WO2016152319A1 - オイルポンプ - Google Patents

オイルポンプ Download PDF

Info

Publication number
WO2016152319A1
WO2016152319A1 PCT/JP2016/054355 JP2016054355W WO2016152319A1 WO 2016152319 A1 WO2016152319 A1 WO 2016152319A1 JP 2016054355 W JP2016054355 W JP 2016054355W WO 2016152319 A1 WO2016152319 A1 WO 2016152319A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
pressure chamber
opening area
volume
rotation axis
Prior art date
Application number
PCT/JP2016/054355
Other languages
English (en)
French (fr)
Inventor
篤幸 井出
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020177021772A priority Critical patent/KR101913532B1/ko
Priority to EP16768222.8A priority patent/EP3276176A4/en
Priority to CN201680011617.0A priority patent/CN107407274B/zh
Priority to US15/560,674 priority patent/US10662942B2/en
Publication of WO2016152319A1 publication Critical patent/WO2016152319A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0049Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet

Definitions

  • the present invention relates to an oil pump.
  • Patent Document 1 discloses a vane-type oil pump. This type of vane-type oil pump is mounted on an automatic transmission for a vehicle and supplies hydraulic pressure for controlling the automatic transmission. There are some that are used.
  • FIG. 5A and 5B are diagrams illustrating a vane type oil pump 90 according to a conventional example.
  • FIG. 5A is a cross-sectional view of the oil pump 90 and
  • FIG. 5B is a communication between the pressure chamber 97 and the discharge path 99. It is the figure which expanded the part (aperture 98) circumference.
  • a vane-type oil pump 90 shown in FIG. 5 includes an inner rotor 94 that rotates integrally with the shaft 20, and an outer rotor 95 that surrounds the outer periphery of the inner rotor 94.
  • the inner rotor 94 and the outer rotor 95 are disposed inside the main body case 91. It is accommodated in a pump chamber 920 formed in the above.
  • the space formed between the outer peripheral teeth of the inner rotor 94 and the inner peripheral teeth of the outer rotor 95 is the rotational axis X while periodically increasing or decreasing the volume when the inner rotor 94 rotates. Utilizing this displacement, the oil sucked from the suction port of the oil pump 90 is pressurized and discharged from the discharge port 960.
  • the volume of the space becomes the smallest, so that the oil in the space is discharged from the discharge port 960.
  • a plurality of spaces in the circumferential direction around the rotation axis intermittently pass through the discharge port 960, so that pulsation occurs in the oil discharged from the discharge port 960. Therefore, if the discharge port 960 is connected to the downstream discharge path 99 as it is, the pulsation is directly transmitted to the oil flowing through the downstream oil path 100.
  • a ring-shaped pressure chamber 97 is provided adjacent to the discharge port 960, and the pulsation of oil discharged from the discharge port 960 is reduced in the pressure chamber 97. After that, the oil is supplied from the downstream discharge passage 99 to the oil passage 100 through the throttle 98 of the flow control valve.
  • this throttle 98 has a function of further suppressing the pulsation of oil supplied to the downstream discharge passage 99, it serves as a movement resistance of oil moving from the pressure chamber 97 toward the downstream discharge passage 99.
  • a drive source for example, an engine
  • the present invention An inner rotor that rotates integrally with the drive shaft around the rotation shaft; An outer rotor that is installed in a loosely fitted state in a pump chamber formed in the housing, and meshed with a tooth portion provided on the outer periphery of the inner rotor, and a tooth portion provided on the inner periphery; A space portion formed adjacent to the pump chamber in the rotation axis direction and formed in a ring shape surrounding the rotation axis as seen from the rotation axis direction; A connection path connecting the pump chamber and the space, The inside of the housing extends in parallel to the rotation axis, one end in the longitudinal direction communicates with the space portion, and the other end opens at a position farther from the pump chamber than the space portion in the rotation axis direction.
  • the discharge path is formed in a circular cross-sectional shape when viewed from the rotation axis direction, and is provided at a position straddling the inner side and the outer side across the outer periphery of the space portion viewed from the rotation axis direction,
  • An oil pump in which the one end of the discharge path is provided at a position extending to the middle of the space portion when viewed from the radial direction of the rotating shaft, and the discharge path and the space portion are directly communicated with each other.
  • the present invention by directly communicating the space part into which the oil pressurized in the pump chamber first flows and the discharge path that guides the pressurized oil supplied into the space part to the discharge port, There is no portion between the space portion and the discharge path that becomes resistance to movement of oil flowing from the space portion into the discharge path. Therefore, the part of this discharge path is also utilized as a part of the space part, and it can be understood that the volume of the space part is increased by the amount of this discharge path.
  • the volume of the space portion increases, the effect of suppressing the pulsation of the pressurized oil flowing from the pump chamber is improved accordingly. Therefore, by configuring as described above, the volume of the space that can function as the space portion can be expanded without increasing the actual volume of the space portion, so that the pulsation of the pressurized oil can be further suppressed. .
  • FIG. 1 is a diagram illustrating an oil pump 1 according to an embodiment, (a) is a cross-sectional view of the oil pump 1 cut along a rotation axis X, and (b) is a diagram in (a).
  • FIG. 4 is an enlarged view around the pressure chamber 34, (c) is an enlarged view of the vicinity of the communication port 36 between the pressure chamber 34 and the discharge path 35, and (d) is an enlarged view of the pressure chamber 34 and the discharge path 35.
  • FIG. 6 is a reference perspective view showing a state where the communication port is viewed from the pressure chamber side.
  • the main body case 2 of the oil pump 1 is configured by assembling a housing 3 and a cover 4.
  • a bottomed cylindrical pump chamber 31 is formed on the surface of the housing 3 facing the cover 4. After the cover 4 is assembled to the housing 3, the cover 4 is fixed to the housing 3 with bolts B.
  • a sealed space of the pump chamber 31 is formed inside the case 2.
  • a through hole 32 of the shaft 20 is formed at the center of the pump chamber 31, and the through hole 32 penetrates the housing 3 in the direction of the rotation axis X.
  • One end 20 a of the shaft 20 passes through the through hole 32 and is located outside the main body case 2, and the one end 20 a side of the shaft 20 is rotatably supported by the through hole 32.
  • the housing 3 has a cylindrical wall portion 33 that surrounds the through holes 32 at a predetermined interval.
  • a ring-shaped pressure chamber 34 that surrounds the cylindrical wall portion 33 at a predetermined interval opens at the bottom 31 a of the pump chamber 31.
  • An inner rotor 22 is spline-fitted and fixed to the outer periphery of a region of the shaft 20 located in the pump chamber 31. When the shaft 20 is rotated by a rotational driving force from a driving source (not shown), the shaft 20 and the inner rotor 22 are fixed. Are configured to rotate integrally around the rotation axis X.
  • a ring-shaped outer rotor 23 is located on the radially outer side of the inner rotor 22 when viewed from the direction of the rotation axis X.
  • the outer rotor 23 is located on the radially outer side of the inner rotor 22 with a tooth portion (not shown) provided on the inner periphery meshing with a tooth portion (not shown) provided on the outer periphery of the inner rotor 22.
  • the outer rotor 23 is installed in a loosely fitted state on the inner periphery of the pump chamber 31.
  • Ring-shaped wall members 24 and 25 are attached to both sides of the inner rotor 22 and the outer rotor 23 in the shaft 20, and the inner rotor 22 and the outer rotor 23 are sandwiched between the wall members 24 and 25.
  • the pump assembly 21 is configured by sandwiching the inner rotor 22 and the outer rotor 23 between the wall members 24 and 25. In this state, the inner rotor 22 and the outer rotor 23 between the wall members 24 and 25 are The wall members 24 and 25 can rotate relative to the rotation axis X.
  • pressurized oil is adjusted by an inner rotor 22 and an outer rotor 23 that rotate inside the pump assembly 21, and the pressurized oil is discharged from a discharge port 241 provided in the wall member 24. It has come to be.
  • one end 20a of the shaft 20 is connected to the through hole 32 of the housing 3 from the cover 4 side.
  • the shaft 20 and the pump assembly 21 are assembled to the housing 3.
  • a through hole 41 is formed in the cover 4 at a position aligned with the shaft 20 assembled in the housing 3. Therefore, when the cover 4 is assembled to the housing 3, the other end 20 b of the shaft 20 protrudes to the outside of the main body case 2, and the other end 20 b side of the shaft 20 is rotatably supported by the through hole 41. Has been.
  • the pump assembly 21 is sandwiched between the bottom 31a of the pump chamber 31 and the cover 4, and is disposed in the pump chamber 31 in a state where movement in the rotation axis X direction is restricted.
  • an oil supply port (not shown) sucked through a strainer (not shown) opens on the surface facing the pump chamber 31.
  • a discharge port 241 is provided through the wall member 24 in the rotation axis X direction. Communicates with the internal space of the pump assembly 21 and the pressure chamber 34 opened to the bottom 31 a of the pump chamber 31. Therefore, the oil pressurized in the pump assembly 21 is supplied into the pressure chamber 34 through the discharge port 241.
  • the pressure chamber 34 has a ring shape surrounding the rotation axis X at a predetermined interval (see FIG. 2A), and is closer to the outer diameter of the pressure chamber 34 when viewed from the axial direction of the rotation axis X. In this position, one end 35 b side of the discharge path 35 extending in the direction of the rotation axis X in the housing 3 communicates with the pressure chamber 34.
  • the discharge path 35 When viewed from the axial direction of the rotation axis X, the discharge path 35 has a circular cross-sectional shape (see FIG. 2B).
  • the discharge path 35 In the housing 3, the discharge path 35 is viewed from the axial direction of the rotation axis X. It is provided at a position straddling the inner side and the outer side across the outer peripheral edge 34b of the pressure chamber 34. Therefore, when viewed from the axial direction of the rotation axis X, the virtual curve Lm extending on the extension of the outer peripheral edge 34b of the pressure chamber 34 and the virtual curve Ln extending on the extension of the inner circumference of the discharge passage 35 intersect each other.
  • the discharge path 35 and the pressure chamber 34 intersect (communicate) (see FIG. 2A, region R1).
  • the discharge path 35 is formed in a straight line parallel to the rotation axis X when viewed from the radial direction of the rotation axis X, and the other end side of the discharge path 35.
  • the connection port 35a is open at a position farther from the pump chamber 31 than the pressure chamber 34 in the axial direction of the rotation axis X.
  • One end 35 b of the discharge path 35 is located on the pump chamber 31 side from the bottom 34 a of the pressure chamber 34 by a length La extending to substantially the center of the pressure chamber 34 in the rotation axis X direction. Therefore, one end 35 b of the discharge path 35 is in direct communication with the pressure chamber 34, and an opening formed at the boundary between the discharge path 35 and the pressure chamber 34 becomes a communication port 36 between the discharge path 35 and the pressure chamber 34. ing.
  • the discharge path in the axial direction of the rotation axis X is such that the opening area D2 of the communication port 36 is equal to or larger than the opening area D1 of the connection port 35a on the other end side of the discharge path 35 (D2 ⁇ D1).
  • An intersection amount La between the pressure chamber 34 and the pressure chamber 34 and an intersection amount Lb between the discharge passage 35 and the pressure chamber 34 in the radial direction of the rotation axis X are set.
  • the pressure chamber 34 and the discharge path 35 communicate with each other via a throttle 98, and the opening area of the throttle 98 is Since D3 is narrow, this throttle 98 becomes a resistance against the oil passing through the throttle 98, and the pressure loss when the oil passes through the throttle 98 is large.
  • one end 35 b of the discharge path 35 is provided at a position extending to the middle of the pressure chamber 34 when viewed from the radial direction of the rotation axis X, and the discharge path 35 is connected to the pressure chamber 34 when viewed from the rotation axis X direction. Since the discharge passage 35 and the pressure chamber 34 are directly communicated with each other with the outer peripheral edge 34b sandwiched between the inner side and the outer side, the opening area D2 of the communication port 36 is the opening area in the case of the throttle 98. It is much wider than D3.
  • the resistance as in the case where the throttle 98 is present does not act on the oil moving from the pressure chamber 34 through the communication port 36 toward the discharge passage 35, and the discharge passage 35 side is connected to the pressure chamber 35. It can be used as a space that continues to 34. In this case, it can be considered that the volume of the pressure chamber 34 provided for suppressing the pulsation of the oil is increased by the volume on the discharge path 35 side, and thus the effect of suppressing the pulsation by the increased volume. Improvement can be expected.
  • An oil passage 100 extending to the pressure control valve V ⁇ b> 1 located on the downstream side of the oil pump 1 is connected to the connection port 35 a of the discharge passage 35.
  • the inner diameter of the oil passage 100 and the inner diameter of the discharge passage 35 are made to coincide with each other so that the flow passage cross-sectional area does not become narrow at the connection portion between the oil passage 100 and the discharge passage 35. Therefore, not only the volume in the discharge path 35 but also the volume in the oil path 100 can be utilized as the volume of the pressure chamber 34.
  • FIG. 3 shows (1) the relationship between the volume (pressure chamber volume) of the pressure chamber 34 and the size of pulsation, (2) the size of the opening area D2 (communication portion opening area) of the communication port 36, and the pulsation. It is a figure explaining the relationship between large and small, and (3) the relationship between the size of the opening area D2 (communication portion opening area) of the communication port 36 and the vehicle fuel efficiency.
  • the magnitude of the volume V of the pressure chamber 34 in (1) and the magnitude of the opening area D2 of the communication port 36 in (2) are related to the magnitude of pulsation as a common item. Further, the magnitude of the pulsation in (2) and the quality of the vehicle fuel efficiency in (3) are related to the magnitude of the opening area D2 (communication opening area) of the communication port 36 as a common item.
  • the relationship between the opening area D2 of the communication port 36 between the pressure chamber 34 and the discharge passage 35 and the relationship between pulsation are such that the opening area D2 of the communication port 36 becomes smaller regardless of the discharge amount of the oil pump 1.
  • the smaller the pulsation the larger the pulsation. This is because the smaller the opening area D2, the higher the resistance acting on the oil when passing through the communication port 36, and the increase in resistance reduces pulsation.
  • the opening area D2 is increased, the resistance acting on the oil is decreased, and as a result, the effect of reducing the pulsation is reduced, and the oil pulsation is transmitted to the oil in the discharge passage 35 without being reduced.
  • the inner rotor 22 is rotated by a rotational driving force transmitted from a driving source such as an engine, the load with respect to the rotation of the inner rotor 22 becomes the load with respect to the driving source as it is, so that the load of the driving source increases as the load increases.
  • the fuel consumption (vehicle fuel consumption) of a vehicle equipped with a drive source deteriorates. Therefore, the fuel efficiency of the vehicle deteriorates as the opening area D2 of the communication port 36 decreases, and the improvement increases as the opening area D2 increases.
  • the applicant of the present application sets the volume V (pressure chamber volume) of the pressure chamber 34 and the opening area D2 (communication opening area) of the communication port 36 in a vehicle equipped with an automatic transmission that employs the oil pump 1.
  • the fuel consumption characteristics, the pulsation characteristics in the oil pump 1 and the hydraulic response in the oil pump 1 are taken into consideration. Specifically, the fuel consumption characteristics are related to the load on the oil pump 1 determined according to the opening area D2 of the communication port 36, and the pulsation characteristics are determined by the opening area D2 of the communication port 36 and the volume V of the pressure chamber 34.
  • the threshold value of each characteristic is determined, and the volume V (pressure chamber) of the pressure chamber 34 is set so as to satisfy the conditions determined according to the threshold value.
  • Volume) and the opening area D2 (communication opening area) of the communication port 36 are set.
  • FIG. 4 is a diagram illustrating the setting of the volume V (pressure chamber volume) of the pressure chamber 34 and the opening area D2 (communication opening area) of the communication port 36.
  • the volume V of the pressure chamber 34 and the communication port 36 are illustrated. It is a figure explaining the characteristic line (target fuel consumption characteristic line, target pulsation characteristic line, target hydraulic pressure response characteristic line) considered in setting of opening area D2 of this.
  • the vehicle fuel consumption threshold (minimum value of fuel consumption to be achieved) is calculated based on the contribution of the oil pump among the fuel consumption targets required for the vehicle equipped with the oil pump 1. ) Has been decided. Specifically, the torque increase amount due to the load of the oil pump 1 between the idle rotation of the oil pump 1 and a predetermined number of rotations (for example, 600 to 2000 rpm) is set to an arbitrary value (for example, 0.1 Nm) or less. This threshold value is obtained as the vehicle fuel consumption threshold value (see FIG. 3, vehicle fuel consumption threshold value), and the target fuel consumption characteristic (see FIG. 4) is determined from the obtained vehicle fuel consumption threshold value.
  • the fuel consumption of the vehicle fluctuates mainly according to the opening area D2 (load of the oil pump 1) of the communication port 36, and does not greatly depend on the volume V of the pressure chamber 34. Therefore, the relationship between the volume V of the pressure chamber 34 and the opening area D2 of the communication port 36 having the target fuel consumption characteristic has linearity as shown in FIG.
  • the opening area D2 of the communication port 36 when the opening area D2 of the communication port 36 is reduced, the load of the oil pump 1 is increased and the fuel consumption is deteriorated. Therefore, the volume V of the pressure chamber 34 and the communication port 36 are reduced based on FIG.
  • the opening area D2 it is preferable that the opening area D2 of the communication port 36 is larger when viewed from the target fuel efficiency characteristic line.
  • the target fuel consumption characteristic is an upper limit value of the load torque of the oil pump 1 in a vehicle equipped with the oil pump 1.
  • the hydraulic response varies according to the volume V of the region functioning as the pressure chamber 34 (in the case of FIG. 1, the pressure chamber 34, the discharge path 35, and the oil path 100), and decreases as the volume V increases.
  • a volume that satisfies the condition of the following formula (1) is obtained as a hydraulic response threshold (see FIG. 3, hydraulic response threshold), and the target hydraulic response characteristic is determined from the obtained threshold.
  • the volume of the pressure chamber includes the volume of the pressure chamber 34, the discharge passage 35, and the oil passage 100.
  • the relationship between the target hydraulic pressure response characteristic volume V and the opening area D2 of the communication port 36 has linearity as shown in FIG.
  • the pressure chamber 34 and the opening area D2 of the communication port 36 are set based on FIG. It is preferable that the pressure chamber has a smaller volume as seen from the target hydraulic response characteristic line.
  • the pulsation characteristics vary depending on the volume V of the region functioning as the pressure chamber 34 (in the case of FIG. 1, the pressure chamber 34, the discharge passage 35, and the oil passage 100) and the opening area D2 of the communication port 36.
  • the pulsation magnitude is determined as a threshold value so as to be a predetermined noise level (db) or less during steady travel (FIG. 3, pulsation threshold),
  • the target pulsation characteristic is determined from the obtained threshold value.
  • M is an expansion coefficient S2 / S1
  • S1 is a cross-sectional area on the input side of the communication port 36 (cross-sectional area of the pressure chamber 34)
  • S2 is a cross-sectional area on the output side of the communication port 36
  • La is the intersection length of the pressure chamber 34 and the one end 35b side of the discharge path 35 in the rotation axis X direction.
  • the pulsation characteristic depends on the opening area D2 of the communication port 36 and the volume V of the pressure chamber
  • the relationship between the volume V of the target pulsation characteristic and the opening area D2 of the communication port 36 is a curve as shown in FIG. Will have sex.
  • the contribution to the reduction of pulsation is that the volume of the pressure chamber is larger than the opening area D2 of the communication port 36. Therefore, the volume V of the pressure chamber 34 and the opening area D2 of the communication port 36 are calculated based on FIG. In the case of setting, it is preferable that the pressure chamber has a larger volume as seen from the target pulsation characteristic line.
  • the pressure chambers (the pressure chamber 34, the discharge passage 35, and the oil passage 100) are arranged so as to be in the region T (the hatched region in FIG. 4) surrounded by these three characteristic lines.
  • the volume and the opening area D2 of the communication port 36 are set, so that the oil pump 1 can satisfy the fuel consumption characteristics, the pulsation characteristics, and the hydraulic response.
  • the target pulsation characteristic is set to an upper limit value of the pulsation (oil vibration) of the oil pump 1 calculated based on noise to be suppressed as a vehicle equipped with the oil pump 1, and the target pulsation characteristic functions as a pressure chamber. It is expressed by an equivalent curve using the volume V of the space (in the case of FIG. 1, the pressure chamber 34, the discharge passage 35, and the oil passage 100) and the opening area D2 of the communication port 36 as parameters.
  • the inner rotor 22 that rotates around the rotation axis X integrally with the shaft 20 (drive shaft);
  • An outer rotor 23 that is installed in a loosely fitted state in a pump chamber 31 formed in the housing 3 and meshes with a tooth portion provided on the outer periphery of the inner rotor 22 and a tooth portion provided on the inner periphery;
  • a pressure chamber 34 (space part) formed adjacent to the pump chamber 31 in the rotation axis X direction and formed in a ring shape surrounding the rotation axis X when viewed from the rotation axis X direction;
  • a discharge port 241 connecting the pump chamber 31 and the pressure chamber 34;
  • the housing 3 extends parallel to the rotation axis X, and one end 35 b in the longitudinal direction communicates with the pressure chamber 34, and the other end is located farther from the pump chamber 31 than the pressure chamber 34 in the rotation axis X direction.
  • the discharge path 35 is formed in a circular cross-sectional shape when viewed from the rotation axis X direction, and is provided at a position straddling the inner side and the outer side across the outer periphery of the pressure chamber 34 viewed from the rotation axis X direction.
  • One end 35b of the discharge path 35 is provided at a position extending halfway through the pressure chamber 34 when viewed from the radial direction of the rotation axis X, and the discharge path 35 and the pressure chamber 34 are in direct communication with each other.
  • the pressure chamber 34 into which the oil pressurized by the pump chamber 31 side will flow in first, and the discharge path 35 which guides the pressurized oil supplied in the pressure chamber 34 to the connection port 35a. Due to the direct communication, there is no portion (for example, a throttle) that acts as a resistance to movement of oil flowing from the pressure chamber 34 into the discharge passage 35 between the pressure chamber 34 and the discharge passage 35. Therefore, the portion of the discharge path 35 is also utilized as a part of the pressure chamber 34, and it can be understood that the volume of the pressure chamber 34 is increased by the amount of the discharge path 35.
  • the volume of the pressure chamber 34 increases, the effect of suppressing the pulsation of the pressurized oil flowing from the pump chamber 31 side is improved accordingly. Therefore, by configuring as described above, the volume of the space that can function as the pressure chamber 34 can be expanded without increasing the actual volume of the pressure chamber 34, thereby further suppressing the pulsation of the pressurized oil. Can do.
  • the opening area D2 of the communication port 36 between the discharge path 35 and the pressure chamber 34 is set to be equal to or larger than the opening area D1 of the connection port 35a of the discharge path 35.
  • the volume of the pressure chamber 34 and the opening area D2 of the communication port 36 are: In the table (FIG. 4) using the volume of the pressure chamber 34 and the opening area D2 of the communication port 36 as parameters, A target pulsation characteristic line that defines an allowable upper limit value of pulsation, which varies depending on the volume of the pressure chamber (pressure chamber 34, discharge passage 35, oil passage 100) and the opening area D2 of the communication port 36.
  • a target fuel consumption characteristic line that defines a lower limit value of an allowable fuel consumption which is a fuel consumption that changes according to the opening area D2 of the communication port 36
  • a target hydraulic response characteristic line that defines the lower limit of the allowable hydraulic response which is the hydraulic response in the oil pump that changes according to the volume of the pressure chamber (the pressure chamber 34, the discharge passage 35, and the oil passage 100).
  • the volume and the opening area included in the region surrounded by are set respectively.
  • the oil pump 1 which satisfy
  • the target pulsation characteristic is set to the oil vibration upper limit value of the oil pump calculated based on noise to be suppressed for a vehicle equipped with the oil pump 1, and the target pulsation characteristic is a space functioning as a pressure chamber (FIG. 1).
  • the volume V of the pressure chamber 34, the discharge passage 35, and the oil passage 100) and the opening area D2 of the communication port 36 are represented by an equivalent curve.
  • the target pulsation characteristics can be determined based on past experimental data, etc., so there is no ambiguity as in the sensory test in determining whether pulsation is acceptable. Can be judged.
  • the target fuel consumption characteristic is configured to be an upper limit value of the load torque of the load torque in the vehicle equipped with the oil pump 1.
  • the deterioration of the vehicle fuel consumption resulting from the discharge load (discharge load) in an oil pump can be suppressed.
  • the volume V of the space functioning as a pressure chamber in the case of FIG. 1, the pressure chamber 34, the discharge passage 35, the oil passage 100
  • the opening area D ⁇ b> 2 of the communication port 36 that can suppress deterioration of the vehicle fuel consumption. Since it can be set, the volume of the space and the opening area D2 of the communication port 36 can be appropriately set according to the vehicle while suppressing the deterioration of the vehicle fuel consumption.
  • the case where the pressure chamber 34, the discharge passage 35, and the oil passage 100 in FIG. 1 correspond to the space functioning as the pressure chamber is illustrated.
  • the space (the pressure chamber 34 and the discharge passage 35) may be set to function as a pressure chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

シャフト(20)と一体に回転するインナロータ(22)と、ポンプ室(31)内に遊嵌状態で設置されていると共に、インナロータ(22)の外周に設けた歯部に、内周に設けた歯部を噛合させたアウタロータ(23)と、回転軸(X)方向でポンプ室(31)に隣接して設けられたリング状の圧力室(34)と、ポンプ室(31)と圧力室(34)とを接続する排出口(241)と、一端(35b)が圧力室(34)に連絡し他端が接続口(35a)とされた排出路(35)と、を有するオイルポンプ(1)において、排出路(35)を、回転軸X方向から見て円形の断面形状で形成すると共に、回転軸(X)方向から見た圧力室(34)の外周を挟んで内側と外側に跨がる位置に設け、排出路(35)の一端(35b)を、回転軸(X)の径方向から見て圧力室(34)の途中まで及ぶ位置に設けて、排出路(35)と圧力室(34)とを直接連通させた。

Description

オイルポンプ
 本発明は、オイルポンプに関する。
 特許文献1には、ベーン式のオイルポンプが開示されており、この種のベーン式のオイルポンプには、車両用の自動変速機に搭載されて、自動変速機の制御用の油圧の供給などに用いられるものがある。
 図5は、従来例にかかるベーン式のオイルポンプ90を説明する図であり、(a)は、オイルポンプ90の断面図であり、(b)は、圧力室97と排出路99との連絡部(絞り98)回りを拡大した図である。
 図5に示すベーン式のオイルポンプ90は、シャフト20と一体に回転するインナロータ94と、インナロータ94の外周を囲むアウタロータ95と、を備えており、これらインナロータ94およびアウタロータ95は、本体ケース91内に形成されたポンプ室920内に収容されている。
 このオイルポンプ90では、インナロータ94の外周の歯部がアウタロータ95の内周の歯部との間に形成している空間が、インナロータ94の回転時に、体積を周期的に増減させながら回転軸X回りに変位することを利用して、オイルポンプ90の吸入口から吸入したオイルを加圧して、排出口960から排出させる構成となっている。
 このオイルポンプ90では、回転するインナロータ94の歯部がアウタロータ95の歯部との間に形成する空間は、回転軸X周りの周方向に複数存在しており、各空間が排出口960に対応する位置を通過する際に、空間の体積が最も狭くなることで、空間内のオイルが排出口960から排出されるようになっている。
 ここで、回転軸周りの周方向に複数存在する空間は、排出口960を間欠的に通過するので、排出口960から排出されるオイルに、脈動が発生する。
 そのため、排出口960をそのまま下流側の排出路99に接続すると、下流側の油路100を通流するオイルに脈動がそのまま伝わってしまう。
 従来例にかかるベーン式のオイルポンプ90では、この排出口960に隣接してリング状の圧力室97を設けて、排出口960から排出されるオイルの脈動をこの圧力室97内で低減させたのち、流量制御弁の絞り98を通って、下流側の排出路99から油路100に供給するようにしている。
 この絞り98は、下流側の排出路99に供給されるオイルの脈動を、さらに抑える機能を発揮するものの、圧力室97から下流側の排出路99に向けて移動するオイルの移動抵抗となるので、オイルポンプ90が、駆動源(例えばエンジン)の出力回転により駆動される場合には、駆動源を搭載した車両の燃費が悪化してしまう。
 そのため、流量制御弁の廃止が検討されているが、流量制御弁の廃止により、絞り98が無くなると、脈動の低下に対する絞り98の寄与分が無くなるので、下流側の排出路99に供給されるオイルの脈動が大きくなってしまう。
 そこで、オイルポンプの排出口の下流側に設けていた流量制御弁を廃止しても、下流側の油路での脈動が大きくならないようにすることが求められている。
特開2014-173587号公報
 本発明は、
 駆動軸と一体に回転軸回りに回転するインナロータと、
 ハウジングに形成されたポンプ室内に遊嵌状態で設置されていると共に、前記インナロータの外周に設けた歯部に、内周に設けた歯部を噛合させたアウタロータと、
 前記回転軸方向で前記ポンプ室に隣接して設けられていると共に、前記回転軸方向から見て、前記回転軸を囲むリング状に形成された空間部と、
 前記ポンプ室と前記空間部とを接続する接続路と、
 前記ハウジング内を前記回転軸に対して平行に延びると共に、長手方向における一端が前記空間部に連絡し、他端が、前記回転軸方向で前記空間部よりも前記ポンプ室から離れた位置に開口する吐出口とされた排出路と、を有するオイルポンプにおいて、
 前記排出路を、前記回転軸方向から見て円形を成す断面形状で形成すると共に、前記回転軸方向から見た前記空間部の外周を挟んで内側と外側に跨がる位置に設け、
 前記排出路の前記一端を、前記回転軸の径方向から見て前記空間部の途中まで及ぶ位置に設けて、前記排出路と前記空間部とを直接連通させた、オイルポンプ。
 本発明によれば、ポンプ室で加圧されたオイルが最初に流入する空間部と、空間部内に供給された加圧されたオイルを吐出口まで導く排出路とを直接連通させたことにより、空間部と排出路との間に、空間部から排出路に流入するオイルの移動の抵抗となる部位が存在しない。
 そのため、この排出路の部分もまた空間部の一部として活用されて、空間部の容積がこの排出路の分だけ大きくなったと捉えることができる。ここで、空間部の容積が増えると、ポンプ室から流入する加圧されたオイルの脈動を抑える効果がその分だけ向上する。
 よって、上記のように構成することで、空間部の実際の容積を増やすこと無く、空間部として機能できる空間の容積を広げることができるので、加圧されたオイルの脈動をより抑えることができる。
実施の形態にかかるオイルポンプを説明する図である。 実施の形態にかかるオイルポンプの断面図である。 圧力室の容積と、排出路と圧力室との連通口の開口面積と、車両燃費との関係を説明する図である。 圧力室の容積と、連通口の開口面積の設定を説明する図である。 従来例にかかるオイルポンプを説明する図である。
 以下、本発明の実施の形態を、従来例にかかるオイルポンプ90と同じベーン式のオイルポンプ1の場合を例に挙げて説明する。
 図1は、実施の形態にかかるオイルポンプ1を説明する図であり、(a)は、オイルポンプ1を回転軸Xに沿って切断した断面図であり、(b)は、(a)における圧力室34周りの拡大図であり、(c)は、圧力室34と排出路35との連通口36近傍を拡大した拡大図であり、(d)は、圧力室34と排出路35との連通口36を、圧力室34側から見た状態を示す参考斜視図である。
 なお、(c)では、従来例にかかるオイルポンプ90との違いを明確にするために、従来例にかかるオイルポンプ90で存在していた部位であって、実施の形態にかかるオイルポンプ1で無くなった部位(絞り98)を交差させたハッチングで示している。
 図1に示すようにオイルポンプ1の本体ケース2は、ハウジング3とカバー4とを組みつけて構成される。ハウジング3におけるカバー4との対向面には、有底円筒状のポンプ室31が形成されており、ハウジング3にカバー4を組み付けたのちに、カバー4をハウジング3にボルトBで固定すると、本体ケース2の内部に密閉されたポンプ室31の空間が形成されるようになっている。
 ハウジング3では、ポンプ室31の中央部に、シャフト20の貫通孔32が形成されており、この貫通孔32は、ハウジング3を回転軸X方向に貫通している。
 シャフト20の一端20aは、貫通孔32を貫通して、本体ケース2の外部に位置しており、シャフト20の一端20a側は、貫通孔32で回転可能に支持されている。
 ハウジング3は、貫通孔32を所定間隔で囲む円筒壁部33を有しており、この円筒壁部33を所定間隔で囲むリング状の圧力室34が、ポンプ室31の底31aに開口している。
 シャフト20におけるポンプ室31内に位置する領域の外周には、インナロータ22がスプライン嵌合して固定されており、図示しない駆動源からの回転駆動力でシャフト20が回転すると、シャフト20とインナロータ22とが、回転軸X周りに一体回転するようになっている。
 インナロータ22の径方向外側には、回転軸X方向から見てリング状のアウタロータ23が位置している。アウタロータ23は、内周に設けた歯部(図示せず)を、インナロータ22の外周に設けた歯部(図示せず)に噛合させた状態で、インナロータ22の径方向外側に位置しており、このアウタロータ23は、ポンプ室31の内周に遊嵌状態で設置されている。
 シャフト20においてインナロータ22およびアウタロータ23の両側には、リング状の壁部材24、25が外挿して取り付けられており、インナロータ22とアウタロータ23は、これら壁部材24、25の間に挟み込まれた状態で設けられている。
 実施の形態では、壁部材24、25の間にインナロータ22およびアウタロータ23を挟み込んでポンプアッセンブリ21を構成しており、この状態において、これら壁部材24、25の間のインナロータ22およびアウタロータ23は、壁部材24、25に対して、回転軸X回りに相対回転可能となっている。
 ポンプアッセンブリ21では、当該ポンプアッセンブリ21の内部で回転するインナロータ22とアウタロータ23により、加圧されたオイルが調整されて、この加圧されたオイルが、壁部材24に設けた排出口241から排出されるようになっている。
 実施の形態では、ポンプアッセンブリ21を、シャフト20に外挿して、シャフト20とインナロータ22とを相対回転不能に連結したのち、ハウジング3の貫通孔32に、カバー4側からシャフト20の一端20aを挿入することで、シャフト20とポンプアッセンブリ21とをハウジング3に組み付けるようになっている。
 カバー4には、ハウジング3に組み付けられたシャフト20と整合する位置に貫通孔41が形成されている。そのため、カバー4をハウジング3に組み付けると、シャフト20の他端20bが、本体ケース2の外部に突出するようになっており、シャフト20の他端20b側は、貫通孔41で回転可能に支持されている。
 この状態においてポンプアッセンブリ21は、ポンプ室31の底31aと、カバー4との間に挟み込まれており、回転軸X方向の移動が規制された状態で、ポンプ室31内に配置されている。
 ポンプアッセンブリ21においてカバー4側に位置する壁部材25では、ポンプ室31との対向面に、ストレーナ(図示せず)を介して吸引されたオイルの供給口(図示せず)が開口している。
 また、インナロータ22およびアウタロータ23を挟んで壁部材25の反対側に位置する壁部材24では、当該壁部材24を回転軸X方向に貫通して排出口241が設けられており、この排出口241は、ポンプアッセンブリ21の内部空間と、ポンプ室31の底31aに開口する圧力室34とを連通している。
 そのため、ポンプアッセンブリ21内で加圧されたオイルは、排出口241を通って圧力室34内に供給されるようになっている。
 ハウジング3において圧力室34は、回転軸Xを所定間隔で囲むリング状を成しており(図2の(a)参照)、回転軸Xの軸方向から見て、圧力室34の外径寄りの位置には、ハウジング3内を回転軸X方向に延びる排出路35の一端35b側が、圧力室34に連通している。
 回転軸Xの軸方向から見て排出路35は、円形の断面形状を有しており(図2の(b)参照)、ハウジング3において排出路35は、回転軸Xの軸方向から見た圧力室34の外周縁34bを挟んで内側と外側に跨がる位置に設けられている。
 そのため、回転軸Xの軸方向から見て、圧力室34の外周縁34bの延長上を延びる仮想曲線Lmと、排出路35の内周の延長上を延びる仮想曲線Lnとが交差する位置関係で、排出路35と圧力室34とが交差(連通)している(図2の(a)、領域R1参照)。
 図1の(b)に示すように、回転軸Xの径方向から見て、排出路35は、回転軸Xに対して平行に直線状に形成されており、この排出路35の他端側の接続口35aは、回転軸Xの軸方向で、圧力室34よりもポンプ室31から離れた位置で開口している。
 この排出路35の一端35bは、回転軸X方向における圧力室34の略中央に及ぶ長さLa分だけ、圧力室34の底34aからポンプ室31側に位置している。そのため、排出路35の一端35bは、圧力室34と直接連通しており、この排出路35と圧力室34の境界に形成された開口が、排出路35と圧力室34の連通口36となっている。
 実施の形態では、この連通口36の開口面積D2は、排出路35の他端側の接続口35aの開口面積D1以上(D2≧D1)となるように、回転軸Xの軸方向における排出路35と圧力室34との交差量Laと、回転軸Xの径方向における排出路35と圧力室34との交差量Lbとが設定されている。
 ここで、図5および図1の(c)に示すように、従来例にかかるオイルポンプでは、圧力室34と排出路35とが絞り98を介して連絡しており、この絞り98の開口面積D3が狭いために、この絞り98が、当該絞り98を通過するオイルに対する抵抗となって、オイルが絞り98を通過する際の圧力損失が大きかった。
 本願のように、排出路35の一端35bを回転軸Xの径方向から見て、圧力室34の途中まで及ぶ位置に設けると共に、回転軸X方向から見て排出路35が、圧力室34の外周縁34bを挟んで内側と外側に跨がる位置に設けて、排出路35と圧力室34とを直接連通させたので、この連通口36の開口面積D2が、絞り98の場合の開口面積D3よりも十分に広くなっている。
 そのため、圧力室34から連通口36を通って排出路35に向けて移動するオイルに、絞り98が存在する場合のような抵抗が作用しないようになっており、排出路35側を、圧力室34に連なる空間として活用できるようになっている。
 この場合、オイルの脈動を抑えるために設けられている圧力室34の容積が、排出路35側の容積分だけ広くなったと捉えることができるので、この広くなった容積分だけ、脈動を抑える効果の向上が期待できるようになっている。
 なお、排出路35の接続口35aには、オイルポンプ1の下流側に位置する圧力制御弁V1まで延びる油路100が接続されている。実施の形態では、この油路100の内径と排出路35の内径とを一致させて、油路100と排出路35との接続部で流路断面積が狭くならないようにしている。
 そのため、排出路35内の容積だけで無く、油路100内の容積もまた、圧力室34の容積として活用できるようになっている。
 以下、圧力室34の容積Vと、排出路35と圧力室34との連通口36の開口面積D2の設定を、説明する。
 図3は、(1)圧力室34の容積(圧力室容積)の大小と、脈動の大小との関係、(2)連通口36の開口面積D2(連通部開口面積)の大小と、脈動の大小との関係、(3)連通口36の開口面積D2(連通部開口面積)の大小と、車両燃費の善し悪しとの関係を、ひとつに纏めて説明する図である。
 この図3では、上記(1)の圧力室34の容積Vの大小と、上記(2)の連通口36の開口面積D2との大小とが、脈動の大小を共通項目として関係づけられており、さらに、上記(2)の脈動の大小と、上記(3)の車両燃費の善し悪しとが、連通口36の開口面積D2(連通部開口面積)の大小を共通項目として関係づけられている。
 また、オイルポンプ1の吐出量が少ない場合(固有吐出量小)と多い場合(固有吐出量)とで、上記(1)~(3)における関係性が変化するので、上記(1)の場合には、同じ圧力室34の容積であっても、オイルポンプ1の吐出量に応じて脈動の大きさに幅があり、上記(2)の場合には、同じ連通口36の開口面積D2であっても、オイルポンプ1の吐出量に応じて脈動の大きさに幅があることを示している。さらに、上記(3)の場合には、同じ連通口36の開口面積D2であっても、オイルポンプ1の吐出量に応じて車両燃費に幅があることを示している。
<圧力室34の容積Vと脈動との関係>
 図3に示すように、圧力室34の容積Vと脈動との関係は、オイルポンプ1の吐出量に拘わらず、圧力室34の容積Vが大きくなるほど脈動が小さくなり、圧力室34の容積Vが小さくなるほど、脈動が大きくなる。
 圧力室34の容積Vが小さくなるほど、排出口241から吐出されるオイルの脈動が収まるまで、圧力室34内にオイルを保持できないからである。
<連通口36の開口面積D2と、脈動との関係>
 また、圧力室34と排出路35との連通口36の開口面積D2の大小の関係と、脈動との関係は、オイルポンプ1の吐出量に拘わらず、連通口36の開口面積D2が小さくなるほど脈動が小さくなり、大きくなるほど脈動が大きくなる。
 開口面積D2が小さくなるほど、連通口36を通過する際にオイルに作用する抵抗が高くなり、この抵抗の高まりが脈動を低減させるからである。また、開口面積D2が大きくなると、オイルに作用する抵抗が小さくなる結果、脈動を低減させる効果が低下して、オイルの脈動が低減されずに排出路35内のオイルに伝わるからである。
<連通口36の開口面積D2と、車両燃費との関係>
 連通口36の開口面積D2と車両燃費との関係は、オイルポンプ1の吐出量に拘わらず、開口面積D2が小さくなるほど車両燃費が悪化し、開口面積D2が大きくなるほど向上する。
 開口面積D2が小さくなるほど、連通口36を通過するオイルに作用する抵抗が大きくなり、オイルが連通口36を通過するために必要な吐出力が大きくなる。吐出力を大きくするためには、オイルポンプ1でのインナロータ22をより高回転で回転させる必要があり、この高回転で回転させるために必要なオイルポンプ1の作動負荷(インナロータの回転に必要な負荷)が大きくなる。
 ここで、インナロータ22は、エンジンなどの駆動源から伝達される回転駆動力により回転するので、インナロータ22の回転に対する負荷は、そのまま駆動源に対する負荷となるので、負荷が大きくなるほど、駆動源の負荷が大きくなって、駆動源を搭載する車両の燃費(車両燃費)が悪化する。そのため、連通口36の開口面積D2が小さくなるほど車両燃費が悪化し、開口面積D2が大きくなるほど向上する。
 本願出願人は、圧力室34の容積V(圧力室容積)と、連通口36の開口面積D2(連通口開口面積)を設定するに当たり、オイルポンプ1を採用した自動変速機の搭載車両での燃費特性と、オイルポンプ1での脈動特性とオイルポンプ1での油圧応答性と、を考慮している。
 具体的には、燃費特性は、連通口36の開口面積D2に応じて決まるオイルポンプ1での負荷に関係があり、脈動特性は、連通口36の開口面積D2と圧力室34の容積Vに関係があり、油圧応答性は、圧力室34の容積Vに関係があるので、これら各特性の閾値を決定し、閾値に応じて決まる条件を満たすように、圧力室34の容積V(圧力室容積)と、連通口36の開口面積D2(連通口開口面積)を設定している。
 以下、圧力室34の容積V(圧力室容積)と、連通口36の開口面積D2(連通口開口面積)の設定を説明する。
 図4は、圧力室34の容積V(圧力室容積)と、連通口36の開口面積D2(連通口開口面積)の設定を説明する図であり、圧力室34の容積Vと、連通口36の開口面積D2の設定に当たり考慮される特性の特性線(目標燃費特性線、目標脈動特性線、目標油圧応答特性線)を説明する図である。
<燃費特性>
 実施の形態では、燃費特性に対しては、オイルポンプ1を搭載した車両に求められている燃費目標のうち、オイルポンプの寄与分に基づいて、車両燃費の閾値(達成すべき燃費の最小値)が決められている。
 具体的には、オイルポンプ1のアイドル回転から所定回転数(例えば、600~2000rpm)の間のオイルポンプ1の負荷によるトルク増加量が、任意の値(例えば、0.1Nm)以下となるような閾値を、車両燃費の閾値として求め(図3、車両燃費閾値参照)、求めた車両燃費の閾値から目標燃費特性(図4参照)を決定している。
 ここで、車両燃費は、主に連通口36の開口面積D2(オイルポンプ1の負荷)に応じて変動し、圧力室34の容積Vには大きく依存しない。そのため、目標燃費特性の圧力室34の容積Vおよび連通口36の開口面積D2との関係は、図4に示すような直線性を持つことになる。
 なお、図4の場合、連通口36の開口面積D2が狭くなると、オイルポンプ1の負荷が増大して燃費が悪くなるので、この図4に基づいて圧力室34の容積Vと連通口36の開口面積D2を設定する場合には、目標燃費特性線から見て連通口36の開口面積D2が大きくなる側であることが好ましいことになる。
 ここで、目標燃費特性は、オイルポンプ1を搭載した車両における負荷トルクのオイルポンプ1負担分の上限値である。
<油圧応答性>
 また、油圧応答性は、圧力室34として機能する領域(図1の場合には、圧力室34、排出路35、油路100)の容積Vに応じて変動し、容積Vが大きくなるほど低下する。
 実施の形態では、下記式(1)の条件を満たす容積を、油圧応答性の閾値として求め(図3、油圧応答性閾値参照)、求めた閾値から、目標油圧応答特性を決定している。

 オイルポンプ1の単位時間当たりの吐出量Q×目標油圧立ち上がり時間T
  =低温時のオイルポンプ1の吐出量(l/min)≧圧力室の容積V・・・(1)

 ここで、実施の形態にかかるオイルポンプ1の場合、圧力室の容積には、圧力室34と、排出路35と、油路100の容積が含まれている。
 ここで、実施の形態では、排出路35側の容積も、上記式(1)の圧力室の容積に含まれているので、油圧応答性は、連通口36の開口面積D2に依存しない。そのため、目標油圧応答特性の容積Vおよび連通口36の開口面積D2との関係は、図4に示すような直線性を持つことになる。
 なお、図4の場合、圧力室の容積が大きくなるほど、油圧応答性が悪くなるので、この図4に基づいて圧力室34の容積Vと連通口36の開口面積D2を設定する場合には、目標油圧応答特性線から見て圧力室の容積が小さくなる側であることが好ましい。
<脈動特性>
 脈動特性は、圧力室34として機能する領域(図1の場合には、圧力室34、排出路35、油路100)の容積Vと、連通口36の開口面積D2に応じて変動する。
 実施の形態では、車両走行時に脈動により発生する騒音に着目し、定常走行時の所定の騒音レベル(db)以下となるような、脈動の大きさを閾値として求め(図3、脈動閾値)、求めた閾値から、目標脈動特性を決定している。
 具体的には、連通口36の開口面積D2と圧力室の容積Vの関係性のうち、求めた閾値となる関係性を規定する基準とし、この基準値に、(M-(1/M))2×Laの関数値で、目標脈動特性線を規定している。
 ここで、Mは、膨張率S2/S1であり、S1は、連通口36の入力側の断面積(圧力室34の断面積)であり、S2は、連通口36の出力側の断面積(排出路35の断面積)であり、Laは回転軸X方向における排出路35の一端35b側と圧力室34の交差長である。
 なお、脈動特性は、連通口36の開口面積D2と圧力室の容積Vに依存するので、目標脈動特性の容積Vおよび連通口36の開口面積D2との関係は、図4に示すような曲線性を持つことになる。
 ここで、脈動の低減に対する寄与は、圧力室の容積のほうが、連通口36の開口面積D2よりも大きいので、この図4に基づいて圧力室34の容積Vと連通口36の開口面積D2を設定する場合には、目標脈動特性線からみて、圧力室の容積が大きくなる側であることが好ましい。
 よって、実施の形態では、これら3つの特性線で囲まれた領域T(図4におけるハッチングを付した領域)内となるように、圧力室(圧力室34、排出路35、油路100)の容積と、連通口36の開口面積D2を設定しており、これにより、燃費特性、脈動特性、油圧応答性を満足できるオイルポンプ1としている。
 ここで、目標脈動特性は、オイルポンプ1を搭載した車両として抑えるべきノイズにより算出されたオイルポンプ1の脈動(油振)上限値に設定されており、目標脈動特性は、圧力室として機能する空間(図1の場合には、圧力室34、排出路35、油路100)の容積Vと連通口36の開口面積D2をパラメータとした等価曲線で表現される。
 以上の通り、実施の形態では
(1)シャフト20(駆動軸)と一体に回転軸X回りに回転するインナロータ22と、
 ハウジング3に形成されたポンプ室31内に遊嵌状態で設置されていると共に、インナロータ22の外周に設けた歯部に、内周に設けた歯部を噛合させたアウタロータ23と、
 回転軸X方向でポンプ室31に隣接して設けられていると共に、回転軸X方向から見て、回転軸Xを囲むリング状に形成された圧力室34(空間部)と、
 ポンプ室31と圧力室34とを接続する排出口241と、
 ハウジング3内を回転軸Xに対して平行に延びると共に、長手方向における一端35bが圧力室34に連絡し、他端が、回転軸X方向で圧力室34よりもポンプ室31から離れた位置に開口する吐出口(接続口35a)とされた排出路35と、を有するオイルポンプ1において、
 排出路35を、回転軸X方向から見て円形の断面形状で形成すると共に、回転軸X方向から見た圧力室34の外周を挟んで内側と外側に跨がる位置に設け、
 排出路35の一端35bを、回転軸Xの径方向から見て圧力室34の途中まで及ぶ位置に設けて、排出路35と圧力室34とを直接連通させた構成とした。
 このように構成すると、ポンプ室31側で加圧されたオイルが最初に流入する圧力室34と、圧力室34内に供給された加圧されたオイルを接続口35aまで導く排出路35とを直接連通させたことにより、圧力室34と排出路35との間に、圧力室34から排出路35に流入するオイルの移動の抵抗となる部位(例えば、絞り)が存在しない。
 そのため、この排出路35の部分もまた圧力室34の一部として活用されて、圧力室34の容積がこの排出路35の分だけ大きくなったと捉えることができる。ここで、圧力室34の容積が増えると、ポンプ室31側から流入する加圧されたオイルの脈動を抑える効果がその分だけ向上する。
 よって、上記のように構成することで、圧力室34の実際の容積を増やすこと無く、圧力室34として機能できる空間の容積を広げることができるので、加圧されたオイルの脈動をより抑えることができる。
(2)排出路35と圧力室34との連通口36における開口面積D2は、排出路35の接続口35aの開口面積D1と同一以上に設定されている構成とした。
 この様に構成すると、圧力室34内のオイルが排出路35側に移動する途上に、オイルの移動の抵抗となる絞りを生じさせずに済むので、排出路35の部分を空間部の一部として活用できる。これにより、圧力室34の実際の容積を増やすこと無く、圧力室34として機能できる空間の容積を広げることができるので、加圧されたオイルの脈動をより抑えることができる。
 圧力室34の容積と、連通口36の開口面積D2は、
 圧力室34の容積と、連通口36の開口面積D2とをパラメータとしたテーブル(図4)において、
 圧力室(圧力室34と、排出路35と、油路100)の容積と連通口36の開口面積D2に応じて変化する脈動であって、許容できる脈動の上限値を規定する目標脈動特性線と、
 連通口36の開口面積D2に応じて変化する燃費であって、許容できる燃費の下限値を規定する目標燃費特性線と、
 圧力室(圧力室34と、排出路35と、油路100)の容積に応じて変化するオイルポンプでの油圧応答性であって、許容できる油圧応答性の下限を規定する目標油圧応答特性線とで囲まれた領域内に含まれる容積と開口面積に、それぞれ設定されている構成とした。
 このように構成すると、油圧応答特性と、脈動特性(静音性を含む)と、燃費特性の、何れの特性においても、要求されている特性を充足したオイルポンプ1を提供できる。
 よって、油圧応答性が良く、かつ脈動が抑えられていると共に、オイルポンプを搭載した車両の燃費の悪化を好適に防止できるオイルポンプ1を、本体ケース2内の圧力室34および排出路35の容積や、レイアウトを大きく変更すること無く提供できるので、オイルポンプ周りのレイアウト性が悪化することを好適に防止できる。
 また、圧力室34の容積と連通口36の開口面積D3を、車両毎に適正な容積および面積に設定できる。
(4)目標脈動特性は、オイルポンプ1を搭載した車両として抑えるべきノイズにより算出されたオイルポンプの油振上限値に設定されており、目標脈動特性は、圧力室として機能する空間(図1の場合には、圧力室34、排出路35、油路100)の容積Vと連通口36の開口面積D2をパラメータとした等価曲線で表現される構成とした。
 このように構成すると、目標脈動特性を過去の実験データなどに基づいて決められるので、脈動が許容できるか否かの判定に、官能試験のような曖昧さが関与しないので、一定の安定性をもって判定できる。
(5)目標燃費特性は、オイルポンプ1を搭載した車両における負荷トルクのオイルポンプ負担分の上限値である構成とした。
 このように構成すると、目標燃費特性を過去の実験データなどに基づいて決められるので、オイルポンプでの吐出負荷(排出負荷)に起因する車両燃費の悪化を抑制できる。
 また、車両燃費の悪化を抑制できるような圧力室として機能する空間(図1の場合には、圧力室34、排出路35、油路100)の容積Vと、連通口36の開口面積D2を設定できるので、空間の容積と連通口36の開口面積D2を、車両燃費の悪化を抑制しつつ、車両に合わせて適切に設定できる。
 上記した実施の形態では、圧力室として機能する空間として、図1における、圧力室34と、排出路35と、油路100とが該当する場合を例示したが、例えば、油路100を除く他の空間(圧力室34と排出路35)が、圧力室として機能するように設定しても良い。

Claims (5)

  1.  駆動軸と一体に回転軸回りに回転するインナロータと、
     ハウジングに形成されたポンプ室内に遊嵌状態で設置されていると共に、前記インナロータの外周に設けた歯部に、内周に設けた歯部を噛合させたアウタロータと、
     前記回転軸方向で前記ポンプ室に隣接して設けられていると共に、前記回転軸方向から見て、前記回転軸を囲むリング状に形成された空間部と、
     前記ポンプ室と前記空間部とを接続する接続路と、
     前記ハウジング内を前記回転軸に対して平行に延びると共に、長手方向における一端が前記空間部に連絡し、他端が、前記回転軸方向で前記空間部よりも前記ポンプ室から離れた位置に開口する吐出口とされた筒状の排出路と、を有するオイルポンプにおいて、
     前記ハウジングにおいて前記排出路を、前記回転軸方向から見て、前記排出路の一部が前記空間部の外周よりも内側で開口する位置に設け、
     前記排出路の前記一端を、前記回転軸の径方向から見て前記空間部の途中まで及ぶ位置に設けて、前記排出路と前記空間部とを直接連通させた、オイルポンプ。
  2.  前記排出路と前記空間部の連通部における開口面積は、前記排出路の吐出口の開口面積と同一以上に設定されている、請求項1に記載のオイルポンプ。
  3.  前記空間部の容積と、前記連通部の開口面積との大きさは、
     前記空間部の容積と前記連通部の開口面積とをパラメータとしたテーブルにおいて、
     前記空間の容積と前記連通部の開口面積に応じて変化する脈動であって、許容できる脈動の上限値を規定する目標脈動特性線と、
     前記連通部の開口面積に応じて変化する燃費であって、許容できる燃費の下限値を規定する目標燃費特性線と、
     前記空間部の容積に応じて変化するオイルポンプでの油圧応答性であって、許容できる油圧応答性の下限を規定する目標油圧応答特性とで囲まれた領域内に含まれる容積と開口面積に、それぞれ設定されている構成とした、請求項1または請求項2に記載のオイルポンプ。
  4.  前記目標脈動特性は、オイルポンプを搭載した車両として抑えるべきノイズにより算出されたオイルポンプの油振上限値に設定されており、前記目標脈動特性は、前記空間の容積と前記連通部の開口面積をパラメータとした等価曲線で表現される、請求項3に記載のオイルポンプ。
  5.  前記目標燃費特性は、オイルポンプを搭載した車両における負荷トルクのオイルポンプ負担分の上限値である、請求項3または請求項4に記載のオイルポンプ。
PCT/JP2016/054355 2015-03-26 2016-02-16 オイルポンプ WO2016152319A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021772A KR101913532B1 (ko) 2015-03-26 2016-02-16 오일 펌프
EP16768222.8A EP3276176A4 (en) 2015-03-26 2016-02-16 Oil pump
CN201680011617.0A CN107407274B (zh) 2015-03-26 2016-02-16 油泵
US15/560,674 US10662942B2 (en) 2015-03-26 2016-02-16 Oil pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-063701 2015-03-26
JP2015063701A JP6381469B2 (ja) 2015-03-26 2015-03-26 オイルポンプ

Publications (1)

Publication Number Publication Date
WO2016152319A1 true WO2016152319A1 (ja) 2016-09-29

Family

ID=56977209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054355 WO2016152319A1 (ja) 2015-03-26 2016-02-16 オイルポンプ

Country Status (6)

Country Link
US (1) US10662942B2 (ja)
EP (1) EP3276176A4 (ja)
JP (1) JP6381469B2 (ja)
KR (1) KR101913532B1 (ja)
CN (1) CN107407274B (ja)
WO (1) WO2016152319A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111293U (ja) * 1980-01-29 1981-08-28
JPH0942165A (ja) * 1995-07-26 1997-02-10 Kayseven Co Ltd トロコイドポンプ
JP2014234783A (ja) * 2013-06-04 2014-12-15 株式会社ミクニ 流体ポンプ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127843A (en) * 1960-03-22 1964-04-07 Robert W Brundage Hydraulic pump or motor
JP3394544B2 (ja) 1991-11-05 2003-04-07 株式会社デンソー ギヤポンプ
JP3576370B2 (ja) * 1998-03-20 2004-10-13 川崎重工業株式会社 オイルポンプ
US6106240A (en) * 1998-04-27 2000-08-22 General Motors Corporation Gerotor pump
US7695259B2 (en) * 2006-09-21 2010-04-13 Eaton Corporation Rotary fluid pressure device with modular multi-speed control mechanism
JP5141956B2 (ja) * 2007-12-25 2013-02-13 アイシン精機株式会社 電動ポンプ
WO2011016467A1 (ja) * 2009-08-04 2011-02-10 株式会社ジェイテクト 電動ポンプユニット
US9624929B2 (en) * 2012-12-21 2017-04-18 Lg Innotek Co., Ltd. Electric pump
CN203161524U (zh) * 2013-02-22 2013-08-28 毕晴春 内啮合齿轮泵
JP2014173587A (ja) 2013-03-13 2014-09-22 Hitachi Automotive Systems Ltd 内接歯車ポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111293U (ja) * 1980-01-29 1981-08-28
JPH0942165A (ja) * 1995-07-26 1997-02-10 Kayseven Co Ltd トロコイドポンプ
JP2014234783A (ja) * 2013-06-04 2014-12-15 株式会社ミクニ 流体ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276176A4 *

Also Published As

Publication number Publication date
EP3276176A4 (en) 2018-04-11
CN107407274B (zh) 2019-04-12
KR20170102941A (ko) 2017-09-12
US20180106251A1 (en) 2018-04-19
US10662942B2 (en) 2020-05-26
JP2016183596A (ja) 2016-10-20
KR101913532B1 (ko) 2018-10-30
CN107407274A (zh) 2017-11-28
JP6381469B2 (ja) 2018-08-29
EP3276176A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US7588011B2 (en) Oil supplying apparatus for engine
CN100379991C (zh) 变量泵
US9581156B2 (en) Gear pump including an inner rotor having a plurality of teeth
US9291163B2 (en) Pump having fitting portions
JP5278775B2 (ja) 油供給装置
EP3135913B1 (en) Variable displacement pump
US9482228B2 (en) Variable capacity vane pump with a rotor and a cam ring rotatable eccentrically relative to a center of the rotor
JP6691402B2 (ja) オイルポンプ
JP6381469B2 (ja) オイルポンプ
WO2018084107A1 (ja) ベーンポンプ
WO2015072302A1 (ja) オイルポンプ装置およびリリーフ弁
JP5956773B2 (ja) リリーフバルブ
JP6897412B2 (ja) オイルポンプ
JP2009121331A (ja) 可変容量型ベーンポンプ
JP2015048726A (ja) オイルポンプ
JP5601542B2 (ja) バルブタイミング調整装置
JP2017057737A (ja) 車両用油圧装置
JP7081167B2 (ja) オイル供給装置
KR102553909B1 (ko) 변속기
JP2022117255A (ja) オイルポンプ
JPH10318158A (ja) オイルポンプ装置
JP2010090843A (ja) ポンプ
JP2015059523A (ja) 可変容量形ベーンポンプ
JP2005337146A (ja) 可変容量型ポンプ
JP2020033983A (ja) ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177021772

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15560674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE