WO2016152193A1 - 自動変速機及び電動オイルポンプの制御方法 - Google Patents

自動変速機及び電動オイルポンプの制御方法 Download PDF

Info

Publication number
WO2016152193A1
WO2016152193A1 PCT/JP2016/050678 JP2016050678W WO2016152193A1 WO 2016152193 A1 WO2016152193 A1 WO 2016152193A1 JP 2016050678 W JP2016050678 W JP 2016050678W WO 2016152193 A1 WO2016152193 A1 WO 2016152193A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic transmission
oil pump
flow rate
electric
oil
Prior art date
Application number
PCT/JP2016/050678
Other languages
English (en)
French (fr)
Inventor
英晴 山本
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to US15/558,848 priority Critical patent/US10473212B2/en
Priority to EP16768096.6A priority patent/EP3276214A4/en
Priority to JP2017507524A priority patent/JP6680761B2/ja
Priority to CN201680016091.5A priority patent/CN107407402B/zh
Priority to KR1020177025760A priority patent/KR20170118140A/ko
Publication of WO2016152193A1 publication Critical patent/WO2016152193A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/26Inputs being a function of torque or torque demand dependent on pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity

Definitions

  • the present invention relates to an automatic transmission provided with a mechanical oil pump and an electric oil pump.
  • hydraulic pressure can be generated by the electric oil pump even when the engine is stopped, so that shifting and lubrication are possible even in an idle stop state where the engine is stopped.
  • the present invention has been made in view of such technical problems, and it is an object of the present invention to review the drive conditions of an electric oil pump and prevent a reduction in shift speed of an automatic transmission due to insufficient oil flow rate. .
  • an automatic transmission mounted on a vehicle, which is driven by an engine and supplies oil to the automatic transmission, and an automatic transmission driven by an electric motor.
  • An electric oil pump for supplying oil to the vehicle, and a flow rate of the oil required by the automatic transmission while the vehicle is running, and the calculated oil flow rate required by the automatic transmission is calculated automatically.
  • an automatic transmission that includes a controller that drives the electric oil pump when the hydraulic pressure required by the transmission is larger than the marginal flow rate of the mechanical oil pump.
  • an electric oil pump control method corresponding to this is provided.
  • the electric oil pump is driven when the oil flow rate required by the automatic transmission is greater than the marginal flow rate of the mechanical oil pump. Insufficient oil flow rate can be prevented, and a reduction in shift speed due to insufficient oil flow rate can be prevented.
  • FIG. 1 is a schematic configuration diagram of an automatic transmission to which the present invention is applied and its hydraulic circuit.
  • FIG. 2 is a graph showing the relationship between the line pressure and the marginal flow rate with respect to the rotational speed of the mechanical oil pump.
  • FIG. 3 is a flowchart showing the contents of the electric oil pump drive control.
  • FIG. 4 is an Nmop-PL characteristic table.
  • FIG. 5 is a table for calculating the necessary lubrication flow rate.
  • FIG. 6 is a table for calculating the required charge flow rate.
  • FIG. 7 is a table for calculating the target rotational speed of the electric oil pump.
  • FIG. 1 shows a schematic configuration of an automatic transmission 10 and its hydraulic circuit 20 to which the present invention is applied.
  • the automatic transmission 10 includes a plurality of planetary gear mechanisms (not shown), a lock-up mechanism 11, and a plurality of clutches 12, and a plurality of clutches 12 are changed by changing a combination of clutches to be engaged. It is a stepped transmission capable of realizing a shift stage.
  • the automatic transmission 10 is mounted on a vehicle, shifts rotation input from an engine (not shown) as a power source at a gear ratio corresponding to a gear position, and outputs it to drive wheels (not shown).
  • the hydraulic circuit 20 includes a regulator valve 21 and a plurality of control valves 22.
  • the regulator valve 21 is a solenoid valve that generates the line pressure PL using the hydraulic pressure generated by one or both of the mechanical oil pump 31 and the electric oil pump 32 as a source pressure.
  • the plurality of control valves 22 are solenoid valves that adjust the oil pressure of oil supplied to the oil chambers of the lockup mechanism 11 and the plurality of clutches 12.
  • Rotation can be transmitted from the input shaft of the automatic transmission 10 to the mechanical oil pump 31 via a gear, and the mechanical oil pump 31 is driven by the engine.
  • the hydraulic pressure generated by the mechanical oil pump 31 changes depending on the rotation of the engine, and when the engine stops, the hydraulic pressure generated by the mechanical oil pump 31 becomes zero.
  • the electric oil pump 32 is a pump driven by an electric motor 32m. Since the electric motor 32m can be driven by electric power supplied from a battery (not shown), the electric oil pump 32 can be driven regardless of the operating state of the engine.
  • the controller 40 controls the lock-up state and the gear position of the automatic transmission 10 according to the driving state of the vehicle.
  • the controller 40 includes a sensor 51 for detecting the accelerator pedal operation amount APO, a sensor 52 for detecting the oil temperature T of the automatic transmission 10, and the rotational speed Nin ( ⁇ mechanism of the input shaft of the automatic transmission 10). Signals from a sensor 53 that detects the rotational speed Nmop of the oil pump 31, a sensor 54 that detects the vehicle speed VSP, a sensor 55 that detects the line pressure PL, and the like are input.
  • the controller 40 determines a target lock-up state and shift speed, and supplies oil to the lock-up mechanism 11 and the plurality of clutches 12 so that the target lock-up state and shift speed are realized. To change.
  • the controller 40 predicts the shift speed realized by the next shift, fills the oil chamber of the clutch engaged at the predicted shift speed in advance (precharge), and immediately before the clutch is engaged. And a predictive control for improving the shift speed when the next shift is performed.
  • the predicted shift speed is, for example, the upshift and downshift shift speeds adjacent to the current shift speed.
  • the hydraulic pressure required for the automatic transmission 10 (hereinafter, target line pressure tPL) is fastened at the hydraulic pressure Pl required to realize the torque capacity required by the lockup mechanism 11 and the selected gear stage.
  • the rotational speed Nmop of the mechanical oil pump 31 exceeds the rotational speed (hereinafter referred to as “required rotational speed”) Nreq that can ensure the target line pressure tPL, it is considered that the hydraulic pressure is sufficient.
  • the flow rate of oil that can be used to fill the oil chamber of the clutch to be engaged and stroke the clutch piston (the marginal flow rate Qmgn) is the rotational speed Nmop of the mechanical oil pump 31. Is secured only after the required rotational speed Nreq is reached and the target line pressure tPL can be secured.
  • the controller 40 executes the electric oil pump drive control described below while the vehicle is traveling, and actively activates the electric oil pump 32 in a situation where the oil flow rate is insufficient even when the vehicle is traveling. Drive to prevent the speed change from being reduced due to insufficient oil flow.
  • FIG. 3 is a flowchart showing the contents of the electric oil pump drive control. This flowchart is repeatedly executed by the controller 40 while the vehicle is traveling.
  • step S1 the controller 40 calculates the marginal flow rate Qmgn of the mechanical oil pump 31.
  • the marginal flow rate Qmgn is calculated here using the Nmop-PL characteristic table shown in FIG.
  • the Nmop-PL characteristic table shows, for each oil temperature T, the relationship between the rotational speed Nmop of the mechanical oil pump 31 and the line pressure PL generated when the mechanical oil pump 31 is driven.
  • the controller 40 selects an Nmop-PL characteristic line corresponding to the oil temperature T detected by the sensor 52 from the Nmop-PL characteristic table shown in FIG. 4, and uses the selected Nmop-PL characteristic line to set the target line pressure tPL.
  • the required rotational speed Nreq which is the rotational speed of the mechanical oil pump 31 necessary to ensure the above, is searched.
  • the marginal flow rate Qmgn is proportional to the deviation between the rotational speed Nmop of the mechanical oil pump 31 (the current rotational speed of the mechanical oil pump 31 calculated from the rotational speed Nin detected by the sensor 53) and the required rotational speed Nreq.
  • the controller 40 multiplies this deviation by a constant Vth to calculate a margin flow rate Qmgn.
  • an Nmop-PL characteristic table that does not take into account individual differences and aging deterioration is prepared in advance.
  • the actual Nmop-PL characteristic obtained from the sensor detection value is taken into consideration. Based on this, the Nmop-PL characteristic table is corrected as needed, and the corrected Nmop-PL characteristic table is used in the process of step S1.
  • the controller 40 calculates the actual Nmop-PL characteristic from the rotational speed Nmop of the mechanical oil pump 31 calculated from the rotational speed Nin of the input shaft of the automatic transmission 10 detected by the sensor 53, and the sensor 55.
  • the difference between the Nmop-PL characteristic defined in the Nmop-PL characteristic table and the actual Nmop-PL characteristic is calculated based on the line pressure PL detected in step 1, and the calculated deviation is reduced or eliminated. Modify the Nmop-PL characteristic table.
  • step S2 the controller 40 determines whether the marginal flow rate Qmgn is less than zero.
  • the rotational speed Nmop of the mechanical oil pump 31 is lower than the required rotational speed Nreq, and the target line pressure tPL that is the hydraulic pressure required by the automatic transmission 10 cannot be secured.
  • the controller 40 advances the process to step S10, and immediately starts the electric oil pump 32 so that the lockup failure of the lockup mechanism 11 and the engagement failure of the plurality of clutches 12 do not occur.
  • step S3 if the surplus flow rate Qmgn is greater than zero, the controller 40 advances the process to step S3.
  • step S3 the controller 40 calculates a required lubrication flow rate Qlub that is a lubrication flow rate required for the automatic transmission 10.
  • the controller 40 refers to the table shown in FIG. 5 and searches for a value corresponding to the required lubricating pressure Plub used in the calculation of the target line pressure tPL and the oil temperature T detected by the sensor 52.
  • the required lubrication flow rate Qlub is calculated.
  • the required lubricating flow rate Qlub tends to increase as the required lubricating pressure Plub increases and as the oil temperature T increases.
  • the reason why the required lubricating flow rate Qlub increases as the oil temperature T increases is because the viscosity of the oil decreases as the oil temperature T increases, and the amount of oil leakage from the control valve 22 or the like increases.
  • step S4 the controller 40 calculates a required charge flow rate Qchg that is a flow rate of oil necessary for filling the oil chamber of the clutch to be engaged among the plurality of clutches 12 with oil.
  • the controller 40 searches the table shown in FIG. 6 for values corresponding to the clutch circuit pressure loss obtained by subtracting the return pressure Prtn (constant) from the target line pressure tPL and the oil temperature T detected by the sensor 52.
  • the required charge flow rate qchg is calculated for each of the clutches to be engaged, and the sum of them is calculated as the required charge flow rate Qchg.
  • the required charge flow rates Qchg and qchg tend to increase as the required charge pressure Pchg increases and the oil temperature T increases.
  • the reason why the required charge flow rates Qchg and qchg increase as the oil temperature T increases is that the oil viscosity decreases as the oil temperature T increases and the amount of oil leakage from the control valve 22 and the like increases.
  • step S5 the controller 40 determines whether the required flow rate Qreq, which is the sum of the required lubrication flow rate Qlub and the required charge flow rate Qchg, is greater than the surplus flow rate Qmgn.
  • the controller 40 advances the process to step S6 and subsequent steps, and compensates for the insufficient flow rate by driving the electric oil pump 32. .
  • a target rotation speed tNeop which is a rotation speed, is calculated (step S7).
  • the target rotation speed tNeop is calculated by searching the basic target rotation speed btNeop from the table shown in FIG. 7 and multiplying the searched value by the hydraulic pressure correction coefficient.
  • FIG. 7 is a table that defines the relationship between the rotational speed of the electric oil pump 32 and the flow rate from the electric oil pump 32.
  • the table shown in FIG. As the oil temperature T increases, the viscosity of the oil decreases and the amount of internal leakage of the electric oil pump 32 increases. Therefore, even if the deficient flow rate Qdef is the same, the target rotational speed tNeop tends to increase as the oil temperature T increases.
  • the hydraulic correction coefficient increases as the target line pressure tPL increases.
  • the controller 40 controls the rotational speed of the electric oil pump 32 so that the rotational speed Neop of the electric oil pump 32 becomes the target rotational speed tNeop.
  • the controller 40 controls the rotational speed of the electric oil pump 32 so that the rotational speed Neop of the electric oil pump 32 becomes the target rotational speed tNeop.
  • step S5 determines whether the required flow rate Qreq is not larger than the surplus flow rate Qmgn. If it is determined in step S5 that the required flow rate Qreq is not larger than the surplus flow rate Qmgn, the controller 40 advances the process to step S11 and drives the electric oil pump 32 because the oil flow rate is sufficient. Do not. If the electric oil pump 32 is being driven, the controller 40 stops the electric oil pump 32.
  • the flow rate of oil required by the automatic transmission 10 (hereinafter referred to as “required flow rate”) Qreq is calculated, and the required flow rate Qreq is required by the automatic transmission 10.
  • the electric oil pump 32 is driven when it is larger than the surplus flow rate Qmgn of the mechanical oil pump 31 generated in a state where a sufficient oil pressure (target line pressure tPL) is secured.
  • the electric oil pump 32 supplies oil of a flow rate (hereinafter referred to as “insufficient flow rate”) Qdef obtained by subtracting the surplus flow rate Qmgn from the required flow rate Qreq. Then, the electric oil pump 32 is driven.
  • insufficient flow rate oil of a flow rate
  • the electric oil pump 32 is prevented from being driven unnecessarily, and the electric oil pump 32 is driven unnecessarily, resulting in a decrease in durability of the electric oil pump 32, an increase in battery consumption, and an excessive amount of oil. Increase in resistance can be prevented.
  • the surplus flow rate Qmgn is calculated with reference to the Nmop-PL characteristic table, and the actual Nmop-PL characteristic obtained from the Nmop-PL characteristic defined by the Nmop-PL characteristic table and the detection values of the sensors 53 and 55 And the Nmop-PL characteristic table is modified so that the deviation is reduced.
  • the above embodiment has been described on the assumption that the automatic transmission 10 is a stepped transmission, but the automatic transmission may be a continuously variable transmission or a transmission that combines a continuously variable transmission and a stepped transmission. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 自動変速機(10)は、メカオイルポンプ(31)、電動オイルポンプ(32)及びコントローラ(40)を備える。コントローラ(40)は、車両の走行中、自動変速機で必要とされる油の流量を算出し、算出された自動変速機で必要とされる油の流量が自動変速機で必要な油圧を確保した状態で生じるメカオイルポンプの余裕流量よりも多い場合に電動オイルポンプを駆動する。

Description

自動変速機及び電動オイルポンプの制御方法
 本発明は、メカオイルポンプと電動オイルポンプとを備えた自動変速機に関する。
 エンジンによって駆動されるメカオイルポンプに加え、電気モータによって駆動される電動オイルポンプを備えた自動変速機が公知である(JP2007-198439A)。
 このような自動変速機では、エンジンが停止した状態であっても電動オイルポンプによって油圧を発生させることができるので、エンジンが停止するアイドルストップ状態であっても変速、潤滑が可能である。
 車両走行中はメカオイルポンプが発生する油圧によってクラッチの締結容量や潤滑要求等によって決まる必要油圧を確保することができるので、電動オイルポンプを駆動する必要はないと考えられる。
 しかしながら、メカオイルポンプが発生する油圧によって必要油圧を確保できる場合であっても、エンジンの回転速度が低くメカオイルポンプから供給される油の流量が少ない場合は、締結予定のクラッチの油室に油を充填するのに時間を要してクラッチピストンのストローク速度が低下し、意図した変速速度が得られない可能性がある。
 さらに、近年、次に行われる変速で実現される変速段を予測し、予測される変速段で締結されるクラッチの油室に予め油を充填(プリチャージ)しておき、当該クラッチを締結直前の状態で待機させておくことにより、次に変速を行う時の変速速度を向上させる予測制御と呼ばれる技術が提案されている。このような予測制御を行う自動変速機においては、必要な流量が多くなる傾向にあり、上記変速速度の低下の問題が顕著となる。
 本発明は、このような技術的課題に鑑みてなされたもので、電動オイルポンプの駆動条件を見直し、油の流量不足に起因する自動変速機の変速速度の低下を防止することを目的とする。
 本発明のある態様によれば、車両に搭載される自動変速機であって、エンジンによって駆動されて前記自動変速機に油を供給するメカオイルポンプと、電気モータによって駆動されて前記自動変速機に油を供給する電動オイルポンプと、前記車両の走行中、前記自動変速機で必要とされる油の流量を算出し、算出された前記自動変速機で必要とされる油の流量が前記自動変速機で必要な油圧を確保した状態で生じる前記メカオイルポンプの余裕流量よりも多い場合に前記電動オイルポンプを駆動するコントローラと、を備えた自動変速機が提供される。
 本発明の別の態様によれば、これに対応する電動オイルポンプの制御方法が提供される。
 これらの態様によれば、車両走行中であっても、自動変速機で必要とされる油の流量がメカオイルポンプの余裕流量よりも多い場合に電動オイルポンプが駆動されるので、自動変速機における油の流量不足を防止でき、油の流量不足に起因する変速速度の低下を防止できる。
図1は、本発明が適用される自動変速機及びその油圧回路の概略構成図である。 図2は、メカオイルポンプの回転速度に対するライン圧及び余裕流量の関係を示した図である。 図3は、電動オイルポンプ駆動制御の内容を示したフローチャートである。 図4は、Nmop-PL特性テーブルである。 図5は、必要潤滑流量を算出するためのテーブルである。 図6は、必要チャージ流量を算出するためのテーブルである。 図7は、電動オイルポンプの目標回転速度を算出するためのテーブルである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本発明が適用される自動変速機10及びその油圧回路20の概略構成を示している。
 自動変速機10は、複数の遊星歯車機構(不図示)、ロックアップ機構11、及び、複数のクラッチ12を有し、複数のクラッチ12のうち締結されるクラッチの組み合わせを変更することにより複数の変速段を実現することができる有段変速機である。自動変速機10は、車両に搭載され、動力源としてのエンジン(不図示)から入力される回転を変速段に応じた変速比で変速し、駆動輪(不図示)へと出力する。
 自動変速機10のロックアップ機構11、複数のクラッチ12及び潤滑部位には油圧回路20から油が供給される。油圧回路20は、レギュレータバルブ21及び複数のコントロールバルブ22を備える。レギュレータバルブ21はメカオイルポンプ31及び電動オイルポンプ32のいずれか一方又は両方が発生する油圧を元圧としてライン圧PLを生成するソレノイドバルブである。複数のコントロールバルブ22は、ロックアップ機構11及び複数のクラッチ12の各油室に供給される油の油圧を調整するソレノイドバルブである。
 自動変速機10の入力軸からメカオイルポンプ31へはギヤを介して回転が伝達可能になっており、メカオイルポンプ31はエンジンによって駆動される。メカオイルポンプ31によって生成される油圧はエンジンの回転に依存して変化し、エンジンが停止するとメカオイルポンプ31によって生成される油圧はゼロになる。
 電動オイルポンプ32は、電気モータ32mによって駆動されるポンプである。電気モータ32mは図示しないバッテリから供給される電力によって駆動することができるので、電動オイルポンプ32はエンジンの運転状態に関係無く駆動することができる。
 コントローラ40は、車両の運転状態に応じて自動変速機10のロックアップ状態及び変速段を制御する。
 具体的には、コントローラ40には、アクセルペダルの操作量APOを検出するセンサ51、自動変速機10の油温Tを検出するセンサ52、自動変速機10の入力軸の回転速度Nin(∝メカオイルポンプ31の回転速度Nmop)を検出するセンサ53、車速VSPを検出するセンサ54、ライン圧PLを検出するセンサ55等からの信号が入力される。
 コントローラ40は、これらに基づき目標とするロックアップ状態及び変速段を決定し、目標とするロックアップ状態及び変速段が実現されるよう、ロックアップ機構11及び複数のクラッチ12への油の供給状態を変更する。
 また、コントローラ40は、次の変速で実現される変速段を予測し、予測される変速段で締結されるクラッチの油室に予め油を充填(プリチャージ)して当該クラッチを締結直前の状態で待機させておき、次の変速を行う時の変速速度を向上させる予測制御を併せて行う。予測される変速段は、例えば、現在の変速段に隣接するアップシフト側とダウンシフト側の変速段である。
 ところで、自動変速機10で必要とされる油圧(以下、目標ライン圧tPL)は、ロックアップ機構11で必要なトルク容量を実現するのに必要な油圧Plu、選択中の変速段で締結されるクラッチで必要なトルク容量を実現するのに必要な油圧Pcl、選択中の変速段及び予測される変速段で締結されるクラッチの各々の油室に油を充填するのに必要な油圧のうち最も高い値(必要チャージ圧)Pchg、自動変速機10の潤滑部位に油圧を供給するのに必要な油圧(必要潤滑圧)Plubをそれぞれ算出し、それらのうち最も高い値を選択することで算出される。そして、メカオイルポンプ31の回転速度Nmopが目標ライン圧tPLを確保できる回転速度(以下、「必要回転速度」という。)Nreqを超えていれば油圧が足りていると考えられる。
 しかしながら、締結予定のクラッチの油室に油を充填してクラッチピストンをストロークさせるために利用できる油の流量(余裕流量Qmgn)は、図2に示されるように、メカオイルポンプ31の回転速度Nmopが必要回転速度Nreqに達し、目標ライン圧tPLを確保できるようになってから初めて確保される。
 このため、車両走行中であっても、メカオイルポンプ31の回転速度Nmopと必要回転速度Nreqとの差が小さく、余裕流量Qmgnも少ないと、締結予定のクラッチの油室に油を充填するのに時間がかかり、クラッチピストンのストローク速度低下により変速速度が低下する。
 そこで、本実施形態では、コントローラ40は、車両走行中、以下に説明する電動オイルポンプ駆動制御を実行し、車両が走行中であっても油の流量が不足する状況では電動オイルポンプ32を積極的に駆動するようにし、油の流量不足に起因する変速速度の低下を防止する。
 図3は、電動オイルポンプ駆動制御の内容を示したフローチャートである。本フローチャートは、車両走行中、コントローラ40によって繰り返し実行される。
 以下、図3を参照しながら電動オイルポンプ駆動制御の内容について詳述する。
 まず、ステップS1では、コントローラ40は、メカオイルポンプ31の余裕流量Qmgnを算出する。余裕流量Qmgnは、ここでは図4に示すNmop-PL特性テーブルを用いて算出する。Nmop-PL特性テーブルは、メカオイルポンプ31の回転速度Nmopとメカオイルポンプ31が駆動されることで発生するライン圧PLとの関係を油温T毎に示したものである。
 コントローラ40は、センサ52で検出される油温Tに対応するNmop-PL特性線を図4に示すNmop-PL特性テーブルから選択し、選択されたNmop-PL特性線を用いて目標ライン圧tPLを確保するのに必要なメカオイルポンプ31の回転速度である必要回転速度Nreqを検索する。余裕流量Qmgnは、メカオイルポンプ31の回転速度Nmop(センサ53によって検出される回転速度Ninから算出されるメカオイルポンプ31の現在の回転速度)と必要回転速度Nreqとの偏差に比例するので、コントローラ40は、この偏差に定数Vthを掛けて余裕流量Qmgnを算出する。
 Nmop-PL特性テーブルとしては、初期状態では個体差や経年劣化を考慮しないものが予め用意されるが、本実施形態では、これらを考慮できるよう、センサ検出値から求まる実際のNmop-PL特性に基づきNmop-PL特性テーブルを随時補正し、ステップS1の処理では補正後のNmop-PL特性テーブルを用いるようにする。
 具体的には、コントローラ40は、実際のNmop-PL特性を、センサ53で検出される自動変速機10の入力軸の回転速度Ninから算出されるメカオイルポンプ31の回転速度Nmopと、センサ55で検出されるライン圧PLとに基づき求め、Nmop-PL特性テーブルで規定されているNmop-PL特性と実際のNmop-PL特性とのずれを算出し、算出されたずれが縮小ないし解消されるようNmop-PL特性テーブルを修正する。
 ステップS2では、コントローラ40は、余裕流量Qmgnがゼロよりも少ないか判断する。余裕流量Qmgnがゼロよりも少ない場合は、メカオイルポンプ31の回転速度Nmopが必要回転速度Nreqよりも低く、自動変速機10で必要とされる油圧である目標ライン圧tPLを確保できていない。このような場合は、コントローラ40は処理をステップS10に進め、電動オイルポンプ32を直ちに起動し、ロックアップ機構11のロックアップ不良や複数のクラッチ12の締結不良が起こらないようにする。
 これに対し、余裕流量Qmgnがゼロよりも多い場合は、コントローラ40は処理をステップS3に進める。
 ステップS3では、コントローラ40は、自動変速機10で必要とされる潤滑流量である必要潤滑流量Qlubを算出する。具体的には、コントローラ40は、図5に示すテーブルを参照して、目標ライン圧tPLの算出で用いた必要潤滑圧Plub及びセンサ52で検出される油温Tに対応する値を検索することで、必要潤滑流量Qlubを算出する。必要潤滑流量Qlubは、必要潤滑圧Plubが高くなるほど、また、油温Tが高くなるほど多くなる傾向を有する。油温Tが高くなるほど必要潤滑流量Qlubが増えるのは、油温Tが高くなるほど油の粘度が下がり、コントロールバルブ22等からの油のリーク量が増大するからである。
 ステップS4では、コントローラ40は、複数のクラッチ12のうち締結予定のクラッチの油室に油を充填するために必要な油の流量である必要チャージ流量Qchgを算出する。
 具体的には、コントローラ40は、目標ライン圧tPLからリターン圧Prtn(定数)を引いて得られるクラッチ回路圧損及びセンサ52で検出される油温Tに対応する値を図6に示すテーブルから検索することで、締結予定のクラッチ各々について必要チャージ流量qchgを算出し、それらの総和を必要チャージ流量Qchgとして算出する。
 必要チャージ流量Qchg、qchgは、必要チャージ圧Pchgが高くなるほど、また、油温Tが高くなるほど多くなる傾向を有する。油温Tが高くなるほど必要チャージ流量Qchg、qchgが増えるのは、油温Tが高くなるほど油の粘度が下がり、コントロールバルブ22等からの油のリーク量が増大するからである。
 ステップS5では、コントローラ40は、必要潤滑流量Qlubと必要チャージ流量Qchgの和である必要流量Qreqが余裕流量Qmgnよりも多いか判断する。必要流量Qreqが余裕流量Qmgnよりも多い場合は、油の流量が不足しているので、コントローラ40は処理をステップS6以降に進め、電動オイルポンプ32を駆動することによって不足している流量を補う。
 具体的には、コントローラ40は電動オイルポンプ32を起動し(ステップS6)、不足流量Qdef(=必要流量Qreq-余裕流量Qmgn)を電動オイルポンプ32から供給するために必要な電動オイルポンプ32の回転速度である目標回転速度tNeopを算出する(ステップS7)。
 目標回転速度tNeopは、図7に示すテーブルから基本目標回転速度btNeopを検索し、検索された値に対して油圧補正係数を掛けて算出される。
 図7に示すテーブルは、電動オイルポンプ32の回転速度と電動オイルポンプ32からの流量の関係を規定したテーブルである。油温Tが高いほど油の粘度が下がって電動オイルポンプ32の内部リーク量が増えるので、不足流量Qdefが同じであっても油温Tが高いほど目標回転速度tNeopは高くなる傾向を有する。
 また、ライン圧PLが高いほど電動オイルポンプ32の内部リーク量が増大するので、目標ライン圧tPLが高いほど油圧補正係数には大きな値が設定される。
 目標回転速度tNeopを算出したら、コントローラ40は、電動オイルポンプ32の回転速度Neopが目標回転速度tNeopになるように電動オイルポンプ32を回転速度制御する。これにより、不足流量Qdefに等しい流量の油が電動オイルポンプ32から供給され、流量不足は回避される。
 一方、ステップS5で、必要流量Qreqが余裕流量Qmgnよりも多くないと判断された場合は、油の流量が足りているので、コントローラ40は、処理をステップS11に進め、電動オイルポンプ32を駆動しないようにする。電動オイルポンプ32駆動中であれば、コントローラ40は、電動オイルポンプ32を停止させる。
 したがって、上記電動オイルポンプ駆動制御によれば、自動変速機10で必要とされる油の流量(以下、「必要流量」という。)Qreqが算出され、必要流量Qreqが、自動変速機10で必要な油圧(目標ライン圧tPL)を確保した状態で生じるメカオイルポンプ31の余裕流量Qmgnよりも多い場合に電動オイルポンプ32が駆動される。
 具体的には、必要流量Qreqが余裕流量Qmgnよりも多い場合は、必要流量Qreqから余裕流量Qmgnを引いた流量(以下、「不足流量」という。)Qdefの油が電動オイルポンプ32から供給されるように電動オイルポンプ32を駆動する。
 これにより、自動変速機10における油の流量不足を防止できるので、油の流量不足に起因する自動変速機10の変速速度の低下を防止できる。また、電動オイルポンプ32が不必要に駆動されるのを防止し、電動オイルポンプ32が無駄に駆動されることによる電動オイルポンプ32の耐久性の低下、バッテリ消費量の増大、油量過多による抵抗増加を防止できる。
 なお、この有利な作用効果は、自動変速機10が本実施形態のように予測制御を行う場合に顕著である。
 また、余裕流量QmgnをNmop-PL特性テーブルを参照して算出するようにし、Nmop-PL特性テーブルで規定されるNmop-PL特性とセンサ53、55の検出値から求まる実際のNmop-PL特性とのずれを算出し、このずれが縮小されるようにNmop-PL特性テーブルを修正するようにした。
 これにより、個体差や経年劣化を考慮に入れて余裕流量Qmgnを精度よく算出することが可能になり、より適切な時期に電動オイルポンプ32を駆動することが可能になる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態は自動変速機10が有段変速機であるとして説明したが、自動変速機は無段変速機や、無段変速機と有段変速機を組み合わせた変速機であってもよい。
 本願は日本国特許庁に2015年3月25日に出願された特願2015-063134号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  車両に搭載される自動変速機であって、
     エンジンによって駆動されて前記自動変速機に油を供給するメカオイルポンプと、
     電気モータによって駆動されて前記自動変速機に油を供給する電動オイルポンプと、
     前記車両の走行中、前記自動変速機で必要とされる油の流量を算出し、算出された前記自動変速機で必要とされる油の流量が前記自動変速機で必要な油圧を確保した状態で生じる前記メカオイルポンプの余裕流量よりも多い場合に前記電動オイルポンプを駆動するコントローラと、
    を備えた自動変速機。
  2.  請求項1に記載の自動変速機であって、
     前記コントローラは、算出された前記自動変速機で必要とされる油の流量が前記余裕流量よりも多い場合は、算出された前記自動変速機で必要とされる油の流量から前記余裕流量を引いた流量の油が前記電動オイルポンプから供給されるように前記電動オイルポンプを駆動する、
    自動変速機。
  3.  請求項1又は2に記載の自動変速機であって、
     前記コントローラは、次に行われる変速を予測し、次の変速で締結されるクラッチに予め油を供給するプリチャージを行う、
    自動変速機。
  4.  請求項1から3のいずれかに記載の自動変速機であって、
     前記コントローラは、
     前記メカオイルポンプの回転速度と前記メカオイルポンプによって発生する油圧の関係を規定した特性テーブルを参照することによって、前記自動変速機で必要な油圧を発生させるのに必要な前記メカオイルポンプの回転速度を算出し、
     前記自動変速機で必要な油圧を発生させるのに必要な前記メカオイルポンプの回転速度と前記メカオイルポンプの回転速度との偏差に基づき前記余裕流量を算出し、
     センサ検出値から求まる前記メカオイルポンプの回転速度と前記メカオイルポンプによって発生する油圧との実際の関係に基づき、前記特性テーブルで規定される関係と前記実際の関係とのずれが縮小されるように前記特性テーブルを修正する、
    自動変速機。
  5.  車両に搭載されエンジンによって駆動されるメカオイルポンプと電気モータによって駆動される電動オイルポンプとから油が供給される自動変速機における電動オイルポンプの制御方法であって、
     前記車両の走行中、前記自動変速機で必要とされる流量を算出し、
     算出された前記自動変速機で必要とされる流量が、前記自動変速機で必要な油圧を確保した状態で生じる前記メカオイルポンプの余裕流量よりも多い場合に前記電動オイルポンプを駆動する、
    電動オイルポンプの制御方法。
PCT/JP2016/050678 2015-03-25 2016-01-12 自動変速機及び電動オイルポンプの制御方法 WO2016152193A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/558,848 US10473212B2 (en) 2015-03-25 2016-01-12 Automatic transmission and control method for electric oil pump
EP16768096.6A EP3276214A4 (en) 2015-03-25 2016-01-12 Automatic transmission, and electric oil pump control method
JP2017507524A JP6680761B2 (ja) 2015-03-25 2016-01-12 自動変速機及び電動オイルポンプの制御方法
CN201680016091.5A CN107407402B (zh) 2015-03-25 2016-01-12 自动变速器及电动油泵的控制方法
KR1020177025760A KR20170118140A (ko) 2015-03-25 2016-01-12 자동 변속기, 및 전동 오일 펌프의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-063134 2015-03-25
JP2015063134 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152193A1 true WO2016152193A1 (ja) 2016-09-29

Family

ID=56978787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050678 WO2016152193A1 (ja) 2015-03-25 2016-01-12 自動変速機及び電動オイルポンプの制御方法

Country Status (6)

Country Link
US (1) US10473212B2 (ja)
EP (1) EP3276214A4 (ja)
JP (1) JP6680761B2 (ja)
KR (1) KR20170118140A (ja)
CN (1) CN107407402B (ja)
WO (1) WO2016152193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019501A (zh) * 2017-03-29 2018-05-11 长城汽车股份有限公司 变速器液压系统、控制方法及车辆
AU2018243116B2 (en) * 2017-03-29 2021-03-11 Great Wall Motor Company Limited Dual-clutch automatic transmission cooling lubricating hydraulic control system and vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028040B (zh) * 2021-03-24 2022-06-07 湖南工程学院 一种电动车用自动变速器润滑流量控制装置及方法
CN113757354B (zh) * 2021-10-11 2023-06-23 安徽江淮汽车集团股份有限公司 一种自动变速箱的电子油泵的控制方法及装置
CN116538291A (zh) * 2023-05-08 2023-08-04 蜂巢传动科技邳州有限公司 变速箱电液控制系统的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108417A (ja) * 2002-09-13 2004-04-08 Toyota Motor Corp 車両用油圧ポンプの駆動制御装置
JP2011208706A (ja) * 2010-03-29 2011-10-20 Aisin Aw Co Ltd 変速制御装置および変速機装置
JP2013245789A (ja) * 2012-05-28 2013-12-09 Mitsubishi Fuso Truck & Bus Corp 自動変速機用オイルポンプの制御装置
JP5585736B2 (ja) * 2011-10-17 2014-09-10 トヨタ自動車株式会社 車両制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800900A (en) * 1968-09-27 1974-04-02 Ford Motor Co Hydraulic steering system having auxiliary power source
US5517410A (en) * 1993-07-08 1996-05-14 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling vehicle drive force depending upon vehicle load determined by engine load and vehicle speed
JP2878976B2 (ja) * 1994-10-31 1999-04-05 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JPH1182721A (ja) * 1997-09-05 1999-03-26 Toyota Motor Corp 自動変速機の変速制御装置
JP4484316B2 (ja) * 2000-05-18 2010-06-16 ジヤトコ株式会社 ベルト式無段変速機の制御装置
US6931316B2 (en) * 2002-06-05 2005-08-16 Nissan Motor Co., Ltd. Toroidal continuously variable transmission control apparatus
DE102005028848A1 (de) * 2005-06-22 2007-01-11 Zf Friedrichshafen Ag Antriebssteuerungsvorrichtung eines Automatgetriebes für ein Kraftfahrzeug und Verfahren dafür
JP4380636B2 (ja) 2006-01-24 2009-12-09 トヨタ自動車株式会社 電動車両のオイルポンプ制御装置およびそれを搭載する電動車両
JP5018272B2 (ja) * 2007-06-27 2012-09-05 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5266111B2 (ja) * 2009-03-19 2013-08-21 株式会社豊田中央研究所 自動変速機の油圧供給装置
JP4910026B2 (ja) * 2009-09-18 2012-04-04 ジヤトコ株式会社 自動変速機の制御装置及びその学習方法
JP5191971B2 (ja) * 2009-10-06 2013-05-08 ジヤトコ株式会社 車両のオイルポンプ制御装置
DE102009054754B4 (de) 2009-12-16 2019-02-07 Zf Friedrichshafen Ag Verfahren zum Betreiben einer elektrischen Zusatzpumpe, Vorrichtung zur Durchführung eines solchen Verfahrens, und Hydrauliksystem mit einer solchen Vorrichtung.
JP2014177178A (ja) 2013-03-14 2014-09-25 Daimler Ag ハイブリッド電気自動車の制御装置
DE102015201107A1 (de) 2015-01-23 2016-07-28 Volkswagen Aktiengesellschaft Verfahren zur Steuerung und/oder Regelung eines Hydrauliksystems eines Kraftfahrzeuges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108417A (ja) * 2002-09-13 2004-04-08 Toyota Motor Corp 車両用油圧ポンプの駆動制御装置
JP2011208706A (ja) * 2010-03-29 2011-10-20 Aisin Aw Co Ltd 変速制御装置および変速機装置
JP5585736B2 (ja) * 2011-10-17 2014-09-10 トヨタ自動車株式会社 車両制御装置
JP2013245789A (ja) * 2012-05-28 2013-12-09 Mitsubishi Fuso Truck & Bus Corp 自動変速機用オイルポンプの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276214A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019501A (zh) * 2017-03-29 2018-05-11 长城汽车股份有限公司 变速器液压系统、控制方法及车辆
AU2018243116B2 (en) * 2017-03-29 2021-03-11 Great Wall Motor Company Limited Dual-clutch automatic transmission cooling lubricating hydraulic control system and vehicle
US11255423B2 (en) 2017-03-29 2022-02-22 Great Wall Motor Company Limited Dual-clutch automatic transmission cooling and lubrication hydraulic control system and vehicle

Also Published As

Publication number Publication date
JP6680761B2 (ja) 2020-04-15
US20180073629A1 (en) 2018-03-15
EP3276214A1 (en) 2018-01-31
EP3276214A4 (en) 2018-04-04
KR20170118140A (ko) 2017-10-24
US10473212B2 (en) 2019-11-12
CN107407402A (zh) 2017-11-28
JPWO2016152193A1 (ja) 2017-12-28
CN107407402B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2016152193A1 (ja) 自動変速機及び電動オイルポンプの制御方法
JP3562324B2 (ja) 自動変速機のオイルポンプ回転数制御装置
US8682554B2 (en) Control device of lock-up clutch
US8594898B2 (en) CVT control apparatus
US20150167834A1 (en) Apparatus and method for controlling electric oil pump for automatic transmission
US9002607B2 (en) Lock-up clutch control device
US9796389B2 (en) Control device and control method for driving device
JP3716757B2 (ja) オイルポンプ制御装置、およびエア混入量推定装置
US9995389B2 (en) Continuously variable transmission control device and control method
CN109386608B (zh) 液压控制装置
JP5377072B2 (ja) 無段変速機の制御装置
JP6329193B2 (ja) 自動変速機の制御装置および制御方法
JP6252411B2 (ja) 油圧制御装置
JP5831287B2 (ja) 無段変速機の制御装置
US10082204B2 (en) Control apparatus and method of automatic transmission
JP2014199115A (ja) 自動変速機の制御装置
JP6329192B2 (ja) 自動変速機の制御装置および制御方法
JP2005170280A (ja) 車両用動力伝達装置の制御装置
JP2022123475A (ja) オイルポンプの吐出量切替装置
JP5006907B2 (ja) 無段変速機の制御装置
CN114857231A (zh) 基于预测的变速器换挡控制
JP2009041689A (ja) 油圧制御装置及びそれを用いた車両用駆動装置
JP2018146050A (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP2014199116A (ja) 自動変速機の制御装置
JP2010121556A (ja) 自動変速機の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507524

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768096

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177025760

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558848

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE