja) 2018-01-18
JP6812966B2 (ja) 2021-01-13
US20180076449A1 (en) 2018-03-15
CN107431184A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3386022B1 (en) Lithium ion secondary battery
JP6919646B2 (ja) リチウムイオン二次電池
JP6098878B2 (ja) 非水電解液二次電池
JP6965745B2 (ja) リチウムイオン二次電池
JP6848435B2 (ja) リチウムイオン二次電池
US11362318B2 (en) Lithium ion secondary battery
JP6787310B2 (ja) リチウムイオン二次電池
WO2017150311A1 (ja) 負極活物質およびそれを用いたリチウムイオン二次電池
WO2017204213A1 (ja) リチウムイオン二次電池
JP6794982B2 (ja) リチウムイオン二次電池
JP5855737B2 (ja) リチウムイオン電池
WO2016093246A1 (ja) リチウムイオン二次電池
JP6812966B2 (ja) リチウムイオン二次電池用負極および二次電池
JP2018092785A (ja) リチウムイオン二次電池用電解液およびリチウムイオン二次電池
JP6809449B2 (ja) リチウムイオン二次電池
JP6984661B2 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508288

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768619

Country of ref document: EP

Kind code of ref document: A1