WO2016147668A1 - 構造用鋼の摩擦撹拌接合装置 - Google Patents

構造用鋼の摩擦撹拌接合装置 Download PDF

Info

Publication number
WO2016147668A1
WO2016147668A1 PCT/JP2016/001542 JP2016001542W WO2016147668A1 WO 2016147668 A1 WO2016147668 A1 WO 2016147668A1 JP 2016001542 W JP2016001542 W JP 2016001542W WO 2016147668 A1 WO2016147668 A1 WO 2016147668A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
joining
friction stir
stir welding
region
Prior art date
Application number
PCT/JP2016/001542
Other languages
English (en)
French (fr)
Inventor
松下 宗生
公一 谷口
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020177024293A priority Critical patent/KR101954561B1/ko
Priority to EP16764499.6A priority patent/EP3251782A4/en
Priority to CN201680015809.9A priority patent/CN107405723A/zh
Priority to US15/556,792 priority patent/US10766099B2/en
Priority to JP2016538819A priority patent/JP6004147B1/ja
Publication of WO2016147668A1 publication Critical patent/WO2016147668A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/125Rotary tool drive mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the rotating tool is inserted into the unjoined portion between the workpieces and moved while rotating, and the rotating tool stirs the softened portion due to frictional heat with the rotating tool and the softened portion is stirred by the rotating tool.
  • the present invention relates to an apparatus for advantageously eliminating a plastic flow failure due to insufficient heating and improving bonding workability with sufficient strength.
  • a butt portion that is in a state where the steel plates are just butt but not yet joined is referred to as an “unjoined portion”, while a portion joined and integrated by plastic flow is referred to as a “joined portion”. Shall be called.
  • Patent Document 1 As a friction welding method, in Patent Document 1, by rotating both or one of a pair of metal materials, the metal material generates frictional heat and softens, while the softened portion is stirred to cause plastic flow. Thus, a technique for joining metal materials is disclosed.
  • Patent Document 2 a tool made of a material that is substantially harder than a workpiece is inserted into an unjoined portion of the workpiece, and the tool and workpiece are moved by rotating the tool while rotating the tool.
  • a method forriction stir welding method in which workpieces are continuously joined in the longitudinal direction by heat and plastic flow generated between the two.
  • the friction welding method described in Patent Document 1 is a method of rotating workpieces and welding them by frictional heat between workpieces.
  • the friction stir welding method disclosed in Patent Document 2 can be joined by moving the tool while rotating the joining member. For this reason, there is an advantage that even a member that is substantially infinitely long in the welding direction can be continuously solid-phase bonded in the longitudinal direction.
  • it since it is a solid phase joining using the plastic flow of the metal by the frictional heat of a rotary tool and a joining member, it can join, without melt
  • the heating temperature is low, deformation after joining is small, and since the joint is not melted, there are few defects, and in addition, there is no need for a filler material.
  • the friction stir welding method is a method of joining low melting point metal materials represented by aluminum alloys and magnesium alloys, and its use is expanding in the fields of aircraft, ships, railway vehicles, automobiles, and the like.
  • the reason for this is that these low-melting-point metal materials are difficult to obtain satisfactory characteristics of joints by conventional arc welding methods, and improve the productivity and high quality by applying the friction stir welding method. This is because a joint can be obtained.
  • the application of friction stir welding to structural steel which is mainly applied as a structural material such as buildings, ships, heavy machinery, pipelines, and automobiles, is subject to solidification cracking and hydrogen cracking, which are problems in conventional fusion welding. Since the structural change of the steel material is suppressed, it can be expected that the joint performance is excellent. In addition, since the clean surfaces can be brought into contact with each other by stirring the bonding interface with a rotating tool, a merit that a preparatory step such as diffusion bonding is unnecessary can be expected. Thus, the application of the friction stir welding method to structural steel is expected to have many advantages. However, since the problem remains in joining workability, such as suppression of defect generation at the time of joining and an increase in joining speed, it has not been widely used as compared with low melting point metal materials.
  • Patent Documents 5 and 6 disclose a joining method in which a heating function other than frictional heat generated between the rotary tool and the material to be joined is added for the purpose of improving the joining workability.
  • Patent Document 5 discloses a friction that has a heating function using an induction heating device and heats workpieces before and after joining to increase the joining speed and eliminate cracks in the joint.
  • a heating device of the stir welding method is disclosed.
  • Patent Document 6 has a heating function using a laser device, and by partially heating the workpieces immediately before bonding, the bonding speed is suppressed while suppressing the microstructure change around the heating region due to preheating.
  • a friction stir welding apparatus that achieves a higher speed is disclosed.
  • the present invention has been developed in view of the above-described situation, and in the friction stir welding of structural steel, the plastic flow failure due to insufficient heating of the workpieces is advantageously eliminated, and sufficient strength is obtained. It is an object of the present invention to provide a friction stir welding apparatus capable of improving the performance. For this purpose, a friction stir welding apparatus capable of executing pre-heat treatment process conditions that are particularly strictly defined is provided.
  • a friction stir welding apparatus capable of performing a pre-heat treatment process before friction stir welding is effective in order to avoid the deterioration of joining workability, which is very important in industrializing this technology.
  • the inventors examined various pre-heat treatment process conditions before friction stir welding.
  • the present invention is based on the above findings.
  • the gist of the present invention is as follows. 1. A shoulder portion and a pin portion arranged on the shoulder portion and sharing a rotation axis with the shoulder portion, wherein at least the shoulder portion and the pin portion are made of a material harder than a steel plate as a workpiece, and the steel plate is not joined A rotating tool that is inserted into the part and moves in the joining direction while rotating, and softens the steel sheet by frictional heat with the steel sheet, and generates a plastic flow by stirring the softened part; A heating device that is provided in front of the rotating tool that moves in the joining direction and heats the steel sheet; Due to the heating, the surface temperature T S (° C.) of the steel sheet is T S ⁇ 0.8 ⁇ T A1 (T A1 is shown in the following formula (1)) When the heating region is a heating region, the minimum distance between the heating region and the rotating tool on the surface of the steel sheet is equal to or less than the diameter of the shoulder of the rotating tool, Further, the area of the heating region on the surface of the steel sheet is not
  • a friction stir welding apparatus for structural steel located between a side and a straight line separated by the same distance as the maximum radius of the pin portion of the rotating tool.
  • T A1 (°C) 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] (1)
  • [% M] is the content (mass%) of the M element in the steel plate which is a workpiece. 2.
  • T D (° C.)
  • T A1 T A1 are shown in the following equation (1)
  • T A1 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] (1)
  • [% M] is the content (mass%) of the M element in the steel plate which is a workpiece. 3.
  • the structural steel friction stir welding apparatus according to 1 or 2, wherein the heating apparatus is a laser heating apparatus. 4). 4. The friction stir welding apparatus for structural steel according to any one of claims 1 to 3, further comprising a rear heating device that is provided behind the rotary tool that moves in a joining direction and heats a joining portion of the steel plates. 5. 5. The friction stir welding apparatus for structural steel according to 4, further comprising a cooling device that is provided behind the rotating tool and after the rear heating device and that cools a joint portion of the steel plate. 6). 4. The friction stir welding apparatus for structural steel according to any one of claims 1 to 3, further comprising a cooling device that is provided behind the rotary tool that moves in a bonding direction and cools a bonded portion of the steel sheet. 7). The friction stir welding apparatus for structural steel as described in 6 above, having a rear heating device that is provided behind the rotating tool that moves in the joining direction and behind the cooling device and reheats the joined portion of the steel sheet.
  • the friction stir welding apparatus When the friction stir welding apparatus according to the present invention is used, it is possible to advantageously eliminate the plastic flow failure due to insufficient heating of work materials, which has been a concern in the past, in friction stir welding of structural steel, and to improve the joining workability. it can. Furthermore, a change in the microstructure can be suppressed, and a high joint strength can be obtained at the joint.
  • FIG. 1 is a schematic view illustrating the friction stir welding method of the present invention.
  • FIG. 2 is a diagram (top view and AA cross-sectional view) showing an example of a heating region in a preheating process, a cooling region and a reheating region in a process performed after bonding.
  • FIG. 3 is a diagram showing the relationship between temperature and tensile strength for an example of structural steel to be used in the friction stir welding apparatus of the present invention.
  • FIG. 4 is a diagram illustrating a cross-sectional dimension of the rotary tool used in the example.
  • the present invention is a friction stir welding apparatus for structural steel, and as shown in FIG. 1, a rotating tool is inserted into an unjoined portion of a steel plate and moved in a joining direction while being rotated. While the steel plate is softened by frictional heat, the softened portion is agitated with a rotating tool to cause plastic flow, thereby joining the steel plates.
  • the rotating tool includes a shoulder portion and a pin portion that is disposed on the shoulder portion and shares the rotation axis with the shoulder portion, and at least the shoulder portion and the pin portion are made of a material harder than a steel plate that is a workpiece. It is formed.
  • reference numeral 1 is a rotating tool
  • 2 is a rotating shaft
  • 3 is a steel plate
  • 4 is a joint
  • 5 is a heating device
  • 6 is a cooling device
  • 7 is a rear heating device
  • 8 is a shoulder of the rotating tool
  • 9 is rotating. It is a pin part of a tool
  • indicates a rotation tool inclination angle.
  • AS and RS represent an advancing side and a retreating side, respectively.
  • the advanced side is defined as the side where the tool rotation direction coincides with the joining direction
  • the retreating side is defined as the side where the tool rotation direction is opposite to the joining direction
  • reference numeral 10 denotes a joining center line
  • this joining center line indicates a straight line passing through the rotation axis of the rotary tool on the surface of the steel plate and parallel to the joining direction.
  • 11 is a straight line (hereinafter referred to as the AS line) that is parallel to the joining center line and separated to the advanced side by the same distance as the maximum radius of the pin part of the rotary tool
  • 12 is a heating area
  • 13 is a cooling area
  • 14 is a reheating area
  • a is the shoulder diameter of the rotating tool
  • b is the maximum diameter of the pin part of the rotating tool
  • X is the minimum distance between the heating area and the rotating tool
  • D is the maximum heating area.
  • Depth (hereinafter referred to as heating area depth D) is indicated by t
  • the thickness of the steel sheet is indicated by t.
  • T A1 (°C) 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] (1)
  • [% M] is the content (mass%) of the M element in the steel sheet as the workpiece, and is 0 when not contained.
  • a temperature gradient may exist on the surface of the heating region.
  • the surface temperature of the steel sheet in the heating region is preferably set to 1.5 ⁇ T M ° C. or less.
  • the surface temperature of the steel sheet in the heating region is set to T M before contacting the rotating tool passing through the heating region. It is preferable to make it less than ° C.
  • T M (° C.) is the melting point of the steel sheet as the workpiece.
  • the minimum distance X between the heating region on the surface of the steel plate and the rotating tool moving in the joining direction is set to be equal to or smaller than the diameter of the shoulder portion of the rotating tool.
  • the minimum distance between the heating region on the surface of the steel plate and the rotating tool moving in the joining direction is 0.1 times or more the diameter of the shoulder of the rotating tool.
  • the diameter of the shoulder of the rotary tool is about 8 to 60 mm.
  • the area of the heating area on the surface of the steel sheet less than the area of the maximum diameter part of the pin part of the rotating tool
  • the heating region 12 becomes too large, the microstructure of the region and the surrounding region changes.
  • the martensite is tempered to soften, greatly reducing the joint strength. End up.
  • region in the surface of a steel plate shall be below the area of the largest diameter part of the pin part of a rotary tool.
  • the maximum radius of the pin part of the rotating tool corresponds to b in the projection figure of the tool shape shown in Fig. IV4, the pin part has a taper shape etc. in other tool shapes, and the pin diameter depends on the location. Is different, it corresponds to a position where the pin diameter is maximum in the projection view.
  • the area of the heating region on the surface of the steel plate is preferably 0.1 times or more the area of the maximum diameter portion in the pin portion of the rotary tool.
  • the maximum diameter of the pin part of the rotating tool is about 2-50mm.
  • the starting point of plastic flow is the advanced side, and along the rotational direction of the rotary tool, it passes through the front in the joining direction, the retreating side, and the rear in the joining direction, and the advanced side is the end point.
  • the advanced side is the starting point of plastic flow
  • the steel sheet, which is the workpiece is likely to be insufficiently heated, and when the plastic flow is insufficient and defects occur, most of them are on the advanced side. appear.
  • the area of the heating region 12 is positioned between the joining center line 10 and the AS line 11 parallel to the joining center line 10 to preferentially heat the advancing side.
  • the plastic flow can be promoted, the occurrence of defects can be suppressed, and the joining speed can be increased.
  • it is 60% or more of the area of a heating area, More preferably, it is 80% or more of range. It may be 100%.
  • the center of the heating region is positioned between the straight line passing through the midpoint between the junction center line and the AS line and the AS line.
  • the center of the heating region is positioned on the advanced side with respect to the joining center line, and the distance from the heating region center to the joining center line is 0.5 times or more and 1 time or less of the maximum radius in the pin portion of the rotary tool. It is preferable to do.
  • the steel plates to be joined by the friction stir welding apparatus of the present invention usually have a strength of about 30% of the strength at normal temperature at a temperature of about 80% of TA1 , which is the transformation temperature of the steel. Moreover, when it becomes higher than this temperature, intensity
  • T D in the thickness direction of the heating area that defines the depth D of the heating zone to be described later shall be defined as 0.8 ⁇ T A1 ° C. or higher.
  • T A1 (° C.) can be obtained by the following equation (1).
  • T A1 (°C) 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] (1)
  • [% M] is the content (mass%) of the M element in the steel sheet as the workpiece.
  • a temperature gradient may exist in the thickness direction of the heating region.
  • the temperature in the thickness direction of the steel sheet in the heating region is preferably set to 1.5 ⁇ T M ° C. or less.
  • the temperature in the thickness direction of the steel sheet in the heating region is in contact with the rotating tool passing through the heating region in order to avoid damage to the rotating tool and alteration of the microstructure due to excessive rise in the temperature of the joint. It is preferable that the temperature is lower than T M ° C.
  • T M (° C.) is the melting point of the steel sheet as the workpiece.
  • the depth D of the heating region is preferably 30% or more of the total thickness of the steel plates. This is because the plastic flow is further promoted by setting the depth D of the heating region to 30% or more of the total thickness of the steel sheet, so that in reducing the load on the rotating tool and increasing the joining speed, This is because it becomes advantageous. More preferably, it is 50% or more of the total thickness of the steel plates.
  • the depth D of the heating region exceeds 90% of the total thickness of the steel plate, the heating is excessive and there is a concern about the change of the microstructure. Therefore, the depth D of the heating region is 90% of the total thickness of the steel plate. % Or less is preferable.
  • the heating device used in the pre-heat treatment process is not particularly limited, but a laser heating device is preferably used.
  • the moving speed of the heating device used in the preheat treatment process may be approximately the same as the joining speed.
  • the laser output and beam diameter should just be set suitably according to joining conditions.
  • the preheat treatment process in the friction stir welding apparatus according to the present invention has been described above.
  • a cooling device is provided behind the rotary tool that moves in the joining direction. Strength can be improved.
  • the cooling device provided behind the rotating tool that moves in the joining direction cools the joining portion of the steel sheet and appropriately controls the cooling rate, thereby improving the strength by quenching.
  • a specific cooling device cooling by injecting an inert gas is suitable.
  • a cooling rate in this case for example, a range from 800 ° C. to 500 ° C. is preferably set to 30 to 300 ° C./s.
  • a rear heating device may be provided behind the rotating tool that moves in the joining direction and after the cooling device described above, and the steel plate joint may be reheated by the rear heating device.
  • the joint properties having both strength and toughness can be achieved by suppressing the hardness by tempering with the rear heating device.
  • the cooling rate is preferably 30 to 300 ° C./s in the range of 800 ° C. to 500 ° C.
  • the reheating temperature is preferably 550 to 650 ° C., for example.
  • a cooling device may be provided behind the rotating tool that moves in the joining direction and after the above-described rear heating device, and the joined portion of the steel plate may be cooled by the cooling device.
  • the structure immediately after joining, the structure can be compounded by reducing the cooling rate with the rear heating device and then increasing the cooling rate with the cooling device, thereby achieving joint characteristics having both strength and ductility. be able to.
  • a cooling rate in this case, for example, it is preferable that the range from 800 ° C. to 600 ° C. is about 10 to 30 ° C./s, and then the range from 600 ° C. to 400 ° C. is about 30 to 300 ° C./s. is there.
  • the rotational speed of the rotary tool is set in the range of 100 to 1000 rpm, and the target is to suppress the torque of the rotary tool and increase the joining speed to 1000 mm / min or more.
  • general structural steel and carbon steel for example, rolled steel for welded structure of JIS G3106, carbon steel for mechanical structure of JIS GG4051, etc. can be suitably used. It can also be advantageously applied to high-strength structural steels with a tensile strength of 800 MPa or more. Even in this case, the strength at the joint is 85% or more of the tensile strength of the steel plate (base material), and even 90%. The above strength can be obtained.
  • Example 1 Friction stir welding was performed using a steel plate having a chemical composition and tensile strength shown in Table 1 with a plate thickness of 1.6 mm. The joint butt surfaces were joined in one pass on one side with a so-called I-shaped groove with no angle and a surface condition of the degree of milling. Table 2 shows the welding conditions of the friction stir welding. Using a rotary tool (shoulder diameter a: 12 mm, pin maximum diameter b: 4.0 mm, probe length c: 1.4 mm) made of tungsten carbide (WC) whose cross-sectional dimensions are shown in FIG. The joint was shielded with gas to prevent surface oxidation.
  • a rotary tool shoulder diameter a: 12 mm, pin maximum diameter b: 4.0 mm, probe length c: 1.4 mm
  • WC tungsten carbide
  • a laser beam was applied to the steel plate 1 in Table 1 under each irradiation condition (laser moving speed, laser output, and beam diameter) shown in Table 3. Irradiated and the surface temperature was measured by thermography. The cross section of the laser irradiated part was observed, and the microstructure was observed with a nital etchant.
  • the region where the transformation point (T A1 ° C) is higher is the darkest, and the region below the transformation point (T A1 ° C) existing outside it is compared, but the region where the high hardness structure such as martensite in the base material is tempered is compared. since the target thin etched areas became transformation point (T A1 ° C.) or higher, tempering area of less than transformation point (T A1 ° C.), the region of the base material are distinguishable respectively. Further, from the knowledge of heat treatment of steel, it is known that the tempering region below the transformation point (T A1 ° C) coincides with the region of 0.8 x T A1 ° C or more and less than T A1 ° C.
  • the depth D 0 of the region where the transformation point (T A1 ° C) or higher and the depth of the region where the temperature becomes 0.8 ⁇ T A1 ° C or higher (depth of the heating region) D) was measured.
  • the region of 0.8 ⁇ T A1 ° C or more was a circular shape having a diameter of 3.5 mm. Since the maximum diameter of the pin portion of the rotating tool used here is 4.0 mm, the area of the heating region on the steel plate surface is equal to or less than the area of the maximum diameter portion of the pin portion of the rotating tool.
  • the region of 0.8 ⁇ T A1 ° C. or higher was a circular shape having a diameter of 2.0 mm. Therefore, similarly to the above, the area of the heating region on the surface of the steel sheet is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool.
  • the region of 0.8 ⁇ TA1 ° C. or higher was a circular shape having a diameter of 4.5 mm. Since the maximum diameter of the pin part of the rotary tool used here is 4.0 mm, the area of the heating region on the steel plate surface exceeds the area of the maximum diameter part of the pin part of the rotary tool.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher (heating region) under irradiation condition A The depths D) were 0.28 and 0.30 mm, respectively. Since the thickness t of the steel plate, which is the workpiece, is 1.6 mm, the depth D of the heating region, which is the depth of the region of 0.8 ⁇ T A1 ° C or higher, is about 18.8% of the thickness t of the steel plate. Become.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher were 0.47 and 0.50 mm, respectively. Since the thickness t of the steel plate, which is a workpiece, is 1.6 mm, the depth D of the heating region is about 31.3% of the thickness t of the steel plate.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher were 0.09 and 0.10 mm, respectively. It was. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 6.3% of the thickness t of the steel plate.
  • Table 5 shows preheating process conditions by laser irradiation performed before joining the workpieces and process conditions performed after joining.
  • cooling by gas ejection was performed, and in the heating (and reheating), induction heating was performed.
  • Table 6 shows the measured values of the torque of the rotating tool when the joining was performed, and a tensile test piece of the size of the No. 1 test piece specified in JIS Z 3121 was obtained from the obtained joint and subjected to a tensile test. The tensile strength is shown.
  • Example 2 As in Example 1, a steel plate with a chemical composition and tensile strength shown in Table 1 with a thickness of 1.6 mm is used, and the surface of the joint butt surface is angled so that it is milled with a so-called I-shaped groove. Friction stir welding was performed with a pass. Table 7 shows the joining conditions of the friction stir welding. Similarly to Example 1, a rotary tool (tungsten diameter a: 12 mm, maximum pin diameter b: 4.0 mm, probe length c: tungsten carbide (WC) whose cross-sectional dimensions are shown in FIG. 4 is used. 1.4mm) was used, and at the time of bonding, the bonded portion was shielded with argon gas to prevent surface oxidation.
  • a rotary tool tungsten diameter a: 12 mm, maximum pin diameter b: 4.0 mm, probe length c: tungsten carbide (WC) whose cross-sectional dimensions are shown in FIG. 4 is used. 1.4mm
  • a laser beam is applied to the steel plate 1 in Table 1 under each irradiation condition (laser moving speed, laser output, and beam diameter) shown in Table 8. Irradiated and the surface temperature was measured by thermography. Further, the cross section of the laser irradiated portion was observed, and the microstructure was observed with a nital corrosion liquid in the same manner as in Example 1. The depth D 0 of the region where the transformation point (T A1 ° C) or higher was reached, and 0.8 ⁇ T The depth of the region where the temperature was A1 ° C. or higher (the depth D of the heating region) was measured.
  • the region where the irradiation condition D is 0.8 ⁇ T A1 ° C or higher is an elliptical diameter in which the laser moving direction is the major axis, and the perpendicular direction to the laser moving direction is the minor axis.
  • the major axis was 3.8 mm and the minor axis was 3.2 mm. Since the maximum diameter of the pin portion of the rotating tool used here is 4.0 mm, the area of the heating region on the steel plate surface is equal to or less than the area of the maximum diameter portion of the pin portion of the rotating tool.
  • the region where the temperature is 0.8 ⁇ T A1 ° C or more has an elliptical diameter in which the laser moving direction has a major axis and a minor axis in the direction perpendicular to the laser moving direction has a major axis of 2.2 mm and a minor axis of 1.8 mm. Therefore, similarly to the above, the area of the heating region on the surface of the steel sheet is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool.
  • the region where the temperature is 0.8 ⁇ T A1 ° C or more has an elliptical diameter in which the laser moving direction is the major axis and the direction perpendicular to the laser moving direction is the minor axis, the major axis is 4.9 mm and the minor axis is 4.1 mm. It was. Since the maximum diameter of the pin part of the rotary tool used here is 4.0 mm, the area of the heating region on the steel plate surface exceeds the area of the maximum diameter part of the pin part of the rotary tool.
  • the depth D 0 of the region that is T A1 ° C or higher under the irradiation condition D and the depth of the region that is 0.8 ⁇ T A1 ° C or higher (heating region) was 0.30 and 0.32 mm, respectively. Since the thickness t of the steel plate, which is the workpiece, is 1.6 mm, the depth D of the heating region, which is the depth of the region over 0.8 ⁇ TA1 ° C., is about 20.0% of the thickness t of the steel plate. Become.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher were 0.51 and 0.54 mm, respectively. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 33.8% of the thickness t of the steel plate.
  • the irradiation condition F (the depth D of the heating zone) T depth of A1 ° C. became more regions D 0 and 0.8 ⁇ T A1 ° C. or higher and became region of depth respectively 0.10,0.11mm met It was. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 6.9% of the thickness t of the steel plate.
  • Table 10 shows preheating process conditions by laser irradiation performed before joining of workpieces and process conditions performed after joining.
  • cooling by gas ejection was performed, and in the heating (and reheating), induction heating was performed.
  • Table 11 shows the measured values of the torque of the rotating tool when joining, and a tensile test piece with the size of the test piece No. 1 specified in JIS Z 3121 was obtained from the obtained joint and subjected to a tensile test. The tensile strength is shown.
  • Comparative Example 6 the rotating tool was damaged during the joining, and the joining could not be performed.
  • Comparative Examples 7 to 10 the unjoined portion remained and could not be joined, and therefore a healthy joint could not be obtained. For this reason, in Comparative Examples 6 to 10, the torque of the rotating tool is not measured.

Abstract

 被加工材の加熱不足による塑性流動不良を有利に解消して、十分な強度を得るともに、接合施工性の向上を図る。本発明に係る摩擦撹拌接合装置は、構造用鋼の摩擦撹拌接合に際し、接合方向へ移動する回転ツールの前方に設けた加熱装置により、被加工材となる鋼板を加熱する予熱処理プロセスを行い、当該予熱処理プロセスにおける加熱領域の表面温度や面積、位置などを厳密に制御するものである。

Description

構造用鋼の摩擦撹拌接合装置
 本発明は、回転ツールを被接合材間の未接合部に挿入し回転させながら移動させ、この回転ツールとの摩擦熱による被接合材の軟化と、その軟化部を回転ツールが撹拌することにより生じる塑性流動を利用して、溶加材を添加することなく接合を行う摩擦撹拌接合方法のための装置において、特に、被接合材が構造用鋼である場合に懸念される、被接合材の加熱不足による塑性流動不良を有利に解消して、十分な強度と共に、接合施工性の向上を図ろうとするための装置に関するものである。
 なお、本明細書では、例えば鋼板を突き合わせただけで未だ接合されていない状態にある突き合わせ部分を「未接合部」、一方、塑性流動により接合されて一体化された部分を「接合部」と呼ぶものとする。
 摩擦溶接法として、特許文献1には、一対の金属材料の両方または片方を回転することにより、金属材料に摩擦熱を生じさせて軟化させながら、その軟化した部位を撹拌して塑性流動を起こすことによって、金属材料を接合する技術が開示されている。
 しかしながら、この技術は、接合対象とする金属材料を回転させるものであるから、接合する金属材料の形状や寸法に限界がある。
 一方、特許文献2には、被加工材よりも実質的に硬い材質からなるツールを被加工材の未接合部に挿入し、このツールを回転させながら移動させることにより、ツールと被加工材との間に生じる熱と塑性流動によって、被加工材を長手方向に連続的に接合する方法(摩擦撹拌接合法)が提案されている。
 特許文献1に記載された摩擦溶接法は、被加工材同士を回転させ、被加工材同士の摩擦熱によって溶接する方法である。一方、特許文献2に開示の摩擦撹拌接合法は、接合部材を固定した状態で、ツールを回転させながら移動することにより接合できる。このため、溶接方向に対して実質的に無限に長い部材にもその長手方向に連続的に固相接合できるという利点がある。また、回転ツールと接合部材との摩擦熱による金属の塑性流動を利用した固相接合であるため、接合部を溶融することなく接合することができる。さらに、加熱温度が低いため接合後の変形が少なく、また接合部は溶融されないため欠陥が少なく、加えて溶加材を必要としないなど多くの利点がある。
 摩擦撹拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属材料の接合法として、航空機、船舶、鉄道車輌および自動車等の分野で利用が広がってきている。この理由としては、これらの低融点金属材料は、従来のアーク溶接法では接合部の満足な特性を得ることが難しく、摩擦撹拌接合法を適用することにより生産性を向上すると共に、品質の高い接合部を得ることができるためである。
 一方、建築物や船舶、重機、パイプライン、自動車といった構造物の素材として主に適用されている構造用鋼に対する摩擦撹拌接合法の適用は、従来の溶融溶接で課題となる凝固割れや水素割れを回避できるとともに、鋼材の組織変化も抑制されるので、継手性能に優れることが期待できる。また、回転ツールにより接合界面を撹拌することで清浄面を創出して清浄面同士を接触できるので、拡散接合のような前準備工程は不要であるというメリットも期待できる。このように、構造用鋼に対する摩擦撹拌接合法の適用は、多くの利点が期待される。しかし、接合時における欠陥発生の抑制や接合速度の高速度化といった接合施工性に問題を残していたため、低融点金属材料と比較して普及が進んでいない。
 構造用鋼の摩擦撹拌接合においては、特許文献3および特許文献4に記載されているように、回転ツールとして多結晶硼素窒化物(PCBN)や窒化珪素(SiN4)などの高耐磨耗性材料を用いているのが現状である。しかしながら、これらのセラミックスは脆いので、回転ツールの破損を防止するために、接合する鋼板の板厚やその施工条件が著しく制限される。
 また、特許文献5および6には、接合施工性の向上を目的として、回転ツールと被接合材間に生じる摩擦熱以外の加熱機能を付加した接合方法が開示されている。
 例えば、特許文献5には、誘導加熱装置を用いた加熱機能を有し、接合前後に被加工材の加熱を行うことで、接合速度の高速度化や接合部の割れの解消を図った摩擦撹拌接合法の加熱装置が開示されている。
 また、特許文献6には、レーザ装置を用いた加熱機能を有し、接合直前に被加工材を部分的に加熱することで、予熱による加熱領域周辺のミクロ組織変化を抑制しつつ接合速度の高速度化を図った摩擦撹拌接合装置が開示されている。
 しかしながら、特許文献5および6の技術では、接合前の加熱による被加工材の加熱領域の表面温度や深さ等について注意が払われておらず、そのため、十分な接合施工性が得られない。さらに、過剰加熱により加熱領域周辺のミクロ組織が変化し、接合継手特性、特に接合継手強度に悪影響を及ぼす場合があった。そのため、十分な強度を得るとともに、接合施工性を向上させた実際的な摩擦撹拌接合方法とそれを可能とする装置は、未だ見出せていないのが現状である。
特開昭62-183979号公報 特表平7-505090号公報 特表2003-532542号公報 特表2003-532543号公報 特開2003-94175号公報 特開2005-288474号公報
 本発明は、上記の現状に鑑み開発されたもので、構造用鋼の摩擦撹拌接合に際し、被加工材の加熱不足による塑性流動不良を有利に解消して、十分な強度を得るとともに、接合施工性の向上を図ることができる摩擦撹拌接合装置を提供することを目的とする。そしてそのために、特に厳密に規定した予熱処理プロセス条件を実行可能な摩擦撹拌接合装置を提供する。
 発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下に述べる知見を得た。
 a)通常の摩擦撹拌接合では、接合のために必要な熱源が、回転ツールと被加工材との間で発生する摩擦熱のみである。そのため、構造用鋼を摩擦撹拌接合法により接合する場合には、被加工材である構造用鋼を軟化させるために必要な熱量を十分に確保することができない。その結果、接合部において十分な塑性流動が得られず、接合速度の低下や接合欠陥の発生などといった接合施工性の劣化が懸念される。
 上記した本技術を工業化する上で非常に重要となる接合施工性の劣化を回避するためには、摩擦撹拌接合前の予熱処理プロセスが実行可能な摩擦撹拌接合装置が有効であると考えられる。
 b)しかしながら、摩擦撹拌接合前の予熱処理プロセスを行う際に、予熱熱量が過剰になると、加熱領域周辺のミクロ組織が変化するという問題が生じる。特に、マルテンサイト組織により強化された高張力鋼板の場合は、加熱領域周辺が、フェライト-オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化を生じ、接合継手強度を著しく低下させる。
 発明者らは、摩擦撹拌接合前の予熱処理プロセス条件について種々検討した。
 その結果、
c)レーザなどのエネルギー密度の高い熱源を用いることで、予熱処理プロセスでの加熱領域の表面温度、面積、位置を厳密に制御し、また必要に応じて加熱領域の厚さ方向における温度についても適正に制御する。それにより、接合継手強度等の接合継手特性の劣化を招くことなく、接合施工性を向上できるとの知見を得た。
 d)また、通常の摩擦撹拌接合では、接合完了後、接合部が自然放冷状態となるため、鋼材製造時の圧延プロセスで行われているような熱履歴管理によるミクロ組織制御を適用することができないという問題があった。しかし、接合完了直後に、接合部に対し、加熱処理や冷却処理を組み合わせたプロセスを実施することで、接合継手特性をさらに向上できるとの知見を得た。
 本発明は、上記の知見に立脚するものである。
 本発明の要旨構成は次のとおりである。
1.肩部および該肩部に配され該肩部と回転軸を共有するピン部を含み、少なくとも該肩部と該ピン部は被加工材である鋼板よりも硬い材質からなり、該鋼板の未接合部に挿入されて回転しながら接合方向に移動し、該鋼板との摩擦熱により該鋼板を軟化させつつ、その軟化した部位を撹拌することにより塑性流動を生じさせる回転ツールと、
 接合方向へ移動する該回転ツールの前方に設けられ、該鋼板を加熱する加熱装置と、を有し、
 該加熱により該鋼板の表面の温度T(℃)が、
 T ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
となる領域を加熱領域としたとき、該鋼板の表面における、該加熱領域と該回転ツールとの最小距離を、該回転ツールの肩部の直径以下とし、
 また該鋼板の表面における該加熱領域の面積を、該回転ツールのピン部の最大径部の面積以下とし、
 さらに該加熱領域の面積の50%以上が、該鋼板の表面において、該回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつアドバンシングサイドへ該回転ツールのピン部の最大半径と同じ距離だけ隔てた直線、との間に位置する構造用鋼の摩擦撹拌接合装置。  
                 記
 TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
       +16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
 ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)である。
2.前記加熱領域の厚さ方向の領域に関し、温度T(℃)が、
 T ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
を満足する領域における前記鋼板の表面からの最大深さを加熱領域の深さDとしたとき、該加熱領域の深さDが、前記鋼板の合計厚さtの30%以上となる前記1に記載の構造用鋼の摩擦撹拌接合装置。
                 記
 TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
       +16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
 ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)である。
3.前記加熱装置が、レーザ加熱装置である前記1または2に記載の構造用鋼の摩擦撹拌接合装置。
4.接合方向へ移動する前記回転ツールの後方に設けられ、前記鋼板の接合部を加熱する後方加熱装置を有する前記1~3のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
5.前記回転ツールの後方で、かつ前記後方加熱装置の後に設けられ、前記鋼板の接合部を冷却する冷却装置を有する前記4に記載の構造用鋼の摩擦撹拌接合装置。
6.接合方向へ移動する前記回転ツールの後方に設けられ、前記鋼板の接合部を冷却する冷却装置を有する前記1~3のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
7.接合方向へ移動する前記回転ツールの後方で、かつ前記冷却装置の後に設けられ、前記鋼板の接合部を再加熱する後方加熱装置を有する前記6に記載の構造用鋼の摩擦撹拌接合装置。
 本発明による摩擦撹拌接合装置を用いれば、構造用鋼の摩擦撹拌接合に際し、従来懸念された被加工材の加熱不足による塑性流動不良を有利に解消して、接合施工性の向上を図ることができる。さらにはミクロ組織の変化も抑制して、接合部において、高い継手強度を得ることができる。
図1は、本発明の摩擦撹拌接合方法を説明する概略図である。 図2は、予熱プロセスにおける加熱領域、接合後に行ったプロセスにおける冷却領域および再加熱領域の一例を示す図(上面図およびA-A断面図)である。 図3は、本発明の摩擦撹拌接合装置で対象とする構造用鋼の一例についての温度と引張強さの関係を示す図である。 図4は、実施例で使用した回転ツールの断面寸法を示す図である。
 以下、本発明を具体的に説明する。
 本発明は、構造用鋼の摩擦撹拌接合装置であり、図1に示すように、回転ツールを、鋼板の未接合部に挿入して回転させながら接合方向に移動させ、回転ツールと鋼板との摩擦熱により該鋼板を軟化させつつ、その軟化した部位を回転ツールで撹拌することにより塑性流動を生じさせて、鋼板を接合するものである。ここで、回転ツールは、肩部、およびこの肩部に配置され、この肩部と回転軸を共有するピン部を含み、少なくとも肩部とピン部は被加工材である鋼板よりも硬い材質により形成される。
 図中、符号1が回転ツール、2は回転軸、3は鋼板、4は接合部、5は加熱装置、6が冷却装置、7が後方加熱装置、8が回転ツールの肩部、9は回転ツールのピン部であり、αは回転ツール傾斜角度を示す。なお、「AS」および「RS」は、それぞれアドバンシングサイドおよびリトリーティングサイドを表す。
 アドバンシングサイドとは、ツール回転方向と接合方向が一致する側と、リトリーティングサイドとは、ツール回転方向と接合方向が反対となる側と、それぞれ定義する。
 本発明の摩擦撹拌接合装置による摩擦攪拌接合では、接合方向へ移動する該回転ツールの前方に設けた加熱装置により鋼板を加熱する予熱処理プロセスが重要である。以下、この予熱処理プロセス条件について、図2を参照しながら説明する。
 図中、符号10は接合中央線であり、この接合中央線は、鋼板の表面において回転ツールの回転軸を通り接合方向に平行な直線を示す。11は接合中央線に平行で、かつアドバンシングサイドへ回転ツールのピン部の最大半径と同じ距離だけ隔てた直線(以下、AS線と呼ぶものとする)、12は加熱領域、13は冷却領域、14は再加熱領域であり、aで回転ツールの肩部直径を、bで回転ツールのピン部の最大径を、Xで加熱領域と回転ツールとの最小距離を、Dで加熱領域の最大深さを(以下、加熱領域の深さDという)、tで鋼板の厚さをそれぞれ示す。
 [加熱領域における鋼板の表面温度T:T ≧0.8 ×TA1
 本発明の摩擦撹拌接合装置により摩擦攪拌接合する鋼板は、図3に示すように、通常、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、さらに強度が低下する。よって、鋼板の表面温度を0.8×TA1℃以上として鋼板を予め軟化させ、当該鋼板を撹拌し、塑性流動を促進することで、回転ツールにかかる負荷を低減し、また接合速度も高速度化することができる。このため、本発明では、加熱領域12における鋼板の表面温度T(℃)を、0.8×TA1℃以上とする。なお、TA1(℃)は次式(1)により求めることができる。
 TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
       +16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
  [%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
 厚さ方向へ加熱領域を確保するためには加熱領域の表面には温度勾配が存在しても良い。その場合、加熱領域における鋼板の表面温度は1.5×TM℃以下とすることが好ましい。さらに、接合部の温度が過度に上昇することによる回転ツールの損傷やミクロ組織の変質を避けるため、加熱領域における鋼板の表面温度は、該加熱領域を通過する回転ツールと接触するまでにTM℃未満とすることが好ましい。
 TM(℃)は被加工材である鋼板の融点である。
 [鋼板の表面における加熱領域と回転ツールとの最小距離:回転ツールの肩部の直径以下]
 鋼板の表面における加熱領域と回転ツールとの間隔が大きくなり過ぎると、接合前に加熱領域における温度が低下してしまい、予熱による効果が十分に得られない。このため、鋼板の表面における加熱領域と接合方向へ移動する回転ツールとの最小距離Xは、回転ツールの肩部の直径以下とする。
 加熱領域と回転ツールの間隔が小さくなり過ぎると、回転ツールが加熱装置による熱で損傷する恐れがある。そのため、鋼板の表面における加熱領域と接合方向へ移動する回転ツールとの最小距離は、回転ツールの肩部の直径の0.1倍以上とすることが好ましい。
 なお、回転ツールの肩部の直径は、8~60mm程度である。
 [鋼板の表面における加熱領域の面積:回転ツールのピン部の最大径部の面積以下]
 加熱領域12が大きくなり過ぎると当該領域およびその周辺領域のミクロ組織が変化する。特に、マルテンサイト組織により強化された高張力鋼板の場合は、フェライト-オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化を生じ、接合継手強度を大幅に低下させてしまう。このため、鋼板の表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積以下とする。
 ここで、回転ツールのピン部の最大半径とは、Fig. 4に示すツール形状の投影図においてはbに相当し、他のツール形状においてピン部がテーパ形状などを有し、場所によってピン径が異なる場合は、投影図においてピン径が最大となる位置に相当する。
 一方、加熱領域の面積が小さくなりすぎると、予熱による効果が十分に得られなくなる。よって、鋼板の表面における加熱領域の面積は、回転ツールのピン部における最大径部の面積の0.1倍以上とすることが好ましい。
 回転ツールのピン部の最大径は、2~50mm程度である。
 [鋼板の表面において、接合中央線とAS線との間に位置する加熱領域の面積:鋼板の表面における加熱領域の面積の50%以上]
 鋼材の摩擦撹拌接合においては、塑性流動の始点はアドバンシングサイドであり、回転ツールの回転方向に沿って、接合方向前方、リトリーティングサイド、接合方向後方を通り、アドバンシングサイドが終点となる。このように、アドバンシングサイドは塑性流動の始点となるため、被加工材である鋼板の加熱不足が生じ易く、塑性流動が不十分で欠陥が発生する場合には、その殆どがアドバンシングサイドで発生する。
 鋼板の表面において、加熱領域12の面積の50%以上を、接合中央線10と、該接合中央線10に平行なAS線11との間に位置させ、アドバンシングサイドを優先的に加熱することで、塑性流動を促進し、欠陥の発生を抑え、接合速度の高速化を図ることができる。好ましくは加熱領域の面積の60%以上、より好ましくは80%以上の範囲である。なお、100%であってもよい。
 アドバンシングサイドを優先的に加熱するという観点からは、加熱領域の中心を、接合中央線とAS線の中間点を通る直線と、AS線との間に位置させる。換言すれば、加熱領域の中心を接合中央線よりもアドバンシングサイドに位置させ、さらに加熱領域中心から接合中央線までの距離を、回転ツールのピン部における最大半径の0.5倍以上1倍以下とすることが好ましい。
 [加熱領域の厚さ方向の領域における温度T:T ≧0.8×TA1
 前述したように、本発明の摩擦撹拌接合装置で接合する鋼板は、通常、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、さらに強度が低下する。よって、加熱領域の厚さ方向の領域においても、温度を0.8×TA1℃以上として鋼板を予め軟化させ、当該鋼板を撹拌し、塑性流動を促進することで、回転ツールにかかる負荷をさらに低減し、また接合速度も一層高速度化させることが好ましい。従って、後述する加熱領域の深さDを規定する加熱領域の厚さ方向の温度Tは、0.8×TA1℃以上として定義するものとした。なお、TA1(℃)は次式(1)により求めることができる。
 TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
       +16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
 ここで、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)である。
 厚さ方向へ加熱領域を確保するためには加熱領域の厚さ方向には温度勾配が存在しても良い。その場合、加熱領域における鋼板の厚さ方向の温度は1.5×TM℃以下とすることが好ましい。さらに、接合部の温度が過度に上昇することによる回転ツールの損傷やミクロ組織の変質を避けるために、加熱領域における鋼板の厚さ方向の温度は、該加熱領域を通過する回転ツールと接触するまでにTM℃未満とすることが好ましい。
 TM(℃)は被加工材である鋼板の融点である。
 [加熱領域の深さD:鋼板の合計厚さの30%以上]
 加熱領域の深さDは、上記した加熱領域の厚さ方向の温度Tが0.8×TA1℃以上となる領域における、被加工材である鋼板の表面からの最大深さで規定される。ここで、この加熱領域の深さDは、鋼板の合計厚さの30%以上とすることが好ましい。というのは、加熱領域の深さDを鋼板の合計厚さの30%以上とすることで、塑性流動がさらに促進されるので、回転ツールにかかる負荷低減および接合速度の高速度化において、一層有利となるからである。より好ましくは鋼板の合計厚さの50%以上である。
 しかしながら、加熱領域の深さDが、鋼板の合計厚さの90%を超えると、加熱が過多となりミクロ組織の変化が懸念されるので、加熱領域の深さDは鋼板の合計厚さの90%以下とすることが好ましい。
 また、予熱処理プロセスで使用する加熱装置は特に限定されるものではないが、レーザ加熱装置を用いることが好ましい。
 というのは、エネルギー密度の高いレーザを熱源に用いることで、予熱処理プロセス条件の制御をより正確に行うことができ、接合継手特性を損なうことなく接合施工性の向上を図ることができるからである。
 なお、上記した以外の条件については特に限定されず、例えば予熱処理プロセスで使用する加熱装置の移動速度は、接合速度と同程度とすればよい。また、この加熱装置にレーザ加熱装置を用いる場合、そのレーザ出力やビーム径は、接合条件に応じて適宜設定すればよい。
 以上、本発明の摩擦撹拌接合装置における予熱処理プロセスについて説明したが、本発明の摩擦撹拌接合装置では、接合方向へ移動する回転ツールの後方に、冷却装置を設け、その冷却装置により、接合継手強度を改善することができる。
 というのは、通常、接合完了後、接合部は自然放冷状態となるため、被加工材である鋼材の焼入れ性が低い場合は、接合継手の強度が十分に得られないという問題があった。この点、接合方向へ移動する前記回転ツールの後方に設けた冷却装置により、前記鋼板の接合部を冷却し、冷却速度を適切に制御することで、焼入れによる強度向上を図ることができる。具体的な冷却装置としては、不活性ガスの噴出による冷却が好適である。この場合の冷却速度としては、例えば800℃から500℃の範囲を30~300℃/sとすることが好適である。
 一方、被加工材である鋼材の焼入れ性が高い場合は、接合部が過度に硬化する可能性があり、接合継手の靭性を低下させるという問題があった。この点、回転ツールに近接する後方部分を加熱する後方加熱装置を設け、冷却速度を適切に制御して徐冷することで、過度な硬化を抑制することができる。具体的な加熱装置としては高周波誘導加熱、レーザを熱源とした加熱が好適である。この場合の徐冷速度としては、例えば800℃から500℃の範囲を10~30℃/sとすることが好適である。
 接合方向へ移動する回転ツールの後方で、かつ上記した冷却装置の後に、後方加熱装置を設け、該後方加熱装置により鋼板の接合部を再加熱してもよい。
 これにより、接合部が冷却装置による冷却で焼入れされ、過度に硬化した場合に、該後方加熱装置で焼き戻しすることにより硬度を抑え、強度と靭性を併せ持つ継手特性を達成することができる。この場合の冷却速度としては、例えば800℃から500℃の範囲を30~300℃/s、再加熱温度としては、例えば550~650℃とすることが好適である。
 さらに、接合方向へ移動する回転ツールの後方で、かつ上記した後方加熱装置の後に、冷却装置を設け、該冷却装置により鋼板の接合部を冷却してもよい。
 この場合には、接合直後において、後方加熱装置で冷却速度を小さく、その後、冷却装置で冷却速度を大きくすることで、組織を複合化することができ、強度と延性を併せ持つ継手特性を達成することができる。この場合の冷却速度としては、例えば、800℃から600℃の範囲を10~30℃/s程度とし、その後、600℃から400℃の範囲を30~300℃/s程度とすることが好適である。
 上記以外の接合条件については、常法に従えばよいが、回転ツールのトルクが大きいほど鋼板の塑性流動性は低いことになるので、欠陥などが生じ易くなる。
 従って、本発明では、回転ツールの回転数を100~1000rpmの範囲とし、回転ツールのトルクを抑え、接合速度を1000mm/min以上に高速化することを目標とする。
 本発明の対象鋼種としては、一般的な構造用鋼や炭素鋼、例えばJIS G 3106の溶接構造用圧延鋼材、JIS G 4051の機械構造用炭素鋼などを好適に用いることができる。また、引張強度が800MPa以上の高強度構造用鋼にも有利に適用でき、この場合であっても、接合部において、鋼板(母材)の引張強度の85%以上の強度、さらには90%以上の強度が得られる。
実施例1
 板厚1.6mmの表1に示す化学組成、引張強さの鋼板を用いて、摩擦撹拌接合を実施した。継手突合せ面は、角度をつけないいわゆるI型開先でフライス加工程度の表面状態により片面1パスで接合を行った。摩擦撹拌接合の接合条件を表2に示す。図4に断面寸法を示す炭化タングステン(WC)を素材とした回転ツール(肩部直径a:12mm、ピン部の最大径b:4.0mm、プローブ長さc:1.4mm)を用い、接合時にはアルゴンガスにより接合部をシールドし、表面の酸化を防止した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 接合に先立ち、レーザを熱源に用いた予熱による加熱領域を確認するため、表1の鋼板1に対して、表3に示す各照射条件(レーザ移動速度、レーザ出力およびビーム径)でレーザ光を照射して、表面温度をサーモグラフィにより測定した。レーザ照射部の断面を観察し、ナイタール腐食液によるミクロ組織観察を行った。
 変態点(TA1℃)以上となった領域は最も濃く、その外側に存在する変態点(TA1℃)未満であるが母材中のマルテンサイトなどの高硬度組織が焼き戻される領域は比較的薄くエッチングされるため、変態点(TA1℃)以上となった領域、変態点(TA1℃)未満での焼き戻し領域、母材の領域はそれぞれ識別可能である。さらに、鉄鋼の熱処理の知見より、変態点(TA1℃)未満での焼き戻し領域は、0.8×TA1℃以上かつTA1℃未満の領域と一致することが知られている。このようなナイタール腐食液によるミクロ組織観察より、変態点(TA1℃)以上となった領域の深さD0、および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)を測定した。
 これらの測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表4に示すように、サーモグラフィによる表面温度測定結果から、照射条件Aにおいて、0.8×TA1℃以上となる領域は直径3.5mmの円形状であった。ここで用いた回転ツールのピン部の最大径は4.0mmであるため、鋼板表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 照射条件Bにおいて、0.8×TA1℃以上となる領域は直径2.0mmの円形状であった。従って、上記と同様に、鋼板表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 一方、照射条件Cにおいて、0.8×TA1℃以上となる領域は直径4.5mmの円形状であった。ここで用いた回転ツールのピン部の最大径は4.0mmであるため、鋼板表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積を超えることとなる。
 表4に示すように、レーザ照射部の断面観察から、照射条件Aにおいて、TA1℃以上となった領域の深さD0および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)はそれぞれ0.28、0.30mmであった。被加工材である鋼板の厚さtは1.6mmであるので、0.8×TA1℃以上となった領域の深さである加熱領域の深さDは、鋼板の厚さtの約18.8%となる。
 照射条件Bにおいて、TA1℃以上となった領域の深さD0および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)はそれぞれ0.47、0.50mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約31.3%となる。
 一方、照射条件Cにおいて、TA1℃以上となった領域の深さD0および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)はそれぞれ0.09、0.10mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約6.3%となる。
 表5に、被加工材の接合前に行ったレーザ照射による予熱プロセス条件、および接合後に行ったプロセス条件を示す。ここで、接合後に行ったプロセスにおける冷却ではガス噴出による冷却を、加熱(および再加熱)では誘導加熱をそれぞれ行った。
 表5中、予熱プロセス条件および接合後に行ったプロセス条件における「-」は、それぞれ予熱プロセスおよび冷却や加熱といった接合後のプロセスを行わなかった場合を示す。また、接合中央線から加熱領域中心までの距離における「(AS)」、「(RS)」との記載は、加熱領域の中心が、接合中央線からそれぞれアドバンシングサイド、リトリーティングサイドにあることを示す。
Figure JPOXMLDOC01-appb-T000005
 
 表6に、接合を実施した際の回転ツールのトルクの測定値と、得られた接合継手よりJIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った際の引張強さを示す。
 回転ツールのトルクが大きいほど塑性流動性が低く、欠陥などが生じ易いと言える。
Figure JPOXMLDOC01-appb-T000006
 
 表6より、発明例1~10では、接合速度を高速化した場合であっても、母材となる鋼板の引張強さの85%以上の強度が得られるとともに、回転ツールのトルクが75 N・m以下と、塑性流動性も良好であった。特に、接合後に冷却・再加熱を行った発明例6および7では、母材の引張強さの99%以上の強度が得られた。
 一方、比較例1~5では、回転ツールのトルクが80N・m以上となり、塑性流動性に劣っていた。
実施例2
 実施例1と同様に板厚1.6mmの表1に示す化学組成、引張強さの鋼板を用いて、継手突合せ面に角度をつけないいわゆるI型開先でフライス加工程度の表面状態により片面1パスで摩擦撹拌接合を実施した。摩擦撹拌接合の接合条件を表7に示す。また、実施例1と同様に、図4に断面寸法を示す炭化タングステン(WC)を素材とした回転ツール(肩部直径a:12mm、ピン部の最大径b:4.0mm、プローブ長さc:1.4mm)を用い、接合時にはアルゴンガスにより接合部をシールドし、表面の酸化を防止した。
Figure JPOXMLDOC01-appb-T000007
 
 接合に先立ち、レーザを熱源に用いた予熱による加熱領域を確認するため、表1の鋼板1に対して、表8に示す各照射条件(レーザ移動速度、レーザ出力およびビーム径)でレーザ光を照射して、表面温度をサーモグラフィにより測定した。さらに、レーザ照射部の断面を観察し、実施例1と同様に、ナイタール腐食液によるミクロ組織観察を行い、変態点(TA1℃)以上となった領域の深さD0、および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)を測定した。
 これらの測定結果を表9に示す。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
 表9に示すように、サーモグラフィによる表面温度測定結果から、照射条件Dにおいて、0.8×TA1℃以上となる領域は、レーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円径となり、長径は3.8mm、短径は3.2mmであった。ここで用いた回転ツールのピン部の最大径は4.0mmであるため、鋼板表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 照射条件Eにおいて、0.8×TA1℃以上となる領域はレーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円径となり、長径は2.2mm、短径は1.8mmであった。従って、上記と同様に、鋼板表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 一方、照射条件Fにおいて、0.8×TA1℃以上となる領域はレーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円径となり、長径は4.9mm、短径は4.1mmであった。ここで用いた回転ツールのピン部の最大径は4.0mmであるため、鋼板表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積を超えることとなる。
 表9に示すように、レーザ照射部の断面観察から、照射条件Dにおいて、TA1℃以上となった領域の深さD0および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)はそれぞれ0.30、0.32mmであった。被加工材である鋼板の厚さtは1.6mmであるので、0.8×TA1℃以上となった領域の深さである加熱領域の深さDは、鋼板の厚さtの約20.0%となる。
 照射条件Eにおいて、TA1℃以上となった領域の深さD0および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)はそれぞれ0.51、0.54mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約33.8%となる。
 一方、照射条件Fにおいて、TA1℃以上となった領域の深さD0および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)はそれぞれ0.10、0.11mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約6.9%となる。
 表10に、被加工材の接合前に行ったレーザ照射による予熱プロセス条件、および接合後に行ったプロセス条件を示す。ここで、接合後に行ったプロセスにおける冷却ではガス噴出による冷却を、加熱(および再加熱)では誘導加熱をそれぞれ行った。
 表10中、予熱プロセス条件および接合後に行ったプロセス条件における「-」は、それぞれ予熱プロセスおよび冷却や加熱といった接合後のプロセスを行わなかった場合を示す。また、接合中央線から加熱領域中心までの距離における「(AS)」、「(RS)」との記載は、加熱領域の中心が、接合中央線からそれぞれアドバンシングサイド、リトリーティングサイドにあることを示す。
Figure JPOXMLDOC01-appb-T000010
 
 表11に、接合を実施した際の回転ツールのトルクの測定値と、得られた接合継手よりJIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った際の引張強さを示す。
 回転ツールのトルクが大きいほど塑性流動性が低く、欠陥などが生じ易いと言える。
Figure JPOXMLDOC01-appb-T000011
 
 表11より、発明例11~20では、接合速度を1000mm/minに高速化した場合であっても、回転ツールのトルクを100N・m以下として接合することができ、また母材となる鋼板の引張強さの85%以上の強度が達成でき、健全な継手が得られた。特に、接合後に冷却・再加熱を行った発明例16および17では、母材の引張強さの99%以上の強度が得られた。
 一方、比較例6では回転ツールが接合中に破損し、接合ができなかった。また、比較例7~10は、未接合部分が残る状態となって接合ができず、従って、健全な継手は得られなかった。このため、比較例6~10では、回転ツールのトルク等の測定は行っていない。
 1  回転ツール
 2  回転軸
 3  鋼板
 4  接合部
 5  加熱装置
 6  冷却装置
 7  後方加熱装置
 8  回転ツールの肩部
 9  回転ツールのピン部
 10  接合中央線
 11  AS線
 12  加熱領域
 13  冷却領域
 14  再加熱領域
 a  回転ツールの肩部直径
 b  回転ツールのピン部の最大径
 c  回転ツールのプローブ長さ
 X  加熱領域と回転ツールとの最小距離
 D  加熱領域の深さ
 t  鋼板の厚さ
 α  回転ツール傾斜角度

Claims (7)

  1.  肩部および該肩部に配され該肩部と回転軸を共有するピン部を含み、少なくとも該肩部と該ピン部は被加工材である鋼板よりも硬い材質からなり、該鋼板の未接合部に挿入されて回転しながら接合方向に移動し、該鋼板との摩擦熱により該鋼板を軟化させつつ、その軟化した部位を撹拌することにより塑性流動を生じさせる回転ツールと、
     接合方向へ移動する該回転ツールの前方に設けられ、該鋼板を加熱する加熱装置と、を有し、
     該加熱により該鋼板の表面の温度T(℃)が、
     T ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
    となる領域を加熱領域としたとき、該鋼板の表面における、該加熱領域と該回転ツールとの最小距離を、該回転ツールの肩部の直径以下とし、
     また該鋼板の表面における該加熱領域の面積を、該回転ツールのピン部の最大径部の面積以下とし、
     さらに該加熱領域の面積の50%以上が、該鋼板の表面において、該回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつアドバンシングサイドへ該回転ツールのピン部の最大半径と同じ距離だけ隔てた直線、との間に位置する構造用鋼の摩擦撹拌接合装置。
                        記
     TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
           +16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
     ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)である。
  2.  前記加熱領域の厚さ方向の領域に関し、温度T(℃)が、
     T ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
    を満足する領域における前記鋼板の表面からの最大深さを加熱領域の深さDとしたとき、該加熱領域の深さDが、前記鋼板の合計厚さtの30%以上となる請求項1に記載の構造用鋼の摩擦撹拌接合装置。
                        記
     TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
           +16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
     ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)である。
  3.  前記加熱装置が、レーザ加熱装置である請求項1または2に記載の構造用鋼の摩擦撹拌接合装置。
  4.  接合方向へ移動する前記回転ツールの後方に設けられ、前記鋼板の接合部を加熱する後方加熱装置を有する請求項1~3のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
  5.  前記回転ツールの後方で、かつ前記後方加熱装置の後に設けられ、前記鋼板の接合部を冷却する冷却装置を有する請求項4に記載の構造用鋼の摩擦撹拌接合装置。
  6.  接合方向へ移動する前記回転ツールの後方に設けられ、前記鋼板の接合部を冷却する冷却装置を有する請求項1~3のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
  7.  接合方向へ移動する前記回転ツールの後方で、かつ前記冷却装置の後に設けられ、前記鋼板の接合部を再加熱する後方加熱装置を有する請求項6に記載の構造用鋼の摩擦撹拌接合装置。
PCT/JP2016/001542 2015-03-19 2016-03-17 構造用鋼の摩擦撹拌接合装置 WO2016147668A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177024293A KR101954561B1 (ko) 2015-03-19 2016-03-17 구조용 강의 마찰 교반 접합 장치
EP16764499.6A EP3251782A4 (en) 2015-03-19 2016-03-17 Friction stir welding apparatus for structural steel
CN201680015809.9A CN107405723A (zh) 2015-03-19 2016-03-17 结构用钢的摩擦搅拌接合装置
US15/556,792 US10766099B2 (en) 2015-03-19 2016-03-17 Friction stir welding apparatus for structural steel
JP2016538819A JP6004147B1 (ja) 2015-03-19 2016-03-17 構造用鋼の摩擦撹拌接合装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055729 2015-03-19
JP2015055729 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147668A1 true WO2016147668A1 (ja) 2016-09-22

Family

ID=56919535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001542 WO2016147668A1 (ja) 2015-03-19 2016-03-17 構造用鋼の摩擦撹拌接合装置

Country Status (6)

Country Link
US (1) US10766099B2 (ja)
EP (1) EP3251782A4 (ja)
JP (1) JP6004147B1 (ja)
KR (1) KR101954561B1 (ja)
CN (1) CN107405723A (ja)
WO (1) WO2016147668A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160221117A1 (en) * 2013-09-30 2016-08-04 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160228981A1 (en) * 2013-09-30 2016-08-11 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
WO2017169991A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法及び装置
WO2017169992A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法及び装置
CN108687439A (zh) * 2017-03-30 2018-10-23 株式会社日立电力解决方案 摩擦搅拌接合装置及方法以及摩擦搅拌接合控制装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655403B (zh) * 2017-10-31 2022-10-14 梅尔德制造公司 固态增材制造系统和材料的组成与结构
CN110814506A (zh) * 2018-08-14 2020-02-21 江苏海装金属成型科技有限公司 一种自动化高强度大型铝合金焊接方法
KR102030431B1 (ko) * 2018-12-04 2019-10-10 선문대학교 산학협력단 롤러식 필러 공급형 마찰 고상 접합 및 피복 장치
KR102267494B1 (ko) * 2019-10-01 2021-06-21 선문대학교 산학협력단 소형 접합 및 피복 장치
CN111421223B (zh) * 2020-05-07 2023-11-24 铜陵学院 一种用于异种材料的搅拌摩擦对接焊装置及其加工方法
CN111673263A (zh) * 2020-05-11 2020-09-18 首钢集团有限公司 一种超高强钢和铝合金的搅拌摩擦焊方法
CN114951955A (zh) * 2022-05-26 2022-08-30 南京航空航天大学 一种高熔点异种材料薄板搅拌摩擦焊复合能场方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288474A (ja) * 2004-03-31 2005-10-20 Nippon Sharyo Seizo Kaisha Ltd 摩擦撹拌接合装置及び摩擦撹拌接合方法
JP4235874B2 (ja) * 2001-09-20 2009-03-11 株式会社安川電機 摩擦撹拌接合法の加熱装置
JP4317685B2 (ja) * 2002-11-05 2009-08-19 三菱重工業株式会社 摩擦攪拌接合装置とその接合方法
JP2012245541A (ja) * 2011-05-27 2012-12-13 Mitsubishi Heavy Ind Ltd 摩擦攪拌接合装置
WO2015045421A1 (ja) * 2013-09-30 2015-04-02 Jfeスチール株式会社 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
WO2015045299A1 (ja) * 2013-09-30 2015-04-02 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8601083D0 (en) 1986-01-17 1986-02-19 Welding Inst Friction welding
GB9125978D0 (en) 1991-12-06 1992-02-05 Welding Inst Hot shear butt welding
SE9701265D0 (sv) 1997-04-04 1997-04-04 Esab Ab Förfarande och anordning för friktionsomrörningssvetsning
JP3258307B2 (ja) 2000-01-25 2002-02-18 川崎重工業株式会社 高疲労強度構造の摩擦撹拌接合ツール
ATE400392T1 (de) 2000-05-08 2008-07-15 Univ Brigham Young Drehendes rohrschweissen mittels eines superabrasiven werkzeuges
DE10036170C1 (de) * 2000-07-25 2001-12-06 Eads Deutschland Gmbh Laserunterstütztes Reibrührschweißverfahren
US6776328B2 (en) * 2002-09-17 2004-08-17 The Boeing Company Radiation assisted friction welding
JP3806397B2 (ja) * 2002-11-28 2006-08-09 三菱重工業株式会社 攪拌接合方法及び攪拌接合装置
US6913186B2 (en) 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
JP4468125B2 (ja) * 2004-09-27 2010-05-26 三菱重工業株式会社 摩擦撹拌接合方法及び装置
US20080099533A1 (en) * 2006-10-31 2008-05-01 General Electric Method for controlling microstructure via thermally managed solid state joining
CN102672346B (zh) 2011-10-27 2015-06-03 上海小糸车灯有限公司 一种摩擦焊预热机构
CA2869382C (en) 2012-04-06 2015-10-20 Jfe Steel Corporation Method for friction-stir welding of steel sheet
US9216473B2 (en) * 2012-04-18 2015-12-22 Ford Global Technologies, Llc Clamping and heating apparatus for joining tools
US9033205B2 (en) * 2012-07-27 2015-05-19 Alfredo CASTILLO Friction stir welding with temperature control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235874B2 (ja) * 2001-09-20 2009-03-11 株式会社安川電機 摩擦撹拌接合法の加熱装置
JP4317685B2 (ja) * 2002-11-05 2009-08-19 三菱重工業株式会社 摩擦攪拌接合装置とその接合方法
JP2005288474A (ja) * 2004-03-31 2005-10-20 Nippon Sharyo Seizo Kaisha Ltd 摩擦撹拌接合装置及び摩擦撹拌接合方法
JP2012245541A (ja) * 2011-05-27 2012-12-13 Mitsubishi Heavy Ind Ltd 摩擦攪拌接合装置
WO2015045421A1 (ja) * 2013-09-30 2015-04-02 Jfeスチール株式会社 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
WO2015045299A1 (ja) * 2013-09-30 2015-04-02 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3251782A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005151B2 (en) * 2013-09-30 2018-06-26 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160221117A1 (en) * 2013-09-30 2016-08-04 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160228981A1 (en) * 2013-09-30 2016-08-11 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US9833861B2 (en) * 2013-09-30 2017-12-05 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US9821407B2 (en) * 2013-09-30 2017-11-21 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
WO2017169992A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法及び装置
JPWO2017169991A1 (ja) * 2016-03-31 2018-04-05 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法及び装置
WO2017169991A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法及び装置
JPWO2017169992A1 (ja) * 2016-03-31 2018-04-05 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法及び装置
US11241755B2 (en) 2016-03-31 2022-02-08 Jfe Steel Corporation Friction stir welding method and apparatus for structural steel
CN108687439A (zh) * 2017-03-30 2018-10-23 株式会社日立电力解决方案 摩擦搅拌接合装置及方法以及摩擦搅拌接合控制装置
EP3398708A1 (en) * 2017-03-30 2018-11-07 Hitachi, Ltd. Friction stir welding apparatus, friction stir welding control device, and friction stir welding method
US10596657B2 (en) 2017-03-30 2020-03-24 Hitachi Power Solutions Co., Ltd. Friction stir welding apparatus, friction stir welding control device, and friction stir welding method

Also Published As

Publication number Publication date
US10766099B2 (en) 2020-09-08
JPWO2016147668A1 (ja) 2017-04-27
JP6004147B1 (ja) 2016-10-05
US20180043466A1 (en) 2018-02-15
CN107405723A (zh) 2017-11-28
KR101954561B1 (ko) 2019-03-05
EP3251782A4 (en) 2018-04-11
KR20170109030A (ko) 2017-09-27
EP3251782A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6004147B1 (ja) 構造用鋼の摩擦撹拌接合装置
JP5943142B2 (ja) 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法
JP6497451B2 (ja) 摩擦撹拌接合方法および装置
JP6332561B2 (ja) 構造用鋼の摩擦撹拌接合方法及び装置
JP6992773B2 (ja) 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置
WO2015045420A1 (ja) 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
JP6332562B2 (ja) 構造用鋼の摩擦撹拌接合方法及び装置
JP6493564B2 (ja) 摩擦撹拌接合方法および装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016538819

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177024293

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE