WO2016152525A1 - 静電荷像現像用トナー - Google Patents

静電荷像現像用トナー Download PDF

Info

Publication number
WO2016152525A1
WO2016152525A1 PCT/JP2016/057363 JP2016057363W WO2016152525A1 WO 2016152525 A1 WO2016152525 A1 WO 2016152525A1 JP 2016057363 W JP2016057363 W JP 2016057363W WO 2016152525 A1 WO2016152525 A1 WO 2016152525A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
particles
parts
mass
average particle
Prior art date
Application number
PCT/JP2016/057363
Other languages
English (en)
French (fr)
Inventor
尊 千葉
中谷 浩
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201680015441.6A priority Critical patent/CN107430361A/zh
Priority to US15/558,095 priority patent/US20180081289A1/en
Priority to JP2017508194A priority patent/JP6665854B2/ja
Publication of WO2016152525A1 publication Critical patent/WO2016152525A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0926Colouring agents for toner particles characterised by physical or chemical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08706Polymers of alkenyl-aromatic compounds
    • G03G9/08708Copolymers of styrene
    • G03G9/08711Copolymers of styrene with esters of acrylic or methacrylic acid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09741Organic compounds cationic

Definitions

  • the present invention relates to an electrostatic charge image developing toner that can be used for developing an image forming apparatus using electrophotography such as a copying machine, a facsimile machine, and a printer.
  • desired fluidity and charging characteristics are obtained by attaching an external additive to the surface of the colored resin particles.
  • the external additive fine particles made of inorganic or organic substances are widely used.
  • metal oxide particles and resin particles, and those obtained by surface treatment of these have been widely used.
  • particles of metal oxides such as silica, titania, alumina, and zinc oxide, and particles of fatty acid metal salts, and those obtained by hydrophobizing these particles are used in particular, and it is also common to use a combination of two or more of them. Has been done.
  • Patent Document 1 a modified silicone oil having at least one of an amino group or an epoxy group is coated on the surface of toner particles composed of particles mainly composed of a thermoplastic resin binder and a pigment.
  • An electrostatic development toner obtained by adhering the zinc oxide fine particles is disclosed, and it is also disclosed that an image with less fog is obtained and a toner having excellent durability can be obtained.
  • Patent Document 2 in a negatively chargeable toner obtained by externally adding a plurality of hydrophobic external additives to spherical polyester resin particles containing colored particles, at least a negatively chargeable silica is used as the external additive.
  • a negatively chargeable toner with externally added particles, rod-shaped polyhedral hexagonal zinc oxide particles, and positively chargeable silica particles is also disclosed that there is no.
  • Patent Document 3 discloses a positively chargeable toner containing toner base particles that are surface-treated with an external additive containing zinc oxide fine particles that have been positively charged and treated with silicone oil at a specific ratio of processing amount. It is also disclosed that a charge amount does not decrease even when used, and an image in which toner scattering and fogging hardly occur can be obtained.
  • Patent Document 4 discloses that an alumina powder for toner additive having a defined shape, particle size and particle size distribution is used as an electrophotographic developer.
  • alumina powder for toner additive having a defined shape, particle size and particle size distribution is used as an electrophotographic developer.
  • paragraph [0035] of the specification of the document by using the alumina powder, a developer without drum filming can be obtained, and an electrophotographic developer excellent in image quality improvement and durability can be obtained. are listed.
  • the object of the present invention is excellent in low-temperature fixability, hardly filming, and initially in a high-temperature and high-humidity environment.
  • An object of the present invention is to provide a toner for developing an electrostatic charge image, in which the generation of fog is suppressed and which is excellent in printing durability (fogging resistance under a continuous printing load) in a high temperature and high humidity environment.
  • the present inventors have, as a result, zinc oxide fine particles having a specific particle size and a specific particle size as the external additive. It has been found that the above-mentioned problems can be solved by using alumina fine particles in combination with a specific amount of the electrostatic image developing toner.
  • a toner for developing an electrostatic image containing colored resin particles containing a binder resin and a colorant, and an external additive, the number average particle size of the external additive being 0.
  • Containing zinc oxide particles of 1 to 2.0 ⁇ m and alumina particles having a number average particle diameter of 0.05 to 1.0 ⁇ m, and the zinc oxide particles are added in an amount of 0.1 to 100 parts by mass of the colored resin particles.
  • the electrostatic charge is contained in a proportion of 05 to 1.0 parts by mass, and the alumina particles are contained in a proportion of 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the colored resin particles.
  • An image developing toner is provided.
  • the content ratio of the alumina particles to the zinc oxide particles is preferably in the range of 1: 0.6 to 1: 5 on a mass basis.
  • the zinc oxide particles preferably have a plate shape.
  • the external additive further contains inorganic fine particles A having a number average particle diameter of 5 to 25 nm, and the inorganic fine particles A are added in an amount of 0.1 to 2.0 with respect to 100 parts by mass of the colored resin particles. It is preferable to contain in the ratio of a mass part.
  • the inorganic fine particles A exhibit positive chargeability.
  • the external additive further contains inorganic fine particles B having a number average particle diameter of 30 to 200 nm, and the inorganic fine particles B are added in an amount of 0.1 to 2.0 with respect to 100 parts by mass of the colored resin particles. It is preferable to contain in the ratio of a mass part.
  • the colored resin particles exhibit positive chargeability.
  • the toner for developing an electrostatic image exhibits positive chargeability.
  • the toner for developing an electrostatic charge image of the present invention as described above, low-temperature fixing is achieved by containing a specific amount of zinc oxide fine particles having a specific particle size and alumina fine particles having a specific particle size as external additives.
  • a toner for developing an electrostatic charge image that has all of the characteristics that it has excellent properties, filming hardly occurs, occurrence of fogging is suppressed in a high-temperature and high-humidity (H / H) environment, and printing durability is excellent. .
  • the toner for developing an electrostatic charge image of the present invention is a toner for developing an electrostatic charge image containing a colored resin particle containing a binder resin and a colorant, and an external additive, the number average particle as the external additive Containing zinc oxide particles having a diameter of 0.1 to 2.0 ⁇ m and alumina particles having a number average particle diameter of 0.05 to 1.0 ⁇ m, and the zinc oxide particles are added to 100 parts by mass of the colored resin particles. 0.05 to 1.0 parts by mass, and the alumina particles are contained at a ratio of 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the colored resin particles. .
  • the toner of the present invention contains a binder resin, colored resin particles containing a colorant, and an external additive.
  • the production method of colored resin particles is roughly classified into dry methods such as a pulverization method, and wet methods such as an emulsion polymerization aggregation method, a suspension polymerization method, and a dissolution suspension method.
  • the wet method is preferable because it is easy to obtain a toner excellent in printing characteristics such as the property.
  • a polymerization method such as an emulsion polymerization aggregation method and a suspension polymerization method is preferable because a toner having a relatively small particle size distribution on the order of microns is preferable.
  • a suspension polymerization method is more preferable among polymerization methods. preferable.
  • an emulsified polymerizable monomer is polymerized to obtain a resin fine particle emulsion, which is aggregated with a colorant dispersion or the like to produce colored resin particles.
  • the dissolution suspension method produces droplets of a solution in which toner components such as a binder resin and a colorant are dissolved or dispersed in an organic solvent in an aqueous medium, and the organic solvent is removed to produce colored resin particles.
  • toner components such as a binder resin and a colorant are dissolved or dispersed in an organic solvent in an aqueous medium, and the organic solvent is removed to produce colored resin particles.
  • the colored resin particles of the present invention can be produced by employing a wet method or a dry method.
  • a wet method a preferred suspension polymerization method is adopted, and the following process is performed.
  • A) Suspension polymerization method (A-1) Preparation step of polymerizable monomer composition First, a polymerizable monomer, a colorant, a charge control agent, a release agent added as necessary, etc. These other additives are mixed to prepare a polymerizable monomer composition. For mixing at the time of preparing the polymerizable monomer composition, for example, a media type disperser is used.
  • the polymerizable monomer means a monomer having a polymerizable functional group, and the polymerizable monomer is polymerized to become a binder resin. It is preferable to use a monovinyl monomer as the main component of the polymerizable monomer.
  • the monovinyl monomer examples include styrene; styrene derivatives such as vinyl toluene and ⁇ -methylstyrene; acrylic acid and methacrylic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, acrylic acid 2
  • Acrylic esters such as ethylhexyl and dimethylaminoethyl acrylate
  • methacrylic esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and dimethylaminoethyl methacrylate
  • acrylonitrile And nitrile compounds such as methacrylonitrile
  • amide compounds such as acrylamide and methacrylamide
  • olefins such as ethylene, propylene, and butylene.
  • a crosslinkable polymerizable monomer means a monomer having two or more polymerizable functional groups.
  • the crosslinkable polymerizable monomer include aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof; alcohols having two or more hydroxyl groups such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate; Ester compounds in which two or more carboxylic acids having carbon-carbon double bonds are ester-bonded; other divinyl compounds such as N, N-divinylaniline and divinyl ether; compounds having three or more vinyl groups; Can be mentioned.
  • crosslinkable polymerizable monomers can be used alone or in combination of two or more.
  • the crosslinkable polymerizable monomer is usually used in a proportion of 0.1 to 5 parts by mass, preferably 0.3 to 2 parts by mass, with respect to 100 parts by mass of the monovinyl monomer. desirable.
  • the macromonomer has a polymerizable carbon-carbon unsaturated double bond at the end of the molecular chain, and is a reactive oligomer or polymer having a number average molecular weight of usually 1,000 to 30,000.
  • the macromonomer is preferably one that gives a polymer having a higher Tg than the glass transition temperature of the polymer obtained by polymerizing the monovinyl monomer (hereinafter sometimes referred to as “Tg”).
  • Tg the glass transition temperature of the polymer obtained by polymerizing the monovinyl monomer
  • the macromonomer is preferably used in an amount of 0.03 to 5 parts by mass, more preferably 0.05 to 1 part by mass, with respect to 100 parts by mass of the monovinyl monomer.
  • a colorant is used.
  • black, cyan, yellow, and magenta colorants can be used.
  • the black colorant for example, carbon black, titanium black, magnetic powder such as zinc zinc oxide and nickel iron oxide can be used.
  • cyan colorant for example, a copper phthalocyanine compound, a derivative thereof, and an anthraquinone compound can be used. Specifically, C.I. I. Pigment blue 2, 3, 6, 15, 15: 1, 15: 2, 15: 3, 15: 4, 16, 17: 1, 60, and the like.
  • azo pigments such as monoazo pigments and disazo pigments, compounds such as condensed polycyclic pigments and dyes are used.
  • Pigment yellow 3 12, 13, 14, 15, 17, 62, 65, 73, 74, 83, 93, 97, 120, 138, 155, 180, 181, 185, 186, and 213.
  • magenta colorant examples include compounds such as azo pigments such as monoazo pigments and disazo pigments, condensed polycyclic pigments, and dyes.
  • azo pigments such as monoazo pigments and disazo pigments, condensed polycyclic pigments, and dyes.
  • each colorant can be used alone or in combination of two or more.
  • the amount of the colorant is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the monovinyl monomer.
  • a positively or negatively chargeable charge control agent is used to improve the chargeability of the toner.
  • the charge control agent is not particularly limited as long as it is generally used as a charge control agent for toner, but among charge control agents, the compatibility with the polymerizable monomer is high, and stable chargeability. (Charge stability) can be imparted to the toner particles, and therefore a positively or negatively chargeable charge control resin is preferred. Further, from the viewpoint of obtaining a positively chargeable toner, a positively chargeable charge control resin is preferred. More preferably used.
  • the toner of the present invention is preferably a positively chargeable toner.
  • positively chargeable charge control agents include nigrosine dyes, quaternary ammonium salts, triaminotriphenylmethane compounds and imidazole compounds, polyamine resins as charge control resins that are preferably used, and quaternary ammonium group-containing copolymers. , And quaternary ammonium base-containing copolymers.
  • Negatively chargeable charge control agents include azo dyes containing metals such as Cr, Co, Al, and Fe, salicylic acid metal compounds and alkylsalicylic acid metal compounds, and sulfonic acid group containing charge control resins that are preferably used Examples thereof include a copolymer, a sulfonate group-containing copolymer, a carboxylic acid group-containing copolymer, and a carboxylic acid group-containing copolymer.
  • the charge control agent in a proportion of usually 0.01 to 10 parts by mass, preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the monovinyl monomer. If the addition amount of the charge control agent is less than 0.01 parts by mass, fog may occur. On the other hand, when the addition amount of the charge control agent exceeds 10 parts by mass, printing stains may occur.
  • a release agent to the polymerizable monomer composition.
  • Any releasing agent can be used without particular limitation as long as it is generally used as a releasing agent for toner.
  • the release agent preferably contains at least one of ester wax and hydrocarbon wax.
  • ester wax suitably used as the release agent in the present invention is more preferably a polyfunctional ester wax, such as pentaerythritol ester such as pentaerythritol tetrapalinate, pentaerythritol tetrabehenate, pentaerythritol tetrastearate, etc.
  • hydrocarbon wax suitably used as a release agent in the present invention examples include polyethylene wax, polypropylene wax, Fischer-Tropsch wax, petroleum-based wax, etc. Among them, Fischer-Tropsch wax and petroleum-based wax are preferable, and petroleum-based wax. Is more preferable.
  • the mold release agent for example, natural wax such as jojoba; mineral wax such as ozokerite;
  • the mold release agent may be used in combination with one or more waxes as described above.
  • the release agent is preferably used in an amount of 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the monovinyl monomer.
  • a molecular weight modifier when polymerizing a polymerizable monomer that is polymerized to become a binder resin.
  • the molecular weight modifier is not particularly limited as long as it is generally used as a molecular weight modifier for toners.
  • t-dodecyl mercaptan t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, and 2,2, Mercaptans such as 4,6,6-pentamethylheptane-4-thiol; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, N, N′-dimethyl-N, N′-diphenylthiuram disulfide, N, And thiuram disulfides such as N′-dioctadecyl-N, N′-diisopropylthiuram disulfide;
  • molecular weight modifiers may be used alone or in combination of two or more. In the present invention, it is desirable to use the molecular weight adjusting agent in a proportion of usually 0.01 to 10 parts by mass,
  • A-2 Suspension step for obtaining a suspension (droplet formation step)
  • a polymerizable monomer composition containing at least a polymerizable monomer, a colorant, and a charge control agent is dispersed in an aqueous medium containing a dispersion stabilizer, and after adding a polymerization initiator, Formation of droplets of the polymerizable monomer composition is performed.
  • the method of forming the droplets is not particularly limited. This is carried out using a device capable of strong stirring, such as a homomixer MARK II).
  • persulfates such as potassium persulfate and ammonium persulfate: 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-methyl-N- (2- Hydroxyethyl) propionamide), 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-azobisisobutyronitrile Azo compounds such as: di-t-butyl peroxide, benzoyl peroxide, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxydiethyl acetate, t-hexylperoxy-2-ethylbutanoate Diisopropyl peroxydicarbonate, di-t-butyl peroxyisophthalate, and t-butyl peroxy Organic peroxides such as butyrate and the like.
  • peroxyesters are preferable because non-aromatic peroxyesters, that is, peroxyesters having no aromatic ring, are preferable because initiator efficiency is good and the amount of remaining polymerizable monomers can be reduced. More preferred.
  • the polymerization initiator may be added before the droplet formation after the polymerizable monomer composition is dispersed in the aqueous medium. However, the polymerization initiator is not dispersed in the aqueous medium. It may be added to the monomer composition.
  • the addition amount of the polymerization initiator used for the polymerization of the polymerizable monomer composition is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 100 parts by mass of the monovinyl monomer. Is 15 parts by mass, and particularly preferably 1 to 10 parts by mass.
  • the aqueous medium refers to a medium containing water as a main component.
  • the aqueous medium preferably contains a dispersion stabilizer.
  • the dispersion stabilizer include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; metals such as aluminum oxide and titanium oxide. Oxides; metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and ferric hydroxide; inorganic compounds such as; water-soluble polymers such as polyvinyl alcohol, methylcellulose, and gelatin; anionic surfactants; Organic compounds such as nonionic surfactants; amphoteric surfactants;
  • the said dispersion stabilizer can be used 1 type or in combination of 2 or more types.
  • inorganic compounds particularly colloids of poorly water-soluble metal hydroxides are preferred.
  • a colloid of an inorganic compound, particularly a poorly water-soluble metal hydroxide the particle size distribution of the colored resin particles can be narrowed, and the residual amount of the dispersion stabilizer after washing can be reduced.
  • the toner can reproduce the image clearly and has excellent environmental stability.
  • the polymerization temperature of the polymerizable monomer composition is preferably 50 ° C. or higher, more preferably 60 to 95 ° C.
  • the polymerization reaction time is preferably 1 to 20 hours, and more preferably 2 to 15 hours.
  • the colored resin particles may be used as a polymerized toner by adding an external additive as it is, but the so-called core-shell type obtained by using the colored resin particles as a core layer and forming a shell layer different from the core layer on the outside thereof. It is preferable to use colored resin particles (also referred to as “capsule type”).
  • the core-shell type colored resin particles balance the reduction of the fixing temperature and the prevention of aggregation during storage by coating the core layer made of a material having a low softening point with a material having a higher softening point. be able to.
  • the method for producing core-shell type colored resin particles using the colored resin particles described above is not particularly limited, and can be produced by a conventionally known method.
  • An in situ polymerization method and a phase separation method are preferable from the viewpoint of production efficiency.
  • a method for producing core-shell type colored resin particles by in situ polymerization will be described below. Addition of a polymerizable monomer (polymerizable monomer for shell) and a polymerization initiator to form a shell layer into an aqueous medium in which colored resin particles are dispersed, and then polymerize to form a core-shell type color. Resin particles can be obtained.
  • the same monomers as the aforementioned polymerizable monomers can be used.
  • monomers such as styrene, acrylonitrile, and methyl methacrylate, which can obtain a polymer having a Tg exceeding 80 ° C., alone or in combination of two or more.
  • polymerization initiator used for polymerization of the polymerizable monomer for shell examples include persulfate metal salts such as potassium persulfate and ammonium persulfate; 2,2′-azobis (2-methyl-N- (2-hydroxyethyl) Water-soluble such as azo initiators such as) propionamide) and 2,2′-azobis- (2-methyl-N- (1,1-bis (hydroxymethyl) 2-hydroxyethyl) propionamide); A polymerization initiator can be mentioned. These can be used alone or in combination of two or more.
  • the amount of the polymerization initiator is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer for shell.
  • the polymerization temperature of the shell layer is preferably 50 ° C. or higher, more preferably 60 to 95 ° C.
  • the polymerization reaction time is preferably 1 to 20 hours, and more preferably 2 to 15 hours.
  • the dispersion stabilizer when an inorganic compound is used as the dispersion stabilizer, the dispersion stabilizer can be dissolved in water and removed by adding an acid or alkali to the aqueous dispersion of colored resin particles. preferable.
  • a colloid of a poorly water-soluble inorganic hydroxide is used as the dispersion stabilizer, it is preferable to adjust the pH of the colored resin particle aqueous dispersion to 6.5 or less by adding an acid.
  • the acid to be added inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as formic acid and acetic acid can be used. Sulfuric acid is preferred.
  • dehydration and filtration methods there are no particular limitations on the dehydration and filtration methods, and various known methods can be used. Examples thereof include a centrifugal filtration method, a vacuum filtration method, and a pressure filtration method. Also, the drying method is not particularly limited, and various methods can be used.
  • (B) Pulverization method When the pulverization method is used to produce colored resin particles, the following process is performed. First, a binder resin, a colorant, a charge control agent, and other additives such as a release agent added as necessary are mixed in a mixer such as a ball mill, a V-type mixer, an FM mixer (trade name). ), Mix using a high-speed dissolver, internal mixer, etc. Next, the mixture obtained as described above is kneaded while being heated using a pressure kneader, a twin-screw extrusion kneader, a roller or the like.
  • a mixer such as a ball mill, a V-type mixer, an FM mixer (trade name).
  • the obtained kneaded material is coarsely pulverized using a pulverizer such as a hammer mill, a cutter mill, or a roller mill. Furthermore, after finely pulverizing using a pulverizer such as a jet mill or a high-speed rotary pulverizer, it is classified into a desired particle size by a classifier such as an air classifier or an airflow classifier, and colored resin particles obtained by a pulverization method. Get.
  • the colored resin particles obtained by the pulverization method can be made into core-shell type colored resin particles by a method such as an in situ polymerization method, similarly to the colored resin particles obtained by the suspension polymerization method (A) described above.
  • binder resin other resins that have been widely used for toners can be used.
  • specific examples of the binder resin used in the pulverization method include polystyrene, styrene-butyl acrylate copolymer, polyester resin, and epoxy resin.
  • the basic characteristics of the obtained colored resin particles include both core-shell type and non-core type.
  • the colored resin particles of the present invention preferably exhibit positive chargeability.
  • the volume average particle diameter (Dv) of the colored resin particles is preferably 4 to 12 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • Dv volume average particle diameter
  • the volume average particle diameter (Dv) of the colored resin particles is preferably 4 to 12 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • Dv is less than 4 ⁇ m, the fluidity of the toner is lowered, the transferability may be deteriorated, and the image density may be lowered.
  • Dv exceeds 12 ⁇ m the resolution of the image may decrease.
  • the ratio (Dv / Dn) of the volume average particle diameter (Dv) to the number average particle diameter (Dn) of the colored resin particles is preferably 1.0 to 1.3, and more preferably 1. 0 to 1.2. If Dv / Dn exceeds 1.3, transferability, image density, and resolution may decrease.
  • the volume average particle diameter and the number average particle diameter of the colored resin particles can be measured using, for example, a particle size analyzer (trade name: Multisizer, manufactured by Beckman Coulter).
  • the average circularity of the colored resin particles of the present invention is preferably 0.96 to 1.00, more preferably 0.97 to 1.00, and more preferably 0.98 to 1.00 from the viewpoint of image reproducibility. More preferably, it is 1.00.
  • the average circularity of the colored resin particles is less than 0.96, the fine line reproducibility of printing may be deteriorated.
  • the circularity is defined as a value obtained by dividing the circumference of a circle having the same projected area as the particle image by the circumference of the projected image of the particle.
  • the average circularity in the present invention is used as a simple method for quantitatively expressing the shape of the particles, and is an index indicating the degree of unevenness of the colored resin particles.
  • the average circularity is determined by the colored resin particles. 1 is shown in the case of a perfect sphere, and the value becomes smaller as the surface shape of the colored resin particles becomes more complicated.
  • the colored resin particles are mixed and stirred together with the external additive and subjected to external addition treatment, whereby the external additive is added to the surface of the colored resin particles.
  • a single component toner (developer) is made to adhere.
  • the one-component toner may be further mixed and stirred together with carrier particles to form a two-component developer.
  • the toner of the present invention contains, as external additives, zinc oxide particles having a number average particle diameter of 0.1 to 2.0 ⁇ m and alumina particles having a number average particle diameter of 0.05 to 1.0 ⁇ m.
  • the number average particle diameter of the zinc oxide particles is less than 0.1 ⁇ m, initial fogging is particularly likely to occur in a high temperature and high humidity (H / H) environment.
  • H / H high temperature and high humidity
  • the number average particle diameter of the zinc oxide particles exceeds 2.0 ⁇ m, the printing durability is deteriorated, and initial fogging is particularly likely to occur in a low-temperature and low-humidity (L / L) environment. Becomes larger than the initial transport amount.
  • the number average particle diameter of the zinc oxide particles is preferably from 0.15 to 1.2 ⁇ m, and more preferably from 0.2 to 0.8 ⁇ m.
  • the number average particle diameters of the zinc oxide particles, alumina particles, inorganic fine particles A, and inorganic fine particles B described later can be measured, for example, as follows. First, the particle size of each particle of these external additives is measured by TEM, SEM or the like. Thus, the particle diameter of 30 or more external additive particles is measured, and the average value is defined as the number average particle diameter of the particles.
  • the shape of the external additive particles is a plate shape
  • the particle diameter indicates a major axis.
  • the major axis of the plate-like particle refers to the absolute maximum length on the bottom surface of the plate-like particle.
  • the bottom surface of the plate-like particle means a surface having the largest surface area among the surfaces constituting the plate-like particle.
  • the external additive particles are dispersed in a dispersion medium such as water, and the dispersion is measured with a particle size distribution measuring device (Nikkiso). Examples include a method of measuring the number average particle diameter by a method of measuring by product, trade name: Microtrac 3300EXII) or the like.
  • Zinc oxide particles are contained in the toner at a ratio of 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the colored resin particles.
  • the content of the zinc oxide particles is preferably 0.3 to 0.8 parts by mass, more preferably 0.4 to 0.6 parts by mass with respect to 100 parts by mass of the colored resin particles.
  • the shape of the zinc oxide particles is preferably a plate shape, and more preferably a hexagonal plate shape.
  • the number average particle diameter of the alumina particles is less than 0.05 ⁇ m, the amount of charge in a high temperature and high humidity (H / H) environment is significantly reduced, and print fogging is generally liable to occur.
  • the number average particle diameter of the alumina particles exceeds 1.0 ⁇ m, the amount of charge in a low-temperature, low-humidity (L / L) environment increases remarkably, and print fogging generally tends to occur.
  • the number average particle diameter of the alumina particles is more preferably 0.2 to 0.7 ⁇ m, and further preferably 0.3 to 0.5 ⁇ m.
  • the alumina particles are contained in the toner at a ratio of 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the colored resin particles.
  • the content of the alumina particles is preferably 0.1 to 0.5 parts by mass, more preferably 0.2 to 0.4 parts by mass with respect to 100 parts by mass of the colored resin particles.
  • the content ratio of alumina particles to zinc oxide particles is preferably in the range of 1: 0.6 to 1: 5 on a mass basis.
  • the content of zinc oxide particles is less than 1 part by mass with respect to 1 part by mass of alumina particles, initial fog tends to occur in a high-temperature and high-humidity environment, and the content of zinc oxide particles with respect to 1 part by mass of alumina particles When the amount exceeds 5 parts by mass, printing durability may be deteriorated in a high temperature and high humidity environment.
  • the content ratio of alumina particles to zinc oxide particles is more preferably in the range of 1: 1 to 1: 2.6 on a mass basis. : More preferably within the range of 2.0.
  • the toner of the present invention preferably contains inorganic fine particles A having a number average particle diameter of 5 to 25 nm as an external additive.
  • the number average particle diameter of the inorganic fine particles A is less than 5 nm, the inorganic fine particles A are easily embedded from the surface to the inside of the colored resin particles, and the fluidity cannot be sufficiently imparted to the toner. May adversely affect printing performance.
  • the number average particle diameter of the inorganic fine particles A exceeds 25 nm, the surface porosity increases. Accordingly, since the ratio (coverage) of the inorganic fine particles to the surface of the colored resin particles is decreased, the fluidity may not be sufficiently imparted to the toner.
  • the number average particle diameter of the inorganic fine particles A is more preferably 7 to 25 nm, further preferably 7 to 20 nm, and particularly preferably 7 to 15 nm.
  • the inorganic fine particles A are preferably silica or titania fine particles, more preferably silica fine particles. Furthermore, positively charged silica fine particles are preferable, and fumed silica is more preferable.
  • it is preferably hydrophobized with a positively chargeable hydrophobizing agent.
  • Examples of the positively charged hydrophobizing agent include ⁇ -aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, aminosilane, N Examples include aminosilane compounds such as-(2-aminoethyl) 3-aminopropyltrimethoxysilane and N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane, and amino-modified silicone oils. Of the above, only one type of hydrophobic treatment agent may be used, or two or more types may be used.
  • the content of the inorganic fine particles A is preferably 0.1 to 2.0 parts by mass, more preferably 0.2 to 1.5 parts by mass with respect to 100 parts by mass of the colored resin particles. More preferably, it is 3 to 1.0 parts by mass.
  • the content of the inorganic fine particles A is less than 0.1 parts by mass, the function as an external additive cannot be sufficiently exhibited, the fluidity is lowered, and the storage stability and the printing durability are lowered. Sometimes.
  • the content of the inorganic fine particles A exceeds 2.0 parts by mass, the inorganic fine particles A are likely to be liberated from the surface of the developer particles, the chargeability in a high temperature and high humidity environment is reduced, and fogging occurs. May occur or fixability may decrease.
  • the positively chargeable fumed silica fine particles preferably used as the inorganic fine particles A various commercially available products can be used.
  • HDK2150 trade name, number average particle size: 12 nm
  • Nippon Aerosil R504 trade name, number average particle diameter: 12 nm
  • RA200HS trade name, number average particle diameter: 12 nm
  • MSP-012 trade name, number average particle diameter: 16 nm
  • Teika MSP-013 trade name, number average particle diameter: 12 nm
  • TG820F trade name, number average particle diameter: 7 nm
  • TG7120 trade name, number average particle diameter: 20 nm
  • Cabot Corporation etc.
  • the toner of the present invention preferably contains inorganic fine particles B having a number average particle size of 30 to 200 nm in addition to the inorganic fine particles A as an external additive.
  • the number average particle size of the inorganic fine particles B is more preferably 30 to 100 nm, and further preferably 35 to 80 nm.
  • the inorganic fine particles B are preferably silica or titania fine particles, more preferably silica fine particles, and even more preferably hydrophobized.
  • the content of the inorganic fine particles B is preferably 0.1 to 2.0 parts by weight, more preferably 0.3 to 1.8 parts by weight with respect to 100 parts by weight of the colored resin particles. More preferably, it is 5 to 1.5 parts by mass.
  • the content of the inorganic fine particles B is less than 0.1 parts by mass, the function as an external additive cannot be sufficiently exhibited, and the printing performance may be adversely affected.
  • the content of the inorganic fine particles B exceeds 2.0 parts by mass, the inorganic fine particles B are easily released from the surface of the developer particles, the function as an external additive is lowered, and the printing performance is adversely affected. May have an effect.
  • the inorganic fine particles B subjected to the hydrophobic treatment preferably used have been subjected to a hydrophobic treatment with a hydrophobic treatment such as a silane coupling agent, silicone oil, fatty acid and fatty acid metal salt.
  • a hydrophobic treatment such as a silane coupling agent, silicone oil, fatty acid and fatty acid metal salt.
  • the hydrophobizing agent like the inorganic fine particles A described above, it is more preferable to use a positively chargeable hydrophobizing agent, an aminosilane compound or an amino-modified silicone oil, and it is particularly preferable to use an amino-modified silicone oil. .
  • silica fine particles preferably used as the inorganic fine particles B.
  • NA50Y trade name, number average particle size: 35 nm
  • VPNA50H trade name, number
  • H05TA manufactured by Clariant (trade name, number average particle diameter: 50 nm);
  • the toner of the present invention may contain either one of inorganic fine particles A and inorganic fine particles B, but more preferably contains both inorganic fine particles A and inorganic fine particles B.
  • the stirrer that performs the external addition treatment is not particularly limited as long as the stirrer can attach the external additive to the surface of the colored resin particles.
  • an FM mixer (trade name, manufactured by Nippon Coke Kogyo Co., Ltd.), Super Mixer (: trade name, manufactured by Kawada Seisakusho Co., Ltd.), Q mixer (: trade name, manufactured by Nihon Coke Kogyo Co., Ltd.), mechano-fusion system (: trade name, manufactured by Hosokawa Micron), and mechano mill (: trade name, manufactured by Okada Seiko Co., Ltd.)
  • the external addition treatment can be performed using a stirrer capable of mixing and stirring.
  • the electrostatic charge image developing toner of the present invention When zinc oxide particles are contained alone as an external additive in the toner, initial fogging in a high temperature and high humidity environment is particularly improved, but printing durability in a high temperature and high humidity environment (Fogging resistance under continuous printing load) is particularly deteriorated. On the other hand, when alumina particles are contained alone as an external additive in the toner, the printing durability under high-temperature and high-humidity environment (fogging resistance under continuous printing load) is particularly improved, but under high-temperature and high-humidity environment. Initial fog is particularly worse.
  • the electrostatic charge image developing toner of the present invention has a high level of toner characteristics such as excellent low-temperature fixability, less filming, less fogging in a high-temperature and high-humidity environment, and excellent printing durability. Have both.
  • the electrostatic charge image developing toner of the present invention preferably exhibits positive chargeability.
  • toner for developing electrostatic image 75 parts of styrene and 25 parts of n-butyl acrylate as a polymerizable monomer and 5 parts of carbon black (product name: # 25B, manufactured by Mitsubishi Chemical Corporation) as a black colorant are dispersed using a media type emulsifying disperser. A polymerizable monomer mixture was obtained.
  • magnesium hydroxide colloid lightly water-soluble metal hydroxide colloid
  • the above polymerizable monomer composition was charged into the magnesium hydroxide colloid dispersion at room temperature and stirred. 4.4 parts of t-butyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name: Perbutyl O) as a polymerization initiator was added thereto, and then 15, Dispersion was carried out by high-speed shearing stirring at 000 rpm for 10 minutes to form droplets of the polymerizable monomer composition.
  • t-butyl peroxy-2-ethylhexanoate manufactured by NOF Corporation, trade name: Perbutyl O
  • a suspension (polymerizable monomer composition dispersion) in which droplets of the polymerizable monomer composition are dispersed is placed in a reactor equipped with a stirring blade, heated to 90 ° C., and polymerized.
  • the reaction was started.
  • 2,2′-azobis shell polymerization initiator dissolved in 1 part of methyl methacrylate and 10 parts of ion-exchanged water as a shell polymerizable monomer
  • 2-methyl-N- (2-hydroxyethyl) propionamide manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA-086, water-soluble
  • the aqueous dispersion of the colored resin particles was dropped at room temperature while stirring sulfuric acid, and acid washing was performed until the pH was 6.5 or lower. Subsequently, filtration separation was performed, 500 parts of ion-exchanged water was added to the obtained solid content to make a slurry again, and water washing treatment (washing, filtration, and dehydration) was repeated several times. Next, filtration separation is performed, and the obtained solid content is put in a container of a dryer, and dried at 45 ° C. for 48 hours.
  • the volume average particle diameter (Dv) is 7.8 ⁇ m
  • the number average particle diameter (Dn) is Colored resin particles having a size of 6.9 ⁇ m, a particle size distribution (Dv / Dn) of 1.13, and an average circularity of 0.987 were obtained.
  • Example 2 In Example 1, the type of zinc oxide particles varies from XZ-300 (made by Sakai Chemical Industry, hexagonal plate, number average particle size: 0.3 ⁇ m) to XZ-100 (made by Sakai Chemical Industry, hexagonal). The toner of Example 2 was prepared and subjected to the test in the same manner as in Example 1 except that the plate-like number average particle size was changed to 0.1 ⁇ m.
  • Example 3 In Example 1, the type of zinc oxide particles was changed from XZ-300 (manufactured by Sakai Chemical Industry, hexagonal plate, number average particle size: 0.3 ⁇ m) to XZ-1000 (manufactured by Sakai Chemical Industry, hexagonal). A toner of Example 3 was prepared and subjected to the test in the same manner as in Example 1 except that the plate-like number average particle diameter was changed to 1.0 ⁇ m.
  • Example 4 In Example 1, except that the addition amount of zinc oxide particles was changed from 0.5 part to 0.3 part, and the addition amount of alumina particles was changed from 0.3 part to 0.2 part. In the same manner as in Example 1, the toner of Example 4 was prepared and used for the test.
  • Example 5 In Example 1, except that the addition amount of zinc oxide particles was changed from 0.5 part to 0.3 part, and the addition amount of alumina particles was changed from 0.3 part to 0.5 part. In the same manner as in Example 1, the toner of Example 5 was produced and used for the test.
  • Example 6 In Example 1, the toner of Example 6 was prepared and subjected to the test in the same manner as in Example 1 except that the addition amount of alumina particles was changed from 0.3 part to 0.1 part.
  • Example 7 A toner of Example 7 was produced in the same manner as in Example 1 except that the amount of alumina particles added was changed from 0.3 part to 0.5 part in Example 1, and the toner was used for the test.
  • Example 8 In Example 1, the toner of Example 8 was prepared and subjected to the test in the same manner as in Example 1 except that the amount of zinc oxide particles added was changed from 0.5 part to 0.8 part.
  • Example 9 In Example 1, the toner of Example 9 was prepared and subjected to the test in the same manner as in Example 1 except that the amount of zinc oxide particles added was changed from 0.5 part to 0.3 part.
  • Example 10 In Example 1, the type of alumina particles was changed from AKP-30 (manufactured by Sumitomo Chemical, number average particle size: 0.4 ⁇ m) to AKP-50 (manufactured by Sumitomo Chemical, number average particle size: 0.2 ⁇ m). The toner of Example 10 was produced in the same manner as in Example 1 except that it was changed to) and subjected to the test.
  • Example 11 In Example 1, the type of alumina particles varies from AKP-30 (manufactured by Sumitomo Chemical, number average particle size: 0.4 ⁇ m) to AKP-15 (manufactured by Sumitomo Chemical, number average particle size: 0.7 ⁇ m).
  • the toner of Example 11 was produced in the same manner as in Example 1 except that it was changed to) and subjected to the test.
  • Example 12 In Example 1, except that the inorganic fine particles A were not added, the toner of Example 12 was produced in the same manner as in Example 1 and subjected to the test.
  • Example 13 In Example 1, except that the inorganic fine particles B were not added, the toner of Example 13 was produced in the same manner as in Example 1, and subjected to the test.
  • Example 1 In Example 1, a toner of Comparative Example 1 was prepared and subjected to the test in the same manner as in Example 1 except that no alumina particles were added.
  • Example 2 In Example 1, a toner of Comparative Example 2 was produced and subjected to the test in the same manner as in Example 1 except that no zinc oxide particles were added.
  • Comparative Example 3 In Comparative Example 1, a toner of Comparative Example 3 was prepared and subjected to the test in the same manner as Comparative Example 1 except that the amount of zinc oxide particles added was changed from 0.5 part to 0.8 part.
  • Comparative Example 4 In Comparative Example 2, a toner of Comparative Example 4 was produced and subjected to the test in the same manner as Comparative Example 2 except that the addition amount of alumina particles was changed from 0.3 part to 0.8 part.
  • the fixing test was performed using a printer modified so that the temperature of the fixing roll of a commercially available non-magnetic one-component developing type printer (printing speed: 20 sheets / min) could be changed.
  • the fixing roll temperature of the modified printer was changed in increments of 5 ° C., and the toner fixing rate at each temperature was measured.
  • the fixing rate was calculated from the ratio of the image density before and after the tape peeling operation in the black solid area printed on the test paper with the modified printer. That is, when the image density before tape peeling is ID (front) and the image density after tape peeling is ID (back), the fixing ratio can be calculated from the following equation.
  • the tape peeling operation means that an adhesive tape (manufactured by Sumitomo 3M Co., Ltd., trade name: Scotch Mending Tape 810-3-18) is applied to the measurement part (solid black area) of the test paper and pressed with a constant pressure. It is a series of operations for attaching and then peeling the adhesive tape in a direction along the paper at a constant speed. The image density was measured using a reflection densitometer (manufactured by Macbeth, trade name: RD918). In this fixing test, the minimum fixing roll temperature at which the fixing rate is 80% or more was defined as the minimum fixing temperature of the toner. ⁇ passing grade> In this test, when the minimum fixing temperature was 165 ° C. or lower, the evaluation of the fixing temperature required for the toner was evaluated as acceptable.
  • Black solid printing (printing density 100%) was performed every 500 sheets, and the printing density of the black solid image was measured using a reflective image densitometer (trade name: RD918, manufactured by Macbeth). After that, white solid printing (printing density 0%) is performed, the printer is stopped in the middle of white solid printing, and the toner in the non-image area on the developed photosensitive member is adhesive tape (manufactured by Sumitomo 3M Ltd., product) Name: Scotch mending tape 810-3-18) and then peeled off and affixed to printing paper. Next, the whiteness (B) of the printing paper to which the adhesive tape was applied was measured with a whiteness meter (Nippon Denshoku Co., Ltd., trade name: ND-1).
  • the whiteness (A) was measured and the whiteness difference (BA) was taken as the fog value. Smaller values indicate better fog and better.
  • the number of continuous prints that can maintain the image density of a solid black image of 1.3 or more and a fog value of 3 or less was examined. In Table 1, “15000 ⁇ ” indicates that the image quality with the print density of 1.3 or more and the fog value of 3 or less could be maintained even at the time of 15,000 sheets. Also, the fog value on the first printed sheet was set as the initial fog value. ⁇ passing grade> In this test, when the number of continuously printed sheets was 10,000 or more, the evaluation of the printing durability required for the toner was regarded as acceptable. Further, when the initial fog value was 2.0 or less, the evaluation of the initial fog characteristic required for the toner was evaluated as acceptable.
  • the toners of Comparative Examples 1 and 3 are toners that do not contain alumina particles.
  • the toner of Comparative Example 1 has a minimum fixing temperature of 155 ° C., a filming occurrence number of 13,000 sheets, and an initial fog value of 0.2 in a high temperature and high humidity (H / H) environment. Therefore, the toner of Comparative Example 1 has no problem in at least low-temperature fixability, filming characteristics, and fogging in a high-temperature and high-humidity (H / H) environment.
  • the toner of Comparative Example 1 has an extremely low continuous print number of 8,000 in the print durability test under a high temperature and high humidity (H / H) environment.
  • Examples 1 to 4 is the smallest.
  • the total amount of the external additive is smaller than that of the toner of Example 1 described later, but the alumina particles (0.3 parts) contained in the toner of Example 1 and Even with the toner of Comparative Example 3 (zinc oxide particle content 0.8 parts) supplemented with the same amount of external additive with zinc oxide particles, the number of continuous prints in the print durability test in a high-temperature, high-humidity (H / H) environment Since it is extremely small as 9,000 sheets, even if the content of zinc oxide particles is increased, the printing durability under a high temperature and high humidity (H / H) environment cannot be improved. Therefore, it can be seen that the toners of Comparative Examples 1 and 3 that do not contain alumina fine particles are inferior in printing durability under a high temperature and high humidity (H / H) environment. Therefore, it can
  • the toners of Comparative Examples 2 and 4 are toners that do not contain zinc oxide particles.
  • the toner of Comparative Example 2 has a minimum fixing temperature of 155 ° C., a filming occurrence number of 12,000, and a continuous printing number of 15,000 or more in a print durability test under a high temperature and high humidity (H / H) environment. . Therefore, the toner of Comparative Example 2 has no problem in at least low temperature fixability, filming characteristics, and printing durability in a high temperature and high humidity (H / H) environment.
  • the toner of Comparative Example 2 has an extremely high initial fog value of 4.5 in a high temperature and high humidity (H / H) environment, and this value is the same as in Examples 1 to 13 and Comparative Examples 1 to 1. In Example 4, it is the highest.
  • the toner of Comparative Example 2 does not contain zinc oxide particles, the total amount of external additives is smaller than that of the toner of Example 1 described later, but the zinc oxide particles contained in the toner of Example 1 (0.5 parts)
  • the toner of Comparative Example 4 (alumina particle content 0.8 parts) supplemented with alumina particles in the same amount of external additive as in (1)) had an initial fog value of 3.3 in a high-temperature, high-humidity (H / H) environment.
  • the zinc oxide particles having a number average particle diameter of 0.1 to 1.0 ⁇ m were added in an amount of 0.3 to 100 parts by mass of the colored resin particles.
  • a toner containing 0.1 to 0.5 parts by mass of alumina particles having a number average particle diameter of 0.2 to 0.7 ⁇ m with respect to 100 parts by mass of the colored resin particles. is there.
  • the toners of Examples 1 to 13 have a minimum fixing temperature as low as 165 ° C. or lower, and the number of continuous prints in a print durability test in a high temperature and high humidity (H / H) environment is 10,000.
  • the initial fog value under a high temperature and high humidity (H / H) environment is as small as 1.5 or less, and the number of filming occurrences is as large as 11,000 or more. Therefore, from the above examples and comparative examples, zinc oxide particles having a number average particle size of 0.1 to 2.0 ⁇ m and alumina particles having a number average particle size of 0.05 to 1.0 ⁇ m are used as external additives.
  • the toner containing 0.05 to 1.0 parts by mass with respect to 100 parts by mass of the colored resin particles is excellent in low-temperature fixability, hardly causes filming, and suppresses fogging in a high-temperature and high-humidity environment.
  • the toner is an electrostatic charge image developing toner having all the characteristics of excellent printing durability in a high temperature and high humidity environment.
  • Example 1 (content: 0.5 part), Example 8 (content: 0.8 part), Example 9 (content: 0.3 part), differing only in terms of the content of zinc oxide particles, And Comparative Example 2 (content: 0 part) is compared.
  • the toner of Example 8 has a slightly higher minimum fixing temperature than the toner of Example 1, and is slightly inferior in printing durability under a high temperature and high humidity (H / H) environment.
  • the toner of Example 9 has a slightly lower minimum fixing temperature than the toner of Example 1, is slightly susceptible to initial fogging in a high-temperature and high-humidity (H / H) environment, and filming is also likely to occur.
  • the toner of Comparative Example 2 is extremely susceptible to initial fogging in a high-temperature and high-humidity (H / H) environment, and filming is also likely to occur. From the above results, the content of zinc oxide particles is about 0.5 part, and the effect is most balanced. The higher the content of zinc oxide particles, the higher the temperature and humidity (H / H) due to the effect of zinc oxide particles.
  • Example 1 (average particle size: 0.3 ⁇ m), Example 2 (average particle size: 0.1 ⁇ m), and Example 3 (average particle size: 1. .mu.m) differing only in the conditions of the number average particle size of zinc oxide particles. 0 ⁇ m).
  • the toner of Example 2 is slightly inferior in printing durability under the minimum fixing temperature and high temperature and high humidity (H / H) environment as compared with the toner of Example 1.
  • the toner of Example 3 is slightly more susceptible to initial fogging and filming in a high-temperature and high-humidity (H / H) environment than the toner of Example 1. From the above results, the average particle size of zinc oxide particles is about 0.3 ⁇ m, and the effect is most well balanced.
  • Example 1 (content: 0.3 part), Example 6 (content: 0.1 part), Example 7 (content: 0.5 part), differing only in the content conditions of the alumina particles, and Comparative Example 1 (content: 0 part) is compared.
  • the toner of Example 7 is slightly more susceptible to initial fogging in a high temperature and high humidity (H / H) environment than the toner of Example 1.
  • the toner of Example 6 is slightly superior in minimum fixing temperature and slightly inferior in printing durability under a high temperature and high humidity (H / H) environment as compared with the toner of Example 1.
  • the toner of Comparative Example 1 has extremely poor printing durability characteristics in a high-temperature and high-humidity (H / H) environment, and filming tends to occur somewhat.
  • the alumina particle content is about 0.3 parts, and the effect is most balanced.
  • the higher the alumina particle content the higher the printing durability and film in a high temperature and high humidity (H / H) environment.
  • initial fogging in a high-temperature and high-humidity (H / H) environment tends to occur, and conversely, the lower the alumina particle content, the better the low-temperature fixability.
  • H / H It is presumed that printing durability under an environment is inferior and filming is likely to occur.
  • Example 1 (average particle size: 0.4 ⁇ m), Example 10 (average particle size: 0.2 ⁇ m), and Example 11 (average particle size: 0.7 ⁇ m) differing only in the number average particle size conditions of the alumina particles ).
  • the toner of Example 10 is slightly inferior in printing durability under the minimum fixing temperature and high temperature and high humidity (H / H) environment as compared with the toner of Example 1.
  • the toner of Example 11 is slightly inferior in printing durability under a high temperature and high humidity (H / H) environment as compared with the toner of Example 1, and filming tends to occur slightly.
  • the number average particle diameter of the alumina particles is about 0.4 ⁇ m, and the effect is most well balanced.
  • the printing durability under high temperature and high humidity (H / H) environment is inferior and filming occurs.
  • the printing durability is presumed to be slightly inferior in a minimum fixing temperature and high temperature and high humidity (H / H) environment.
  • Example 1 (1: 1.7), Example 5 (1: 0.6), Example 6 (1: 5), Example 7 (1: 1) and Example 8 (1: 2.7) are compared. From Table 1, the toner of Example 5 and Example 7 is slightly more likely to cause initial fogging in a high temperature and high humidity (H / H) environment than the toner of Example 1. Further, the toners of Example 6 and Example 8 are slightly inferior in printing durability under a high temperature and high humidity (H / H) environment as compared with the toner of Example 1. From the above results, the content ratio of alumina particles to zinc oxide particles is about 1: 1.7, and the effect is most balanced. When the content ratio of zinc oxide particles is reduced, the content is high temperature and high humidity (H / H). It is presumed that the initial fogging is somewhat likely to occur and the printing durability in a high temperature and high humidity (H / H) environment is somewhat inferior.
  • H / H high temperature and high humidity
  • the toner of Example 12 is a toner not containing inorganic fine particles A
  • the toner of Example 13 is a toner not containing inorganic fine particles B.
  • the toners of Examples 12 and 13 both have a minimum fixing temperature of 150 ° C. and a filming occurrence number of 15,000 sheets or more. Therefore, the toners of Examples 12 and 13 have no problem in at least low-temperature fixability and filming characteristics.
  • the toners of Examples 12 and 13 have relatively high initial fog values in a high-temperature and high-humidity (H / H) environment, and the numbers of continuous prints in a print durability test in a high-temperature and high-humidity (H / H) environment are compared.
  • the toner containing no inorganic fine particles A and inorganic fine particles B is slightly susceptible to initial fogging in a high-temperature and high-humidity (H / H) environment, and has a slightly high printing durability in a high-temperature and high-humidity (H / H) environment. Presumed to be inferior.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

 低温定着性に優れ、フィルミングが起こりにくく、高温高湿環境下において初期カブリの発生が抑えられ、しかも高温高湿環境下における印字耐久性(連続印字負荷でのカブリ耐性)に優れた静電荷像現像用トナーを提供する。結着樹脂及び着色剤を含む着色樹脂粒子、並びに、外添剤を含有する静電荷像現像用トナーであって、前記外添剤として、個数平均粒径が0.1~2.0μmの酸化亜鉛粒子、及び、個数平均粒径が0.05~1.0μmのアルミナ粒子を含有し、前記酸化亜鉛粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有し、前記アルミナ粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有することを特徴とする、静電荷像現像用トナー。

Description

静電荷像現像用トナー
 本発明は、複写機、ファクシミリ、及びプリンター等の、電子写真法を利用した画像形成装置の現像に用いることが出来る静電荷像現像用トナーに関するものである。
 従来、一般的な電子写真法に用いられる現像剤においては、着色樹脂粒子表面に外添剤を付着させることにより、所望の流動性や帯電特性が得られている。外添剤としては、無機物、又は有機物からなる微粒子が広く一般的に使用されている。このような外添剤としては、従来から金属酸化物粒子や樹脂粒子、及びこれらを表面処理した物等が広く利用されてきた。中でもシリカ、チタニア、アルミナ、酸化亜鉛等の金属酸化物の粒子や脂肪酸金属塩の粒子、及びこれらを疎水化処理した物が特に多く用いられており、それらを複数種組み合わせて用いることも一般的に行われている。
 例えば、特許文献1には、熱可塑性樹脂系のバインダー及び顔料を主成分とする粒子からなるトナー粒子の表面に、少なくともアミノ基もしくはエポキシ基のいずれか一方の有機基を有する変性シリコーンオイルが被覆された酸化亜鉛微粒子を付着させてなる静電現像トナーが開示され、カブリの少ない画像が得られ、耐久性に優れるトナーが得られることも開示されている。
 特許文献2には、着色粒子を含有する球形ポリエステル系樹脂粒子に、複数の疎水化された外添剤を外添して得られる負帯電性トナーにおいて、外添剤として、少なくとも負帯電性シリカ粒子、棒状多面体六方晶系酸化亜鉛粒子、及び正帯電性シリカ粒子を外添した負帯電性トナーが開示され、帯電安定性に優れ、トナー漏れやトナー飛散がなく、印字画像にムラが生じることがないことも開示されている。
 特許文献3には、特定比率の処理量で正帯電処理及びシリコーンオイル処理された酸化亜鉛微粒子を含む外添剤によって表面処理されたトナー母粒子を含有する正帯電性トナーが開示され、長時間使用しても帯電量の低下が生じず、トナー飛散及びカブリの起こりにくい画像が得られることも開示されている。
 また、特許文献4には、電子写真用現像剤として、形状、粒径及び粒度分布が規定されたトナー添加剤用アルミナ粉末を用いることが開示されている。当該文献の明細書の段落[0035]には、当該アルミナ粉末を用いることにより、ドラムフィルミングの無い現像剤が得られ、画質向上及び耐久性に優れた電子写真用現像剤が得られることが記載されている。
 しかしながら、これらの特許文献に記載された外添剤を用いたとしても、近年の高速印刷に伴い要求される、状況が極端に異なる環境下全域での安定的なカブリの抑制、低温定着性、フィルミング特性、及び連続印字における初期トナー搬送量の維持という多面的なトナー特性を高いレベルで同時に発揮させることは困難であった。従って、前記のごとき多面的なトナー特性を高いレベルで同時に発揮できることが、静電荷像現像用トナーには求められている。
特開平9-325511号公報 特開2007-121481号公報 特開2012-68497号公報 特開2000-250251号公報
 従来技術では達成できなかった静電荷像現像用トナーに同時に求められているトナー特性の中で、本発明の課題は、低温定着性に優れ、フィルミングが起こりにくく、高温高湿環境下において初期カブリの発生が抑えられ、しかも高温高湿環境下における印字耐久性(連続印字負荷でのカブリ耐性)にも優れた静電荷像現像用トナーを提供することにある。
 本発明者らは、着色樹脂粒子と共に静電荷像現像用トナーを構成する外添剤について鋭意検討を重ねた結果、外添剤として特定の粒径を有する酸化亜鉛微粒子と特定の粒径を有するアルミナ微粒子とを併用し、静電荷像現像用トナーに特定量含有させることにより、上述の問題を解決出来ることを見出した。
 すなわち、本発明によれば、結着樹脂及び着色剤を含む着色樹脂粒子、並びに、外添剤を含有する静電荷像現像用トナーであって、前記外添剤として、個数平均粒径が0.1~2.0μmの酸化亜鉛粒子、及び、個数平均粒径が0.05~1.0μmのアルミナ粒子を含有し、前記酸化亜鉛粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有し、前記アルミナ粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有することを特徴とする、静電荷像現像用トナーが提供される。
 本発明においては、前記アルミナ粒子と前記酸化亜鉛粒子との含有比が質量基準で1:0.6~1:5の範囲内であることが好ましい。
 本発明においては、前記酸化亜鉛粒子の形状が、板状であることが好ましい。
 本発明においては、前記外添剤として、さらに個数平均粒径が5~25nmの無機微粒子Aを含有し、当該無機微粒子Aを前記着色樹脂粒子100質量部に対して0.1~2.0質量部の割合で含有することが好ましい。
 本発明においては、前記無機微粒子Aが正帯電性を示すことが好ましい。
 本発明においては、前記外添剤として、さらに個数平均粒径が30~200nmの無機微粒子Bを含有し、当該無機微粒子Bを前記着色樹脂粒子100質量部に対して0.1~2.0質量部の割合で含有することが好ましい。
 本発明においては、前記着色樹脂粒子が正帯電性を示すことが好ましい。
 本発明においては、前記静電荷像現像用トナーが正帯電性を示すことが好ましい。
 上記の如き本発明の静電荷像現像用トナーによれば、外添剤として、特定の粒径を有する酸化亜鉛微粒子と特定の粒径を有するアルミナ微粒子とを特定量含有させることにより、低温定着性に優れ、フィルミングが起こりにくく、高温高湿(H/H)環境下においてカブリの発生が抑えられ、印字耐久性に優れる、という特性を全て兼ね備えた静電荷像現像用トナーが提供される。
 本発明の静電荷像現像用トナーは、結着樹脂及び着色剤を含む着色樹脂粒子、並びに、外添剤を含有する静電荷像現像用トナーであって、前記外添剤として、個数平均粒径が0.1~2.0μmの酸化亜鉛粒子、及び、個数平均粒径が0.05~1.0μmのアルミナ粒子を含有し、前記酸化亜鉛粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有し、前記アルミナ粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有することを特徴とする。
 以下、本発明の静電荷像現像用トナー(以下、単に「トナー」と称することがある。)について説明する。
 本発明のトナーは、結着樹脂、及び着色剤を含有する着色樹脂粒子、並びに外添剤を含有する。
 1.着色樹脂粒子の製造方法
 一般に、着色樹脂粒子の製造方法は、粉砕法等の乾式法、並びに乳化重合凝集法、懸濁重合法、及び溶解懸濁法等の湿式法に大別され、画像再現性等の印字特性に優れたトナーが得られ易いことから湿式法が好ましい。湿式法の中でも、ミクロンオーダーで比較的小さい粒径分布を持つトナーを得やすいことから、乳化重合凝集法、及び懸濁重合法等の重合法が好ましく、重合法の中でも懸濁重合法がより好ましい。
 上記乳化重合凝集法は、乳化させた重合性単量体を重合し、樹脂微粒子エマルションを得て、着色剤分散液等と凝集させ、着色樹脂粒子を製造する。また、上記溶解懸濁法は、結着樹脂や着色剤等のトナー成分を有機溶媒に溶解又は分散した溶液を水系媒体中で液滴形成し、当該有機溶媒を除去して着色樹脂粒子を製造する方法であり、それぞれ公知の方法を用いることができる。
 本発明の着色樹脂粒子は、湿式法、または乾式法を採用して製造することが出来る。湿式法の中でも好ましい懸濁重合法を採用し、以下のようなプロセスにより行われる。
 (A)懸濁重合法
 (A-1)重合性単量体組成物の調製工程
 まず、重合性単量体、着色剤、及び帯電制御剤、さらに必要に応じて添加される離型剤等のその他の添加物を混合し、重合性単量体組成物の調製を行う。重合性単量体組成物を調製する際の混合には、例えば、メディア式分散機を用いる。
 本発明で重合性単量体は、重合可能な官能基を有するモノマーのことをいい、重合性単量体が重合して結着樹脂となる。重合性単量体の主成分として、モノビニル単量体を使用することが好ましい。モノビニル単量体としては、例えば、スチレン;ビニルトルエン、及びα-メチルスチレン等のスチレン誘導体;アクリル酸、及びメタクリル酸;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、及びアクリル酸ジメチルアミノエチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、及びメタクリル酸ジメチルアミノエチル等のメタクリル酸エステル;アクリロニトリル、及びメタクリロニトリル等のニトリル化合物;アクリルアミド、及びメタクリルアミド等のアミド化合物;エチレン、プロピレン、及びブチレン等のオレフィン;が挙げられる。これらのモノビニル単量体は、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。これらのうち、モノビニル単量体として、スチレン、スチレン誘導体、及びアクリル酸エステル若しくはメタクリル酸エステルが、好適に用いられる。
 ホットオフセット改善及び保存性改善のために、モノビニル単量体とともに、任意の架橋性の重合性単量体を用いることが好ましい。架橋性の重合性単量体とは、2つ以上の重合可能な官能基を持つモノマーのことをいう。架橋性の重合性単量体としては、例えば、ジビニルベンゼン、ジビニルナフタレン、及びこれらの誘導体等の芳香族ジビニル化合物;エチレングリコールジメタクリレート、及びジエチレングリコールジメタクリレート等の2個以上の水酸基を持つアルコールに炭素-炭素二重結合を有するカルボン酸が2つ以上エステル結合したエステル化合物;N,N-ジビニルアニリン、及びジビニルエーテル等の、その他のジビニル化合物;3個以上のビニル基を有する化合物;等を挙げることができる。これらの架橋性の重合性単量体は、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。
 本発明では、架橋性の重合性単量体を、モノビニル単量体100質量部に対して、通常、0.1~5質量部、好ましくは0.3~2質量部の割合で用いることが望ましい。
 また、さらに、重合性単量体の一部として、マクロモノマーを用いると、得られるトナーの保存性と低温での定着性とのバランスが良好になるので好ましい。マクロモノマーは、分子鎖の末端に重合可能な炭素-炭素不飽和二重結合を有するもので、数平均分子量が、通常、1,000~30,000の反応性の、オリゴマー又はポリマーである。マクロモノマーは、モノビニル単量体を重合して得られる重合体のガラス転移温度(以下、「Tg」と称することがある。)よりも、高いTgを有する重合体を与えるものが好ましい。
マクロモノマーは、モノビニル単量体100質量部に対して、好ましくは0.03~5質量部、さらに好ましくは0.05~1質量部用いることが望ましい。
 本発明では、着色剤を用いるが、カラートナーを作製する場合、ブラック、シアン、イエロー、マゼンタの着色剤を用いることができる。
 ブラック着色剤としては、例えば、カーボンブラック、チタンブラック、並びに酸化鉄亜鉛、及び酸化鉄ニッケル等の磁性粉等を用いることができる。
 シアン着色剤としては、例えば、銅フタロシアニン化合物、その誘導体、及びアントラキノン化合物等が利用できる。具体的には、C.I.ピグメントブルー2、3、6、15、15:1、15:2、15:3、15:4、16、17:1、及び60等が挙げられる。
 イエロー着色剤としては、例えば、モノアゾ顔料、及びジスアゾ顔料等のアゾ系顔料、縮合多環系顔料、染料等の化合物が用いられ、C.I.ピグメントイエロー3、12、13、14、15、17、62、65、73、74、83、93、97、120、138、155、180、181、185、186、及び213等が挙げられる。
 マゼンタ着色剤としては、例えば、モノアゾ顔料、及びジスアゾ顔料等のアゾ系顔料、縮合多環系顔料、染料等の化合物が用いられ、C.I.ピグメントレッド31、48、57:1、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、144、146、149、150、163、170、184、185、187、202、206、207、209、237、238、251、254、255、269及びC.I.ピグメントバイオレット19等が挙げられる。
 本発明では、各着色剤は、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。着色剤の量は、モノビニル単量体100質量部に対して、好ましくは1~10質量部である。
 本発明においては、トナーの帯電性を向上させるために、正帯電性又は負帯電性の帯電制御剤を用いる。
 帯電制御剤としては、一般にトナー用の帯電制御剤として用いられているものであれば、特に限定されないが、帯電制御剤の中でも、重合性単量体との相溶性が高く、安定した帯電性(帯電安定性)をトナー粒子に付与させることができることから、正帯電性又は負帯電性の帯電制御樹脂が好ましく、さらに、正帯電性トナーを得る観点からは、正帯電性の帯電制御樹脂がより好ましく用いられる。本発明のトナーは、正帯電性トナーであることが好ましい。
 正帯電性の帯電制御剤としては、ニグロシン染料、4級アンモニウム塩、トリアミノトリフェニルメタン化合物及びイミダゾール化合物、並びに、好ましく用いられる帯電制御樹脂としてのポリアミン樹脂、並びに4級アンモニウム基含有共重合体、及び4級アンモニウム塩基含有共重合体等が挙げられる。
 負帯電性の帯電制御剤としては、Cr、Co、Al、及びFe等の金属を含有するアゾ染料、サリチル酸金属化合物及びアルキルサリチル酸金属化合物、並びに、好ましく用いられる帯電制御樹脂としてのスルホン酸基含有共重合体、スルホン酸塩基含有共重合体、カルボン酸基含有共重合体及びカルボン酸塩基含有共重合体等が挙げられる。
 本発明では、帯電制御剤を、モノビニル単量体100質量部に対して、通常、0.01~10質量部、好ましくは0.03~8質量部の割合で用いることが望ましい。帯電制御剤の添加量が、0.01質量部未満の場合にはカブリが発生することがある。一方、帯電制御剤の添加量が10質量部を超える場合には印字汚れが発生することがある。
 定着時におけるトナーの定着ロールからの離型性を改善する観点から、重合性単量体組成物には、離型剤を添加することが好ましい。離型剤としては、一般にトナーの離型剤として用いられるものであれば、特に制限無く用いることができる。
 上記離型剤は、エステルワックス及び炭化水素系ワックスの少なくともいずれか1つを含有することが好ましい。これらのワックスを離型剤として使用することにより、低温定着性と保存性とのバランスを好適にすることができる。
 本発明において離型剤として好適に用いられるエステルワックスは、多官能エステルワックスがより好適であり、例えば、ペンタエリスリトールテトラパルミネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールテトラステアレート等のペンタエリスリトールエステル化合物;ヘキサグリセリンテトラベヘネートテトラパルミネート、ヘキサグリセリンオクタベヘネート、ペンタグリセリンヘプタベヘネート、テトラグリセリンヘキサベヘネート、トリグリセリンペンタベヘネート、ジグリセリンテトラベヘネート、グリセリントリベヘネート等のグリセリンエステル化合物;ジペンタエリスリトールヘキサミリステート、ジペンタエリスリトールヘキサパルミネート等のジペンタエリスリトールエステル化合物;等が挙げられる。
 本発明において離型剤として好適に用いられる炭化水素系ワックスは、ポリエチレンワックス、ポリプロピレンワックス、フィッシャートロプシュワックス、石油系ワックス等が挙げられ、中でも、フィッシャートロプシュワックス、石油系ワックスが好ましく、石油系ワックスがより好ましい。
 上記離型剤の他にも、例えば、ホホバ等の天然ワックス;オゾケライト等の鉱物系ワックス;等を用いることができる。
 離型剤は、上述した1種又は2種以上のワックスを組み合わせて用いてもよい。
 上記離型剤は、モノビニル単量体100質量部に対して、好ましくは0.1~30質量部用いられ、更に好ましくは1~20質量部用いられる。
 その他の添加物として、重合して結着樹脂となる重合性単量体を重合する際に、分子量調整剤を用いることが好ましい。
 分子量調整剤としては、一般にトナー用の分子量調整剤として用いられているものであれば、特に限定されず、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン、n-オクチルメルカプタン、及び2,2,4,6,6-ペンタメチルヘプタン-4-チオール等のメルカプタン類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、N,N’-ジメチル-N,N’-ジフェニルチウラムジスルフィド、N,N’-ジオクタデシル-N,N’-ジイソプロピルチウラムジスルフィド等のチウラムジスルフィド類;等が挙げられる。これらの分子量調整剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いてもよい。
 本発明では、分子量調整剤を、モノビニル単量体100質量部に対して、通常0.01~10質量部、好ましくは0.1~5質量部の割合で用いることが望ましい。
 (A-2)懸濁液を得る懸濁工程(液滴形成工程)
 本発明では、少なくとも重合性単量体、着色剤、及び帯電制御剤を含む重合性単量体組成物を、分散安定化剤を含む水系媒体中に分散させ、重合開始剤を添加した後、重合性単量体組成物の液滴形成を行う。液滴形成の方法は特に限定されないが、例えば、(インライン型)乳化分散機(大平洋機工社製、商品名:マイルダー)、高速乳化分散機(プライミクス株式会社製、商品名:T.K.ホモミクサー MARK II型)等の強攪拌が可能な装置を用いて行う。
 重合開始剤としては、過硫酸カリウム、及び過硫酸アンモニウム等の過硫酸塩:4,4’-アゾビス(4-シアノバレリック酸)、2,2’-アゾビス(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、及び2,2’-アゾビスイソブチロニトリル等のアゾ化合物;ジ-t-ブチルパーオキシド、ベンゾイルパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシジエチルアセテート、t-ヘキシルパーオキシ-2-エチルブタノエート、ジイソプロピルパーオキシジカーボネート、ジ-t-ブチルパーオキシイソフタレート、及びt-ブチルパーオキシイソブチレート等の有機過酸化物等が挙げられる。これらは、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。これらの中で、残留重合性単量体を少なくすることができ、印字耐久性も優れることから、有機過酸化物を用いるのが好ましい。
 有機過酸化物の中でも、開始剤効率がよく、残留する重合性単量体も少なくすることができることから、パーオキシエステルが好ましく、非芳香族パーオキシエステルすなわち芳香環を有しないパーオキシエステルがより好ましい。
 重合開始剤は、前記のように、重合性単量体組成物が水系媒体中へ分散された後、液滴形成前に添加されても良いが、水系媒体中へ分散される前の重合性単量体組成物へ添加されても良い。
 重合性単量体組成物の重合に用いられる、重合開始剤の添加量は、モノビニル単量体100質量部に対して、好ましくは0.1~20質量部であり、さらに好ましくは0.3~15質量部であり、特に好ましくは1~10質量部である。
 本発明において、水系媒体とは、水を主成分とする媒体のことを言う。
 本発明において、水系媒体には、分散安定化剤を含有させることが好ましい。分散安定化剤としては、例えば、硫酸バリウム、及び硫酸カルシウム等の硫酸塩;炭酸バリウム、炭酸カルシウム、及び炭酸マグネシウム等の炭酸塩;リン酸カルシウム等のリン酸塩;酸化アルミニウム、及び酸化チタン等の金属酸化物;水酸化アルミニウム、水酸化マグネシウム、及び水酸化第二鉄等の金属水酸化物;等の無機化合物や、ポリビニルアルコール、メチルセルロース、及びゼラチン等の水溶性高分子;アニオン性界面活性剤;ノニオン性界面活性剤;両性界面活性剤;等の有機化合物が挙げられる。上記分散安定化剤は1種又は2種以上を組み合わせて用いることができる。
 上記分散安定化剤の中でも、無機化合物、特に難水溶性の金属水酸化物のコロイドが好ましい。無機化合物、特に難水溶性の金属水酸化物のコロイドを用いることにより、着色樹脂粒子の粒径分布を狭くすることができ、また、洗浄後の分散安定化剤残存量を少なくできるため、得られるトナーが画像を鮮明に再現することができ、且つ環境安定性が優れたものとなる。
 (A-3)重合工程
 上記(A-2)のようにして、液滴形成を行い、得られた水系分散媒体を加熱し、重合を開始し、着色樹脂粒子の水分散液を形成する。
 重合性単量体組成物の重合温度は、好ましくは50℃以上であり、更に好ましくは60~95℃である。また、重合の反応時間は好ましくは1~20時間であり、更に好ましくは2~15時間である。
 着色樹脂粒子は、そのまま外添剤を添加して重合トナーとして用いてもよいが、この着色樹脂粒子をコア層とし、その外側にコア層と異なるシェル層を作ることで得られる、所謂コアシェル型(又は、「カプセル型」ともいう)の着色樹脂粒子とすることが好ましい。コアシェル型の着色樹脂粒子は、低軟化点を有する物質よりなるコア層を、それより高い軟化点を有する物質で被覆することにより、定着温度の低温化と保存時の凝集防止とのバランスを取ることができる。
 上述した、上記着色樹脂粒子を用いて、コアシェル型の着色樹脂粒子を製造する方法としては特に制限はなく、従来公知の方法によって製造することができる。in situ重合法や相分離法が、製造効率の点から好ましい。
 in situ重合法によるコアシェル型の着色樹脂粒子の製造法を以下に説明する。
 着色樹脂粒子が分散している水系媒体中に、シェル層を形成するための重合性単量体(シェル用重合性単量体)と重合開始剤を添加し、重合することでコアシェル型の着色樹脂粒子を得ることができる。
 シェル用重合性単量体としては、前述の重合性単量体と同様なものが使用できる。その中でも、スチレン、アクリロニトリル、及びメチルメタクリレート等の、Tgが80℃を超える重合体が得られる単量体を、単独であるいは2種以上組み合わせて使用することが好ましい。
 シェル用重合性単量体の重合に用いる重合開始剤としては、過硫酸カリウム、及び過硫酸アンモニウム等の、過硫酸金属塩;2,2’-アゾビス(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド)、及び2,2’-アゾビス-(2-メチル-N-(1,1-ビス(ヒドロキシメチル)2-ヒドロキシエチル)プロピオンアミド)等の、アゾ系開始剤;等の水溶性重合開始剤を挙げることができる。これらは、それぞれ単独で、あるいは2種以上組み合わせて用いることができる。重合開始剤の量は、シェル用重合性単量体100質量部に対して、好ましくは、0.1~30質量部、より好ましくは1~20質量部である。
 シェル層の重合温度は、好ましくは50℃以上であり、更に好ましくは60~95℃である。また、重合の反応時間は好ましくは1~20時間であり、更に好ましくは2~15時間である。
 (A-4)洗浄、ろ過、脱水、及び乾燥工程
 重合により得られた着色樹脂粒子の水分散液は、重合終了後に、常法に従い、ろ過、分散安定化剤の除去を行う洗浄、脱水、及び乾燥の操作が、必要に応じて数回繰り返されることが好ましい。
 上記の洗浄の方法としては、分散安定化剤として無機化合物を使用した場合、着色樹脂粒子の水分散液への酸、又はアルカリの添加により、分散安定化剤を水に溶解し除去することが好ましい。分散安定化剤として、難水溶性の無機水酸化物のコロイドを使用した場合、酸を添加して、着色樹脂粒子水分散液のpHを6.5以下に調整することが好ましい。添加する酸としては、硫酸、塩酸、及び硝酸等の無機酸、並びに蟻酸、及び酢酸等の有機酸を用いることができるが、除去効率の大きいことや製造設備への負担が小さいことから、特に硫酸が好適である。
 脱水、ろ過の方法は、種々の公知の方法等を用いることができ、特に限定されない。例えば、遠心ろ過法、真空ろ過法、加圧ろ過法等を挙げることができる。また、乾燥の方法も、特に限定されず、種々の方法が使用できる。
 (B)粉砕法
 粉砕法を採用して着色樹脂粒子を製造する場合、以下のようなプロセスにより行われる。
 まず、結着樹脂、着色剤、及び帯電制御剤、さらに必要に応じて添加される離型剤等のその他の添加物を混合機、例えば、ボールミル、V型混合機、FMミキサー(:商品名)、高速ディゾルバ、インターナルミキサー等を用いて混合する。次に、上記により得られた混合物を、加圧ニーダー、二軸押出混練機、ローラ等を用いて加熱しながら混練する。
得られた混練物を、ハンマーミル、カッターミル、ローラミル等の粉砕機を用いて、粗粉砕する。更に、ジェットミル、高速回転式粉砕機等の粉砕機を用いて微粉砕した後、風力分級機、気流式分級機等の分級機により、所望の粒径に分級して粉砕法による着色樹脂粒子を得る。
 なお、粉砕法で用いる結着樹脂、着色剤、及び帯電制御剤、さらに必要に応じて添加される離型剤等のその他の添加物は、前述の(A)懸濁重合法で挙げたものを用いることができる。また、粉砕法により得られる着色樹脂粒子は、前述の(A)懸濁重合法により得られる着色樹脂粒子と同じく、in situ重合法等の方法によりコアシェル型の着色樹脂粒子とすることもできる。
 結着樹脂としては、他にも、従来からトナーに広く用いられている樹脂を使用することができる。粉砕法で用いられる結着樹脂としては、具体的には、ポリスチレン、スチレン-アクリル酸ブチル共重合体、ポリエステル樹脂、及びエポキシ樹脂等を例示することができる。
 2.得られた着色樹脂粒子の基本特性
 以下、上述の(A)懸濁重合法、又は(B)粉砕法等の製造方法により、得られた着色樹脂粒子の基本特性について述べる。なお、以下で述べる着色樹脂粒子は、コアシェル型のものとそうでないもの両方を含む。
 本発明の着色樹脂粒子は、正帯電性を示すことが好ましい。
 着色樹脂粒子の体積平均粒径(Dv)は、好ましくは4~12μmであり、更に好ましくは5~10μmである。Dvが4μm未満である場合には、トナーの流動性が低下し、転写性が悪化したり、画像濃度が低下したりする場合がある。Dvが12μmを超える場合には、画像の解像度が低下する場合がある。
 また、着色樹脂粒子は、その体積平均粒径(Dv)と個数平均粒径(Dn)との比(Dv/Dn)が、好ましくは1.0~1.3であり、更に好ましくは1.0~1.2である。Dv/Dnが1.3を超える場合には、転写性、画像濃度及び解像度の低下が起こる場合がある。着色樹脂粒子の体積平均粒径、及び個数平均粒径は、例えば、粒度分析計(ベックマン・コールター製、商品名:マルチサイザー)等を用いて測定することができる。
 本発明の着色樹脂粒子の平均円形度は、画像再現性の観点から、0.96~1.00であることが好ましく、0.97~1.00であることがより好ましく、0.98~1.00であることがさらに好ましい。
 上記着色樹脂粒子の平均円形度が0.96未満の場合、印字の細線再現性が悪くなるおそれがある。
 本発明において、円形度は、粒子像と同じ投影面積を有する円の周囲長を、粒子の投影像の周囲長で除した値として定義される。また、本発明における平均円形度は、粒子の形状を定量的に表現する簡便な方法として用いたものであり、着色樹脂粒子の凹凸の度合いを示す指標であり、平均円形度は着色樹脂粒子が完全な球形の場合に1を示し、着色樹脂粒子の表面形状が複雑になるほど小さな値となる。
 3.本発明の静電荷像現像用トナーの製造方法
 本発明においては、上記着色樹脂粒子を、外添剤と共に混合攪拌して外添処理を行うことにより、着色樹脂粒子の表面に、外添剤を付着させて1成分トナー(現像剤)とする。
なお、1成分トナーは、さらにキャリア粒子と共に混合攪拌して2成分現像剤としてもよい。
 本発明のトナーは、外添剤として、個数平均粒径が0.1~2.0μmの酸化亜鉛粒子、及び、個数平均粒径が0.05~1.0μmのアルミナ粒子を含有する。
 酸化亜鉛粒子の個数平均粒径が0.1μm未満である場合には、高温高湿(H/H)環境下における初期カブリが特に生じやすくなる。一方、酸化亜鉛粒子の個数平均粒径が2.0μmを超える場合には、印字耐久性が低下し、低温低湿(L/L)環境下における初期カブリが特に生じやすくなる他、耐久後搬送量が初期搬送量よりも大きくなる。
 酸化亜鉛粒子の個数平均粒径は0.15~1.2μmであることが好ましく、0.2~0.8μmであることがさらに好ましい。
 本発明に使用される亜鉛酸化物粒子、アルミナ粒子、並びに、後述する無機微粒子A、及び無機微粒子Bの個数平均粒径は、例えば、以下のように測定できる。まず、これら外添剤の個々の粒子について、TEMやSEM等により粒径を測定する。このように30個以上の外添剤粒子の粒径を計測し、その平均値を、その粒子の個数平均粒径とする。ここで、外添剤粒子の形状が板状の場合には、前記粒径は長径を示す。なお、板状粒子の長径とは、板状粒子の底面における絶対最大長を指す。ここで、本発明において板状粒子の底面とは、板状粒子を構成する面のうち、最も表面積が大きい面のことを指す。
 また、本発明に使用されるこれら外添剤の個数平均粒径の他の測定方法としては、外添剤粒子を水などの分散媒中に分散させ、当該分散液を粒度分布測定装置(日機装製、商品名:マイクロトラック3300EXII)等により測定する方法により、個数平均粒径を測定する方法等が挙げられる。
 酸化亜鉛粒子は、前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で、トナー中に含有される。酸化亜鉛粒子の含有量は、着色樹脂粒子100質量部に対して、0.3~0.8質量部であることが好ましく、0.4~0.6質量部であることがさらに好ましい。
 また、酸化亜鉛粒子の形状は、板状であることが好ましく、六角板状であると更に好ましい。
 アルミナ粒子の個数平均粒径が0.05μm未満である場合には、高温高湿(H/H)環境下における帯電量の低下が著しくなり、全般的に印字カブリが発生しやすくなる。一方、アルミナ粒子の個数平均粒径が1.0μmを超える場合には、低温低湿(L/L)環境下における帯電量の上昇が著しくなり、全般的に印字カブリが発生しやすくなる。
 アルミナ粒子の個数平均粒径は0.2~0.7μmであることがより好ましく、0.3~0.5μmであることがさらに好ましい。
 アルミナ粒子は、前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で、トナー中に含有される。アルミナ粒子の含有量は、着色樹脂粒子100質量部に対して、0.1~0.5質量部であることが好ましく、0.2~0.4質量部であることがさらに好ましい。
 本発明の静電荷像現像用トナーにおいて、アルミナ粒子と酸化亜鉛粒子との含有比が質量基準で1:0.6~1:5の範囲内であることが好ましい。アルミナ粒子1質量部に対して酸化亜鉛粒子の含有量が1質量部未満である場合には高温高湿環境下で初期カブリが生じやすくなり、アルミナ粒子1質量部に対して酸化亜鉛粒子の含有量が5質量部を超える場合には高温高湿環境下で印字耐久性が低下する場合がある。本発明の静電荷像現像用トナーにおいて、アルミナ粒子と酸化亜鉛粒子との含有比が質量基準で、1:1~1:2.6の範囲内であることがより好ましく、1:1~1:2.0の範囲内であることがさらに好ましい。
 本発明のトナーは、外添剤として、個数平均粒径が5~25nmの無機微粒子Aを含有していることが好ましい。
 無機微粒子Aの個数平均粒径が、5nm未満である場合には、着色樹脂粒子の表面から内部に、当該無機微粒子Aが埋没し易くなり、流動性をトナーに十分に付与させることができず、印字性能に悪影響を及ぼすことがある。一方、無機微粒子Aの個数平均粒径が、25nmを超える場合には、表面空隙率が増加する。従って、着色樹脂粒子の表面に対して、当該無機微粒子が占める割合(被覆率)が低下するため、流動性をトナーに十分に付与させることができないことがある。無機微粒子Aの個数平均粒径は、7~25nmであることがより好ましく、7~20nmであることが更に好ましく、7~15nmであることが特に好ましい。
 無機微粒子Aは、シリカ又はチタニアの微粒子が好ましく、シリカ微粒子がより好ましい。さらに、正帯電性シリカ微粒子であることが好ましく、フュームドシリカであることがより好ましい。ここで、無機微粒子Aを正帯電性とするために、正帯電性の疎水化処理剤で疎水化されていることが好ましい。
 正帯電性の疎水化処理剤としては、γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、アミノシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、及びN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン化合物やアミノ変性シリコーンオイルが挙げられる。疎水化処理剤は、上記のうち、1種のみを用いてもよく、又は2種以上用いてもよい。
 無機微粒子Aの含有量は、着色樹脂粒子100質量部に対して、0.1~2.0質量部であることが好ましく、0.2~1.5質量部であることがより好ましく、0.3~1.0質量部であることが更に好ましい。
 無機微粒子Aの含有量が0.1質量部未満の場合、外添剤としての機能を十分に発揮させることができず、流動性が低下したり、保存性や印字耐久性が低下したりすることがある。一方、無機微粒子Aの含有量が2.0質量部を超える場合、現像剤粒子の表面から、当該無機微粒子Aが遊離し易くなり、高温高湿環境下での帯電性が低下してカブリが発生したり、定着性が低下したりすることがある。
 無機微粒子Aとして好ましく用いられる正帯電性のフュームドシリカ微粒子としては、種々の市販品を用いることができ、例えば、クラリアント社製のHDK2150(:商品名、個数平均粒径:12nm)、日本アエロジル社製のR504(:商品名、個数平均粒径:12nm)、RA200HS(:商品名、個数平均粒径:12nm)、テイカ社製のMSP-012(:商品名、個数平均粒径:16nm)、MSP-013(:商品名、個数平均粒径:12nm)、キャボット社製のTG820F(:商品名、個数平均粒径:7nm)、TG7120(:商品名、個数平均粒径:20nm)等が挙げられる。
 本発明のトナーは、外添剤として、無機微粒子Aに加えて、個数平均粒径が30~200nmの無機微粒子Bを含有していることが好ましい。
 無機微粒子Bの個数平均粒径が、30nm未満である場合には、スペーサー効果が低下し、カブリの発生など印字性能に悪影響を及ぼすことがある。一方、無機微粒子Bの個数平均粒径が、200nmを超える場合には、現像剤粒子の表面から、当該無機微粒子が遊離し易くなり、外添剤としての機能が低下し、印字性能に悪影響を及ぼすことがある。
 無機微粒子Bの個数平均粒径は、30~100nmであることがより好ましく、35~80nmであることが更に好ましい。無機微粒子Bはシリカ又はチタニアの微粒子であることが好ましく、シリカ微粒子がより好ましく、疎水化処理されていると更に好ましい。
 無機微粒子Bの含有量は、着色樹脂粒子100質量部に対して、0.1~2.0質量部であることが好ましく、0.3~1.8質量部であることがより好ましく、0.5~1.5質量部であることが更に好ましい。
 無機微粒子Bの含有量が0.1質量部未満の場合、外添剤としての機能を十分に発揮させることができず、印字性能に悪影響を及ぼすことがある。一方、無機微粒子Bの含有量が2.0質量部を超える場合、現像剤粒子の表面から、当該無機微粒子Bが遊離し易くなり、外添剤としての機能が低下し、印字性能に悪影響を及ぼすことがある。
 本発明において、好ましく用いられる疎水化処理されている無機微粒子Bは、シランカップリング剤、シリコーンオイル、脂肪酸及び脂肪酸金属塩等の疎水化処理剤により疎水化処理されていることが好ましい。疎水化処理剤としては、上述した無機微粒子Aと同様に、正帯電性の疎水化処理剤であるアミノシラン化合物やアミノ変性シリコーンオイルを用いることがより好ましく、アミノ変性シリコーンオイルを用いることが特に好ましい。
 無機微粒子Bとして好ましく用いられるシリカ微粒子としては、種々の市販品を用いることができ、例えば、日本アエロジル社製のNA50Y(:商品名、個数平均粒径:35nm)、VPNA50H(:商品名、個数平均粒径:40nm);クラリアント社製のH05TA(:商品名、個数平均粒径:50nm);等が挙げられる。
 本発明のトナーは、無機微粒子A及び無機微粒子Bのうちいずれか一方を含有していてもよいが、無機微粒子A及び無機微粒子Bをいずれも含有することがより好ましい。
 外添処理を行う攪拌機は、着色樹脂粒子の表面に外添剤を付着させることができる攪拌装置であれば特に限定されず、例えば、FMミキサー(:商品名、日本コークス工業社製)、スーパーミキサー(:商品名、川田製作所社製)、Qミキサー(:商品名、日本コークス工業社製)、メカノフュージョンシステム(:商品名、ホソカワミクロン社製)、及びメカノミル(:商品名、岡田精工社製)等の混合攪拌が可能な攪拌機を用いて外添処理を行うことができる。
 4.本発明の静電荷像現像用トナー
 トナーに外添剤として、酸化亜鉛粒子を単独で含有させた場合、高温高湿環境下における初期カブリが特に改善されるものの、高温高湿環境下における印字耐久性(連続印字負荷でのカブリ耐性)が特に悪化する。一方、トナーに外添剤として、アルミナ粒子を単独で含有させた場合、高温高湿環境下における印字耐久性(連続印字負荷でのカブリ耐性)が特に改善されるものの、高温高湿環境下における初期カブリが特に悪化する。
 本発明の静電荷像現像用トナーでは、外添剤として酸化亜鉛粒子とアルミナ粒子を併用することで、各粒子単独で改善する特性と悪化する特性とが打ち消しあうことなく、改善する特性のみを発揮することができる。
 よって、本発明の静電荷像現像用トナーは、低温定着性に優れ、フィルミングが起こりにくく、高温高湿環境下においてカブリの発生が抑えられ、しかも印字耐久性に優れるというトナー特性を高いレベルで兼ね備えている。
 なお、本発明の静電荷像現像用トナーは正帯電性を示すことが好ましい。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
 本実施例及び比較例において行った試験方法は以下のとおりである。
 1.静電荷像現像用トナーの製造
 [実施例1]
 重合性単量体としてスチレン75部とn-ブチルアクリレート25部、ブラック着色剤としてカーボンブラック(三菱化学社製、商品名:#25B)5部を、メディア型乳化分散機を用いて分散させて、重合性単量体混合物を得た。
 上記重合性単量体混合物に、正帯電性の帯電制御剤として帯電制御樹脂(藤倉化成社製、商品名:アクリベース FCA-161P)1部、離型剤としてエステルワックス(日油社製、商品名:WEP7)5部、マクロモノマーとしてポリメタクリル酸エステルマクロモノマー(東亜合成化学工業社製、商品名:AA6)0.3部、架橋性の重合性単量体としてジビニルベンゼン0.6部、及び分子量調整剤としてt-ドデシルメルカプタン1.6部を添加した後、混合及び溶解して、重合性単量体組成物を調製した。
 他方、室温下で、イオン交換水250部に塩化マグネシウム(水溶性多価金属塩)10.2部を溶解した水溶液に、イオン交換水50部に水酸化ナトリウム(水酸化アルカリ金属)6.2部を溶解した水溶液を、攪拌下で徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)分散液を調製した。
 上記水酸化マグネシウムコロイド分散液に、室温下で、上記重合性単量体組成物を投入し、攪拌した。そこへ重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、商品名:パーブチルO)4.4部を投入した後、インライン型乳化分散機を用いて、15,000rpmの回転数で10分間高速剪断攪拌して分散を行い、重合性単量体組成物の液滴形成を行った。
 上記重合性単量体組成物の液滴が分散した懸濁液(重合性単量体組成物分散液)を、攪拌翼を装着した反応器内に投入し、90℃に昇温し、重合反応を開始させた。重合転化率が、ほぼ100%に達したときに、シェル用重合性単量体としてメチルメタクリレート1部、及びイオン交換水10部に溶解したシェル用重合開始剤である2,2’-アゾビス(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド)(和光純薬社製、商品名:VA-086、水溶性)0.3部を添加し、90℃で4時間反応を継続した後、水冷して反応を停止し、コアシェル型構造を有する着色樹脂粒子の水分散液を得た。
 上記着色樹脂粒子の水分散液を、室温下で、硫酸を攪拌しながら滴下し、pHが6.5以下となるまで酸洗浄を行った。次いで、濾過分離を行い、得られた固形分にイオン交換水500部を加えて再スラリー化させて、水洗浄処理(洗浄、濾過、及び脱水)を数回繰り返し行った。次いで、濾過分離を行い、得られた固形分を乾燥機の容器内に入れ、45℃で48時間乾燥を行い、体積平均粒径(Dv)が7.8μm、個数平均粒径(Dn)が6.9μm、粒径分布(Dv/Dn)が1.13及び平均円形度が0.987である着色樹脂粒子を得た。
 上記で得られた着色樹脂粒子100部に、外添剤として、酸化亜鉛粒子(堺化学工業製、商品名:XZ-300、六角板状、個数平均粒径:0.3μm、)0.5部、アルミナ粒子(住友化学製、商品名:AKP-30、個数平均粒径:0.4μm、)0.3部、無機微粒子Aとしての正帯電性のフュームドシリカ微粒子(キャボット社製、商品名:TG820F、個数平均粒径:7nm)0.6部、及び無機微粒子Bとしてのシリカ微粒子(日本アエロジル社製、商品名:NA50Y、個数平均粒径:35nm)1.0部、を添加し、高速攪拌装置(日本コークス工業社製、商品名:FMミキサー)を用いて混合攪拌して外添処理を行い、実施例1の静電荷像現像剤を得た。試験結果を表1に示す。
 [実施例2]
 実施例1において、酸化亜鉛粒子の種類をXZ-300(堺化学工業製、六角板状、個数平均粒径:0.3μm)から個数平均粒径の異なるXZ-100(堺化学工業製、六角板状、個数平均粒径:0.1μm)に変更したこと以外は、実施例1と同様にして、実施例2のトナーを作製し、試験に供した。
 [実施例3]
 実施例1において、酸化亜鉛粒子の種類をXZ-300(堺化学工業製、六角板状、個数平均粒径:0.3μm)から個数平均粒径の異なるXZ-1000(堺化学工業製、六角板状、個数平均粒径:1.0μm)に変更したこと以外は、実施例1と同様にして、実施例3のトナーを作製し、試験に供した。
 [実施例4]
 実施例1において、酸化亜鉛粒子の添加量を0.5部から0.3部に変更したこと、アルミナ粒子の添加量を0.3部から0.2部に変更したこと以外は、実施例1と同様にして、実施例4のトナーを作製し、試験に供した。
 [実施例5]
 実施例1において、酸化亜鉛粒子の添加量を0.5部から0.3部に変更したこと、アルミナ粒子の添加量を0.3部から0.5部に変更したこと以外は、実施例1と同様にして、実施例5のトナーを作製し、試験に供した。
 [実施例6]
 実施例1において、アルミナ粒子の添加量を0.3部から0.1部に変更したこと以外は、実施例1と同様にして、実施例6のトナーを作製し、試験に供した。
 [実施例7]
 実施例1において、アルミナ粒子の添加量を0.3部から0.5部に変更したこと以外は、実施例1と同様にして、実施例7のトナーを作製し、試験に供した。
 [実施例8]
 実施例1において、酸化亜鉛粒子の添加量を0.5部から0.8部に変更したこと以外は、実施例1と同様にして、実施例8のトナーを作製し、試験に供した。
 [実施例9]
 実施例1において、酸化亜鉛粒子の添加量を0.5部から0.3部に変更したこと以外は、実施例1と同様にして、実施例9のトナーを作製し、試験に供した。
 [実施例10]
 実施例1において、アルミナ粒子の種類をAKP-30(住友化学製、個数平均粒径:0.4μm)から個数平均粒径の異なるAKP-50(住友化学製、個数平均粒径:0.2μm)に変更したこと以外は、実施例1と同様にして、実施例10のトナーを作製し、試験に供した。
 [実施例11]
 実施例1において、アルミナ粒子の種類をAKP-30(住友化学製、個数平均粒径:0.4μm)から個数平均粒径の異なるAKP-15(住友化学製、個数平均粒径:0.7μm)に変更したこと以外は、実施例1と同様にして、実施例11のトナーを作製し、試験に供した。
 [実施例12]
 実施例1において、無機微粒子Aを添加しなかったこと以外は、実施例1と同様にして、実施例12のトナーを作製し、試験に供した。
 [実施例13]
 実施例1において、無機微粒子Bを添加しなかったこと以外は、実施例1と同様にして、実施例13のトナーを作製し、試験に供した。
 [比較例1]
 実施例1において、アルミナ粒子を添加しなかったこと以外は、実施例1と同様にして、比較例1のトナーを作製し、試験に供した。
 [比較例2]
 実施例1において、酸化亜鉛粒子を添加しなかったこと以外は、実施例1と同様にして、比較例2のトナーを作製し、試験に供した。
 [比較例3]
 比較例1において、酸化亜鉛粒子の添加量を0.5部から0.8部に変更したこと以外は、比較例1と同様にして、比較例3のトナーを作製し、試験に供した。
 [比較例4]
 比較例2において、アルミナ粒子の添加量を0.3部から0.8部に変更したこと以外は、比較例2と同様にして、比較例4のトナーを作製し、試験に供した。
 2.静電荷像現像用トナーの評価
 上記実施例1~実施例13、及び比較例1~比較例4の静電荷像現像用トナーについて、定着温度、高温高湿条件下における印字特性、及び、フィルミング特性を調べた。詳細は以下の通りである。
 2-1.トナーの定着温度
 市販の非磁性一成分現像方式のプリンター(印刷速度:20枚/分)の定着ロールの温度を変化できるように改造したプリンターを用いて、定着試験を行った。定着試験は、改造プリンターの定着ロールの温度を5℃刻みで変化させ、それぞれの温度でのトナーの定着率を測定した。
 定着率は、改造プリンターで試験用紙に印刷した黒ベタ領域の、テープ剥離操作前後の画像濃度の比率から計算した。即ち、テープ剥離前の画像濃度をID(前)、テープ剥離後の画像濃度をID(後)とすると、定着率は、次式から算出することができる。
  定着率(%)=(ID(後)/ID(前))×100
 ここで、テープ剥離操作とは、試験用紙の測定部分(黒ベタ領域)に粘着テープ(住友スリーエム社製、商品名:スコッチメンディングテープ810-3-18)を貼り、一定圧力で押圧して付着させ、その後、一定速度で紙に沿った方向に粘着テープを剥離する一連の操作である。また、画像濃度は、反射型濃度計(マクベス社製、商品名:RD918)を用いて測定した。
 この定着試験において、定着率が80%以上になる最低定着ロール温度をトナーの最低定着温度とした。
〈合格基準〉
 本試験においては、前記最低定着温度が165℃以下であるときに、トナーに求められる定着温度の評価を合格とした。
 2-2.トナーの高温高湿条件下(H/H)における印字特性(初期カブリ及び印字耐久性)
 初期カブリ及び印字耐久性試験(連続印字負荷でのカブリ耐性)には、市販の非磁性一成分現像方式のプリンター(印刷スピード:A4サイズ20枚/分)を用い、現像装置のトナーカートリッジに、トナーを充填した後、印字用紙をセットした。
 高温高湿(H/H)環境下(温度:35℃、湿度:80%)で、24時間放置した後、同環境下にて、5%印字濃度で15,000枚まで連続印刷を行った。
 500枚毎に、黒ベタ印字(印字濃度100%)を行い、反射式画像濃度計(マクベス社製、商品名:RD918)を用いて黒ベタ画像の印字濃度を測定した。さらに、その後、白ベタ印字(印字濃度0%)を行い、白ベタ印字の途中でプリンターを停止させ、現像後の感光体上における非画像部のトナーを、粘着テープ(住友スリーエム社製、商品名:スコッチメンディングテープ810-3-18)に付着させた後、剥ぎ取り、それを印字用紙に貼り付けた。次に、その粘着テープを貼り付けた印字用紙の白色度(B)を、白色度計(日本電色社製、商品名:ND-1)で測定し、同様にして、未使用の粘着テープだけを印字用紙に貼り付け、その白色度(A)を測定し、この白色度の差(B-A)をカブリ値とした。この値が小さいほど、カブリが少なく良好であることを示す。
 黒ベタ画像の印字濃度が1.3以上で、且つカブリ値が3以下の画質を維持できる連続印刷枚数を調べた。表1中、「15000<」とあるのは、15,000枚の時点においても、印字濃度が1.3以上で、且つカブリ値が3以下の画質を維持できたことを示す。
 また、印刷1枚目でのカブリ値を初期カブリ値とした。
〈合格基準〉
 本試験においては、前記連続印刷枚数が10,000枚以上であるときに、トナーに求められる印字耐久性の評価を合格とした。また、前記初期カブリ値が2.0以下であるときに、トナーに求められる初期カブリ特性の評価を合格とした。
 2-3.トナーのフィルミング特性
 2-2と同様にして、連続印字を15,000枚行なった。500枚ごとに、感光体を目視で観察し、フィルミングの有無を確認した。フィルミングが確認された枚数を、フィルミング発生枚数とした。感光体上にフィルミング物質が形成されると、画像に白く抜ける部分ができるという問題が生じるため、フィルミング発生枚数が多いほど、フィルミングが発生しにくい好ましいトナーであるといえる。
〈合格基準〉
 本試験においては、前記フィルミング発生枚数が10,000枚以上であるときに、トナーに求められるフィルミング特性の評価を合格とした。
 実施例1~実施例13、比較例1~比較例4の静電荷像現像用トナーの評価結果を、酸化亜鉛粒子、アルミナ粒子、無機微粒子A及び無機微粒子Bの特性等と併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 3.静電荷像現像用トナーの評価
 以下、表1を参照しながら、トナーの評価結果について検討する。
 表1より、比較例1及び3のトナーは、アルミナ粒子を含有しないトナーである。比較例1のトナーは、最低定着温度が155℃、フィルミング発生枚数が13,000枚、高温高湿(H/H)環境下における初期カブリ値が0.2である。したがって、比較例1のトナーは、少なくとも低温定着性、フィルミング特性、及び高温高湿(H/H)環境下におけるカブリに問題は見られない。
 しかし、比較例1のトナーは、高温高湿(H/H)環境下の印字耐久試験における連続印刷枚数が8,000枚と極めて少なく、この数字は、実施例1~実施例13、並びに比較例1~比較例4の中で、最も少ない。
 ここで、比較例1のトナーはアルミナ粒子を含まないため、後述する実施例1のトナーより外添剤の総量が少ないが、実施例1のトナーが含有するアルミナ粒子(0.3部)と同量の外添剤を酸化亜鉛粒子で補った比較例3のトナー(酸化亜鉛粒子含有量0.8部)でも、高温高湿(H/H)環境下の印字耐久試験における連続印刷枚数が9,000枚と極めて少ないことから、酸化亜鉛粒子の含有量を増やしても高温高湿(H/H)環境下の印字耐久性を改善することはできない。
 したがって、アルミナ微粒子を含有しない比較例1及び3のトナーは、高温高湿(H/H)環境下の印字耐久性が劣ることが分かる。
 表1より、比較例2及び4のトナーは、酸化亜鉛粒子を含有しないトナーである。比較例2のトナーは、最低定着温度が155℃、フィルミング発生枚数が12,000枚、高温高湿(H/H)環境下の印字耐久試験における連続印刷枚数が15,000枚以上である。したがって、比較例2のトナーは、少なくとも低温定着性、フィルミング特性、及び高温高湿(H/H)環境下における印字耐久性に問題は見られない。
 しかし、比較例2のトナーにおいては、高温高湿(H/H)環境下における初期カブリ値が4.5と極めて高く、この数値は、実施例1~実施例13、並びに比較例1~比較例4の中で、最も高い。
 ここで、比較例2のトナーは酸化亜鉛粒子を含まないため、後述する実施例1のトナーより外添剤の総量が少ないが、実施例1のトナーが含有する酸化亜鉛粒子(0.5部)と同量の外添剤をアルミナ粒子で補った比較例4のトナー(アルミナ粒子含有量0.8部)でも、高温高湿(H/H)環境下における初期カブリ値が3.3と極めて高いことから、アルミナ粒子の含有量を増やしても高温高湿(H/H)環境下の印字耐久性を改善することはできない。
 したがって、酸化亜鉛粒子を含有しない比較例2及び4のトナーは、高温高湿(H/H)環境下において初期カブリが極めて生じやすいことが分かる。
 一方、表1より、実施例1~実施例13のトナーは、個数平均粒径が0.1~1.0μmである酸化亜鉛粒子を、前記着色樹脂粒子100質量部に対して、0.3~0.8質量部、及び、個数平均粒径が0.2~0.7μmのアルミナ粒子を、前記着色樹脂粒子100質量部に対して、0.1~0.5質量部含有するトナーである。表1より、実施例1~実施例13のトナーは、最低定着温度が165℃以下と低く、高温高湿(H/H)環境下での印字耐久性試験における連続印刷枚数が10,000枚以上と多く、高温高湿(H/H)環境下における初期カブリ値が1.5以下と小さく、フィルミング発生枚数が11,000枚以上と多い。
 よって、上記実施例と比較例から、外添剤として、個数平均粒径が0.1~2.0μmの酸化亜鉛粒子、及び、個数平均粒径が0.05~1.0μmのアルミナ粒子を、着色樹脂粒子100質量部に対して、それぞれ0.05~1.0質量部ずつ含有するトナーは、低温定着性に優れ、フィルミングが起こりにくく、高温高湿環境下においてカブリの発生が抑えられ、しかも高温高湿環境下での印字耐久性に優れるという特性を全て兼ね備えた静電荷像現像用トナーであることが分かる。
 ここで、酸化亜鉛粒子の含有量及び個数平均粒径の違いが、トナー特性に与える影響について検討する。
 酸化亜鉛粒子の含有量の条件のみが異なる実施例1(含有量:0.5部)、実施例8(含有量:0.8部)、実施例9(含有量:0.3部)、及び比較例2(含有量:0部)を比較する。
 表1より、実施例8のトナーは、実施例1のトナーと比較して、最低定着温度がやや高く、高温高湿(H/H)環境下における印字耐久性にやや劣る。実施例9のトナーは、実施例1のトナーと比較して、最低定着温度がやや優れ、高温高湿(H/H)環境下における初期カブリがやや生じやすく、フィルミングも生じやすい。また、比較例2のトナーは、上述したように、高温高湿(H/H)環境下における初期カブリが極めて生じやすく、フィルミングも生じやすい。
 以上の結果から、酸化亜鉛粒子の含有量は0.5部程度で最もバランス良く効果を発揮し、酸化亜鉛粒子の含有量が多いほど、酸化亜鉛粒子の効果により高温高湿(H/H)環境下における初期カブリやフィルミング特性が改善される一方、低温定着性及び高温高湿(H/H)環境下における印字耐久性にやや劣ることになり、その逆として、酸化亜鉛粒子の含有量が少ないほど、低温定着性に優れる一方、高温高湿(H/H)環境下における初期カブリが生じやすく、フィルミングも生じやすくなると推測される。
 酸化亜鉛粒子の個数平均粒径の条件のみが異なる実施例1(平均粒径:0.3μm)、実施例2(平均粒径:0.1μm)、及び実施例3(平均粒径:1.0μm)を比較する。
 表1より、実施例2のトナーは、実施例1のトナーと比較して、最低定着温度、高温高湿(H/H)環境下における印字耐久性がやや劣る。また、実施例3のトナーは、実施例1のトナーと比較して、高温高湿(H/H)環境下における初期カブリやフィルミングがやや生じやすい。
 以上の結果から、酸化亜鉛粒子の平均粒径は0.3μm程度で最もバランス良く効果を発揮し、大きくなると、高温高湿(H/H)環境下において初期カブリ、フィルミングがやや生じやすくなり、小さくなると最低定着温度、高温高湿(H/H)環境下における印字耐久性がやや劣ると推測される。
 次に、アルミナ粒子の含有量及び個数平均粒径の違いが、トナー特性に与える影響について検討する。
 アルミナ粒子の含有量の条件のみが異なる実施例1(含有量:0.3部)、実施例6(含有量:0.1部)、実施例7(含有量:0.5部)、及び比較例1(含有量:0部)を比較する。
 表1より、実施例7のトナーは、実施例1のトナーと比較して、高温高湿(H/H)環境下における初期カブリがやや生じやすい。実施例6のトナーは、実施例1のトナーと比較して、最低定着温度がやや優れ、高温高湿(H/H)環境下の印字耐久特性がやや劣る。また、比較例1のトナーは、上述したように、高温高湿(H/H)環境下における印字耐久特性が極めて悪く、フィルミングがやや生じやすい。
 以上の結果から、アルミナ粒子の含有量は0.3部程度で最もバランス良く効果を発揮し、アルミナ粒子の含有量が多いほど、高温高湿(H/H)環境下における印字耐久性やフィルミング特性が改善される一方、高温高湿(H/H)環境下における初期カブリが生じやすくなり、その逆として、アルミナ粒子の含有量が少ないほど、低温定着性に優れる一方、高温高湿(H/H)環境下における印字耐久性に劣り、フィルミングも生じやすくなると推測される。
 アルミナ粒子の個数平均粒径の条件のみが異なる実施例1(平均粒径:0.4μm)、実施例10(平均粒径:0.2μm)、及び実施例11(平均粒径:0.7μm)を比較する。
 表1より、実施例10のトナーは、実施例1のトナーと比較して、最低定着温度、高温高湿(H/H)環境下における印字耐久性がやや劣る。また、実施例11のトナーは、実施例1のトナーと比較して、高温高湿(H/H)環境下における印字耐久性がやや劣り、フィルミングがやや生じやすい。
 以上の結果から、アルミナ粒子の個数平均粒径は0.4μm程度で最もバランス良く効果を発揮し、大きくなると、高温高湿(H/H)環境下における印字耐久性が劣り、フィルミングも生じやすくなり、小さくなると最低定着温度、高温高湿(H/H)環境下において印字耐久性がやや劣ると推測される。
 続いて、アルミナ粒子と酸化亜鉛粒子の含有比の違いが、トナー特性に与える影響について検討する。
 アルミナ粒子と酸化亜鉛粒子の含有比の条件が異なる実施例1(1:1.7)、実施例5(1:0.6)、実施例6(1:5)、実施例7(1:1)及び実施例8(1:2.7)を比較する。
 表1より、実施例5及び実施例7のトナーは、実施例1のトナーと比較して、高温高湿(H/H)環境下において初期カブリがやや生じやすい。また、実施例6及び実施例8のトナーは、実施例1のトナーと比較して、高温高湿(H/H)環境下における印字耐久性がやや劣る。
 以上の結果から、アルミナ粒子と酸化亜鉛粒子の含有比は1:1.7程度で最もバランス良く効果を発揮し、酸化亜鉛粒子の含有比が少なくなると、高温高湿(H/H)環境下において初期カブリがやや生じやすくなり、多くなると高温高湿(H/H)環境下における印字耐久性がやや劣ると推測される。
 表1より、実施例12のトナーは無機微粒子Aを含有しないトナー、実施例13のトナーは無機微粒子Bを含有しないトナーである。表1より、実施例12及び13のトナーは共に、最低定着温度が150℃、フィルミング発生枚数が15,000枚以上である。したがって、実施例12及び13のトナーは、少なくとも低温定着性、及びフィルミング特性に問題は見られない。
 しかし、実施例12及び13のトナーは、高温高湿(H/H)環境下における初期カブリ値が比較的高く、高温高湿(H/H)環境下の印字耐久試験における連続印刷枚数が比較的少ない。
 したがって、無機微粒子A及び無機微粒子Bを含有しないトナーは、高温高湿(H/H)環境下において初期カブリがやや生じやすくなり、高温高湿(H/H)環境下における印字耐久性がやや劣ると推測される。

Claims (8)

  1.  結着樹脂及び着色剤を含む着色樹脂粒子、並びに、外添剤を含有する静電荷像現像用トナーであって、
     前記外添剤として、個数平均粒径が0.1~2.0μmの酸化亜鉛粒子、及び、個数平均粒径が0.05~1.0μmのアルミナ粒子を含有し、前記酸化亜鉛粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有し、前記アルミナ粒子を前記着色樹脂粒子100質量部に対して、0.05~1.0質量部の割合で含有することを特徴とする、静電荷像現像用トナー。
  2.  前記アルミナ粒子と前記酸化亜鉛粒子との含有比が質量基準で1:0.6~1:5の範囲内であることを特徴とする、請求項1に記載の静電荷像現像用トナー。
  3.  前記酸化亜鉛粒子の形状が、板状であることを特徴とする、請求項1又は2に記載の静電荷像現像用トナー。
  4.  前記外添剤として、さらに個数平均粒径が5~25nmの無機微粒子Aを含有し、当該無機微粒子Aを前記着色樹脂粒子100質量部に対して0.1~2.0質量部の割合で含有することを特徴とする請求項1乃至3のいずれか一項に記載の静電荷像現像用トナー。
  5.  前記無機微粒子Aが正帯電性を示すことを特徴とする、請求項4に記載の静電荷像現像用トナー。
  6.  前記外添剤として、さらに個数平均粒径が30~200nmである無機微粒子Bを含有し、当該無機微粒子Bを前記着色樹脂粒子100質量部に対して0.1~2.0質量部の割合で含有することを特徴とする請求項1乃至5のいずれか一項に記載の静電荷像現像用トナー。
  7.  前記着色樹脂粒子が正帯電性を示すことを特徴とする、請求項1乃至6のいずれか一項に記載の静電荷像現像用トナー。
  8.  静電荷像現像用トナーが正帯電性を示すことを特徴とする、請求項1乃至7のいずれか一項に記載の静電荷像現像用トナー。
PCT/JP2016/057363 2015-03-24 2016-03-09 静電荷像現像用トナー WO2016152525A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680015441.6A CN107430361A (zh) 2015-03-24 2016-03-09 静电图像显影用调色剂
US15/558,095 US20180081289A1 (en) 2015-03-24 2016-03-09 Toner for developing electrostatic images
JP2017508194A JP6665854B2 (ja) 2015-03-24 2016-03-09 静電荷像現像用トナー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061584 2015-03-24
JP2015-061584 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152525A1 true WO2016152525A1 (ja) 2016-09-29

Family

ID=56978293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057363 WO2016152525A1 (ja) 2015-03-24 2016-03-09 静電荷像現像用トナー

Country Status (4)

Country Link
US (1) US20180081289A1 (ja)
JP (1) JP6665854B2 (ja)
CN (1) CN107430361A (ja)
WO (1) WO2016152525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003753A (ja) * 2018-07-02 2020-01-09 キヤノン株式会社 トナー

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168388A (ja) * 1993-12-13 1995-07-04 Tomoegawa Paper Co Ltd 非磁性一成分現像方法
JPH09325511A (ja) * 1996-06-07 1997-12-16 Toshiba Chem Corp 静電像現像トナーおよび静電像現像法
JPH09325512A (ja) * 1996-06-07 1997-12-16 Toshiba Chem Corp 静電像現像トナーおよび静電像現像法
JP2007033947A (ja) * 2005-07-27 2007-02-08 Kyocera Mita Corp 画像形成装置用現像剤
JP2007121665A (ja) * 2005-10-27 2007-05-17 Seiko Epson Corp 正帯電性カプセル化無機微粒子、正帯電性カプセル化無機微粒子の製造方法、およびトナー
JP2014164246A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd 静電荷像現像剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004711A (en) * 1999-02-03 1999-12-21 Lexmark International, Inc. Toner composition including positive and negative tribocharging hydrophobic extra-particulate additives
EP1074890B1 (en) * 1999-08-02 2008-08-20 Canon Kabushiki Kaisha Toner and process for producing a toner, image forming method
JP5561286B2 (ja) * 2012-01-20 2014-07-30 コニカミノルタ株式会社 二成分現像剤
JP6089726B2 (ja) * 2013-01-29 2017-03-08 株式会社リコー 静電荷現像用トナー、静電荷像現像用現像剤及び画像形成装置
CN104995565B (zh) * 2013-02-27 2020-03-13 日本瑞翁株式会社 静电荷图像显像剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168388A (ja) * 1993-12-13 1995-07-04 Tomoegawa Paper Co Ltd 非磁性一成分現像方法
JPH09325511A (ja) * 1996-06-07 1997-12-16 Toshiba Chem Corp 静電像現像トナーおよび静電像現像法
JPH09325512A (ja) * 1996-06-07 1997-12-16 Toshiba Chem Corp 静電像現像トナーおよび静電像現像法
JP2007033947A (ja) * 2005-07-27 2007-02-08 Kyocera Mita Corp 画像形成装置用現像剤
JP2007121665A (ja) * 2005-10-27 2007-05-17 Seiko Epson Corp 正帯電性カプセル化無機微粒子、正帯電性カプセル化無機微粒子の製造方法、およびトナー
JP2014164246A (ja) * 2013-02-27 2014-09-08 Nippon Zeon Co Ltd 静電荷像現像剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003753A (ja) * 2018-07-02 2020-01-09 キヤノン株式会社 トナー
JP7175648B2 (ja) 2018-07-02 2022-11-21 キヤノン株式会社 トナー

Also Published As

Publication number Publication date
JPWO2016152525A1 (ja) 2018-01-18
JP6665854B2 (ja) 2020-03-13
US20180081289A1 (en) 2018-03-22
CN107430361A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP5853694B2 (ja) 静電荷像現像用正帯電性トナー
JP5998128B2 (ja) 静電荷像現像剤
JP2019109536A (ja) トナーセット
JP6354748B2 (ja) 静電荷像現像剤
JP5925421B2 (ja) 静電荷像現像用トナー
JP6056470B2 (ja) 静電荷像現像用トナー
JP5521693B2 (ja) 静電荷像現像用正帯電性トナー
JP2019056919A (ja) 重合トナーの製造方法
JP5381949B2 (ja) 静電荷像現像用トナー
JP6665854B2 (ja) 静電荷像現像用トナー
JP6056550B2 (ja) 静電荷像現像剤
JP2006235527A (ja) 電子写真用トナー及びその製造方法
JP6418153B2 (ja) 静電荷像現像用トナー
JP6825621B2 (ja) 静電荷像現像用マゼンタトナー
JP6244800B2 (ja) 静電荷像現像用トナー
JP7044103B2 (ja) 静電荷像現像用正帯電性トナー及びその製造方法
JP2018025828A (ja) 静電荷像現像用トナーの製造方法
JP5748016B2 (ja) 静電荷像現像用正帯電性トナー
JP2019179256A (ja) 静電荷像現像用トナー
JP2012068561A (ja) 静電荷像現像用黒トナーの製造方法
WO2014156540A1 (ja) イエロートナーの製造方法
JP2009180869A (ja) トナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768428

Country of ref document: EP

Kind code of ref document: A1